index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/tokenizers/AlphabeticTokenizer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * AlphabeticStringTokenizer.java * Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.tokenizers; import java.util.NoSuchElementException; import weka.core.RevisionUtils; /** * <!-- globalinfo-start --> Alphabetic string tokenizer, tokens are to be * formed only from contiguous alphabetic sequences. * <p/> * <!-- globalinfo-end --> * * @author Asrhaf M. Kibriya (amk14@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class AlphabeticTokenizer extends Tokenizer { /** for serialization */ private static final long serialVersionUID = 6705199562609861697L; /** the characters of the string */ protected char[] m_Str; /** the current position */ protected int m_CurrentPos; /** * Returns a string describing the stemmer * * @return a description suitable for displaying in the explorer/experimenter * gui */ @Override public String globalInfo() { return "Alphabetic string tokenizer, tokens are to be formed only from " + "contiguous alphabetic sequences."; } /** * returns whether there are more elements still * * @return true if there are still more elements */ @Override public boolean hasMoreElements() { int beginpos = m_CurrentPos; while ((beginpos < m_Str.length) && ((m_Str[beginpos] < 'a') || (m_Str[beginpos] > 'z')) && ((m_Str[beginpos] < 'A') || (m_Str[beginpos] > 'Z'))) { beginpos++; } m_CurrentPos = beginpos; if ((beginpos < m_Str.length) && (((m_Str[beginpos] >= 'a') && (m_Str[beginpos] <= 'z')) || ((m_Str[beginpos] >= 'A') && (m_Str[beginpos] <= 'Z')))) { return true; } else { return false; } } /** * returns the next element * * @return the next element */ @Override public String nextElement() { int beginpos, endpos; beginpos = m_CurrentPos; while ((beginpos < m_Str.length) && ((m_Str[beginpos] < 'a') && (m_Str[beginpos] > 'z')) && ((m_Str[beginpos] < 'A') && (m_Str[beginpos] > 'Z'))) { beginpos++; } m_CurrentPos = endpos = beginpos; if (beginpos >= m_Str.length) { throw new NoSuchElementException("No more tokens present"); } while ((endpos < m_Str.length) && (((m_Str[endpos] >= 'a') && (m_Str[endpos] <= 'z')) || ((m_Str[endpos] >= 'A') && (m_Str[endpos] <= 'Z')))) { endpos++; } String s = new String(m_Str, beginpos, endpos - m_CurrentPos); m_CurrentPos = endpos; return s; } /** * Sets the string to tokenize. Tokenization happens immediately. * * @param s the string to tokenize */ @Override public void tokenize(String s) { m_CurrentPos = 0; m_Str = new char[s.length()]; s.getChars(0, s.length(), m_Str, 0); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Runs the tokenizer with the given options and strings to tokenize. The * tokens are printed to stdout. * * @param args the commandline options and strings to tokenize */ public static void main(String[] args) { runTokenizer(new AlphabeticTokenizer(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/tokenizers/CharacterDelimitedTokenizer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DelimitedTokenizer.java * Copyright (C) 2007-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.tokenizers; import java.util.Enumeration; import java.util.Vector; import weka.core.Option; import weka.core.Utils; /** * Abstract superclass for tokenizers that take characters as delimiters. * * @author fracpete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public abstract class CharacterDelimitedTokenizer extends Tokenizer { /** Added to prevent warning */ private static final long serialVersionUID = -3091468793633408477L; /** Delimiters used in tokenization */ protected String m_Delimiters = " \r\n\t.,;:'\"()?!"; /** * Returns an enumeration of all the available options.. * * @return an enumeration of all available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option("\tThe delimiters to use\n" + "\t(default ' \\r\\n\\t.,;:'\"()?!').", "delimiters", 1, "-delimiters <value>")); return result.elements(); } /** * Gets the current option settings for the OptionHandler. * * @return the list of current option settings as an array of strings */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); result.add("-delimiters"); result.add(getDelimiters()); return result.toArray(new String[result.size()]); } /** * Sets the OptionHandler's options using the given list. All options will be * set (or reset) during this call (i.e. incremental setting of options is not * possible). * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr = Utils.getOption("delimiters", options); if (tmpStr.length() != 0) { setDelimiters(tmpStr); } else { setDelimiters(" \r\n\t.,;:'\"()?!"); } } /** * Get the value of delimiters (not backquoted). * * @return Value of delimiters. */ public String getDelimiters() { return m_Delimiters; } /** * Set the value of delimiters. For convenienve, the strings "\r", "\n", "\t", * "\'", "\\" get automatically translated into their character * representations '\r', '\n', '\t', '\'', '\\'. This means, one can either * use <code>setDelimiters("\r\n\t\\");</code> or * <code>setDelimiters("\\r\\n\\t\\\\");</code>. * * @param value Value to assign to delimiters. * @see Utils#unbackQuoteChars(String) */ public void setDelimiters(String value) { m_Delimiters = Utils.unbackQuoteChars(value); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String delimitersTipText() { return "Set of delimiter characters to use in tokenizing (\\r, \\n and \\t can be used for carriage-return, line-feed and tab)"; } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/tokenizers/CharacterNGramTokenizer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * NGramTokenizer.java * Copyright (C) 2007-2012 University of Waikato */ package weka.core.tokenizers; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Splits a string into an n-gram with min and max * grams. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -max &lt;int&gt; * The max size of the Ngram (default = 3). * </pre> * * <pre> * -min &lt;int&gt; * The min size of the Ngram (default = 1). * </pre> * * <!-- options-end --> * * @author Sebastian Germesin (sebastian.germesin@dfki.de) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * * @version $Revision: 10971 $ */ public class CharacterNGramTokenizer extends Tokenizer { /** for serialization */ private static final long serialVersionUID = -1181896253171647218L; /** the maximum number of N */ protected int m_NMax = 3; /** the minimum number of N */ protected int m_NMin = 1; /** the current length of the N-grams */ protected int m_N; /** the current position for returning elements */ protected int m_CurrentPosition; /** the string to tokenize */ protected String m_String; /** * Returns a string describing the tokenizer * * @return a description suitable for displaying in the explorer/experimenter * GUI */ @Override public String globalInfo() { return "Splits a string into all character n-grams it contains based on the given maximum and minimum for n."; } /** * Returns an enumeration of all the available options.. * * @return an enumeration of all available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option("\tThe maximum number of characters (default = 3).", "max", 1, "-max <int>")); result.addElement(new Option("\tThe minimum number of characters (default = 1).", "min", 1, "-min <int>")); result.addAll(Collections.list(super.listOptions())); return result.elements(); } /** * Gets the current option settings for the OptionHandler. * * @return the list of current option settings as an array of strings */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); result.add("-max"); result.add("" + getNGramMaxSize()); result.add("-min"); result.add("" + getNGramMinSize()); Collections.addAll(result, super.getOptions()); return result.toArray(new String[result.size()]); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -max &lt;int&gt; * The max size of the Ngram (default = 3). * </pre> * * <pre> * -min &lt;int&gt; * The min size of the Ngram (default = 1). * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String value; value = Utils.getOption("max", options); if (value.length() != 0) { setNGramMaxSize(Integer.parseInt(value)); } else { setNGramMaxSize(3); } value = Utils.getOption("min", options); if (value.length() != 0) { setNGramMinSize(Integer.parseInt(value)); } else { setNGramMinSize(1); } super.setOptions(options); } /** * Gets the max N of the NGram. * * @return the size (N) of the NGram. */ public int getNGramMaxSize() { return m_NMax; } /** * Sets the max size of the Ngram. * * @param value the size of the NGram. */ public void setNGramMaxSize(int value) { if (value < 1) { m_NMax = 1; } else { m_NMax = value; } } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String NGramMaxSizeTipText() { return "The maximum size of an n-gram."; } /** * Sets the min size of the Ngram. * * @param value the size of the NGram. */ public void setNGramMinSize(int value) { if (value < 1) { m_NMin = 1; } else { m_NMin = value; } } /** * Gets the min N of the NGram. * * @return the size (N) of the NGram. */ public int getNGramMinSize() { return m_NMin; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String NGramMinSizeTipText() { return "The minimum size of an n-gram."; } /** * returns true if there's more elements available * * @return true if there are more elements available */ @Override public boolean hasMoreElements() { return (m_CurrentPosition + m_N <= m_String.length()); } /** * Returns N-grams and also (N-1)-grams and .... * * @return the next element */ @Override public String nextElement() { String result = null; try { result = m_String.substring(m_CurrentPosition, m_CurrentPosition + m_N); } catch (StringIndexOutOfBoundsException ex) { // Just return null; } m_N++; if ((m_N > m_NMax) || (m_CurrentPosition + m_N > m_String.length())) { m_N = m_NMin; m_CurrentPosition++; } return result; } /** * Sets the string to tokenize. * * @param s the string to tokenize */ @Override public void tokenize(String s) { m_CurrentPosition = 0; m_String = s; m_N = m_NMin; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 10971 $"); } /** * Runs the tokenizer with the given options and strings to tokenize. The * tokens are printed to stdout. * * @param args the commandline options and strings to tokenize */ public static void main(String[] args) { runTokenizer(new CharacterNGramTokenizer(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/tokenizers/NGramTokenizer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * NGramTokenizer.java * Copyright (C) 2007-2012 University of Waikato */ package weka.core.tokenizers; import java.util.Collections; import java.util.Enumeration; import java.util.LinkedList; import java.util.Vector; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Splits a string into an n-gram with min and max * grams. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -delimiters &lt;value&gt; * The delimiters to use * (default ' \r\n\t.,;:'"()?!'). * </pre> * * <pre> * -max &lt;int&gt; * The max size of the Ngram (default = 3). * </pre> * * <pre> * -min &lt;int&gt; * The min size of the Ngram (default = 1). * </pre> * * <!-- options-end --> * * @author Sebastian Germesin (sebastian.germesin@dfki.de) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class NGramTokenizer extends CharacterDelimitedTokenizer { /** for serialization */ private static final long serialVersionUID = -2181896254171647219L; /** the maximum number of N */ protected int m_NMax = 3; /** the minimum number of N */ protected int m_NMin = 1; /** the current length of the N-grams */ protected int m_N; /** the number of strings available */ protected int m_MaxPosition; /** the current position for returning elements */ protected int m_CurrentPosition; /** all the available grams */ protected String[] m_SplitString; /** * Returns a string describing the stemmer * * @return a description suitable for displaying in the explorer/experimenter * gui */ @Override public String globalInfo() { return "Splits a string into an n-gram with min and max grams."; } /** * Returns an enumeration of all the available options.. * * @return an enumeration of all available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option("\tThe max size of the Ngram (default = 3).", "max", 1, "-max <int>")); result.addElement(new Option("\tThe min size of the Ngram (default = 1).", "min", 1, "-min <int>")); result.addAll(Collections.list(super.listOptions())); return result.elements(); } /** * Gets the current option settings for the OptionHandler. * * @return the list of current option settings as an array of strings */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); result.add("-max"); result.add("" + getNGramMaxSize()); result.add("-min"); result.add("" + getNGramMinSize()); Collections.addAll(result, super.getOptions()); return result.toArray(new String[result.size()]); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -delimiters &lt;value&gt; * The delimiters to use * (default ' \r\n\t.,;:'"()?!'). * </pre> * * <pre> * -max &lt;int&gt; * The max size of the Ngram (default = 3). * </pre> * * <pre> * -min &lt;int&gt; * The min size of the Ngram (default = 1). * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String value; value = Utils.getOption("max", options); if (value.length() != 0) { setNGramMaxSize(Integer.parseInt(value)); } else { setNGramMaxSize(3); } value = Utils.getOption("min", options); if (value.length() != 0) { setNGramMinSize(Integer.parseInt(value)); } else { setNGramMinSize(1); } super.setOptions(options); } /** * Gets the max N of the NGram. * * @return the size (N) of the NGram. */ public int getNGramMaxSize() { return m_NMax; } /** * Sets the max size of the Ngram. * * @param value the size of the NGram. */ public void setNGramMaxSize(int value) { if (value < 1) { m_NMax = 1; } else { m_NMax = value; } } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String NGramMaxSizeTipText() { return "The max N of the NGram."; } /** * Sets the min size of the Ngram. * * @param value the size of the NGram. */ public void setNGramMinSize(int value) { if (value < 1) { m_NMin = 1; } else { m_NMin = value; } } /** * Gets the min N of the NGram. * * @return the size (N) of the NGram. */ public int getNGramMinSize() { return m_NMin; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String NGramMinSizeTipText() { return "The min N of the NGram."; } /** * returns true if there's more elements available * * @return true if there are more elements available */ @Override public boolean hasMoreElements() { // return (m_CurrentPosition < m_MaxPosition // && m_N - 1 + m_CurrentPosition < m_MaxPosition && m_N >= m_NMin); // return (m_N >= m_NMin); } /** * Returns N-grams and also (N-1)-grams and .... and 1-grams. * * @return the next element */ @Override public String nextElement() { String retValue = ""; // for (int i = 0; i < m_N && i + m_CurrentPosition < m_MaxPosition; i++) { // retValue += " " + m_SplitString[m_CurrentPosition + i]; // } for (int i = 0; i < m_N; i++) { retValue += " " + m_SplitString[m_CurrentPosition + i]; } m_CurrentPosition++; if (m_CurrentPosition + m_N - 1 == m_MaxPosition) { m_CurrentPosition = 0; m_N--; } return retValue.trim(); } /** * filters out empty strings in m_SplitString and replaces m_SplitString with * the cleaned version. * * @see #m_SplitString */ protected void filterOutEmptyStrings() { String[] newSplit; LinkedList<String> clean = new LinkedList<String>(); for (int i = 0; i < m_SplitString.length; i++) { if (!m_SplitString[i].equals("")) { clean.add(m_SplitString[i]); } } newSplit = new String[clean.size()]; for (int i = 0; i < clean.size(); i++) { newSplit[i] = clean.get(i); } m_SplitString = newSplit; } /** * Sets the string to tokenize. Tokenization happens immediately. * * @param s the string to tokenize */ @Override public void tokenize(String s) { m_N = m_NMax; m_SplitString = s.split("[" + getDelimiters() + "]"); filterOutEmptyStrings(); m_CurrentPosition = 0; m_MaxPosition = m_SplitString.length; if (m_SplitString.length < m_NMax) { m_N = m_SplitString.length; } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Runs the tokenizer with the given options and strings to tokenize. The * tokens are printed to stdout. * * @param args the commandline options and strings to tokenize */ public static void main(String[] args) { runTokenizer(new NGramTokenizer(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/tokenizers/Tokenizer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Tokenizer.java * Copyright (C) 2007-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.tokenizers; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.Serializable; import java.util.Enumeration; import java.util.Vector; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; /** * A superclass for all tokenizer algorithms. * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public abstract class Tokenizer implements Enumeration<String>, OptionHandler, Serializable, RevisionHandler { /** Added to avoid warning */ private static final long serialVersionUID = 7781271062738973996L; /** * Returns a string describing the stemmer * * @return a description suitable for displaying in the explorer/experimenter * gui */ public abstract String globalInfo(); /** * Returns an enumeration of all the available options.. * * @return an enumeration of all available options. */ @Override public Enumeration<Option> listOptions() { return (new Vector<Option>()).elements(); } /** * Gets the current option settings for the OptionHandler. * * @return the list of current option settings as an array of strings */ @Override public String[] getOptions() { return new String[0]; } /** * Sets the OptionHandler's options using the given list. All options will be * set (or reset) during this call (i.e. incremental setting of options is not * possible). * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { // nothing in this class } /** * Tests if this enumeration contains more elements. * * @return true if and only if this enumeration object contains at least one * more element to provide; false otherwise. */ @Override public abstract boolean hasMoreElements(); /** * Returns the next element of this enumeration if this enumeration object has * at least one more element to provide. * * @return the next element of this enumeration. */ @Override public abstract String nextElement(); /** * Sets the string to tokenize. Tokenization happens immediately. * * @param s the string to tokenize */ public abstract void tokenize(String s); /** * initializes the given tokenizer with the given options and runs the * tokenizer over all the remaining strings in the options array. If no * strings remained in the option string then data is read from stdin, line by * line. * * @param tokenizer the tokenizer to use * @param options the options for the tokenizer * @return the tokenized strings * @throws Exception if setting of options or tokenization fails */ public static String[] tokenize(Tokenizer tokenizer, String[] options) throws Exception { Vector<String> result; Vector<String> tmpResult; Vector<String> data; int i; boolean processed; BufferedReader reader; String line; result = new Vector<String>(); // init tokenizer tokenizer.setOptions(options); // for storing the data to process data = new Vector<String>(); // run over all un-processed strings in the options array processed = false; for (i = 0; i < options.length; i++) { if (options[i].length() != 0) { processed = true; data.add(options[i]); } } // if no strings in option string then read from stdin if (!processed) { reader = new BufferedReader(new InputStreamReader(System.in)); while ((line = reader.readLine()) != null) { data.add(line); } } // process data for (i = 0; i < data.size(); i++) { tmpResult = new Vector<String>(); tokenizer.tokenize(data.get(i)); while (tokenizer.hasMoreElements()) { tmpResult.add(tokenizer.nextElement()); } // add to result result.addAll(tmpResult); } return result.toArray(new String[result.size()]); } /** * initializes the given tokenizer with the given options and runs the * tokenizer over all the remaining strings in the options array. The * generated tokens are then printed to stdout. If no strings remained in the * option string then data is read from stdin, line by line. * * @param tokenizer the tokenizer to use * @param options the options for the tokenizer */ public static void runTokenizer(Tokenizer tokenizer, String[] options) { String[] result; int i; try { result = tokenize(tokenizer, options); for (i = 0; i < result.length; i++) { System.out.println(result[i]); } } catch (Exception e) { e.printStackTrace(); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/tokenizers/WordTokenizer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * SimpleStringTokenizer.java * Copyright (C) 2007-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.tokenizers; import java.util.StringTokenizer; import weka.core.RevisionUtils; /** * <!-- globalinfo-start --> A simple tokenizer that is using the * java.util.StringTokenizer class to tokenize the strings. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -delimiters &lt;value&gt; * The delimiters to use * (default ' \r\n\t.,;:'"()?!'). * </pre> * * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class WordTokenizer extends CharacterDelimitedTokenizer { /** for serialization */ private static final long serialVersionUID = -930893034037880773L; /** the actual tokenizer */ protected transient StringTokenizer m_Tokenizer; /** * Returns a string describing the stemmer * * @return a description suitable for displaying in the explorer/experimenter * gui */ @Override public String globalInfo() { return "A simple tokenizer that is using the java.util.StringTokenizer " + "class to tokenize the strings."; } /** * Tests if this enumeration contains more elements. * * @return true if and only if this enumeration object contains at least one * more element to provide; false otherwise. */ @Override public boolean hasMoreElements() { return m_Tokenizer.hasMoreElements(); } /** * Returns the next element of this enumeration if this enumeration object has * at least one more element to provide. * * @return the next element of this enumeration. */ @Override public String nextElement() { return m_Tokenizer.nextToken(); } /** * Sets the string to tokenize. Tokenization happens immediately. * * @param s the string to tokenize */ @Override public void tokenize(String s) { m_Tokenizer = new StringTokenizer(s, getDelimiters()); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Runs the tokenizer with the given options and strings to tokenize. The * tokens are printed to stdout. * * @param args the commandline options and strings to tokenize */ public static void main(String[] args) { runTokenizer(new WordTokenizer(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/KOML.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * KOML.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.xml; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.InputStream; import java.io.OutputStream; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * This class is a helper class for XML serialization using <a * href="http://koala.ilog.fr/XML/serialization/" target="_blank">KOML</a> . * KOML does not need to be present, since the class-calls are done generically * via Reflection. * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision 1.0$ */ public class KOML implements RevisionHandler { /** * indicates whether <a href="http://koala.ilog.fr/XML/serialization/" * target="_blank">KOML</a> (Koala Object Markup Language) is present */ protected static boolean m_Present = false; /** the extension for KOML files (including '.') */ public final static String FILE_EXTENSION = ".koml"; /** check for KOML statically (needs only to be done once) */ static { checkForKOML(); } /** * checks whether the KOML is present in the class path */ private static void checkForKOML() { try { Class.forName("fr.dyade.koala.xml.koml.KOMLSerializer"); m_Present = true; } catch (Exception e) { m_Present = false; } } /** * returns whether KOML is present or not, i.e. whether the classes are in the * classpath or not * * @return whether KOML is available */ public static boolean isPresent() { return m_Present; } /** * reads the XML-serialized object from the given file * * @param filename the file to deserialize the object from * @return the deserialized object * @throws Exception if something goes wrong while reading from the file */ public static Object read(String filename) throws Exception { return read(new FileInputStream(filename)); } /** * reads the XML-serialized object from the given file * * @param file the file to deserialize the object from * @return the deserialized object * @throws Exception if something goes wrong while reading from the file */ public static Object read(File file) throws Exception { return read(new FileInputStream(file)); } /** * reads the XML-serialized object from a stream * * @param stream the stream to deserialize the object from * @return the deserialized object * @throws Exception if something goes wrong while reading from the stream */ public static Object read(InputStream stream) throws Exception { Class<?> komlClass; Class<?>[] komlClassArgs; Object[] komlArgs; java.lang.reflect.Constructor<?> constructor; Object koml; java.lang.reflect.Method methodRead; java.lang.reflect.Method methodClose; Class<?>[] readArgsClasses; Class<?>[] closeArgsClasses; Object[] readArgs; Object[] closeArgs; Object result; result = null; // get Deserializer komlClass = Class.forName("fr.dyade.koala.xml.koml.KOMLDeserializer"); komlClassArgs = new Class[2]; komlClassArgs[0] = java.io.InputStream.class; komlClassArgs[1] = Boolean.TYPE; komlArgs = new Object[2]; komlArgs[0] = stream; komlArgs[1] = new Boolean(false); constructor = komlClass.getConstructor(komlClassArgs); koml = constructor.newInstance(komlArgs); readArgsClasses = new Class[0]; methodRead = komlClass.getMethod("readObject", readArgsClasses); readArgs = new Object[0]; closeArgsClasses = new Class[0]; methodClose = komlClass.getMethod("close", closeArgsClasses); closeArgs = new Object[0]; // execute it try { result = methodRead.invoke(koml, readArgs); } catch (Exception e) { result = null; } finally { methodClose.invoke(koml, closeArgs); } return result; } /** * writes the XML-serialized object to the given file * * @param filename the file to serialize the object to * @param o the object to write to the file * @return whether writing was successful or not * @throws Exception if something goes wrong while writing to the file */ public static boolean write(String filename, Object o) throws Exception { return write(new FileOutputStream(filename), o); } /** * write the XML-serialized object to the given file * * @param file the file to serialize the object to * @param o the object to write to the file * @return whether writing was successful or not * @throws Exception if something goes wrong while writing to the file */ public static boolean write(File file, Object o) throws Exception { return write(new FileOutputStream(file), o); } /** * writes the XML-serialized object to a stream * * @param stream the stream to serialize the object to * @param o the object to write to the stream * @return whether writing was successful or not * @throws Exception if something goes wrong while writing to the stream */ public static boolean write(OutputStream stream, Object o) throws Exception { Class<?> komlClass; Class<?>[] komlClassArgs; Object[] komlArgs; java.lang.reflect.Constructor<?> constructor; Object koml; java.lang.reflect.Method methodAdd; java.lang.reflect.Method methodClose; Class<?>[] addArgsClasses; Class<?>[] closeArgsClasses; Object[] addArgs; Object[] closeArgs; boolean result; result = false; // get Deserializer komlClass = Class.forName("fr.dyade.koala.xml.koml.KOMLSerializer"); komlClassArgs = new Class[2]; komlClassArgs[0] = java.io.OutputStream.class; komlClassArgs[1] = Boolean.TYPE; komlArgs = new Object[2]; komlArgs[0] = stream; komlArgs[1] = new Boolean(false); constructor = komlClass.getConstructor(komlClassArgs); koml = constructor.newInstance(komlArgs); addArgsClasses = new Class[1]; addArgsClasses[0] = Object.class; methodAdd = komlClass.getMethod("addObject", addArgsClasses); addArgs = new Object[1]; addArgs[0] = o; closeArgsClasses = new Class[0]; methodClose = komlClass.getMethod("close", closeArgsClasses); closeArgs = new Object[0]; // execute it try { methodAdd.invoke(koml, addArgs); result = true; } catch (Exception e) { result = false; } finally { methodClose.invoke(koml, closeArgs); } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/MethodHandler.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * MethodHandler.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.xml; import java.lang.reflect.Method; import java.util.Enumeration; import java.util.Hashtable; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * This class handles relationships between display names of properties (or * classes) and Methods that are associated with them. * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class MethodHandler implements RevisionHandler { /** * stores the properties/class - Method relationship * * @see #keys() * @see #add(Class, Method) * @see #add(String, Method) * @see #remove(Class) * @see #remove(String) * @see #get(Class) * @see #get(String) * @see #contains(Class) * @see #contains(String) */ protected Hashtable<Object, Method> m_Methods = null; /** * initializes the handler */ public MethodHandler() { super(); m_Methods = new Hashtable<Object, Method>(); } /** * returns an enumeration over all currently stored custom methods, i.e. it * returns the display names/classes in the enumeration. * * @return the currently stored methods * @see #m_Methods */ public Enumeration<Object> keys() { return m_Methods.keys(); } /** * adds the specified method for the property with the given displayname to * its internal list. * * @param displayName the display name of the property to handle manually * @param method the method, which will be invoked by reflection to handle the * property manually * @see #m_Methods */ public void add(String displayName, Method method) { if (method != null) { m_Methods.put(displayName, method); } } /** * adds the specified method for the given class to its internal list. * * @param c the class to handle manually * @param method the method, which will be invoked by reflection to handle the * property manually * @see #m_Methods */ public void add(Class<?> c, Method method) { if (method != null) { m_Methods.put(c, method); } } /** * removes the method for the property specified by the display name from its * internal list. * * @param displayName the display name of the propery to remove the custom * method for * @return whether the method was stored in the list at all * @see #m_Methods */ public boolean remove(String displayName) { return (m_Methods.remove(displayName) != null); } /** * removes the method for the specified class from its internal list. * * @param c the class to remove the custom method for * @return whether the method was stored in the list at all * @see #m_Methods */ public boolean remove(Class<?> c) { return (m_Methods.remove(c) != null); } /** * checks whether a method is stored for the given property * * @param displayName the display name of the property to check for a method * @return whether a method is currently stored * @see #m_Methods */ public boolean contains(String displayName) { return m_Methods.containsKey(displayName); } /** * checks whether a method is stored for the given class * * @param c the class to check for a method * @return whether a method is currently stored * @see #m_Methods */ public boolean contains(Class<?> c) { return m_Methods.containsKey(c); } /** * returns the stored method for the given property * * @param displayName the display name of the property to retrieve the method * for * @return the method associated with the display name, can be * <code>null</code> * @see #m_Methods */ public Method get(String displayName) { return m_Methods.get(displayName); } /** * returns the stored method for the given class * * @param c the class to retrieve the method for * @return the method associated with the class, can be <code>null</code> * @see #m_Methods */ public Method get(Class<?> c) { return m_Methods.get(c); } /** * returns the number of currently stored Methods * * @return the nummber of methods */ public int size() { return m_Methods.size(); } /** * removes all mappings */ public void clear() { m_Methods.clear(); } /** * returns the internal Hashtable (propety/class - method relationship) in a * string representation * * @return the object as string */ @Override public String toString() { return m_Methods.toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/PropertyHandler.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * PropertyHandler.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.xml; import java.util.Enumeration; import java.util.HashSet; import java.util.Hashtable; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * This class stores information about properties to ignore or properties that * are allowed for a certain class. * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class PropertyHandler implements RevisionHandler { /** * contains display names of properties to ignore in the serialization process * * @see #ignored() * @see #addIgnored(String) * @see #removeIgnored(String) * @see #isIgnored(String) */ protected Hashtable<Object, HashSet<String>> m_Ignored = null; /** * lists for a class the properties allowed to use for setting and getting. if * a class is not listed, then all get/set-methods are allowed.<br> * Mapping: classname (String) - properties (HashSet, containing the * Property-Names) * * @see #allowed() * @see #addAllowed(Class,String) * @see #removeAllowed(Class,String) * @see #isAllowed(Class,String) */ protected Hashtable<Object, HashSet<String>> m_Allowed = null; /** * initializes the handling */ public PropertyHandler() { super(); m_Ignored = new Hashtable<Object, HashSet<String>>(); m_Allowed = new Hashtable<Object, HashSet<String>>(); } /** * returns an enumeration of the stored display names and classes of * properties to ignore.<br> * <b>NOTE:</b> String and Class Objects are mixed in this enumeration, * depending whether it is a global property to ignore or just one for a * certain class! * * @return the display names and classes * @see #m_Ignored */ public Enumeration<Object> ignored() { return m_Ignored.keys(); } /** * adds the given display name of a property to the ignore list. Can either be * a complete path (e.g. <code>__root__.options</code>) or only a property * name (e.g. <code>options</code>). In the latter case it matches all * occurences of this display name. * * @param displayName the property to ignore * @see #m_Ignored */ public void addIgnored(String displayName) { HashSet<String> list; list = new HashSet<String>(); list.add(displayName); m_Ignored.put(displayName, list); } /** * adds the given class with the display name of a property to the ignore * list. I.e. this property is only ignored for this class. * * @param c the class for which a property is to be ignored * @param displayName the property to ignore * @see #m_Ignored */ public void addIgnored(Class<?> c, String displayName) { HashSet<String> list; // retrieve list if (m_Ignored.containsKey(c)) { list = m_Ignored.get(c); } else { list = new HashSet<String>(); m_Ignored.put(c, list); } list.add(displayName); } /** * removes the given display name from the ignore list. returns whether the * removing was succesful, i.e. whether the display name was in the list. * * @param displayName the property to remove from the ignore list * @return whether the ignore list contained the specified property * @see #m_Ignored */ public boolean removeIgnored(String displayName) { return (m_Ignored.remove(displayName) != null); } /** * removes the given display name from the ignore list of the class. returns * whether the removing was succesful, i.e. whether the display name was in * the list. * * @param c the class to remove the property from * @param displayName the property to remove from the ignore list * @return whether the ignore list contained the specified property * @see #m_Ignored */ public boolean removeIgnored(Class<?> c, String displayName) { HashSet<String> list; // retrieve list if (m_Ignored.containsKey(c)) { list = m_Ignored.get(c); } else { list = new HashSet<String>(); } return list.remove(displayName); } /** * checks whether the given display name is an ignored property * * @param displayName the property to check whether it is on the ignore list * @return whether the property is in the ignored list * @see #m_Ignored */ public boolean isIgnored(String displayName) { return m_Ignored.containsKey(displayName); } /** * checks whether the given display name of a certain class is an ignored * property. It only checks for this certain class and no derivative classes. * If you also want to check for derivative classes, use * <code>isIgnored(Object,String)</code>. * * @param c the class to check the property for * @param displayName the property to check whether it is on the ignore list * @return whether the property is in the ignored list * @see #m_Ignored * @see #isIgnored(Object, String) */ public boolean isIgnored(Class<?> c, String displayName) { HashSet<String> list; // retrieve list if (m_Ignored.containsKey(c)) { list = m_Ignored.get(c); } else { list = new HashSet<String>(); } return list.contains(displayName); } /** * checks whether the given display name of a given object is an ignored * property. The object is checked for each stored class whether it is an * <code>instanceof</code>. If the class is not stored then it will default to * <code>false</code>, since there are no restrictions for this class. * * @param o the object to check the property for * @param displayName the property to check whether it is on the ignore list * @return whether the property is in the ignored list * @see #m_Ignored */ public boolean isIgnored(Object o, String displayName) { Enumeration<Object> enm; Class<?> c; Object element; boolean result; HashSet<String> list; result = false; enm = ignored(); while (enm.hasMoreElements()) { element = enm.nextElement(); // has to be class! not a display name if (!(element instanceof Class)) { continue; } c = (Class<?>) element; // is it an instance of this class? if (c.isInstance(o)) { list = m_Ignored.get(c); result = list.contains(displayName); break; } } return result; } /** * returns an enumeration of the classnames for which only certain properties * (display names) are allowed * * @return the classnames with restriction to properties */ public Enumeration<Object> allowed() { return m_Allowed.keys(); } /** * adds the given property (display name) to the list of allowed properties * for the specified class. * * @param c the class to add a property for * @param displayName the property to allow for the class * @see #m_Allowed */ public void addAllowed(Class<?> c, String displayName) { HashSet<String> list; // retrieve list list = m_Allowed.get(c); if (list == null) { list = new HashSet<String>(); m_Allowed.put(c, list); } // add property list.add(displayName); } /** * removes the given property (display name) for the specified class from the * list of allowed properties. * * @param c the class to remove the property for * @param displayName the property to remove * @return whether the property was found * @see #m_Allowed */ public boolean removeAllowed(Class<?> c, String displayName) { boolean result; HashSet<String> list; result = false; // retrieve list list = m_Allowed.get(c); // remove property if (list != null) { result = list.remove(displayName); } return result; } /** * returns whether the given property (display name) is allowed for the given * class. It only checks for this certain class and no derivative classes. If * you also want to check for derivative classes, use * <code>isAllowed(Object,String)</code>. * * @param c the class to check the property for * @param displayName the property (display name) to check * @return whether the property is allowed in that context * @see #m_Allowed * @see #isAllowed(Object, String) */ public boolean isAllowed(Class<?> c, String displayName) { boolean result; HashSet<String> list; result = true; // retrieve list list = m_Allowed.get(c); // check list if (list != null) { result = list.contains(displayName); } return result; } /** * returns whether the given property (display name) is allowed for the given * object . The object is checked for each stored class whether it is an * <code>instanceof</code>. If the class is not stored then it will default to * <code>true</code>, since there are no restrictions for this class. * * @param o the object to check the property for * @param displayName the property (display name) to check * @return whether the property is allowed in that context */ public boolean isAllowed(Object o, String displayName) { Enumeration<Object> enm; Class<?> c; boolean result; HashSet<String> list; result = true; enm = allowed(); while (enm.hasMoreElements()) { c = (Class<?>) enm.nextElement(); // is it an instance of this class? if (c.isInstance(o)) { list = m_Allowed.get(c); result = list.contains(displayName); break; } } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/SerialUIDChanger.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * SerialUIDChanger.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.xml; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.FileReader; import java.io.FileWriter; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * This class enables one to change the UID of a serialized object and therefore * not losing the data stored in the binary format. * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class SerialUIDChanger implements RevisionHandler { /** * checks whether KOML is present * * @return returns <code>true</code> if KOML is present * @throws Exception if KOML is not present */ protected static boolean checkKOML() throws Exception { if (!KOML.isPresent()) throw new Exception("KOML is not present!"); else return true; } /** * checks whether the given filename ends with ".koml" * * @param filename the filename to check * @return whether it is a KOML file or not * @see KOML#FILE_EXTENSION */ public static boolean isKOML(String filename) { return filename.toLowerCase().endsWith(KOML.FILE_EXTENSION); } /** * loads a serialized object and returns it * * @param binary the filename that points to the file containing the * serialized object * @return the object from the file * @throws Exception if reading fails */ protected static Object readBinary(String binary) throws Exception { FileInputStream fi; ObjectInputStream oi; Object o; fi = new FileInputStream(binary); oi = new ObjectInputStream(new BufferedInputStream(fi)); o = oi.readObject(); oi.close(); return o; } /** * serializes the given object into the given file * * @param binary the file to store the object in * @param o the object to serialize * @throws Exception if saving fails */ protected static void writeBinary(String binary, Object o) throws Exception { FileOutputStream fo; ObjectOutputStream oo; fo = new FileOutputStream(binary); oo = new ObjectOutputStream(new BufferedOutputStream(fo)); oo.writeObject(o); oo.close(); } /** * converts a binary file into a KOML XML file * * @param binary the binary file to convert * @param koml where to store the XML output * @throws Exception if conversion fails */ public static void binaryToKOML(String binary, String koml) throws Exception { Object o; // can we use KOML? checkKOML(); // read binary o = readBinary(binary); if (o == null) throw new Exception("Failed to deserialize object from binary file '" + binary + "'!"); // save as KOML KOML.write(koml, o); } /** * converts a KOML file into a binary one * * @param koml the filename with the XML data * @param binary the name of the */ public static void komlToBinary(String koml, String binary) throws Exception { Object o; // can we use KOML? checkKOML(); // read KOML o = KOML.read(koml); if (o == null) throw new Exception("Failed to deserialize object from XML file '" + koml + "'!"); // write binary writeBinary(binary, o); } /** * changes the oldUID into newUID from the given file (binary/KOML) into the * other one (binary/KOML). it basically does a replace in the XML, i.e. it * looks for " uid='oldUID'" and replaces it with " uid='newUID'". * * @param oldUID the old UID to change * @param newUID the new UID to use * @param fromFile the original file with the old UID * @param toFile the new file where to store the modified UID * @throws Exception if conversion fails */ public static void changeUID(long oldUID, long newUID, String fromFile, String toFile) throws Exception { String inputFile; String tempFile; File file; String content; String line; BufferedReader reader; BufferedWriter writer; // input if (!isKOML(fromFile)) { inputFile = fromFile + ".koml"; binaryToKOML(fromFile, inputFile); } else { inputFile = fromFile; } // load KOML reader = new BufferedReader(new FileReader(inputFile)); content = ""; while ((line = reader.readLine()) != null) { if (!content.equals("")) content += "\n"; content += line; } reader.close(); // transform UID content = content.replaceAll(" uid='" + Long.toString(oldUID) + "'", " uid='" + Long.toString(newUID) + "'"); // save to tempFile tempFile = inputFile + ".temp"; writer = new BufferedWriter(new FileWriter(tempFile)); writer.write(content); writer.flush(); writer.close(); // output if (!isKOML(toFile)) { komlToBinary(tempFile, toFile); } else { writer = new BufferedWriter(new FileWriter(toFile)); writer.write(content); writer.flush(); writer.close(); } // remove tempFile file = new File(tempFile); file.delete(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * exchanges an old UID for a new one. a file that doesn't end with ".koml" * is considered being binary. * takes four arguments: oldUID newUID oldFilename newFilename * * @param args the command line parameters * @see KOML#FILE_EXTENSION */ public static void main(String[] args) throws Exception { if (args.length != 4) { System.out.println(); System.out.println("Usage: " + SerialUIDChanger.class.getName() + " <oldUID> <newUID> <oldFilename> <newFilename>"); System.out.println(" <oldFilename> and <newFilename> have to be different"); System.out.println(); } else { if (args[2].equals(args[3])) throw new Exception("Filenames have to be different!"); changeUID( Long.parseLong(args[0]), Long.parseLong(args[1]), args[2], args[3] ); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/XMLBasicSerialization.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * XMLBasicSerialization.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand * */ package weka.core.xml; import java.awt.Color; import java.io.StringReader; import java.io.StringWriter; import java.util.Collection; import java.util.HashMap; import java.util.HashSet; import java.util.Hashtable; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.LinkedList; import java.util.Map; import java.util.Properties; import java.util.Stack; import java.util.TreeMap; import java.util.TreeSet; import java.util.Vector; import javax.swing.DefaultListModel; import org.w3c.dom.Element; import weka.core.RevisionUtils; import weka.core.Utils; /** * This serializer contains some read/write methods for common classes that are * not beans-conform. Currently supported are: * <ul> * <li>java.util.HashMap</li> * <li>java.util.LinkedHashMap</li> * <li>java.util.HashSet</li> * <li>java.util.Hashtable</li> * <li>java.util.LinkedList</li> * <li>java.util.Properties</li> * <li>java.util.Stack</li> * <li>java.util.TreeMap</li> * <li>java.util.TreeSet</li> * <li>java.util.Vector</li> * <li>javax.swing.DefaultListModel</li> * <li>java.awt.Color</li> * </ul> * * Weka classes: * <ul> * <li>weka.core.Matrix</li> * <li>weka.core.matrix.Matrix</li> * </ul> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class XMLBasicSerialization extends XMLSerialization { /** the value for mapping, e.g., Maps */ public final static String VAL_MAPPING = "mapping"; /** the value for a mapping-key, e.g., Maps */ public final static String VAL_KEY = "key"; /** the value for mapping-value, e.g., Maps */ public final static String VAL_VALUE = "value"; /** the matrix cells */ public final static String VAL_CELLS = "cells"; /** * initializes the serialization * * @throws Exception if initialization fails */ public XMLBasicSerialization() throws Exception { super(); } /** * generates internally a new XML document and clears also the IgnoreList and * the mappings for the Read/Write-Methods * * @throws Exception if initializing fails */ @Override @SuppressWarnings("deprecation") public void clear() throws Exception { super.clear(); // Java classes m_CustomMethods.register(this, DefaultListModel.class, "DefaultListModel"); m_CustomMethods.register(this, HashMap.class, "Map"); m_CustomMethods.register(this, HashSet.class, "Collection"); m_CustomMethods.register(this, Hashtable.class, "Map"); m_CustomMethods.register(this, LinkedList.class, "Collection"); m_CustomMethods.register(this, Properties.class, "Map"); m_CustomMethods.register(this, Stack.class, "Collection"); m_CustomMethods.register(this, TreeMap.class, "Map"); m_CustomMethods.register(this, LinkedHashMap.class, "Map"); m_CustomMethods.register(this, TreeSet.class, "Collection"); m_CustomMethods.register(this, Vector.class, "Collection"); m_CustomMethods.register(this, Color.class, "Color"); // Weka classes m_CustomMethods.register(this, weka.core.matrix.Matrix.class, "Matrix"); m_CustomMethods.register(this, weka.core.Matrix.class, "MatrixOld"); m_CustomMethods.register(this, weka.classifiers.CostMatrix.class, "CostMatrix"); } /** * adds the given Color to a DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the Object to describe in XML * @param name the name of the object * @return the node that was created * @throws Exception if the DOM creation fails * @see java.awt.Color */ public Element writeColor(Element parent, Object o, String name) throws Exception { Element node; Color c; if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; c = (Color) o; node = addElement(parent, name, o.getClass().getName(), false); invokeWriteToXML(node, c.getRed(), "red"); invokeWriteToXML(node, c.getGreen(), "green"); invokeWriteToXML(node, c.getBlue(), "blue"); return node; } /** * builds the Color object from the given DOM node. * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails * @see java.awt.Color */ public Object readColor(Element node) throws Exception { Vector<Element> children; if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } children = XMLDocument.getChildTags(node); Element redchild = children.get(0); Element greenchild = children.get(1); Element bluechild = children.get(2); Integer red = (Integer) readFromXML(redchild); Integer green = (Integer) readFromXML(greenchild); Integer blue = (Integer) readFromXML(bluechild); return new Color(red, green, blue); } /** * adds the given DefaultListModel to a DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the Object to describe in XML * @param name the name of the object * @return the node that was created * @throws Exception if the DOM creation fails * @see javax.swing.DefaultListModel */ public Element writeDefaultListModel(Element parent, Object o, String name) throws Exception { Element node; int i; DefaultListModel model; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; model = (DefaultListModel) o; node = addElement(parent, name, o.getClass().getName(), false); for (i = 0; i < model.getSize(); i++) { invokeWriteToXML(node, model.get(i), Integer.toString(i)); } return node; } /** * builds the DefaultListModel from the given DOM node. * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails * @see javax.swing.DefaultListModel */ public Object readDefaultListModel(Element node) throws Exception { DefaultListModel model; Vector<Element> children; Element child; int i; int index; int currIndex; // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; children = XMLDocument.getChildTags(node); model = new DefaultListModel(); // determine highest index for size index = children.size() - 1; for (i = 0; i < children.size(); i++) { child = children.get(i); currIndex = Integer.parseInt(child.getAttribute(ATT_NAME)); if (currIndex > index) { index = currIndex; } } model.setSize(index + 1); // set values for (i = 0; i < children.size(); i++) { child = children.get(i); model.set(Integer.parseInt(child.getAttribute(ATT_NAME)), invokeReadFromXML(child)); } return model; } /** * adds the given Collection to a DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the Object to describe in XML * @param name the name of the object * @return the node that was created * @throws Exception if the DOM creation fails * @see java.util.Collection */ public Element writeCollection(Element parent, Object o, String name) throws Exception { Element node; Iterator<?> iter; int i; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; iter = ((Collection<?>) o).iterator(); node = addElement(parent, name, o.getClass().getName(), false); i = 0; while (iter.hasNext()) { invokeWriteToXML(node, iter.next(), Integer.toString(i)); i++; } return node; } /** * builds the Collection from the given DOM node. * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails * @see java.util.Collection */ public Object readCollection(Element node) throws Exception { Collection<Object> coll; Vector<Object> v; Vector<Element> children; Element child; int i; int index; int currIndex; // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; children = XMLDocument.getChildTags(node); v = new Vector<Object>(); // determine highest index for size index = children.size() - 1; for (i = 0; i < children.size(); i++) { child = children.get(i); currIndex = Integer.parseInt(child.getAttribute(ATT_NAME)); if (currIndex > index) { index = currIndex; } } v.setSize(index + 1); // put the children in the vector to sort them according their index for (i = 0; i < children.size(); i++) { child = children.get(i); v.set(Integer.parseInt(child.getAttribute(ATT_NAME)), invokeReadFromXML(child)); } // populate collection coll = Utils.cast(Class.forName(node.getAttribute(ATT_CLASS)).newInstance()); coll.addAll(v); return coll; } /** * adds the given Map to a DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the Object to describe in XML * @param name the name of the object * @return the node that was created * @throws Exception if the DOM creation fails * @see java.util.Map */ public Element writeMap(Element parent, Object o, String name) throws Exception { Map<?, ?> map; Object key; Element node; Element child; Iterator<?> iter; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; map = (Map<?, ?>) o; iter = map.keySet().iterator(); node = addElement(parent, name, o.getClass().getName(), false); while (iter.hasNext()) { key = iter.next(); child = addElement(node, VAL_MAPPING, Object.class.getName(), false); invokeWriteToXML(child, key, VAL_KEY); invokeWriteToXML(child, map.get(key), VAL_VALUE); } return node; } /** * builds the Map from the given DOM node. * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails * @see java.util.Map */ public Object readMap(Element node) throws Exception { Map<Object, Object> map; Object key; Object value; Vector<Element> children; Vector<Element> cchildren; Element child; Element cchild; int i; int n; String name; // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; map = Utils.cast(Class.forName(node.getAttribute(ATT_CLASS)).newInstance()); children = XMLDocument.getChildTags(node); for (i = 0; i < children.size(); i++) { child = children.get(i); cchildren = XMLDocument.getChildTags(child); key = null; value = null; for (n = 0; n < cchildren.size(); n++) { cchild = cchildren.get(n); name = cchild.getAttribute(ATT_NAME); if (name.equals(VAL_KEY)) { key = invokeReadFromXML(cchild); } else if (name.equals(VAL_VALUE)) { value = invokeReadFromXML(cchild); } else { System.out.println("WARNING: '" + name + "' is not a recognized name for maps!"); } } map.put(key, value); } return map; } /** * adds the given CostMatrix to a DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the Object to describe in XML * @param name the name of the object * @return the node that was created * @throws Exception if the DOM creation fails * @see weka.classifiers.CostMatrix */ public Element writeCostMatrix(Element parent, Object o, String name) throws Exception { weka.classifiers.CostMatrix matrix = (weka.classifiers.CostMatrix) o; Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; node = addElement(parent, name, o.getClass().getName(), false); Object[][] m = new Object[matrix.size()][matrix.size()]; for (int i = 0; i < matrix.size(); i++) { for (int j = 0; j < matrix.size(); j++) { m[i][j] = matrix.getCell(i, j); } } invokeWriteToXML(node, m, VAL_CELLS); return node; } /** * builds the Matrix from the given DOM node. * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails * @see weka.classifiers.CostMatrix */ public Object readCostMatrix(Element node) throws Exception { weka.classifiers.CostMatrix matrix; Vector<Element> children; Element child; int i; String name; Object o; // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; matrix = null; children = XMLDocument.getChildTags(node); for (i = 0; i < children.size(); i++) { child = children.get(i); name = child.getAttribute(ATT_NAME); if (name.equals(VAL_CELLS)) { o = invokeReadFromXML(child); Object[][] m = (Object[][]) o; matrix = new weka.classifiers.CostMatrix(m.length); for (int j = 0; j < matrix.size(); j++) { for (int k = 0; k < matrix.size(); k++) { matrix.setCell(j, k, m[j][k]); } } } } return matrix; } /** * adds the given Matrix to a DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the Object to describe in XML * @param name the name of the object * @return the node that was created * @throws Exception if the DOM creation fails * @see weka.core.matrix.Matrix */ public Element writeMatrix(Element parent, Object o, String name) throws Exception { weka.core.matrix.Matrix matrix; Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; matrix = (weka.core.matrix.Matrix) o; node = addElement(parent, name, o.getClass().getName(), false); invokeWriteToXML(node, matrix.getArray(), VAL_CELLS); return node; } /** * builds the Matrix from the given DOM node. * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails * @see weka.core.matrix.Matrix */ public Object readMatrix(Element node) throws Exception { weka.core.matrix.Matrix matrix; Vector<Element> children; Element child; int i; String name; Object o; // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; matrix = null; children = XMLDocument.getChildTags(node); for (i = 0; i < children.size(); i++) { child = children.get(i); name = child.getAttribute(ATT_NAME); if (name.equals(VAL_CELLS)) { o = invokeReadFromXML(child); matrix = new weka.core.matrix.Matrix((double[][]) o); } } return matrix; } /** * adds the given Matrix (old) to a DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the Object to describe in XML * @param name the name of the object * @return the node that was created * @throws Exception if the DOM creation fails * @see weka.core.Matrix */ @SuppressWarnings("deprecation") public Element writeMatrixOld(Element parent, Object o, String name) throws Exception { weka.core.Matrix matrix; Element node; double[][] array; int i; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; matrix = (weka.core.Matrix) o; node = addElement(parent, name, o.getClass().getName(), false); array = new double[matrix.numRows()][]; for (i = 0; i < array.length; i++) { array[i] = matrix.getRow(i); } invokeWriteToXML(node, array, VAL_CELLS); return node; } /** * builds the Matrix (old) from the given DOM node. * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails * @see weka.core.Matrix */ @SuppressWarnings("deprecation") public Object readMatrixOld(Element node) throws Exception { weka.core.Matrix matrix; weka.core.matrix.Matrix matrixNew; // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; matrixNew = (weka.core.matrix.Matrix) readMatrix(node); matrix = new weka.core.Matrix(matrixNew.getArrayCopy()); return matrix; } /** * adds the given CostMatrix (old) to a DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the Object to describe in XML * @param name the name of the object * @return the node that was created * @throws Exception if the DOM creation fails * @see weka.classifiers.CostMatrix */ public Element writeCostMatrixOld(Element parent, Object o, String name) throws Exception { // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; return writeMatrixOld(parent, o, name); } /** * builds the Matrix (old) from the given DOM node. * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails * @see weka.classifiers.CostMatrix */ public Object readCostMatrixOld(Element node) throws Exception { weka.classifiers.CostMatrix matrix; weka.core.matrix.Matrix matrixNew; StringWriter writer; // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; matrixNew = (weka.core.matrix.Matrix) readMatrix(node); writer = new StringWriter(); matrixNew.write(writer); matrix = new weka.classifiers.CostMatrix(new StringReader(writer.toString())); return matrix; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/XMLDocument.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * XMLDocument.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.xml; import java.io.BufferedWriter; import java.io.ByteArrayInputStream; import java.io.File; import java.io.FileWriter; import java.io.InputStream; import java.io.OutputStream; import java.io.Reader; import java.io.Writer; import java.util.Vector; import javax.xml.namespace.QName; import javax.xml.parsers.DocumentBuilder; import javax.xml.parsers.DocumentBuilderFactory; import javax.xml.xpath.XPath; import javax.xml.xpath.XPathConstants; import javax.xml.xpath.XPathFactory; import org.w3c.dom.Document; import org.w3c.dom.Element; import org.w3c.dom.NamedNodeMap; import org.w3c.dom.Node; import org.w3c.dom.NodeList; import org.xml.sax.InputSource; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * This class offers some methods for generating, reading and writing * XML documents.<br> * It can only handle UTF-8. * * @see #PI * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class XMLDocument implements RevisionHandler { /** the parsing instructions "&lt;?xml version=\"1.0\" encoding=\"utf-8\"?&gt;" * (may not show up in Javadoc due to tags!). */ public final static String PI = "<?xml version=\"1.0\" encoding=\"utf-8\"?>"; // DTD placeholders /** the DocType definition. */ public final static String DTD_DOCTYPE = "DOCTYPE"; /** the Element definition. */ public final static String DTD_ELEMENT = "ELEMENT"; /** the AttList definition. */ public final static String DTD_ATTLIST = "ATTLIST"; /** the optional marker. */ public final static String DTD_OPTIONAL = "?"; /** the at least one marker. */ public final static String DTD_AT_LEAST_ONE = "+"; /** the zero or more marker. */ public final static String DTD_ZERO_OR_MORE = "*"; /** the option separator. */ public final static String DTD_SEPARATOR = "|"; /** the CDATA placeholder. */ public final static String DTD_CDATA = "CDATA"; /** the ANY placeholder. */ public final static String DTD_ANY = "ANY"; /** the #PCDATA placeholder. */ public final static String DTD_PCDATA = "#PCDATA"; /** the #IMPLIED placeholder. */ public final static String DTD_IMPLIED = "#IMPLIED"; /** the #REQUIRED placeholder. */ public final static String DTD_REQUIRED = "#REQUIRED"; // often used attributes /** the "version" attribute. */ public final static String ATT_VERSION = "version"; /** the "name" attribute. */ public final static String ATT_NAME = "name"; // often used values /** the value "yes". */ public final static String VAL_YES = "yes"; /** the value "no". */ public final static String VAL_NO = "no"; // members /** the factory for DocumentBuilder. */ protected DocumentBuilderFactory m_Factory = null; /** the instance of a DocumentBuilder. */ protected DocumentBuilder m_Builder = null; /** whether to use a validating parser or not. */ protected boolean m_Validating = false; /** the DOM document. */ protected Document m_Document = null; /** the DOCTYPE node as String. */ protected String m_DocType = null; /** the root node as String. */ protected String m_RootNode = null; /** for XPath queries. */ protected XPath m_XPath = null; /** * initializes the factory with non-validating parser. * * @throws Exception if the construction fails */ public XMLDocument() throws Exception { m_Factory = DocumentBuilderFactory.newInstance(); m_XPath = XPathFactory.newInstance(XPathFactory.DEFAULT_OBJECT_MODEL_URI).newXPath(); setDocType(null); setRootNode(null); setValidating(false); } /** * Creates a new instance of XMLDocument. * * @param xml the xml to parse (if "<?xml" is not found then it is considered a file) * @throws Exception if the construction of the DocumentBuilder fails * @see #setValidating(boolean) */ public XMLDocument(String xml) throws Exception { this(); read(xml); } /** * Creates a new instance of XMLDocument. * * @param file the XML file to parse * @throws Exception if the construction of the DocumentBuilder fails * @see #setValidating(boolean) */ public XMLDocument(File file) throws Exception { this(); read(file); } /** * Creates a new instance of XMLDocument. * * @param stream the XML stream to parse * @throws Exception if the construction of the DocumentBuilder fails * @see #setValidating(boolean) */ public XMLDocument(InputStream stream) throws Exception { this(); read(stream); } /** * Creates a new instance of XMLDocument. * * @param reader the XML reader to parse * @throws Exception if the construction of the DocumentBuilder fails * @see #setValidating(boolean) */ public XMLDocument(Reader reader) throws Exception { this(); read(reader); } /** * returns the DocumentBuilderFactory. * * @return the DocumentBuilderFactory */ public DocumentBuilderFactory getFactory() { return m_Factory; } /** * returns the DocumentBuilder. * * @return the DocumentBuilder */ public DocumentBuilder getBuilder() { return m_Builder; } /** * returns whether a validating parser is used. * * @return whether a validating parser is used */ public boolean getValidating() { return m_Validating; } /** * sets whether to use a validating parser or not.<br> * Note: this does clear the current DOM document! * * @param validating whether to use a validating parser * @throws Exception if the instantiating of the DocumentBuilder fails */ public void setValidating(boolean validating) throws Exception { m_Validating = validating; m_Factory.setValidating(validating); m_Builder = m_Factory.newDocumentBuilder(); clear(); } /** * returns the parsed DOM document. * * @return the parsed DOM document */ public Document getDocument() { return m_Document; } /** * sets the DOM document to use. * * @param newDocument the DOM document to use */ public void setDocument(Document newDocument) { m_Document = newDocument; } /** * sets the DOCTYPE-String to use in the XML output. Performs NO checking! * if it is <code>null</code> the DOCTYPE is omitted. * * @param docType the DOCTYPE definition to use in XML output */ public void setDocType(String docType) { m_DocType = docType; } /** * returns the current DOCTYPE, can be <code>null</code>. * * @return the current DOCTYPE definition, can be <code>null</code> */ public String getDocType() { return m_DocType; } /** * sets the root node to use in the XML output. Performs NO checking with * DOCTYPE! * * @param rootNode the root node to use in the XML output */ public void setRootNode(String rootNode) { if (rootNode == null) m_RootNode = "root"; else m_RootNode = rootNode; } /** * returns the current root node. * * @return the current root node */ public String getRootNode() { return m_RootNode; } /** * sets up an empty DOM document, with the current DOCTYPE and root node. * * @see #setRootNode(String) * @see #setDocType(String) */ public void clear() { newDocument(getDocType(), getRootNode()); } /** * creates a new Document with the given information. * * @param docType the DOCTYPE definition (no checking happens!), can be null * @param rootNode the name of the root node (must correspond to the one * given in <code>docType</code>) * @return returns the just created DOM document for convenience */ public Document newDocument(String docType, String rootNode) { m_Document = getBuilder().newDocument(); m_Document.appendChild(m_Document.createElement(rootNode)); setDocType(docType); return getDocument(); } /** * parses the given XML string (can be XML or a filename) and returns a * DOM Document. * * @param xml the xml to parse (if "<?xml" is not found then it is considered a file) * @return the parsed DOM document * @throws Exception if something goes wrong with the parsing */ public Document read(String xml) throws Exception { if (xml.toLowerCase().indexOf("<?xml") > -1) return read(new ByteArrayInputStream(xml.getBytes())); else return read(new File(xml)); } /** * parses the given file and returns a DOM document. * * @param file the XML file to parse * @return the parsed DOM document * @throws Exception if something goes wrong with the parsing */ public Document read(File file) throws Exception { m_Document = getBuilder().parse(file); return getDocument(); } /** * parses the given stream and returns a DOM document. * * @param stream the XML stream to parse * @return the parsed DOM document * @throws Exception if something goes wrong with the parsing */ public Document read(InputStream stream) throws Exception { m_Document = getBuilder().parse(stream); return getDocument(); } /** * parses the given reader and returns a DOM document. * * @param reader the XML reader to parse * @return the parsed DOM document * @throws Exception if something goes wrong with the parsing */ public Document read(Reader reader) throws Exception { m_Document = getBuilder().parse(new InputSource(reader)); return getDocument(); } /** * writes the current DOM document into the given file. * * @param file the filename to write to * @throws Exception if something goes wrong with the parsing */ public void write(String file) throws Exception { write(new File(file)); } /** * writes the current DOM document into the given file. * * @param file the filename to write to * @throws Exception if something goes wrong with the parsing */ public void write(File file) throws Exception { write(new BufferedWriter(new FileWriter(file))); } /** * writes the current DOM document into the given stream. * * @param stream the filename to write to * @throws Exception if something goes wrong with the parsing */ public void write(OutputStream stream) throws Exception { String xml; xml = toString(); stream.write(xml.getBytes(), 0, xml.length()); stream.flush(); } /** * writes the current DOM document into the given writer. * * @param writer the filename to write to * @throws Exception if something goes wrong with the parsing */ public void write(Writer writer) throws Exception { writer.write(toString()); writer.flush(); } /** * returns all non tag-children from the given node. * * @param parent the node to get the children from * @return a vector containing all the non-text children */ public static Vector<Element> getChildTags(Node parent) { return getChildTags(parent, ""); } /** * returns all non tag-children from the given node. * * @param parent the node to get the children from * @param name the name of the tags to return, "" for all * @return a vector containing all the non-text children */ public static Vector<Element> getChildTags(Node parent, String name) { Vector<Element> result; int i; NodeList list; result = new Vector<Element>(); list = parent.getChildNodes(); for (i = 0; i < list.getLength(); i++) { if (!(list.item(i) instanceof Element)) continue; // only tags with a certain name? if (name.length() != 0) { if (!((Element) list.item(i)).getTagName().equals(name)) continue; } result.add((Element)list.item(i)); } return result; } /** * Returns the specified result of the XPath expression. * Can return null if an error occurred. * * @param xpath the XPath expression to run on the document * @param type the type of the result * @return the result */ protected Object eval(String xpath, QName type) { Object result; try { result = m_XPath.evaluate(xpath, m_Document, type); } catch (Exception e) { e.printStackTrace(); result = null; } return result; } /** * Returns the nodes that the given xpath expression will find in the * document. Can return null if an error occurred. * * @param xpath the XPath expression to run on the document * @return the nodelist */ public NodeList findNodes(String xpath) { return (NodeList) eval(xpath, XPathConstants.NODESET); } /** * Returns the node represented by the XPath expression. * Can return null if an error occurred. * * @param xpath the XPath expression to run on the document * @return the node */ public Node getNode(String xpath) { return (Node) eval(xpath, XPathConstants.NODE); } /** * Evaluates and returns the boolean result of the XPath expression. * * @param xpath the expression to evaluate * @return the result of the evaluation, null in case of an error */ public Boolean evalBoolean(String xpath) { return (Boolean) eval(xpath, XPathConstants.BOOLEAN); } /** * Evaluates and returns the double result of the XPath expression. * * @param xpath the expression to evaluate * @return the result of the evaluation, null in case of * an error */ public Double evalDouble(String xpath) { return (Double) eval(xpath, XPathConstants.NUMBER); } /** * Evaluates and returns the boolean result of the XPath expression. * * @param xpath the expression to evaluate * @return the result of the evaluation */ public String evalString(String xpath) { return (String) eval(xpath, XPathConstants.STRING); } /** * returns the text between the opening and closing tag of a node * (performs a <code>trim()</code> on the result). * * @param node the node to get the text from * @return the content of the given node */ public static String getContent(Element node) { NodeList list; Node item; int i; String result; result = ""; list = node.getChildNodes(); for (i = 0; i < list.getLength(); i++) { item = list.item(i); if (item.getNodeType() == Node.TEXT_NODE) result += item.getNodeValue(); } return result.trim(); } /** * turns the given node into a XML-stringbuffer according to the depth. * * @param buf the stringbuffer so far * @param parent the current node * @param depth the current depth * @return the new XML-stringbuffer */ protected StringBuffer toString(StringBuffer buf, Node parent, int depth) { NodeList list; Node node; int i; int n; String indent; NamedNodeMap atts; // build indent indent = ""; for (i = 0; i < depth; i++) indent += " "; if (parent.getNodeType() == Node.TEXT_NODE) { if (!parent.getNodeValue().trim().equals("")) buf.append(indent + parent.getNodeValue().trim() + "\n"); } else if (parent.getNodeType() == Node.COMMENT_NODE) { buf.append(indent + "<!--" + parent.getNodeValue() + "-->\n"); } else { buf.append(indent + "<" + parent.getNodeName()); // attributes? if (parent.hasAttributes()) { atts = parent.getAttributes(); for (n = 0; n < atts.getLength(); n++) { node = atts.item(n); buf.append(" " + node.getNodeName() + "=\"" + node.getNodeValue() + "\""); } } // children? if (parent.hasChildNodes()) { list = parent.getChildNodes(); // just a text node? if ( (list.getLength() == 1) && (list.item(0).getNodeType() == Node.TEXT_NODE) ) { buf.append(">"); buf.append(list.item(0).getNodeValue().trim()); buf.append("</" + parent.getNodeName() + ">\n"); } else { buf.append(">\n"); for (n = 0; n < list.getLength(); n++) { node = list.item(n); toString(buf, node, depth + 1); } buf.append(indent + "</" + parent.getNodeName() + ">\n"); } } else { buf.append("/>\n"); } } return buf; } /** * prints the current DOM document to standard out. */ public void print() { System.out.println(toString()); } /** * returns the current DOM document as XML-string. * * @return the document as XML-string representation */ public String toString() { String header; header = PI + "\n\n"; if (getDocType() != null) header += getDocType() + "\n\n"; return toString(new StringBuffer(header), getDocument().getDocumentElement(), 0).toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * for testing only. takes the name of an XML file as first arg, reads that * file, prints it to stdout and if a second filename is given, writes the * parsed document to that again. * * @param args the commandline arguments * @throws Exception if something goes wrong */ public static void main(String[] args) throws Exception { XMLDocument doc; if (args.length > 0) { doc = new XMLDocument(); // read doc.read(args[0]); // print to stdout doc.print(); // output? if (args.length > 1) { doc.write(args[1]); } } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/XMLInstances.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * XMLInstances.java * Copyright (C) 2006-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.xml; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.InputStream; import java.io.InputStreamReader; import java.io.Reader; import java.io.Serializable; import java.util.ArrayList; import java.util.Enumeration; import java.util.Properties; import java.util.Vector; import java.util.zip.GZIPInputStream; import org.w3c.dom.Element; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.ProtectedProperties; import weka.core.RevisionUtils; import weka.core.SparseInstance; import weka.core.Utils; import weka.core.Version; /** * XML representation of the Instances class. * * @author fracpete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class XMLInstances extends XMLDocument implements Serializable { /** for serialization */ private static final long serialVersionUID = 3626821327547416099L; /** The filename extension that should be used for xrff files */ public static String FILE_EXTENSION = ".xrff"; // tags /** the root element */ public final static String TAG_DATASET = "dataset"; /** the header element */ public final static String TAG_HEADER = "header"; /** the body element */ public final static String TAG_BODY = "body"; /** the notes element */ public final static String TAG_NOTES = "notes"; /** the attributes element */ public final static String TAG_ATTRIBUTES = "attributes"; /** the attribute element */ public final static String TAG_ATTRIBUTE = "attribute"; /** the labels element */ public final static String TAG_LABELS = "labels"; /** the label element */ public final static String TAG_LABEL = "label"; /** the meta-data element */ public final static String TAG_METADATA = "metadata"; /** the property element */ public final static String TAG_PROPERTY = "property"; /** the data element */ public final static String TAG_INSTANCES = "instances"; /** the instance element */ public final static String TAG_INSTANCE = "instance"; /** the value element */ public final static String TAG_VALUE = "value"; // attributes /** the version attribute */ public final static String ATT_VERSION = "version"; /** the type attribute */ public final static String ATT_TYPE = "type"; /** the format attribute (for date attributes) */ public final static String ATT_FORMAT = "format"; /** the class attribute */ public final static String ATT_CLASS = "class"; /** the index attribute */ public final static String ATT_INDEX = "index"; /** the weight attribute */ public final static String ATT_WEIGHT = "weight"; /** the missing attribute */ public final static String ATT_MISSING = "missing"; // values /** the value for numeric */ public final static String VAL_NUMERIC = "numeric"; /** the value for date */ public final static String VAL_DATE = "date"; /** the value for nominal */ public final static String VAL_NOMINAL = "nominal"; /** the value for string */ public final static String VAL_STRING = "string"; /** the value for relational */ public final static String VAL_RELATIONAL = "relational"; /** the value for normal */ public final static String VAL_NORMAL = "normal"; /** the value for sparse */ public final static String VAL_SPARSE = "sparse"; /** the DTD */ public final static String DOCTYPE = "<!" + DTD_DOCTYPE + " " + TAG_DATASET + "\n" + "[\n" + " <!" + DTD_ELEMENT + " " + TAG_DATASET + " (" + TAG_HEADER + "," + TAG_BODY + ")" + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_DATASET + " " + ATT_NAME + " " + DTD_CDATA + " " + DTD_REQUIRED + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_DATASET + " " + ATT_VERSION + " " + DTD_CDATA + " \"" + Version.VERSION + "\">\n" + "\n" + " <!" + DTD_ELEMENT + " " + TAG_HEADER + " (" + TAG_NOTES + DTD_OPTIONAL + "," + TAG_ATTRIBUTES + ")" + ">\n" + " <!" + DTD_ELEMENT + " " + TAG_BODY + " (" + TAG_INSTANCES + ")" + ">\n" + " <!" + DTD_ELEMENT + " " + TAG_NOTES + " " + DTD_ANY + "> <!-- comments, information, copyright, etc. -->\n" + "\n" + " <!" + DTD_ELEMENT + " " + TAG_ATTRIBUTES + " (" + TAG_ATTRIBUTE + DTD_AT_LEAST_ONE + ")" + ">\n" + " <!" + DTD_ELEMENT + " " + TAG_ATTRIBUTE + " (" + TAG_LABELS + DTD_OPTIONAL + "," + TAG_METADATA + DTD_OPTIONAL + "," + TAG_ATTRIBUTES + DTD_OPTIONAL + ")" + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_ATTRIBUTE + " " + ATT_NAME + " " + DTD_CDATA + " " + DTD_REQUIRED + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_ATTRIBUTE + " " + ATT_TYPE + " (" + VAL_NUMERIC + DTD_SEPARATOR + VAL_DATE + DTD_SEPARATOR + VAL_NOMINAL + DTD_SEPARATOR + VAL_STRING + DTD_SEPARATOR + VAL_RELATIONAL + ") " + DTD_REQUIRED + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_ATTRIBUTE + " " + ATT_FORMAT + " " + DTD_CDATA + " " + DTD_IMPLIED + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_ATTRIBUTE + " " + ATT_CLASS + " (" + VAL_YES + DTD_SEPARATOR + VAL_NO + ") \"" + VAL_NO + "\"" + ">\n" + " <!" + DTD_ELEMENT + " " + TAG_LABELS + " (" + TAG_LABEL + DTD_ZERO_OR_MORE + ")" + "> <!-- only for type \"nominal\" -->\n" + " <!" + DTD_ELEMENT + " " + TAG_LABEL + " " + DTD_ANY + ">\n" + " <!" + DTD_ELEMENT + " " + TAG_METADATA + " (" + TAG_PROPERTY + DTD_ZERO_OR_MORE + ")" + ">\n" + " <!" + DTD_ELEMENT + " " + TAG_PROPERTY + " " + DTD_ANY + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_PROPERTY + " " + ATT_NAME + " " + DTD_CDATA + " " + DTD_REQUIRED + ">\n" + "\n" + " <!" + DTD_ELEMENT + " " + TAG_INSTANCES + " (" + TAG_INSTANCE + DTD_ZERO_OR_MORE + ")" + ">\n" + " <!" + DTD_ELEMENT + " " + TAG_INSTANCE + " (" + TAG_VALUE + DTD_ZERO_OR_MORE + ")" + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_INSTANCE + " " + ATT_TYPE + " (" + VAL_NORMAL + DTD_SEPARATOR + VAL_SPARSE + ") \"" + VAL_NORMAL + "\"" + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_INSTANCE + " " + ATT_WEIGHT + " " + DTD_CDATA + " " + DTD_IMPLIED + ">\n" + " <!" + DTD_ELEMENT + " " + TAG_VALUE + " (" + DTD_PCDATA + DTD_SEPARATOR + TAG_INSTANCES + ")" + DTD_ZERO_OR_MORE + ">\n" + " <!" + DTD_ATTLIST + " " + TAG_VALUE + " " + ATT_INDEX + " " + DTD_CDATA + " " + DTD_IMPLIED + "> <!-- 1-based index (only used for instance format \"sparse\") -->\n" + " <!" + DTD_ATTLIST + " " + TAG_VALUE + " " + ATT_MISSING + " (" + VAL_YES + DTD_SEPARATOR + VAL_NO + ") \"" + VAL_NO + "\"" + ">\n" + "]\n" + ">"; /** the precision for numbers */ protected int m_Precision = 6; /** the underlying Instances */ protected Instances m_Instances; /** * the default constructor * * @throws Exception if XML initialization fails */ public XMLInstances() throws Exception { super(); m_Instances = null; setDocType(DOCTYPE); setRootNode(TAG_DATASET); setValidating(true); } /** * generates the XML structure based on the given data * * @param data the data to build the XML structure from * @throws Exception if initialization/generation fails */ public XMLInstances(Instances data) throws Exception { this(); setInstances(data); } /** * generates the Instances directly from the reader containing the XML data. * * @param reader the reader for the XML data * @throws Exception if something goes wrong */ public XMLInstances(Reader reader) throws Exception { this(); setXML(reader); } /** * adds the attribute to the XML structure * * @param parent the parent node to add the attribute node as child * @param att the attribute to add */ protected void addAttribute(Element parent, Attribute att) { Element node; Element child; Element property; Element label; String tmpStr; Enumeration<?> enm; int i; node = m_Document.createElement(TAG_ATTRIBUTE); parent.appendChild(node); // XML attributes // name node.setAttribute(ATT_NAME, validContent(att.name())); // type switch (att.type()) { case Attribute.NUMERIC: node.setAttribute(ATT_TYPE, VAL_NUMERIC); break; case Attribute.DATE: node.setAttribute(ATT_TYPE, VAL_DATE); break; case Attribute.NOMINAL: node.setAttribute(ATT_TYPE, VAL_NOMINAL); break; case Attribute.STRING: node.setAttribute(ATT_TYPE, VAL_STRING); break; case Attribute.RELATIONAL: node.setAttribute(ATT_TYPE, VAL_RELATIONAL); break; default: node.setAttribute(ATT_TYPE, "???"); } // labels if (att.isNominal()) { child = m_Document.createElement(TAG_LABELS); node.appendChild(child); enm = att.enumerateValues(); while (enm.hasMoreElements()) { tmpStr = enm.nextElement().toString(); label = m_Document.createElement(TAG_LABEL); child.appendChild(label); label.appendChild(m_Document.createTextNode(validContent(tmpStr))); } } // format if (att.isDate()) { node.setAttribute(ATT_FORMAT, validContent(att.getDateFormat())); } // class if (m_Instances.classIndex() > -1) { if (att == m_Instances.classAttribute()) { node.setAttribute(ATT_CLASS, VAL_YES); } } // add meta-data if ((att.getMetadata() != null) && (att.getMetadata().size() > 0)) { child = m_Document.createElement(TAG_METADATA); node.appendChild(child); enm = att.getMetadata().propertyNames(); while (enm.hasMoreElements()) { tmpStr = enm.nextElement().toString(); property = m_Document.createElement(TAG_PROPERTY); child.appendChild(property); property.setAttribute(ATT_NAME, validContent(tmpStr)); property.appendChild(m_Document.createTextNode(validContent(att .getMetadata().getProperty(tmpStr, "")))); } } // relational attribute? if (att.isRelationValued()) { child = m_Document.createElement(TAG_ATTRIBUTES); node.appendChild(child); for (i = 0; i < att.relation().numAttributes(); i++) { addAttribute(child, att.relation().attribute(i)); } } } /** * turns all &lt;, &gt; and &amp;into character entities and returns that * string. Necessary for TextNodes. * * @param content string to convert * @return the valid content string */ protected String validContent(String content) { String result; result = content; // these five entities are recognized by every XML processor // see http://www.xml.com/pub/a/2001/03/14/trxml10.html result = result.replaceAll("&", "&amp;").replaceAll("\"", "&quot;") .replaceAll("'", "&apos;").replaceAll("<", "&lt;") .replaceAll(">", "&gt;"); // in addition, replace some other entities as well result = result.replaceAll("\n", "&#10;").replaceAll("\r", "&#13;") .replaceAll("\t", "&#9;"); return result; } /** * adds the instance to the XML structure * * @param parent the parent node to add the instance node as child * @param inst the instance to add */ protected void addInstance(Element parent, Instance inst) { Element node; Element value; Element child; boolean sparse; int i; int n; int index; node = m_Document.createElement(TAG_INSTANCE); parent.appendChild(node); // sparse? sparse = (inst instanceof SparseInstance); if (sparse) { node.setAttribute(ATT_TYPE, VAL_SPARSE); } // weight if (inst.weight() != 1.0) { node.setAttribute(ATT_WEIGHT, Utils.doubleToString(inst.weight(), m_Precision)); } // values for (i = 0; i < inst.numValues(); i++) { index = inst.index(i); value = m_Document.createElement(TAG_VALUE); node.appendChild(value); if (inst.isMissing(index)) { value.setAttribute(ATT_MISSING, VAL_YES); } else { if (inst.attribute(index).isRelationValued()) { child = m_Document.createElement(TAG_INSTANCES); value.appendChild(child); for (n = 0; n < inst.relationalValue(i).numInstances(); n++) { addInstance(child, inst.relationalValue(i).instance(n)); } } else { if (inst.attribute(index).type() == Attribute.NUMERIC) { value.appendChild(m_Document.createTextNode(Utils.doubleToString( inst.value(index), m_Precision))); } else { value.appendChild(m_Document.createTextNode(validContent(inst .stringValue(index)))); } } } if (sparse) { value.setAttribute(ATT_INDEX, "" + (index + 1)); } } } /** * generates the XML structure for the header */ protected void headerToXML() { Element root; Element node; Element child; int i; root = m_Document.getDocumentElement(); root.setAttribute(ATT_NAME, validContent(m_Instances.relationName())); root.setAttribute(ATT_VERSION, Version.VERSION); // create "header" node node = m_Document.createElement(TAG_HEADER); root.appendChild(node); // add all attributes child = m_Document.createElement(TAG_ATTRIBUTES); node.appendChild(child); for (i = 0; i < m_Instances.numAttributes(); i++) { addAttribute(child, m_Instances.attribute(i)); } } /** * generates the XML structure from the rows */ protected void dataToXML() { Element root; Element node; Element child; int i; root = m_Document.getDocumentElement(); // create "body" node node = m_Document.createElement(TAG_BODY); root.appendChild(node); // add all instances child = m_Document.createElement(TAG_INSTANCES); node.appendChild(child); for (i = 0; i < m_Instances.numInstances(); i++) { addInstance(child, m_Instances.instance(i)); } } /** * builds up the XML structure based on the given data * * @param data data to generate the XML from */ public void setInstances(Instances data) { m_Instances = new Instances(data); clear(); headerToXML(); dataToXML(); } /** * returns the current instances, either the ones that were set or the ones * that were generated from the XML structure. * * @return the current instances */ public Instances getInstances() { return m_Instances; } /** * returns the metadata, if any available underneath this node, otherwise just * null * * @param parent the attribute node * @return the metadata, or null if none found * @throws Exception if generation fails */ protected ProtectedProperties createMetadata(Element parent) throws Exception { ProtectedProperties result; Properties props; Vector<Element> list; Element node; Element metanode; int i; result = null; // find metadata node directly underneath this attribute, but not in // deeper nested attributes (e.g., within relational attributes) metanode = null; list = getChildTags(parent, TAG_METADATA); if (list.size() > 0) { metanode = list.get(0); } // generate properties if (metanode != null) { props = new Properties(); list = getChildTags(metanode, TAG_PROPERTY); for (i = 0; i < list.size(); i++) { node = list.get(i); props.setProperty(node.getAttribute(ATT_NAME), getContent(node)); } result = new ProtectedProperties(props); } return result; } /** * returns the labels listed underneath this (nominal) attribute in a * ArrayList * * @param parent the (nominal) attribute node * @return the label vector * @throws Exception if generation fails */ protected ArrayList<String> createLabels(Element parent) throws Exception { ArrayList<String> result; Vector<Element> list; Element node; Element labelsnode; int i; result = new ArrayList<String>(); // find labels node directly underneath this attribute, but not in // deeper nested attributes (e.g., within relational attributes) labelsnode = null; list = getChildTags(parent, TAG_LABELS); if (list.size() > 0) { labelsnode = list.get(0); } // retrieve all labels if (labelsnode != null) { list = getChildTags(labelsnode, TAG_LABEL); for (i = 0; i < list.size(); i++) { node = list.get(i); result.add(getContent(node)); } } return result; } /** * creates an Attribute from the given XML node * * @param node the node with the setup * @return the configured Attribute * @throws Exception if generation fails, e.g., due to unknown attribute type */ protected Attribute createAttribute(Element node) throws Exception { String typeStr; String name; int type; Attribute result; ArrayList<String> values; ProtectedProperties metadata; Vector<Element> list; ArrayList<Attribute> atts; result = null; // name name = node.getAttribute(ATT_NAME); // type typeStr = node.getAttribute(ATT_TYPE); if (typeStr.equals(VAL_NUMERIC)) { type = Attribute.NUMERIC; } else if (typeStr.equals(VAL_DATE)) { type = Attribute.DATE; } else if (typeStr.equals(VAL_NOMINAL)) { type = Attribute.NOMINAL; } else if (typeStr.equals(VAL_STRING)) { type = Attribute.STRING; } else if (typeStr.equals(VAL_RELATIONAL)) { type = Attribute.RELATIONAL; } else { throw new Exception("Attribute type '" + typeStr + "' is not supported!"); } // metadata metadata = createMetadata(node); switch (type) { case Attribute.NUMERIC: if (metadata == null) { result = new Attribute(name); } else { result = new Attribute(name, metadata); } break; case Attribute.DATE: if (metadata == null) { result = new Attribute(name, node.getAttribute(ATT_FORMAT)); } else { result = new Attribute(name, node.getAttribute(ATT_FORMAT), metadata); } break; case Attribute.NOMINAL: values = createLabels(node); if (metadata == null) { result = new Attribute(name, values); } else { result = new Attribute(name, values, metadata); } break; case Attribute.STRING: if (metadata == null) { result = new Attribute(name, (ArrayList<String>) null); } else { result = new Attribute(name, (ArrayList<String>) null, metadata); } break; case Attribute.RELATIONAL: list = getChildTags(node, TAG_ATTRIBUTES); node = list.get(0); atts = createAttributes(node, new int[1]); if (metadata == null) { result = new Attribute(name, new Instances(name, atts, 0)); } else { result = new Attribute(name, new Instances(name, atts, 0), metadata); } break; } return result; } /** * returns a list of generated attributes * * @param parent the attributes node * @param classIndex array of length 1 to return the class index, if any * @return the vector with the generated attributes * @throws Exception if generation fails, e.g., due to unknown attribute type */ protected ArrayList<Attribute> createAttributes(Element parent, int[] classIndex) throws Exception { Vector<Element> list; ArrayList<Attribute> result; int i; Element node; Attribute att; result = new ArrayList<Attribute>(); classIndex[0] = -1; list = getChildTags(parent, TAG_ATTRIBUTE); for (i = 0; i < list.size(); i++) { node = list.get(i); att = createAttribute(node); if (node.getAttribute(ATT_CLASS).equals(VAL_YES)) { classIndex[0] = i; } result.add(att); } return result; } /** * creates an Instance from the given XML node * * @param header the data this instance will belong to * @param parent the instance node * @return the configured Instance * @throws Exception if generation fails, e.g., due to unknown attribute type */ protected Instance createInstance(Instances header, Element parent) throws Exception { Instance result; Element node; Element child; boolean sparse; int i; int index; Vector<Element> list; Vector<Element> subList; double[] values; String content; double weight; Instances data; result = null; // sparse? sparse = (parent.getAttribute(ATT_TYPE).equals(VAL_SPARSE)); values = new double[header.numAttributes()]; // weight if (parent.getAttribute(ATT_WEIGHT).length() != 0) { weight = Double.parseDouble(parent.getAttribute(ATT_WEIGHT)); } else { weight = 1.0; } list = getChildTags(parent, TAG_VALUE); for (i = 0; i < list.size(); i++) { node = list.get(i); // determine index if (sparse) { index = Integer.parseInt(node.getAttribute(ATT_INDEX)) - 1; } else { index = i; } // set value if (node.getAttribute(ATT_MISSING).equals(VAL_YES)) { values[index] = Utils.missingValue(); } else { content = getContent(node); switch (header.attribute(index).type()) { case Attribute.NUMERIC: values[index] = Double.parseDouble(content); break; case Attribute.DATE: values[index] = header.attribute(index).parseDate(content); break; case Attribute.NOMINAL: values[index] = header.attribute(index).indexOfValue(content); break; case Attribute.STRING: values[index] = header.attribute(index).addStringValue(content); break; case Attribute.RELATIONAL: subList = getChildTags(node, TAG_INSTANCES); child = subList.get(0); data = createInstances(header.attribute(index).relation(), child); values[index] = header.attribute(index).addRelation(data); break; default: throw new Exception("Attribute type " + header.attribute(index).type() + " is not supported!"); } } } // create instance if (sparse) { result = new SparseInstance(weight, values); } else { result = new DenseInstance(weight, values); } return result; } /** * creates Instances from the given XML node * * @param header the header of this data * @param parent the instances node * @return the generated Instances * @throws Exception if generation fails, e.g., due to unknown attribute type */ protected Instances createInstances(Instances header, Element parent) throws Exception { Instances result; Vector<Element> list; int i; result = new Instances(header, 0); list = getChildTags(parent, TAG_INSTANCE); for (i = 0; i < list.size(); i++) { result.add(createInstance(result, list.get(i))); } return result; } /** * generates the header from the XML document * * @return the generated header * @throws Exception if generation fails */ protected Instances headerFromXML() throws Exception { Instances result; Element root; Element node; Vector<Element> list; ArrayList<Attribute> atts; Version version; int[] classIndex; root = m_Document.getDocumentElement(); // check version version = new Version(); if (version.isOlder(root.getAttribute(ATT_VERSION))) { System.out.println("WARNING: loading data of version " + root.getAttribute(ATT_VERSION) + " with version " + Version.VERSION); } // attributes list = getChildTags(root, TAG_HEADER); node = list.get(0); list = getChildTags(node, TAG_ATTRIBUTES); node = list.get(0); classIndex = new int[1]; atts = createAttributes(node, classIndex); // generate header result = new Instances(root.getAttribute(ATT_NAME), atts, 0); result.setClassIndex(classIndex[0]); return result; } /** * generates the complete dataset from the XML document * * @param header the header structure * @return the complete dataset * @throws Exception if generation fails */ protected Instances dataFromXML(Instances header) throws Exception { Instances result; Element node; Vector<Element> list; list = getChildTags(m_Document.getDocumentElement(), TAG_BODY); node = list.get(0); list = getChildTags(node, TAG_INSTANCES); node = list.get(0); result = createInstances(header, node); return result; } /** * reads the XML structure from the given reader * * @param reader the reader to get the XML from * @throws Exception if */ public void setXML(Reader reader) throws Exception { read(reader); // interprete XML structure m_Instances = dataFromXML(headerFromXML()); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * takes an XML document as first argument and then outputs the Instances * statistics * * @param args the commandline options */ public static void main(String[] args) { try { Reader r = null; if (args.length != 1) { throw (new Exception("Usage: XMLInstances <filename>")); } else { InputStream in = new FileInputStream(args[0]); // compressed file? if (args[0].endsWith(".gz")) { in = new GZIPInputStream(in); } r = new BufferedReader(new InputStreamReader(in)); } if (args[0].endsWith(Instances.FILE_EXTENSION)) { XMLInstances i = new XMLInstances(new Instances(r)); System.out.println(i.toString()); } else { Instances i = new XMLInstances(r).getInstances(); System.out.println(i.toSummaryString()); } } catch (Exception ex) { ex.printStackTrace(); System.err.println(ex.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/XMLOptions.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * XMLOptions.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand * */ package weka.core.xml; import java.io.File; import java.io.InputStream; import java.io.Reader; import java.util.Vector; import org.w3c.dom.Document; import org.w3c.dom.Element; import org.w3c.dom.Node; import org.w3c.dom.NodeList; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * A class for transforming options listed in XML to a regular WEKA command line * string. * <p> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class XMLOptions implements RevisionHandler { /** tag for a single option. */ public final static String TAG_OPTION = "option"; /** tag for a list of options. */ public final static String TAG_OPTIONS = "options"; /** the name attribute. */ public final static String ATT_NAME = "name"; /** the type attribute. */ public final static String ATT_TYPE = "type"; /** the value attribute. */ public final static String ATT_VALUE = "value"; /** a value of the type attribute. */ public final static String VAL_TYPE_FLAG = "flag"; /** a value of the type attribute. */ public final static String VAL_TYPE_SINGLE = "single"; /** a value of the type attribute. */ public final static String VAL_TYPE_HYPHENS = "hyphens"; /** a value of the type attribute. */ public final static String VAL_TYPE_QUOTES = "quotes"; /** a value of the type attribute. */ public final static String VAL_TYPE_CLASSIFIER = "classifier"; /** a value of the type attribute. */ public final static String VAL_TYPE_OPTIONHANDLER = "optionhandler"; /** the root node. */ public final static String ROOT_NODE = TAG_OPTIONS; /** the DTD for the XML file. */ public final static String DOCTYPE = "<!DOCTYPE " + ROOT_NODE + "\n" + "[\n" + " <!ELEMENT " + TAG_OPTIONS + " (" + TAG_OPTION + ")*>\n" + " <!ATTLIST " + TAG_OPTIONS + " " + ATT_TYPE + " CDATA \"" + VAL_TYPE_OPTIONHANDLER + "\">\n" + " <!ATTLIST " + TAG_OPTIONS + " " + ATT_VALUE + " CDATA \"\">\n" + " <!ELEMENT " + TAG_OPTION + " (#PCDATA | " + TAG_OPTIONS + ")*>\n" + " <!ATTLIST " + TAG_OPTION + " " + ATT_NAME + " CDATA #REQUIRED>\n" + " <!ATTLIST " + TAG_OPTION + " " + ATT_TYPE + " (" + VAL_TYPE_FLAG + " | " + VAL_TYPE_SINGLE + " | " + VAL_TYPE_HYPHENS + " | " + VAL_TYPE_QUOTES + ") \"" + VAL_TYPE_SINGLE + "\">\n" + "]\n" + ">"; /** the XML document. */ protected XMLDocument m_XMLDocument = null; /** * Creates a new instance of XMLOptions. * * @throws Exception if the construction of the DocumentBuilder fails * @see #setValidating(boolean) */ public XMLOptions() throws Exception { m_XMLDocument = new XMLDocument(); m_XMLDocument.setRootNode(ROOT_NODE); m_XMLDocument.setDocType(DOCTYPE); setValidating(true); } /** * Creates a new instance of XMLOptions. * * @param xml the xml to parse (if "<?xml" is not found then it is considered * a file) * @throws Exception if the construction of the DocumentBuilder fails * @see #setValidating(boolean) */ public XMLOptions(String xml) throws Exception { this(); getXMLDocument().read(xml); } /** * Creates a new instance of XMLOptions. * * @param file the XML file to parse * @throws Exception if the construction of the DocumentBuilder fails * @see #setValidating(boolean) */ public XMLOptions(File file) throws Exception { this(); getXMLDocument().read(file); } /** * Creates a new instance of XMLOptions. * * @param stream the XML stream to parse * @throws Exception if the construction of the DocumentBuilder fails * @see #setValidating(boolean) */ public XMLOptions(InputStream stream) throws Exception { this(); getXMLDocument().read(stream); } /** * Creates a new instance of XMLOptions. * * @param reader the XML reader to parse * @throws Exception if the construction of the DocumentBuilder fails * @see #setValidating(boolean) */ public XMLOptions(Reader reader) throws Exception { this(); getXMLDocument().read(reader); } /** * returns whether a validating parser is used. * * @return whether a validating parser is used */ public boolean getValidating() { return m_XMLDocument.getValidating(); } /** * sets whether to use a validating parser or not. <br> * Note: this does clear the current DOM document! * * @param validating whether to use a validating parser * @throws Exception if the instantiating of the DocumentBuilder fails */ public void setValidating(boolean validating) throws Exception { m_XMLDocument.setValidating(validating); } /** * returns the parsed DOM document. * * @return the parsed DOM document */ public Document getDocument() { fixHyphens(); return m_XMLDocument.getDocument(); } /** * returns the handler of the XML document. the internal DOM document can be * accessed via the <code>getDocument()</code> method. * * @return the object handling the XML document * @see #getDocument() */ public XMLDocument getXMLDocument() { fixHyphens(); return m_XMLDocument; } /** * pushes any options with type VAL_TYPE_HYPHENS to the end, i.e., the "--" * are really added at the end. * * @see #VAL_TYPE_HYPHENS */ protected void fixHyphens() { NodeList list; Vector<Element> hyphens; int i; Node node; Node tmpNode; boolean isLast; // get all option tags list = m_XMLDocument.findNodes("//" + TAG_OPTION); // get all hyphen tags hyphens = new Vector<Element>(); for (i = 0; i < list.getLength(); i++) { if (((Element) list.item(i)).getAttribute(ATT_TYPE).equals( VAL_TYPE_HYPHENS)) { hyphens.add((Element) list.item(i)); } } // check all hyphen tags whether they are at the end, if not fix it for (i = 0; i < hyphens.size(); i++) { node = hyphens.get(i); // at the end? isLast = true; tmpNode = node; while (tmpNode.getNextSibling() != null) { // normal tag? if (tmpNode.getNextSibling().getNodeType() == Node.ELEMENT_NODE) { isLast = false; break; } tmpNode = tmpNode.getNextSibling(); } // move if (!isLast) { tmpNode = node.getParentNode(); tmpNode.removeChild(node); tmpNode.appendChild(node); } } } /** * converts the given node into a command line representation and returns it. * * @param parent the node to convert to command line * @return the new command line */ protected String toCommandLine(Element parent) { Vector<String> result; Vector<Element> list; Vector<Element> subList; NodeList subNodeList; String[] params; int i; int n; String tmpStr; result = new Vector<String>(); // "options" tag if (parent.getNodeName().equals(TAG_OPTIONS)) { // children list = XMLDocument.getChildTags(parent); if (parent.getAttribute(ATT_TYPE).equals(VAL_TYPE_CLASSIFIER)) { System.err.println("Type '" + VAL_TYPE_CLASSIFIER + "' is deprecated, " + "use '" + VAL_TYPE_OPTIONHANDLER + "' instead!"); parent.setAttribute(ATT_TYPE, VAL_TYPE_OPTIONHANDLER); } if (parent.getAttribute(ATT_TYPE).equals(VAL_TYPE_OPTIONHANDLER)) { result.add(parent.getAttribute(ATT_VALUE)); // hyphens? if ((list.size() > 0) && (parent.getParentNode() != null) && (parent.getParentNode() instanceof Element) && (((Element) parent.getParentNode()).getNodeName() .equals(TAG_OPTION)) && (((Element) parent.getParentNode()).getAttribute(ATT_TYPE) .equals(VAL_TYPE_HYPHENS))) { result.add("--"); } } // process children for (i = 0; i < list.size(); i++) { tmpStr = toCommandLine(list.get(i)); try { params = Utils.splitOptions(tmpStr); for (n = 0; n < params.length; n++) { result.add(params[n]); } } catch (Exception e) { System.err.println("Error splitting: " + tmpStr); e.printStackTrace(); } } } // "option" tag else if (parent.getNodeName().equals(TAG_OPTION)) { subList = XMLDocument.getChildTags(parent); subNodeList = parent.getChildNodes(); result.add("-" + parent.getAttribute(ATT_NAME)); // single argument if (parent.getAttribute(ATT_TYPE).equals(VAL_TYPE_SINGLE)) { if ((subNodeList.getLength() > 0) && (subNodeList.item(0).getNodeValue().trim().length() > 0)) { result.add(subNodeList.item(0).getNodeValue()); } } // compound argument surrounded by quotes else if (parent.getAttribute(ATT_TYPE).equals(VAL_TYPE_QUOTES)) { result.add(toCommandLine(subList.get(0))); } // classname + further options after "--" else if (parent.getAttribute(ATT_TYPE).equals(VAL_TYPE_HYPHENS)) { tmpStr = toCommandLine(subList.get(0)); try { params = Utils.splitOptions(tmpStr); for (n = 0; n < params.length; n++) { result.add(params[n]); } } catch (Exception e) { System.err.println("Error splitting: " + tmpStr); e.printStackTrace(); } } } // other tag else { System.err.println("Unsupported tag '" + parent.getNodeName() + "' - skipped!"); } return Utils.joinOptions(result.toArray(new String[result.size()])); } /** * returns the given DOM document as command line. * * @return the document as command line * @throws Exception if anything goes wrong initializing the parsing */ public String toCommandLine() throws Exception { return toCommandLine(getDocument().getDocumentElement()); } /** * returns the current DOM document as string array. * * @return the document as string array * @throws Exception if anything goes wrong initializing the parsing */ public String[] toArray() throws Exception { return Utils.splitOptions(toCommandLine()); } /** * returns the object in a string representation (as indented XML output). * * @return the object in a string representation */ @Override public String toString() { return getXMLDocument().toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * for testing only. prints the given XML file, the resulting commandline and * the string array. * * @param args the commandline options. * @throws Exception if something goes wrong */ public static void main(String[] args) throws Exception { if (args.length > 0) { System.out.println("\nXML:\n\n" + new XMLOptions(args[0]).toString()); System.out.println("\nCommandline:\n\n" + new XMLOptions(args[0]).toCommandLine()); System.out.println("\nString array:\n"); String[] options = new XMLOptions(args[0]).toArray(); for (String option : options) { System.out.println(option); } } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/XMLSerialization.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * XMLSerialization.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand * */ package weka.core.xml; import java.beans.BeanInfo; import java.beans.Introspector; import java.beans.PropertyDescriptor; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.InputStream; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.OutputStream; import java.io.Reader; import java.io.Writer; import java.lang.reflect.Array; import java.lang.reflect.Constructor; import java.lang.reflect.Method; import java.util.ArrayList; import java.util.Enumeration; import java.util.Hashtable; import java.util.List; import java.util.Vector; import org.w3c.dom.Document; import org.w3c.dom.Element; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.Version; import weka.core.WekaPackageClassLoaderManager; /** * With this class objects can be serialized to XML instead into a binary * format. It uses introspection (cf. beans) to retrieve the data from the given * object, i.e. it can only access beans-conform fields automatically. * <p> * The generic approach of writing data as XML can be overriden by adding custom * methods for reading/writing in a derived class (cf. <code>m_Properties</code>, <code>m_CustomMethods</code>).<br> * Custom read and write methods must have the same signature (and also be * <code>public</code>!) as the <code>readFromXML</code> and * <code>writeToXML</code> methods. Methods that apply to the naming rule * <code>read + property name</code> are added automatically to the list of * methods by the method * <code>XMLSerializationMethodHandler.addMethods(...)</code>. * <p> * Other properties that are not conform the bean set/get-methods have to be * processed manually in a derived class (cf. * <code>readPostProcess(Object)</code>, <code>writePostProcess(Object)</code>). * <p> * For a complete XML serialization/deserialization have a look at the * <code>KOML</code> class. * <p> * If a stored class has a constructor that takes a String to initialize (e.g. * String or Double) then the content of the tag will used for the constructor, * e.g. from * * <pre> * &lt;object name="name" class="String" primitive="no"&gt;Smith&lt;/object&gt; * </pre> * * "Smith" will be used to instantiate a String object as constructor argument. * <p> * * @see KOML * @see #fromXML(Document) * @see #toXML(Object) * @see #m_Properties * @see #m_CustomMethods * @see #readPostProcess(Object) * @see #writePostProcess(Object) * @see #readFromXML(Element) * @see #writeToXML(Element, Object, String) * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class XMLSerialization implements RevisionHandler { /** for debugging purposes only */ protected static boolean DEBUG = false; /** * the node that is currently processed, in case of writing the parent node * (something might go wrong writing the new child) and in case of reading the * actual node that is tried to process */ protected Element m_CurrentNode = null; /** the tag for an object */ public final static String TAG_OBJECT = "object"; /** the version attribute */ public final static String ATT_VERSION = XMLDocument.ATT_VERSION; /** the tag for the name */ public final static String ATT_NAME = XMLDocument.ATT_NAME; /** the tag for the class */ public final static String ATT_CLASS = "class"; /** the tag whether primitive or not (yes/no) */ public final static String ATT_PRIMITIVE = "primitive"; /** the tag whether array or not (yes/no) */ public final static String ATT_ARRAY = "array"; /** the tag whether null or not (yes/no) */ public final static String ATT_NULL = "null"; /** the value "yes" for the primitive and array attribute */ public final static String VAL_YES = XMLDocument.VAL_YES; /** the value "no" for the primitive and array attribute */ public final static String VAL_NO = XMLDocument.VAL_NO; /** the value of the name for the root node */ public final static String VAL_ROOT = "__root__"; /** the root node of the XML document */ public final static String ROOT_NODE = TAG_OBJECT; /** * default value for attribute ATT_PRIMITIVE * * @see #ATT_PRIMITIVE */ public final static String ATT_PRIMITIVE_DEFAULT = VAL_NO; /** * default value for attribute ATT_ARRAY * * @see #ATT_ARRAY */ public final static String ATT_ARRAY_DEFAULT = VAL_NO; /** * default value for attribute ATT_NULL * * @see #ATT_NULL */ public final static String ATT_NULL_DEFAULT = VAL_NO; /** the DOCTYPE for the serialization */ public final static String DOCTYPE = "<!" + XMLDocument.DTD_DOCTYPE + " " + ROOT_NODE + "\n" + "[\n" + " <!" + XMLDocument.DTD_ELEMENT + " " + TAG_OBJECT + " (" + XMLDocument.DTD_PCDATA + XMLDocument.DTD_SEPARATOR + TAG_OBJECT + ")" + XMLDocument.DTD_ZERO_OR_MORE + ">\n" + " <!" + XMLDocument.DTD_ATTLIST + " " + TAG_OBJECT + " " + ATT_NAME + " " + XMLDocument.DTD_CDATA + " " + XMLDocument.DTD_REQUIRED + ">\n" + " <!" + XMLDocument.DTD_ATTLIST + " " + TAG_OBJECT + " " + ATT_CLASS + " " + XMLDocument.DTD_CDATA + " " + XMLDocument.DTD_REQUIRED + ">\n" + " <!" + XMLDocument.DTD_ATTLIST + " " + TAG_OBJECT + " " + ATT_PRIMITIVE + " " + XMLDocument.DTD_CDATA + " \"" + ATT_PRIMITIVE_DEFAULT + "\">\n" + " <!" + XMLDocument.DTD_ATTLIST + " " + TAG_OBJECT + " " + ATT_ARRAY + " " + XMLDocument.DTD_CDATA + " \"" + ATT_ARRAY_DEFAULT + "\"> <!-- the dimensions of the array; no=0, yes=1 -->\n" + " <!" + XMLDocument.DTD_ATTLIST + " " + TAG_OBJECT + " " + ATT_NULL + " " + XMLDocument.DTD_CDATA + " \"" + ATT_NULL_DEFAULT + "\">\n" + " <!" + XMLDocument.DTD_ATTLIST + " " + TAG_OBJECT + " " + ATT_VERSION + " " + XMLDocument.DTD_CDATA + " \"" + Version.VERSION + "\">\n" + "]\n" + ">"; /** * List of fully qualified property names to suppress any warning messages for */ public final static List<String> SUPPRESS_PROPERTY_WARNINGS = new ArrayList<String>(); /** the XMLDocument that performs the transformation to and fro XML */ protected XMLDocument m_Document = null; /** for handling properties (ignored/allowed) */ protected PropertyHandler m_Properties = null; /** for handling custom read/write methods */ protected XMLSerializationMethodHandler m_CustomMethods = null; /** * for overriding class names (Class &lt;-&gt; Classname (String)) * * @see #overrideClassname(Object) */ protected Hashtable<Class<?>, String> m_ClassnameOverride = null; /** true to suppress warnings about loading newer/older versions etc. */ protected boolean m_suppressWarnings; /** * initializes the serialization * * @throws Exception if initialization fails */ public XMLSerialization() throws Exception { super(); clear(); } /** * Set whether to suppress warning messages or not * * @param suppress true to suppress warnings */ public void setSuppressWarnings(boolean suppress) { m_suppressWarnings = suppress; } /** * used for debugging purposes, i.e. only if DEBUG is set to true. needs a * newly generated Throwable instance to get the method/line from * * @param t a throwable instance, generated in the calling method * @param msg a message to pring * @see #DEBUG */ protected void trace(Throwable t, String msg) { if ((DEBUG) && (t.getStackTrace().length > 0)) { System.out.println("trace: " + t.getStackTrace()[0] + ": " + msg); } } /** * generates internally a new XML document and clears also the IgnoreList and * the mappings for the Read/Write-Methods * * @throws Exception if something goes wrong */ public void clear() throws Exception { m_Document = new XMLDocument(); m_Document.setValidating(true); m_Document.newDocument(DOCTYPE, ROOT_NODE); m_Properties = new PropertyHandler(); m_CustomMethods = new XMLSerializationMethodHandler(this); m_ClassnameOverride = new Hashtable<Class<?>, String>(); // java.io.File is sometimes represented as another class: // - Win32: sun.awt.shell.Win32ShellFolder2 // - Linux: sun.awt.shell.DefaultShellFolder // -> we set it to "java.io.File" m_ClassnameOverride.put(java.io.File.class, java.io.File.class.getName()); setVersion(Version.VERSION); m_CurrentNode = null; } /** * sets the given version string in the XML document * * @param version the new version string */ private void setVersion(String version) { Document doc; doc = m_Document.getDocument(); doc.getDocumentElement().setAttribute(ATT_VERSION, version); } /** * returns the WEKA version with which the serialized object was created * * @return the current version * @see Version */ public String getVersion() { Document doc; String result; doc = m_Document.getDocument(); result = doc.getDocumentElement().getAttribute(ATT_VERSION); return result; } /** * Checks the version in the current Document with the one of the current * release. If the version differ, a warning is printed. */ private void checkVersion() { if (m_suppressWarnings) { return; } String versionStr; Version version; version = new Version(); versionStr = getVersion(); if (versionStr.equals("")) { System.out.println("WARNING: has no version!"); } else if (version.isOlder(versionStr)) { System.out.println("WARNING: loading a newer version (" + versionStr + " > " + Version.VERSION + ")!"); } else if (version.isNewer(versionStr)) { System.out.println("NOTE: loading an older version (" + versionStr + " < " + Version.VERSION + ")!"); } } /** * returns a hashtable with PropertyDescriptors that have "get" and "set" * methods indexed by the property name. * * @see java.beans.PropertyDescriptor * @param o the object to retrieve the descriptors from * @return the PropertyDescriptors indexed by name of the property * @throws Exception if the introspection fails */ protected Hashtable<String, PropertyDescriptor> getDescriptors(Object o) throws Exception { BeanInfo info; PropertyDescriptor[] desc; int i; Hashtable<String, PropertyDescriptor> result; result = new Hashtable<String, PropertyDescriptor>(); info = Introspector.getBeanInfo(o.getClass()); desc = info.getPropertyDescriptors(); for (i = 0; i < desc.length; i++) { // get AND set method? if ((desc[i].getReadMethod() != null) && (desc[i].getWriteMethod() != null)) { // in ignore list, i.e. a general ignore without complete path? if (m_Properties.isIgnored(desc[i].getDisplayName())) { continue; } // in ignore list of the class? if (m_Properties.isIgnored(o, desc[i].getDisplayName())) { continue; } // not an allowed property if (!m_Properties.isAllowed(o, desc[i].getDisplayName())) { continue; } result.put(desc[i].getDisplayName(), desc[i]); } } return result; } /** * returns the path of the "name" attribute from the root down to this node * (including it). * * @param node the node to get the path for * @return the complete "name" path of this node */ protected String getPath(Element node) { String result; result = node.getAttribute(ATT_NAME); while (node.getParentNode() != node.getOwnerDocument()) { node = (Element) node.getParentNode(); result = node.getAttribute(ATT_NAME) + "." + result; } return result; } /** * returns either <code>VAL_YES</code> or <code>VAL_NO</code> depending on the * value of <code>b</code> * * @param b the boolean to turn into a string * @return the value in string representation */ protected String booleanToString(boolean b) { if (b) { return VAL_YES; } else { return VAL_NO; } } /** * turns the given string into a boolean, if a positive number is given, then * zero is considered FALSE, every other number TRUE; the empty string is also * considered being FALSE * * @param s the string to turn into a boolean * @return the string as boolean */ protected boolean stringToBoolean(String s) { if (s.equals("")) { return false; } else if (s.equals(VAL_YES)) { return true; } else if (s.equalsIgnoreCase("true")) { return true; } else if (s.replaceAll("[0-9]*", "").equals("")) { return (Integer.parseInt(s) != 0); } else { return false; } } /** * appends a new node to the parent with the given parameters (a non-array) * * @param parent the parent of this node. if it is <code>null</code> the * document root element is used * @param name the name of the node * @param classname the classname for this node * @param primitive whether it is a primitve data type or not (i.e. an object) * @return the generated node */ protected Element addElement(Element parent, String name, String classname, boolean primitive) { return addElement(parent, name, classname, primitive, 0); } /** * appends a new node to the parent with the given parameters * * @param parent the parent of this node. if it is <code>null</code> the * document root element is used * @param name the name of the node * @param classname the classname for this node * @param primitive whether it is a primitve data type or not (i.e. an object) * @param array the dimensions of the array (0 if not an array) * @return the generated node */ protected Element addElement(Element parent, String name, String classname, boolean primitive, int array) { return addElement(parent, name, classname, primitive, array, false); } /** * appends a new node to the parent with the given parameters * * @param parent the parent of this node. if it is <code>null</code> the * document root element is used * @param name the name of the node * @param classname the classname for this node * @param primitive whether it is a primitve data type or not (i.e. an object) * @param array the dimensions of the array (0 if not an array) * @param isnull whether it is null * @return the generated node */ protected Element addElement(Element parent, String name, String classname, boolean primitive, int array, boolean isnull) { Element result; if (parent == null) { result = m_Document.getDocument().getDocumentElement(); } else { result = (Element) parent.appendChild(m_Document.getDocument() .createElement(TAG_OBJECT)); } // attributes // mandatory attributes: result.setAttribute(ATT_NAME, name); result.setAttribute(ATT_CLASS, classname); // add following attributes only if necessary, i.e., different from default: if (!booleanToString(primitive).equals(ATT_PRIMITIVE_DEFAULT)) { result.setAttribute(ATT_PRIMITIVE, booleanToString(primitive)); } // multi-dimensional array? if (array > 1) { result.setAttribute(ATT_ARRAY, Integer.toString(array)); } // backwards compatible: 0 -> no array ("no"), 1 -> 1-dim. array ("yes") else { if (!booleanToString(array == 1).equals(ATT_ARRAY_DEFAULT)) { result.setAttribute(ATT_ARRAY, booleanToString(array == 1)); } } if (!booleanToString(isnull).equals(ATT_NULL_DEFAULT)) { result.setAttribute(ATT_NULL, booleanToString(isnull)); } return result; } /** * if the class of the given object (or one of its ancestors) is stored in the * classname override hashtable, then the override name is returned otherwise * the classname of the given object. * * @param o the object to check for overriding its classname * @return if overridden then the classname stored in the hashtable, otherwise * the classname of the given object * @see #m_ClassnameOverride */ protected String overrideClassname(Object o) { Enumeration<Class<?>> enm; String result; Class<?> currentCls; result = o.getClass().getName(); // check overrides enm = m_ClassnameOverride.keys(); while (enm.hasMoreElements()) { currentCls = enm.nextElement(); if (currentCls.isInstance(o)) { result = m_ClassnameOverride.get(currentCls); break; } } return result; } /** * if the given classname is stored in the classname override hashtable, then * the override name is returned otherwise the given classname. <b>Note:</b> * in contrast to <code>overrideClassname(Object)</code> does this method only * look for exact name matches. The other method checks whether the class of * the given object is a subclass of any of the stored overrides. * * @param classname the classname to check for overriding * @return if overridden then the classname stored in the hashtable, otherwise * the given classname * @see #m_ClassnameOverride * @see #overrideClassname(Object) */ protected String overrideClassname(String classname) { Enumeration<Class<?>> enm; String result; Class<?> currentCls; result = classname; // check overrides enm = m_ClassnameOverride.keys(); while (enm.hasMoreElements()) { currentCls = enm.nextElement(); if (currentCls.getName().equals(classname)) { result = m_ClassnameOverride.get(currentCls); break; } } return result; } /** * returns a property descriptor if possible, otherwise <code>null</code> * * @param className the name of the class to get the descriptor for * @param displayName the name of the property * @return the descriptor if available, otherwise <code>null</code> */ protected PropertyDescriptor determineDescriptor(String className, String displayName) { PropertyDescriptor result; result = null; try { // result = new PropertyDescriptor(displayName, Class.forName(className)); result = new PropertyDescriptor(displayName, WekaPackageClassLoaderManager.forName(className)); } catch (Exception e) { result = null; } return result; } /** * adds the given primitive to the DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the primitive to describe in XML * @param name the name of the primitive * @return the node that was created * @throws Exception if the DOM creation fails */ protected Element writeBooleanToXML(Element parent, boolean o, String name) throws Exception { Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; node = addElement(parent, name, Boolean.TYPE.getName(), true); node.appendChild(node.getOwnerDocument().createTextNode( new Boolean(o).toString())); return node; } /** * adds the given primitive to the DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the primitive to describe in XML * @param name the name of the primitive * @return the node that was created * @throws Exception if the DOM creation fails */ protected Element writeByteToXML(Element parent, byte o, String name) throws Exception { Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; node = addElement(parent, name, Byte.TYPE.getName(), true); node.appendChild(node.getOwnerDocument().createTextNode( new Byte(o).toString())); return node; } /** * adds the given primitive to the DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the primitive to describe in XML * @param name the name of the primitive * @return the node that was created * @throws Exception if the DOM creation fails */ protected Element writeCharToXML(Element parent, char o, String name) throws Exception { Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; node = addElement(parent, name, Character.TYPE.getName(), true); node.appendChild(node.getOwnerDocument().createTextNode( new Character(o).toString())); return node; } /** * adds the given primitive to the DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the primitive to describe in XML * @param name the name of the primitive * @return the node that was created * @throws Exception if the DOM creation fails */ protected Element writeDoubleToXML(Element parent, double o, String name) throws Exception { Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; node = addElement(parent, name, Double.TYPE.getName(), true); node.appendChild(node.getOwnerDocument().createTextNode( new Double(o).toString())); return node; } /** * adds the given primitive to the DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the primitive to describe in XML * @param name the name of the primitive * @return the node that was created * @throws Exception if the DOM creation fails */ protected Element writeFloatToXML(Element parent, float o, String name) throws Exception { Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; node = addElement(parent, name, Float.TYPE.getName(), true); node.appendChild(node.getOwnerDocument().createTextNode( new Float(o).toString())); return node; } /** * adds the given primitive to the DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the primitive to describe in XML * @param name the name of the primitive * @return the node that was created * @throws Exception if the DOM creation fails */ protected Element writeIntToXML(Element parent, int o, String name) throws Exception { Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; node = addElement(parent, name, Integer.TYPE.getName(), true); node.appendChild(node.getOwnerDocument().createTextNode( new Integer(o).toString())); return node; } /** * adds the given primitive to the DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the primitive to describe in XML * @param name the name of the primitive * @return the node that was created * @throws Exception if the DOM creation fails */ protected Element writeLongToXML(Element parent, long o, String name) throws Exception { Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; node = addElement(parent, name, Long.TYPE.getName(), true); node.appendChild(node.getOwnerDocument().createTextNode( new Long(o).toString())); return node; } /** * adds the given primitive to the DOM structure. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the primitive to describe in XML * @param name the name of the primitive * @return the node that was created * @throws Exception if the DOM creation fails */ protected Element writeShortToXML(Element parent, short o, String name) throws Exception { Element node; // for debugging only if (DEBUG) { trace(new Throwable(), name); } m_CurrentNode = parent; node = addElement(parent, name, Short.TYPE.getName(), true); node.appendChild(node.getOwnerDocument().createTextNode( new Short(o).toString())); return node; } /** * checks whether the innermost class is a primitive class (handles * multi-dimensional arrays) * * @param c the array class to inspect * @return whether the array consists of primitive elements */ protected boolean isPrimitiveArray(Class<?> c) { if (c.getComponentType().isArray()) { return isPrimitiveArray(c.getComponentType()); } else { return c.getComponentType().isPrimitive(); } } /** * adds the given Object to a DOM structure. (only public due to reflection).<br> * <b>Note:</b> <code>overrideClassname(Object)</code> is not invoked in case * of arrays, since the array class could be a superclass, whereas the * elements of the array can be specialized subclasses. In case of an array * the method <code>overrideClassname(String)</code> is invoked, which * searches for an exact match of the classname in the override hashtable. * * @param parent the parent of this object, e.g. the class this object is a * member of * @param o the Object to describe in XML * @param name the name of the object * @return the node that was created * @throws Exception if the DOM creation fails * @see #overrideClassname(Object) * @see #overrideClassname(String) * @see #m_ClassnameOverride */ public Element writeToXML(Element parent, Object o, String name) throws Exception { String classname; Element node; Hashtable<String, PropertyDescriptor> memberlist; Enumeration<String> enm; Object member; String memberName; Method method; PropertyDescriptor desc; boolean primitive; int array; int i; Object obj; String tmpStr; node = null; // for debugging only if (DEBUG) { trace(new Throwable(), name); } // special handling of null-objects if (o == null) { node = addElement(parent, name, "" + null, false, 0, true); return node; } // used for overriding the classname obj = null; // get information about object array = 0; if (o.getClass().isArray()) { array = Utils.getArrayDimensions(o); } if (array > 0) { classname = Utils.getArrayClass(o.getClass()).getName(); primitive = isPrimitiveArray(o.getClass()); } else { // try to get property descriptor to determine real class // (for primitives the getClass() method returns the corresponding // Object-Class!) desc = null; if (parent != null) { desc = determineDescriptor(parent.getAttribute(ATT_CLASS), name); } if (desc != null) { primitive = desc.getPropertyType().isPrimitive(); } else { primitive = o.getClass().isPrimitive(); } // for primitives: retrieve primitive type, otherwise the object's real // class. For non-primitives we can't use the descriptor, since that // might only return an interface as class! if (primitive) { classname = desc.getPropertyType().getName(); } else { obj = o; classname = o.getClass().getName(); } } // fix class/primitive if parent is array of primitives, thanks to // reflection the elements of the array are objects and not primitives! if ((parent != null) && (!parent.getAttribute(ATT_ARRAY).equals("")) && (!parent.getAttribute(ATT_ARRAY).equals(VAL_NO)) && (stringToBoolean(parent.getAttribute(ATT_PRIMITIVE)))) { primitive = true; classname = parent.getAttribute(ATT_CLASS); obj = null; } // perhaps we need to override the classname if (obj != null) { classname = overrideClassname(obj); // for non-arrays } else { classname = overrideClassname(classname); // for arrays } // create node for current object node = addElement(parent, name, classname, primitive, array); // array? -> save as child with 'name="<index>"' if (array > 0) { for (i = 0; i < Array.getLength(o); i++) { invokeWriteToXML(node, Array.get(o, i), Integer.toString(i)); } } // non-array else { // primitive? -> only toString() if (primitive) { node.appendChild(node.getOwnerDocument().createTextNode(o.toString())); } // object else { // process recursively members of this object memberlist = getDescriptors(o); // if no get/set methods -> we assume it has String-Constructor if (memberlist.size() == 0) { if (!o.toString().equals("")) { tmpStr = o.toString(); // these five entities are recognized by every XML processor // see http://www.xml.com/pub/a/2001/03/14/trxml10.html tmpStr = tmpStr.replaceAll("&", "&amp;").replaceAll("\"", "&quot;") .replaceAll("'", "&apos;").replaceAll("<", "&lt;") .replaceAll(">", "&gt;"); // in addition, replace some other entities as well tmpStr = tmpStr.replaceAll("\n", "&#10;").replaceAll("\r", "&#13;") .replaceAll("\t", "&#9;"); if (o instanceof java.io.File) { // hack to force separators to be always saved as / tmpStr = tmpStr.replace('\\', '/'); } node.appendChild(node.getOwnerDocument().createTextNode(tmpStr)); } } else { enm = memberlist.keys(); while (enm.hasMoreElements()) { memberName = enm.nextElement().toString(); // in ignore list? if ((m_Properties.isIgnored(memberName)) || (m_Properties.isIgnored(getPath(node) + "." + memberName)) || (m_Properties.isIgnored(o, getPath(node) + "." + memberName))) { continue; } // is it allowed? if (!m_Properties.isAllowed(o, memberName)) { continue; } desc = memberlist.get(memberName); method = desc.getReadMethod(); member = method.invoke(o, (Object[]) null); invokeWriteToXML(node, member, memberName); } } } } return node; } /** * either invokes a custom method to write a specific property/class or the * standard method <code>writeToXML(Element,Object,String)</code> * * @param parent the parent XML node * @param o the object's content will be added as children to the given parent * node * @param name the name of the object * @return the node that was created * @throws Exception if invocation or turning into XML fails */ protected Element invokeWriteToXML(Element parent, Object o, String name) throws Exception { Method method; Class<?>[] methodClasses; Object[] methodArgs; boolean array; Element node; boolean useDefault; node = null; method = null; useDefault = false; m_CurrentNode = parent; // default, if null if (o == null) { useDefault = true; } try { if (!useDefault) { array = o.getClass().isArray(); // display name? if (m_CustomMethods.write().contains(name)) { method = m_CustomMethods.write().get(o.getClass()); } else // class? if ((!array) && (m_CustomMethods.write().contains(o.getClass()))) { method = m_CustomMethods.write().get(o.getClass()); } else { method = null; } useDefault = (method == null); } // custom if (!useDefault) { methodClasses = new Class[3]; methodClasses[0] = Element.class; methodClasses[1] = Object.class; methodClasses[2] = String.class; methodArgs = new Object[3]; methodArgs[0] = parent; methodArgs[1] = o; methodArgs[2] = name; node = (Element) method.invoke(this, methodArgs); } // standard else { node = writeToXML(parent, o, name); } } catch (Exception e) { if (DEBUG) { e.printStackTrace(); } if (m_CurrentNode != null) { System.out.println("Happened near: " + getPath(m_CurrentNode)); // print it only once! m_CurrentNode = null; } System.out.println("PROBLEM (write): " + name); throw (Exception) e.fillInStackTrace(); } return node; } /** * enables derived classes to due some pre-processing on the objects, that's * about to be serialized. Right now it only returns the object. * * @param o the object that is serialized into XML * @return the possibly altered object * @throws Exception if post-processing fails */ protected Object writePreProcess(Object o) throws Exception { return o; } /** * enables derived classes to add other properties to the DOM tree, e.g. ones * that do not apply to the get/set convention of beans. only implemented with * empty method body. * * @param o the object that is serialized into XML * @throws Exception if post-processing fails */ protected void writePostProcess(Object o) throws Exception { } /** * extracts all accesible properties from the given object * * @param o the object to turn into an XML representation * @return the generated DOM document * @throws Exception if XML generation fails */ public XMLDocument toXML(Object o) throws Exception { clear(); invokeWriteToXML(null, writePreProcess(o), VAL_ROOT); writePostProcess(o); return m_Document; } /** * returns a descriptor for a given objet by providing the name * * @param o the object the get the descriptor for * @param name the display name of the descriptor * @return the Descriptor, if found, otherwise <code>null</code> * @throws Exception if introsepction fails */ protected PropertyDescriptor getDescriptorByName(Object o, String name) throws Exception { PropertyDescriptor result; PropertyDescriptor[] desc; int i; result = null; desc = Introspector.getBeanInfo(o.getClass()).getPropertyDescriptors(); for (i = 0; i < desc.length; i++) { if (desc[i].getDisplayName().equals(name)) { result = desc[i]; break; } } return result; } /** * returns the associated class for the given name * * @param name the name of the class to return a Class object for * @return the class if it could be retrieved * @throws Exception if it class retrieval fails */ protected Class<?> determineClass(String name) throws Exception { Class<?> result; if (name.equals(Boolean.TYPE.getName())) { result = Boolean.TYPE; } else if (name.equals(Byte.TYPE.getName())) { result = Byte.TYPE; } else if (name.equals(Character.TYPE.getName())) { result = Character.TYPE; } else if (name.equals(Double.TYPE.getName())) { result = Double.TYPE; } else if (name.equals(Float.TYPE.getName())) { result = Float.TYPE; } else if (name.equals(Integer.TYPE.getName())) { result = Integer.TYPE; } else if (name.equals(Long.TYPE.getName())) { result = Long.TYPE; } else if (name.equals(Short.TYPE.getName())) { result = Short.TYPE; } else { // result = Class.forName(name); result = WekaPackageClassLoaderManager.forName(name); } return result; } /** * returns an Object representing the primitive described by the given node. * Here we use a trick to return an object even though its a primitive: by * creating a primitive array with reflection of length 1, setting the * primtive value as real object and then returning the "object" at position 1 * of the array. * * @param node the node to return the value as "primitive" object * @return the primitive as "pseudo" object * @throws Exception if the instantiation of the array fails or any of the * String conversions fails */ protected Object getPrimitive(Element node) throws Exception { Object result; Object tmpResult; Class<?> cls; cls = determineClass(node.getAttribute(ATT_CLASS)); tmpResult = Array.newInstance(cls, 1); if (cls == Boolean.TYPE) { Array.set(tmpResult, 0, new Boolean(XMLDocument.getContent(node))); } else if (cls == Byte.TYPE) { Array.set(tmpResult, 0, new Byte(XMLDocument.getContent(node))); } else if (cls == Character.TYPE) { Array.set(tmpResult, 0, new Character(XMLDocument.getContent(node) .charAt(0))); } else if (cls == Double.TYPE) { Array.set(tmpResult, 0, new Double(XMLDocument.getContent(node))); } else if (cls == Float.TYPE) { Array.set(tmpResult, 0, new Float(XMLDocument.getContent(node))); } else if (cls == Integer.TYPE) { Array.set(tmpResult, 0, new Integer(XMLDocument.getContent(node))); } else if (cls == Long.TYPE) { Array.set(tmpResult, 0, new Long(XMLDocument.getContent(node))); } else if (cls == Short.TYPE) { Array.set(tmpResult, 0, new Short(XMLDocument.getContent(node))); } else { throw new Exception("Cannot get primitive for class '" + cls.getName() + "'!"); } result = Array.get(tmpResult, 0); return result; } /** * builds the primitive from the given DOM node. * * @param node the associated XML node * @return the primitive created from the XML description * @throws Exception if instantiation fails */ public boolean readBooleanFromXML(Element node) throws Exception { // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; return ((Boolean) getPrimitive(node)).booleanValue(); } /** * builds the primitive from the given DOM node. * * @param node the associated XML node * @return the primitive created from the XML description * @throws Exception if instantiation fails */ public byte readByteFromXML(Element node) throws Exception { // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; return ((Byte) getPrimitive(node)).byteValue(); } /** * builds the primitive from the given DOM node. * * @param node the associated XML node * @return the primitive created from the XML description * @throws Exception if instantiation fails */ public char readCharFromXML(Element node) throws Exception { // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; return ((Character) getPrimitive(node)).charValue(); } /** * builds the primitive from the given DOM node. * * @param node the associated XML node * @return the primitive created from the XML description * @throws Exception if instantiation fails */ public double readDoubleFromXML(Element node) throws Exception { // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; return ((Double) getPrimitive(node)).doubleValue(); } /** * builds the primitive from the given DOM node. * * @param node the associated XML node * @return the primitive created from the XML description * @throws Exception if instantiation fails */ public float readFloatFromXML(Element node) throws Exception { // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; return ((Float) getPrimitive(node)).floatValue(); } /** * builds the primitive from the given DOM node. * * @param node the associated XML node * @return the primitive created from the XML description * @throws Exception if instantiation fails */ public int readIntFromXML(Element node) throws Exception { // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; return ((Integer) getPrimitive(node)).intValue(); } /** * builds the primitive from the given DOM node. * * @param node the associated XML node * @return the primitive created from the XML description * @throws Exception if instantiation fails */ public long readLongFromXML(Element node) throws Exception { // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; return ((Long) getPrimitive(node)).longValue(); } /** * builds the primitive from the given DOM node. * * @param node the associated XML node * @return the primitive created from the XML description * @throws Exception if instantiation fails */ public short readShortFromXML(Element node) throws Exception { // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; return ((Short) getPrimitive(node)).shortValue(); } /** * adds the specific node to the object via a set method * * @param o the object to set a property * @param name the name of the object for which to set a property (only for * information reasons) * @param child the value of the property to add * @return the provided object, but augmented by the child * @throws Exception if something goes wrong */ public Object readFromXML(Object o, String name, Element child) throws Exception { Object result; Hashtable<String, PropertyDescriptor> descriptors; PropertyDescriptor descriptor; String methodName; Method method; Object[] methodArgs; Object tmpResult; Class<?> paramClass; result = o; descriptors = getDescriptors(result); methodName = child.getAttribute(ATT_NAME); // in ignore list? if (m_Properties.isIgnored(getPath(child))) { return result; } // in ignore list of class? if (m_Properties.isIgnored(result, getPath(child))) { return result; } // is it allowed? if (!m_Properties.isAllowed(result, methodName)) { return result; } descriptor = descriptors.get(methodName); // unknown property? if (descriptor == null) { if (!m_CustomMethods.read().contains(methodName) && !SUPPRESS_PROPERTY_WARNINGS.contains(name + "." + methodName)) { System.out.println("WARNING: unknown property '" + name + "." + methodName + "'!"); } return result; } method = descriptor.getWriteMethod(); methodArgs = new Object[1]; tmpResult = invokeReadFromXML(child); paramClass = method.getParameterTypes()[0]; // array? if (paramClass.isArray()) { // no data? if (Array.getLength(tmpResult) == 0) { return result; } methodArgs[0] = tmpResult; } // non-array else { methodArgs[0] = tmpResult; } try { method.invoke(result, methodArgs); } catch (Exception ex) { System.err.println("Warning: error invoking method: " + methodName + " (" + ex.getCause().getMessage() + ")"); } return result; } /** * returns an array with the dimensions of the array stored in XML * * @param node the node to determine the dimensions for * @return the dimensions of the array */ protected int[] getArrayDimensions(Element node) { Vector<Element> children; Vector<Integer> tmpVector; int[] tmp; int[] result; int i; // have we reached the innermost dimension? if (stringToBoolean(node.getAttribute(ATT_ARRAY))) { children = XMLDocument.getChildTags(node); } else { children = null; } if (children != null) { tmpVector = new Vector<Integer>(); if (children.size() > 0) { // are children also arrays? tmp = getArrayDimensions(children.get(0)); // further dimensions if (tmp != null) { for (i = tmp.length - 1; i >= 0; i--) { tmpVector.add(new Integer(tmp[i])); } } // add current dimension tmpVector.add(0, new Integer(children.size())); } else { tmpVector.add(new Integer(0)); } // generate result result = new int[tmpVector.size()]; for (i = 0; i < result.length; i++) { result[i] = tmpVector.get(tmpVector.size() - i - 1).intValue(); } } else { result = null; } return result; } /** * builds the object from the given DOM node. (only public due to reflection) * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails */ public Object readFromXML(Element node) throws Exception { String classname; String name; boolean primitive; boolean array; boolean isnull; Class<?> cls; Vector<Element> children; Object result; int i; Constructor<?> constructor; Class<?>[] methodClasses; Object[] methodArgs; Element child; // for debugging only if (DEBUG) { trace(new Throwable(), node.getAttribute(ATT_NAME)); } m_CurrentNode = node; result = null; name = node.getAttribute(ATT_NAME); classname = node.getAttribute(ATT_CLASS); primitive = stringToBoolean(node.getAttribute(ATT_PRIMITIVE)); array = stringToBoolean(node.getAttribute(ATT_ARRAY)); isnull = stringToBoolean(node.getAttribute(ATT_NULL)); // special handling of null if (isnull) { return result; } children = XMLDocument.getChildTags(node); cls = determineClass(classname); // array if (array) { result = Array.newInstance(cls, getArrayDimensions(node)); for (i = 0; i < children.size(); i++) { child = children.get(i); Array.set(result, Integer.parseInt(child.getAttribute(ATT_NAME)), invokeReadFromXML(child)); } } // non-array else { // primitive/String-constructor if (children.size() == 0) { // primitive if (primitive) { result = getPrimitive(node); } // assumed String-constructor else { methodClasses = new Class[1]; methodClasses[0] = String.class; methodArgs = new Object[1]; methodArgs[0] = XMLDocument.getContent(node); try { constructor = cls.getConstructor(methodClasses); result = constructor.newInstance(methodArgs); } catch (Exception e) { // if it's not a class with String constructor, let's try standard // constructor try { result = cls.newInstance(); } catch (Exception e2) { // sorry, can't instantiate! result = null; System.out.println("ERROR: Can't instantiate '" + classname + "'!"); } } } } // normal get/set methods else { result = cls.newInstance(); for (i = 0; i < children.size(); i++) { result = readFromXML(result, name, children.get(i)); } } } return result; } /** * either invokes a custom method to read a specific property/class or the * standard method <code>readFromXML(Element)</code> * * @param node the associated XML node * @return the instance created from the XML description * @throws Exception if instantiation fails */ protected Object invokeReadFromXML(Element node) throws Exception { Method method; Class<?>[] methodClasses; Object[] methodArgs; boolean array; boolean useDefault; useDefault = false; method = null; m_CurrentNode = node; try { // special handling of null values if (stringToBoolean(node.getAttribute(ATT_NULL))) { useDefault = true; } if (!useDefault) { array = stringToBoolean(node.getAttribute(ATT_ARRAY)); // display name? if (m_CustomMethods.read().contains(node.getAttribute(ATT_NAME))) { method = m_CustomMethods.read().get(node.getAttribute(ATT_NAME)); } else // class name? if ((!array) && (m_CustomMethods.read().contains(determineClass(node .getAttribute(ATT_CLASS))))) { method = m_CustomMethods.read().get( determineClass(node.getAttribute(ATT_CLASS))); } else { method = null; } useDefault = (method == null); } // custom method if (!useDefault) { methodClasses = new Class[1]; methodClasses[0] = Element.class; methodArgs = new Object[1]; methodArgs[0] = node; return method.invoke(this, methodArgs); } // standard else { return readFromXML(node); } } catch (Exception e) { if (DEBUG) { e.printStackTrace(); } if (m_CurrentNode != null) { System.out.println("Happened near: " + getPath(m_CurrentNode)); // print it only once! m_CurrentNode = null; } System.out.println("PROBLEM (read): " + node.getAttribute("name")); throw (Exception) e.fillInStackTrace(); } } /** * additional pre-processing can happen in derived classes before the actual * reading from XML (working on the raw XML). right now it does nothing with * the document. * * @param document the document to pre-process * @return the processed object * @throws Exception if post-processing fails */ protected Document readPreProcess(Document document) throws Exception { return document; } /** * additional post-processing can happen in derived classes after reading from * XML. right now it only returns the object as it is. * * @param o the object to perform some additional processing on * @return the processed object * @throws Exception if post-processing fails */ protected Object readPostProcess(Object o) throws Exception { return o; } /** * returns the given DOM document as an instance of the specified class * * @param document the parsed DOM document representing the object * @return the XML as object * @throws Exception if object instantiation fails */ public Object fromXML(Document document) throws Exception { if (!document.getDocumentElement().getNodeName().equals(ROOT_NODE)) { throw new Exception("Expected '" + ROOT_NODE + "' as root element, but found '" + document.getDocumentElement().getNodeName() + "'!"); } m_Document.setDocument(readPreProcess(document)); checkVersion(); return readPostProcess(invokeReadFromXML(m_Document.getDocument() .getDocumentElement())); } /** * parses the given XML string (can be XML or a filename) and returns an * Object generated from the representation * * @param xml the xml to parse (if "<?xml" is not found then it is considered * a file) * @return the generated instance * @throws Exception if something goes wrong with the parsing */ public Object read(String xml) throws Exception { return fromXML(m_Document.read(xml)); } /** * parses the given file and returns a DOM document * * @param file the XML file to parse * @return the parsed DOM document * @throws Exception if something goes wrong with the parsing */ public Object read(File file) throws Exception { return fromXML(m_Document.read(file)); } /** * parses the given stream and returns a DOM document * * @param stream the XML stream to parse * @return the parsed DOM document * @throws Exception if something goes wrong with the parsing */ public Object read(InputStream stream) throws Exception { return fromXML(m_Document.read(stream)); } /** * parses the given reader and returns a DOM document * * @param reader the XML reader to parse * @return the parsed DOM document * @throws Exception if something goes wrong with the parsing */ public Object read(Reader reader) throws Exception { return fromXML(m_Document.read(reader)); } /** * writes the given object into the file * * @param file the filename to write to * @param o the object to serialize as XML * @throws Exception if something goes wrong with the parsing */ public void write(String file, Object o) throws Exception { toXML(o).write(file); } /** * writes the given object into the file * * @param file the filename to write to * @param o the object to serialize as XML * @throws Exception if something goes wrong with the parsing */ public void write(File file, Object o) throws Exception { toXML(o).write(file); } /** * writes the given object into the stream * * @param stream the filename to write to * @param o the object to serialize as XML * @throws Exception if something goes wrong with the parsing */ public void write(OutputStream stream, Object o) throws Exception { toXML(o).write(stream); } /** * writes the given object into the writer * * @param writer the filename to write to * @param o the object to serialize as XML * @throws Exception if something goes wrong with the parsing */ public void write(Writer writer, Object o) throws Exception { toXML(o).write(writer); } /** * for testing only. if the first argument is a filename with ".xml" as * extension it tries to generate an instance from the XML description and * does a <code>toString()</code> of the generated object. */ public static void main(String[] args) throws Exception { if (args.length > 0) { // read xml and print if (args[0].toLowerCase().endsWith(".xml")) { System.out.println(new XMLSerialization().read(args[0]).toString()); } // read binary and print generated XML else { // read FileInputStream fi = new FileInputStream(args[0]); ObjectInputStream oi = new ObjectInputStream( new BufferedInputStream(fi)); Object o = oi.readObject(); oi.close(); // print to stdout // new XMLSerialization().write(System.out, o); new XMLSerialization().write(new BufferedOutputStream( new FileOutputStream(args[0] + ".xml")), o); // print to binary file FileOutputStream fo = new FileOutputStream(args[0] + ".exp"); ObjectOutputStream oo = new ObjectOutputStream( new BufferedOutputStream(fo)); oo.writeObject(o); oo.close(); } } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/XMLSerializationMethodHandler.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * XMLSerializationMethodHandler.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand * */ package weka.core.xml; import java.lang.reflect.Method; import org.w3c.dom.Element; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * This class handles relationships between display names of properties (or * classes) and Methods that are associated with them. It differentiates between * read and write methods. It automatically stores public methods that have the * same signature as the <code>readFromXML()</code> and * <code>writeToXML()</code> methods in the <code>XMLSerialization</code> class. * * @see MethodHandler * @see XMLSerialization * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class XMLSerializationMethodHandler implements RevisionHandler { /** for storing read methods */ protected MethodHandler m_ReadMethods = null; /** for storing write methods */ protected MethodHandler m_WriteMethods = null; /** the object to retrieve the methods from */ protected Object owner = null; /** * initializes the method handling, executes also <code>clear()</code>, which * adds initial methods automatically. * * @param owner the owner to retrieve the methods from * @throws Exception if initialization fails * @see #clear() */ public XMLSerializationMethodHandler(Object owner) throws Exception { super(); this.owner = owner; m_ReadMethods = new MethodHandler(); m_WriteMethods = new MethodHandler(); clear(); } /** * adds all methods that are like <code>template</code> to the method list * * @param handler the list to add fitting methods to * @param template the signature to check the given methods against * @param methods the methods to check */ protected void addMethods(MethodHandler handler, Method template, Method[] methods) { int i; int n; Method method; boolean equal; String name; for (i = 0; i < methods.length; i++) { method = methods[i]; // is it template? if (template.equals(method)) { continue; } // tests // 1. return type if (!template.getReturnType().equals(method.getReturnType())) { continue; } // 2. signature if (template.getParameterTypes().length != method.getParameterTypes().length) { continue; } equal = true; for (n = 0; n < template.getParameterTypes().length; n++) { if (!template.getParameterTypes()[n] .equals(method.getParameterTypes()[n])) { equal = false; break; } } // add to list if (equal) { name = method.getName(); name = name.replaceAll("read|write", ""); name = name.substring(0, 1).toLowerCase() + name.substring(1); handler.add(name, method); } } } /** * automatically adds all fitting methods to the custom read/write lists, it * excludes only the generic ones. it is automatically called in * <code>clear()</code> It only work with methods that apply to the naming * rule "read" + property name (same for "write") * * @throws Exception if retrieving of methods fails * @see #clear() */ protected void addMethods() throws Exception { Method method; Class<?>[] params; // read params = new Class[1]; params[0] = Element.class; method = owner.getClass().getMethod("readFromXML", params); addMethods(m_ReadMethods, method, owner.getClass().getMethods()); // write params = new Class[3]; params[0] = Element.class; params[1] = Object.class; params[2] = String.class; method = owner.getClass().getMethod("writeToXML", params); addMethods(m_WriteMethods, method, owner.getClass().getMethods()); } /** * returns the method with the given name that has the same signature as * <code>readFromXML()</code> of the <code>XMLSerialiation</code> class. * simplifies the adding of custom methods. * * @param o the object to inspect * @param name the name of the method to return * @return either <code>null</code> if no method was found or a reference * @see XMLSerialization#readFromXML(Element) */ public static Method findReadMethod(Object o, String name) { Class<?>[] params; Method result; result = null; params = new Class[1]; params[0] = Element.class; try { result = o.getClass().getMethod(name, params); } catch (Exception e) { result = null; } return result; } /** * returns the method with the given name that has the same signature as * <code>writeToXML()</code> of the <code>XMLSerialiation</code> class. * simplifies the adding of custom methods. * * @param o the object to inspect * @param name the name of the method to return * @return either <code>null</code> if no method was found or a reference * @see XMLSerialization#writeToXML(Element, Object, String) */ public static Method findWriteMethod(Object o, String name) { Class<?>[] params; Method result; result = null; params = new Class[3]; params[0] = Element.class; params[1] = Object.class; params[2] = String.class; try { result = o.getClass().getMethod(name, params); } catch (Exception e) { result = null; } return result; } /** * removes all current methods and adds the methods according to the * */ public void clear() { m_ReadMethods.clear(); m_WriteMethods.clear(); try { addMethods(); } catch (Exception e) { e.printStackTrace(); } } /** * returns the handler for read methods * * @return the methodhandler for read methods */ public MethodHandler read() { return m_ReadMethods; } /** * returns the handler for write methods * * @return the methodhandler for read methods */ public MethodHandler write() { return m_WriteMethods; } /** * adds read and write methods for the given class, i.e., read&;lt;name&gt; * and write&lt;name&gt; ("name" is prefixed by read and write) * * @param handler the handler class that contains the read and write method * @param cls the class to register the read and write method for * @param name the suffix of the read and write method */ public void register(Object handler, Class<?> cls, String name) { read().add(cls, XMLSerializationMethodHandler.findReadMethod(handler, "read" + name)); write().add(cls, XMLSerializationMethodHandler.findWriteMethod(handler, "write" + name)); } /** * returns the read and write method handlers as string * * @return the read/write method handlers as string */ @Override public String toString() { return "Read Methods:\n" + read() + "\n\n" + "Write Methods:\n" + write(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/core/xml/XStream.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * XStream.java * Copyright (C) 2008-2012 University of Waikato, Hamilton, New Zealand */ package weka.core.xml; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.InputStream; import java.io.OutputStream; import java.io.Reader; import java.io.Writer; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * This class is a helper class for XML serialization using <a * href="http://xstream.codehaus.org" target="_blank">XStream</a> . XStream does * not need to be present, since the class-calls are done generically via * Reflection. * * @author Mark Hall (mhall{[at]}pentaho{[dot]}org) * @version $Revision$ */ public class XStream implements RevisionHandler { /** * indicates whether <a href="http://xstream.codehaus.org" * target="_blank">XStream</a> is present */ protected static boolean m_Present = false; /** the extension for XStream files (including '.') */ public final static String FILE_EXTENSION = ".xstream"; /** check for XStream statically (needs only to be done once) */ static { checkForXStream(); } /** * checks whether the XStream is present in the class path */ private static void checkForXStream() { try { Class.forName("com.thoughtworks.xstream.XStream"); m_Present = true; } catch (Exception e) { m_Present = false; } } /** * returns whether XStream is present or not, i.e. whether the classes are in * the classpath or not * * @return whether XStream is available */ public static boolean isPresent() { return m_Present; } /** * Serializes the supplied object xml * * @param toSerialize the object to serialize * @return the serialized object as an XML string * @throws Exception if something goes wrong */ public static String serialize(Object toSerialize) throws Exception { Class<?> xstreamClass; java.lang.reflect.Constructor<?> constructor; Object xstream; Class<?>[] serializeArgsClasses = new Class[1]; Object[] serializeArgs = new Object[1]; java.lang.reflect.Method methodSerialize; String result; xstreamClass = Class.forName("com.thoughtworks.xstream.XStream"); constructor = xstreamClass.getConstructor(); xstream = constructor.newInstance(); serializeArgsClasses[0] = Object.class; serializeArgs[0] = toSerialize; methodSerialize = xstreamClass.getMethod("toXML", serializeArgsClasses); // execute it try { result = (String) methodSerialize.invoke(xstream, serializeArgs); } catch (Exception ex) { result = null; } return result; } /** * writes the XML-serialized object to the given file * * @param filename the file to serialize the object to * @param o the object to write to the file * @return whether writing was successful or not * @throws Exception if something goes wrong while writing to the file */ public static boolean write(String filename, Object o) throws Exception { return write(new File(filename), o); } /** * write the XML-serialized object to the given file * * @param file the file to serialize the object to * @param o the object to write to the file * @return whether writing was successful or not * @throws Exception if something goes wrong while writing to the file */ public static boolean write(File file, Object o) throws Exception { return write(new BufferedOutputStream(new FileOutputStream(file)), o); } /** * writes the XML-serialized object to the given output stream * * @param stream the output stream * @param o the object to write * @return true if everything goes ok */ public static boolean write(OutputStream stream, Object o) throws Exception { Class<?> xstreamClass; java.lang.reflect.Constructor<?> constructor; Object xstream; Class<?>[] serializeArgsClasses = new Class[2]; Object[] serializeArgs = new Object[2]; java.lang.reflect.Method methodSerialize; boolean result = false; xstreamClass = Class.forName("com.thoughtworks.xstream.XStream"); constructor = xstreamClass.getConstructor(); xstream = constructor.newInstance(); serializeArgsClasses[0] = Object.class; serializeArgsClasses[1] = OutputStream.class; serializeArgs[0] = o; serializeArgs[1] = stream; methodSerialize = xstreamClass.getMethod("toXML", serializeArgsClasses); // execute it try { methodSerialize.invoke(xstream, serializeArgs); result = true; } catch (Exception ex) { result = false; } return result; } /** * writes the XML-serialized object to the given Writer. * * @param writer the Writer * @param toSerialize the object to write * @return true if everything goes ok * @throws Exception if something goes wrong */ public static boolean write(Writer writer, Object toSerialize) throws Exception { Class<?> xstreamClass; java.lang.reflect.Constructor<?> constructor; Object xstream; Class<?>[] serializeArgsClasses = new Class[2]; Object[] serializeArgs = new Object[2]; java.lang.reflect.Method methodSerialize; boolean result = false; xstreamClass = Class.forName("com.thoughtworks.xstream.XStream"); constructor = xstreamClass.getConstructor(); xstream = constructor.newInstance(); serializeArgsClasses[0] = Object.class; serializeArgsClasses[1] = Writer.class; serializeArgs[0] = toSerialize; serializeArgs[1] = writer; methodSerialize = xstreamClass.getMethod("toXML", serializeArgsClasses); // execute it try { methodSerialize.invoke(xstream, serializeArgs); result = true; } catch (Exception ex) { result = false; } return result; } /** * reads the XML-serialized object from the given file * * @param filename the file to deserialize the object from * @return the deserialized object * @throws Exception if something goes wrong while reading from the file */ public static Object read(String filename) throws Exception { return read(new File(filename)); } /** * reads the XML-serialized object from the given file * * @param file the file to deserialize the object from * @return the deserialized object * @throws Exception if something goes wrong while reading from the file */ public static Object read(File file) throws Exception { return read(new BufferedInputStream(new FileInputStream(file))); } /** * reads the XML-serialized object from the given input stream * * @param stream the input stream * @return the deserialized object * @throws Exception if something goes wrong while reading from stream */ public static Object read(InputStream stream) throws Exception { Class<?> xstreamClass; java.lang.reflect.Constructor<?> constructor; Object xstream; Class<?>[] deSerializeArgsClasses = new Class[1]; Object[] deSerializeArgs = new Object[1]; java.lang.reflect.Method methodDeSerialize; Object result; xstreamClass = Class.forName("com.thoughtworks.xstream.XStream"); constructor = xstreamClass.getConstructor(); xstream = constructor.newInstance(); deSerializeArgsClasses[0] = InputStream.class; deSerializeArgs[0] = stream; methodDeSerialize = xstreamClass.getMethod("fromXML", deSerializeArgsClasses); // execute it try { result = methodDeSerialize.invoke(xstream, deSerializeArgs); } catch (Exception ex) { ex.printStackTrace(); result = null; } return result; } /** * reads the XML-serialized object from the given Reader * * @param r the reader * @return the deserialized object * @throws Exception if something goes wrong while reading from stream */ public static Object read(Reader r) throws Exception { Class<?> xstreamClass; java.lang.reflect.Constructor<?> constructor; Object xstream; Class<?>[] deSerializeArgsClasses = new Class[1]; Object[] deSerializeArgs = new Object[1]; java.lang.reflect.Method methodDeSerialize; Object result; xstreamClass = Class.forName("com.thoughtworks.xstream.XStream"); constructor = xstreamClass.getConstructor(); xstream = constructor.newInstance(); deSerializeArgsClasses[0] = Reader.class; deSerializeArgs[0] = r; methodDeSerialize = xstreamClass.getMethod("fromXML", deSerializeArgsClasses); // execute it try { result = methodDeSerialize.invoke(xstream, deSerializeArgs); } catch (Exception ex) { ex.printStackTrace(); result = null; } return result; } /** * Deserializes an object from the supplied XML string * * @param xmlString the XML to deserialize from * @return the deserialized object * @throws Exception if something goes wrong */ public static Object deSerialize(String xmlString) throws Exception { Class<?> xstreamClass; java.lang.reflect.Constructor<?> constructor; Object xstream; Class<?>[] deSerializeArgsClasses = new Class[1]; Object[] deSerializeArgs = new Object[1]; java.lang.reflect.Method methodDeSerialize; Object result; xstreamClass = Class.forName("com.thoughtworks.xstream.XStream"); constructor = xstreamClass.getConstructor(); xstream = constructor.newInstance(); deSerializeArgsClasses[0] = String.class; deSerializeArgs[0] = xmlString; methodDeSerialize = xstreamClass.getMethod("fromXML", deSerializeArgsClasses); // execute it try { result = methodDeSerialize.invoke(xstream, deSerializeArgs); } catch (Exception ex) { ex.printStackTrace(); result = null; } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/ClassificationGenerator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ClassificationGenerator.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; import weka.core.Option; import weka.core.Utils; /** * Abstract class for data generators for classifiers. * <p/> * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public abstract class ClassificationGenerator extends DataGenerator { /** for serialization */ private static final long serialVersionUID = -5261662546673517844L; /** Number of instances */ protected int m_NumExamples; /** * initializes with default values */ public ClassificationGenerator() { super(); setNumExamples(defaultNumExamples()); } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option( "\tThe number of examples to generate (default " + defaultNumExamples() + ")", "n", 1, "-n <num>")); return result.elements(); } /** * Sets the options. * * @param options the options * @throws Exception if invalid option */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('n', options); if (tmpStr.length() != 0) { setNumExamples(Integer.parseInt(tmpStr)); } else { setNumExamples(defaultNumExamples()); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); Collections.addAll(result, super.getOptions()); result.add("-n"); result.add("" + getNumExamples()); return result.toArray(new String[result.size()]); } /** * returns the default number of examples * * @return the default number of examples */ protected int defaultNumExamples() { return 100; } /** * Sets the number of examples, given by option. * * @param numExamples the new number of examples */ public void setNumExamples(int numExamples) { m_NumExamples = numExamples; } /** * Gets the number of examples, given by option. * * @return the number of examples, given by option */ public int getNumExamples() { return m_NumExamples; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numExamplesTipText() { return "The number of examples to generate."; } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/ClusterDefinition.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ClusterDefinition.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators; import java.io.Serializable; import java.util.Enumeration; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.Utils; /** * Ancestor to all ClusterDefinitions, i.e., subclasses that handle their own * parameters that the cluster generator only passes on. * * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public abstract class ClusterDefinition implements Serializable, OptionHandler, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -5950001207047429961L; /** the parent of the cluster */ protected ClusterGenerator m_Parent; /** * initializes the cluster, without a parent cluster (necessary for GOE) */ public ClusterDefinition() { this(null); } /** * initializes the cluster * * @param parent the datagenerator this cluster belongs to */ public ClusterDefinition(ClusterGenerator parent) { m_Parent = parent; try { setDefaults(); } catch (Exception e) { e.printStackTrace(); } } /** * sets the default values * * @throws Exception if setting of defaults fails */ protected abstract void setDefaults() throws Exception; /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Contains informations about a certain cluster of a cluster generator."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public abstract Enumeration<Option> listOptions(); /** * Parses a list of options for this object. * <p/> * * For list of valid options see class description. * <p/> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public abstract void setOptions(String[] options) throws Exception; /** * Gets the current settings of the datagenerator BIRCHCluster. * * @return an array of strings suitable for passing to setOptions */ @Override public abstract String[] getOptions(); /** * returns the parent datagenerator this cluster belongs to * * @return the parent this cluster belongs to */ public ClusterGenerator getParent() { return m_Parent; } /** * sets the parent datagenerator this cluster belongs to * * @param parent the parent datagenerator */ public void setParent(ClusterGenerator parent) { m_Parent = parent; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String parentTipText() { return "The cluster generator this object belongs to."; } /** * returns a string representation of the cluster * * @return the cluster definition as string */ @Override public String toString() { return this.getClass().getName() + ": " + Utils.joinOptions(getOptions()); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/ClusterGenerator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ClusterGenerator.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; import weka.core.Option; import weka.core.Range; import weka.core.Utils; /** * Abstract class for cluster data generators. * <p/> * * Example usage as the main of a datagenerator called RandomGenerator: * * <pre> * public static void main(String[] args) { * try { * DataGenerator.makeData(new RandomGenerator(), args); * } catch (Exception e) { * e.printStackTrace(); * System.err.println(e.getMessage()); * } * } * </pre> * <p/> * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public abstract class ClusterGenerator extends DataGenerator { /** for serialization */ private static final long serialVersionUID = 6131722618472046365L; /** Number of attribute the dataset should have */ protected int m_NumAttributes; /** class flag */ protected boolean m_ClassFlag = false; /** Stores which columns are boolean (default numeric) */ protected Range m_booleanCols; /** Stores which columns are nominal (default numeric) */ protected Range m_nominalCols; /** * initializes the generator */ public ClusterGenerator() { super(); setNumAttributes(defaultNumAttributes()); } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option("\tThe number of attributes (default " + defaultNumAttributes() + ").", "a", 1, "-a <num>")); result.addElement(new Option( "\tClass Flag, if set, the cluster is listed in extra attribute.", "c", 0, "-c")); result.addElement(new Option("\tThe indices for boolean attributes.", "b", 1, "-b <range>")); result.addElement(new Option("\tThe indices for nominal attributes.", "m", 1, "-m <range>")); return result.elements(); } /** * Sets the options. * * @param options the options * @throws Exception if invalid option */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('a', options); if (tmpStr.length() != 0) { setNumAttributes(Integer.parseInt(tmpStr)); } else { setNumAttributes(defaultNumAttributes()); } setClassFlag(Utils.getFlag('c', options)); tmpStr = Utils.getOption('b', options); setBooleanIndices(tmpStr); m_booleanCols.setUpper(getNumAttributes() - 1); tmpStr = Utils.getOption('m', options); setNominalIndices(tmpStr); m_nominalCols.setUpper(getNumAttributes() - 1); // check indices tmpStr = checkIndices(); if (tmpStr.length() > 0) { throw new IllegalArgumentException(tmpStr); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); Collections.addAll(result, super.getOptions()); result.add("-a"); result.add("" + getNumAttributes()); if (getClassFlag()) { result.add("-c"); } if (!getBooleanCols().toString().equalsIgnoreCase("empty")) { result.add("-b"); result.add("" + getBooleanCols().getRanges()); } if (!getNominalCols().toString().equalsIgnoreCase("empty")) { result.add("-m"); result.add("" + getNominalCols().getRanges()); } return result.toArray(new String[result.size()]); } /** * returns the default number of attributes * * @return the default number of attributes */ protected int defaultNumAttributes() { return 10; } /** * Sets the number of attributes the dataset should have. * * @param numAttributes the new number of attributes */ public void setNumAttributes(int numAttributes) { m_NumAttributes = numAttributes; getBooleanCols().setUpper(getNumAttributes()); getNominalCols().setUpper(getNumAttributes()); } /** * Gets the number of attributes that should be produced. * * @return the number of attributes that should be produced */ public int getNumAttributes() { return m_NumAttributes; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numAttributesTipText() { return "The number of attributes the generated data will contain."; } /** * Sets the class flag, if class flag is set, the cluster is listed as class * atrribute in an extra attribute. * * @param classFlag the new class flag */ public void setClassFlag(boolean classFlag) { m_ClassFlag = classFlag; } /** * Gets the class flag. * * @return the class flag */ public boolean getClassFlag() { return m_ClassFlag; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String classFlagTipText() { return "If set to TRUE, lists the cluster as an extra attribute."; } /** * Sets which attributes are boolean * * @param rangeList a string representing the list of attributes. Since the * string will typically come from a user, attributes are indexed * from 1. <br/> * eg: first-3,5,6-last * @throws IllegalArgumentException if an invalid range list is supplied */ public void setBooleanIndices(String rangeList) { m_booleanCols.setRanges(rangeList); } /** * Sets which attributes are boolean. * * @param value the range to use */ public void setBooleanCols(Range value) { m_booleanCols.setRanges(value.getRanges()); } /** * returns the range of boolean attributes. * * @return the range of boolean attributes */ public Range getBooleanCols() { if (m_booleanCols == null) { m_booleanCols = new Range(); } return m_booleanCols; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String booleanColsTipText() { return "The range of attributes that are generated as boolean ones."; } /** * Sets which attributes are nominal * * @param rangeList a string representing the list of attributes. Since the * string will typically come from a user, attributes are indexed * from 1. <br/> * eg: first-3,5,6-last * @throws IllegalArgumentException if an invalid range list is supplied */ public void setNominalIndices(String rangeList) { m_nominalCols.setRanges(rangeList); } /** * Sets which attributes are nominal. * * @param value the range to use */ public void setNominalCols(Range value) { m_nominalCols.setRanges(value.getRanges()); } /** * returns the range of nominal attributes * * @return the range of nominal attributes */ public Range getNominalCols() { if (m_nominalCols == null) { m_nominalCols = new Range(); } return m_nominalCols; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String nominalColsTipText() { return "The range of attributes to generate as nominal ones."; } /** * check if attribute types are not contradicting * * @return empty string if no problem, otherwise error message */ protected String checkIndices() { for (int i = 0; i < getNumAttributes(); i++) { if (m_booleanCols.isInRange(i) && m_nominalCols.isInRange(i)) { return "Error in attribute type: Attribute " + i + " is set boolean and nominal."; } } return ""; } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/DataGenerator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DataGenerator.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators; import java.io.FileOutputStream; import java.io.PrintWriter; import java.io.Serializable; import java.util.Collections; import java.util.Enumeration; import java.util.HashSet; import java.util.Hashtable; import java.util.Random; import java.util.Vector; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.Randomizable; import weka.core.RevisionHandler; import weka.core.Utils; /** * Abstract superclass for data generators that generate data for classifiers * and clusterers. * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public abstract class DataGenerator implements OptionHandler, Randomizable, Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -3698585946221802578L; /** Debugging mode */ protected boolean m_Debug = false; /** The format for the generated dataset */ protected Instances m_DatasetFormat = null; /** Relation name the dataset should have */ protected String m_RelationName = ""; /** * Number of instances that should be produced into the dataset this number is * by default m_NumExamples, but can be reset by the generator */ protected int m_NumExamplesAct; /** default output (stdout) */ protected transient PrintWriter m_DefaultOutput = new PrintWriter( new java.io.OutputStreamWriter(System.out)); /** PrintWriter for outputting the generated data */ protected transient PrintWriter m_Output = m_DefaultOutput; /** random number generator seed */ protected int m_Seed; /** random number generator */ protected Random m_Random = null; /** flag, that indicates whether the relationname is currently assembled */ protected boolean m_CreatingRelationName = false; /** * a black list for options not to be listed (for derived generators) in the * makeOptionString method * * @see #makeOptionString(DataGenerator) */ protected static HashSet<String> m_OptionBlacklist; static { m_OptionBlacklist = new HashSet<String>(); } /** * initializes with default settings. <br/> * Note: default values are set via a default&lt;name&gt; method. These * default methods are also used in the listOptions method and in the * setOptions method. Why? Derived generators can override the return value of * these default methods, to avoid exceptions. */ public DataGenerator() { clearBlacklist(); setNumExamplesAct(defaultNumExamplesAct()); setSeed(defaultSeed()); } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option("\tPrints this help.", "h", 1, "-h")); result.addElement(new Option( "\tThe name of the output file, otherwise the generated data is\n" + "\tprinted to stdout.", "o", 1, "-o <file>")); result.addElement(new Option("\tThe name of the relation.", "r", 1, "-r <name>")); result.addElement(new Option("\tWhether to print debug informations.", "d", 0, "-d")); result.addElement(new Option("\tThe seed for random function (default " + defaultSeed() + ")", "S", 1, "-S")); return result.elements(); } /** * Convenience method. Turns the given enumeration of options into a vector. */ public Vector<Option> enumToVector(Enumeration<Option> enu) { Vector<Option> options = new Vector<Option>(); options.addAll(Collections.list(enu)); return options; } /** * Parses a list of options for this object. * <p/> * * For list of valid options see class description. * <p/> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; // remove unwanted options options = removeBlacklist(options); tmpStr = Utils.getOption('r', options); if (tmpStr.length() != 0) { setRelationName(Utils.unquote(tmpStr)); } else { setRelationName(""); } tmpStr = Utils.getOption('o', options); if (tmpStr.length() != 0) { setOutput(new PrintWriter(new FileOutputStream(tmpStr))); } else if (getOutput() == null) { throw new Exception("No Output defined!"); } setDebug(Utils.getFlag('d', options)); tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) { setSeed(Integer.parseInt(tmpStr)); } else { setSeed(defaultSeed()); } } /** * Gets the current settings of the datagenerator RDG1. Removing of * blacklisted options has to be done in the derived class, that defines the * blacklist-entry. * * @return an array of strings suitable for passing to setOptions * @see #removeBlacklist(String[]) */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); // to avoid endless loop if (!m_CreatingRelationName) { result.add("-r"); result.add(Utils.quote(getRelationNameToUse())); } if (getDebug()) { result.add("-d"); } result.add("-S"); result.add("" + getSeed()); return result.toArray(new String[result.size()]); } /** * Initializes the format for the dataset produced. Must be called before the * generateExample or generateExamples methods are used. Also sets a default * relation name in case the current relation name is empty. * * @return the format for the dataset * @throws Exception if the generating of the format failed * @see #defaultRelationName() */ public Instances defineDataFormat() throws Exception { if (getRelationName().length() == 0) { setRelationName(defaultRelationName()); } return m_DatasetFormat; } /** * Generates one example of the dataset. * * @return the generated example * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExamples which * means in non single mode */ public abstract Instance generateExample() throws Exception; /** * Generates all examples of the dataset. * * @return the generated dataset * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExample, which * means in single mode */ public abstract Instances generateExamples() throws Exception; /** * Generates a comment string that documentates the data generator. By default * this string is added at the beginning of the produced output as ARFF file * type, next after the options. * * @return string contains info about the generated rules * @throws Exception if the generating of the documentation fails */ public abstract String generateStart() throws Exception; /** * Generates a comment string that documentates the data generator. By default * this string is added at the end of the produced output as ARFF file type. * * @return string contains info about the generated rules * @throws Exception if the generating of the documentation fails */ public abstract String generateFinished() throws Exception; /** * Return if single mode is set for the given data generator mode depends on * option setting and or generator type. * * @return single mode flag * @throws Exception if mode is not set yet */ public abstract boolean getSingleModeFlag() throws Exception; /** * Sets the debug flag. * * @param debug the new debug flag */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Gets the debug flag. * * @return the debug flag */ public boolean getDebug() { return m_Debug; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String debugTipText() { return "Whether the generator is run in debug mode or not."; } /** * Sets the relation name the dataset should have. * * @param relationName the new relation name */ public void setRelationName(String relationName) { m_RelationName = relationName; } /** * returns a relation name based on the options * * @return a relation name based on the options */ protected String defaultRelationName() { StringBuffer result; String[] options; String option; int i; m_CreatingRelationName = true; result = new StringBuffer(this.getClass().getName()); options = getOptions(); for (i = 0; i < options.length; i++) { option = options[i].trim(); if (i > 0) { result.append("_"); } result.append(option.replaceAll(" ", "_")); } m_CreatingRelationName = false; return result.toString(); } /** * returns the relation name to use, i.e., in case the currently set relation * name is empty, a generic one is returned. Must be used in * defineDataFormat() * * @return the relation name * @see #defaultRelationName() * @see #defineDataFormat() */ protected String getRelationNameToUse() { String result; result = getRelationName(); if (result.length() == 0) { result = defaultRelationName(); } return result; } /** * Gets the relation name the dataset should have. * * @return the relation name the dataset should have */ public String getRelationName() { return m_RelationName; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String relationNameTipText() { return "The relation name of the generated data (if empty, a generic one will be supplied)."; } /** * returns the default number of actual examples * * @return the default number of actual examples */ protected int defaultNumExamplesAct() { return 0; } /** * Sets the number of examples the dataset should have. * * @param numExamplesAct the new number of examples */ protected void setNumExamplesAct(int numExamplesAct) { m_NumExamplesAct = numExamplesAct; } /** * Gets the number of examples the dataset should have. * * @return the number of examples the dataset should have */ public int getNumExamplesAct() { return m_NumExamplesAct; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ protected String numExamplesActTipText() { return "The actual number of examples to generate."; } /** * Sets the print writer. * * @param newOutput the new print writer */ public void setOutput(PrintWriter newOutput) { m_Output = newOutput; m_DefaultOutput = null; } /** * Gets the print writer. * * @return print writer object */ public PrintWriter getOutput() { return m_Output; } /** * Gets writer, which is used for outputting to stdout. A workaround for the * problem of closing stdout when closing the associated Printwriter. * * @return writer object */ public PrintWriter defaultOutput() { return m_DefaultOutput; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String outputTipText() { return "The output writer to use for printing the generated data."; } /** * Sets the format of the dataset that is to be generated. * * @param newFormat the new dataset format of the dataset */ public void setDatasetFormat(Instances newFormat) { m_DatasetFormat = new Instances(newFormat, 0); } /** * Gets the format of the dataset that is to be generated. * * @return the dataset format of the dataset */ public Instances getDatasetFormat() { if (m_DatasetFormat != null) { return new Instances(m_DatasetFormat, 0); } else { return null; } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String formatTipText() { return "The data format to use."; } /** * returns the default seed * * @return the default seed */ protected int defaultSeed() { return 1; } /** * Gets the random number seed. * * @return the random number seed. */ @Override public int getSeed() { return m_Seed; } /** * Sets the random number seed. * * @param newSeed the new random number seed. */ @Override public void setSeed(int newSeed) { m_Seed = newSeed; m_Random = new Random(newSeed); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String seedTipText() { return "The seed value for the random number generator."; } /** * Gets the random generator. * * @return the random generator */ public Random getRandom() { if (m_Random == null) { m_Random = new Random(getSeed()); } return m_Random; } /** * Sets the random generator. * * @param newRandom is the random generator. */ public void setRandom(Random newRandom) { m_Random = newRandom; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String randomTipText() { return "The random number generator to use."; } /** * Returns a string representing the dataset in the instance queue. * * @return the string representing the output data format */ protected String toStringFormat() { if (m_DatasetFormat == null) { return ""; } return m_DatasetFormat.toString(); } /** * removes all entries from the options blacklist */ protected static void clearBlacklist() { m_OptionBlacklist.clear(); } /** * adds the given option, e.g., for "-V" use "V", to the blacklist of options * that are not to be output via the makeOptionString method * * @param option the option to exclude from listing * @see #makeOptionString(DataGenerator) */ protected static void addToBlacklist(String option) { m_OptionBlacklist.add(option); } /** * checks, whether the given option is in the blacklist of options not to be * output by makeOptionString * * @param option the option to check * @return true if the option is on the blacklist * @see #makeOptionString(DataGenerator) */ protected static boolean isOnBlacklist(String option) { return m_OptionBlacklist.contains(option); } /** * removes all the options from the options array that are blacklisted * * @param options the options to remove from the blacklist * @return the processed options array */ protected String[] removeBlacklist(String[] options) { Hashtable<String, Option> pool; Option option; // retrieve options that are on blacklist Enumeration<Option> enm = listOptions(); pool = new Hashtable<String, Option>(); while (enm.hasMoreElements()) { option = enm.nextElement(); if (isOnBlacklist(option.name())) { pool.put(option.name(), option); } } // remove options Enumeration<String> enm2 = pool.keys(); while (enm2.hasMoreElements()) { option = pool.get(enm2.nextElement()); try { if (option.numArguments() == 0) { Utils.getFlag(option.name(), options); } else { Utils.getOption(option.name(), options); } } catch (Exception e) { e.printStackTrace(); } } return options; } /** * returns all the options in a string * * @param generator the DataGenerator to return all the options for * @return the assembled option string */ protected static String makeOptionString(DataGenerator generator) { StringBuffer result; Enumeration<Option> enm; Option option; result = new StringBuffer(); result.append("\nData Generator options:\n\n"); enm = generator.listOptions(); while (enm.hasMoreElements()) { option = enm.nextElement(); // skip option if on blacklist if (isOnBlacklist(option.name())) { continue; } result.append(option.synopsis() + "\n" + option.description() + "\n"); } return result.toString(); } /** * Gets the prologue string. * * @return prologue */ public String getPrologue() throws Exception { StringBuilder sb = new StringBuilder(); // output of options sb.append("%"); sb.append("% Commandline"); sb.append("%"); sb.append("% " + getClass().getName() + " " + Utils.joinOptions(getOptions())); sb.append("%"); // comment at beginning of ARFF File String commentAtStart = generateStart(); if (commentAtStart.length() > 0) { sb.append("%"); sb.append("% Prologue"); sb.append("%"); sb.append(commentAtStart.trim()); sb.append("%"); } return sb.toString(); } /** * Gets the epilogue string. * * @return epilogue */ public String getEpilogue() throws Exception { StringBuilder sb = new StringBuilder(); // comment at end of ARFF File String commentAtEnd = generateFinished(); if (commentAtEnd.length() > 0) { sb.append("%"); sb.append("% Epilogue"); sb.append("%"); sb.append(commentAtEnd.trim()); sb.append("%"); } return sb.toString(); } /** * Calls the data generator. * * @param generator one of the data generators * @param options options of the data generator * @throws Exception if there was an error in the option list */ public static void makeData(DataGenerator generator, String[] options) throws Exception { // help? boolean printhelp = (Utils.getFlag('h', options)); // read options if (!printhelp) { try { options = generator.removeBlacklist(options); generator.setOptions(options); // check for left-over options, but don't raise exception Vector<String> unknown = new Vector<String>(); for (int i = 0; i < options.length; i++) { if (options[i].length() != 0) { unknown.add(options[i]); } } if (unknown.size() > 0) { System.out.print("Unknown options:"); for (int i = 0; i < unknown.size(); i++) { System.out.print(" " + unknown.get(i)); } System.out.println(); } } catch (Exception e) { e.printStackTrace(); printhelp = true; } } if (printhelp) { System.out.println(makeOptionString(generator)); return; } // define dataset format // computes actual number of examples to be produced generator.setDatasetFormat(generator.defineDataFormat()); // get print writer and print header PrintWriter output = generator.getOutput(); output.println(generator.getPrologue()); // ask data generator which mode boolean singleMode = generator.getSingleModeFlag(); // start data producer if (singleMode) { // output of dataset header output.println(generator.toStringFormat()); for (int i = 0; i < generator.getNumExamplesAct(); i++) { // over all examples to be produced output.println(generator.generateExample()); } } else { // generator produces all instances at once Instances data = generator.generateExamples(); // output of dataset for (int i = 0; i < data.numInstances(); i++) { if (i % 1000 == 0) { output.flush(); } output.println(data.instance(i)); } output.flush(); } output.println(generator.getEpilogue()); output.flush(); if (generator.getOutput() != generator.defaultOutput()) { output.close(); } } /** * runs the datagenerator instance with the given options. * * @param datagenerator the datagenerator to run * @param options the commandline options */ public static void runDataGenerator(DataGenerator datagenerator, String[] options) { try { DataGenerator.makeData(datagenerator, options); } catch (Exception e) { if ((e.getMessage() != null) && (e.getMessage().indexOf("Data Generator options") == -1)) { e.printStackTrace(); } else { System.err.println(e.getMessage()); } } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/RegressionGenerator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RegressionGenerator.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; import weka.core.Option; import weka.core.Utils; /** * Abstract class for data generators for regression classifiers. * <p/> * * Example usage as the main of a datagenerator called RandomGenerator: * * <pre> * public static void main(String[] args) { * try { * DataGenerator.makeData(new RandomGenerator(), args); * } catch (Exception e) { * e.printStackTrace(); * System.err.println(e.getMessage()); * } * } * </pre> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public abstract class RegressionGenerator extends DataGenerator { /** for serialization */ private static final long serialVersionUID = 3073254041275658221L; /** Number of instances */ protected int m_NumExamples; /** * initializes the generator with default values */ public RegressionGenerator() { super(); setNumExamples(defaultNumExamples()); } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option( "\tThe number of examples to generate (default " + defaultNumExamples() + ")", "n", 1, "-n <num>")); return result.elements(); } /** * Sets the options. * * @param options the options * @throws Exception if invalid option */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('n', options); if (tmpStr.length() != 0) { setNumExamples(Integer.parseInt(tmpStr)); } else { setNumExamples(defaultNumExamples()); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); Collections.addAll(result, super.getOptions()); result.add("-n"); result.add("" + getNumExamples()); return result.toArray(new String[result.size()]); } /** * returns the default number of examples * * @return the default number of examples */ protected int defaultNumExamples() { return 100; } /** * Sets the number of examples, given by option. * * @param numExamples the new number of examples */ public void setNumExamples(int numExamples) { m_NumExamples = numExamples; } /** * Gets the number of examples, given by option. * * @return the number of examples, given by option */ public int getNumExamples() { return m_NumExamples; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numExamplesTipText() { return "The number of examples to generate."; } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/Test.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Test.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators; import java.io.Serializable; import weka.core.Attribute; import weka.core.Instance; import weka.core.Instances; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * Class to represent a test. <br/> * <br/> * The string representation of the test can be supplied in standard notation or * for a subset of types of attributes in Prolog notation.<br/> * * Following examples for all possible tests that can be represented by this * class, given in standard notation.<br/> * <br/> * Examples of tests for numeric attributes:<br/> * B &gt;= 2.333<br/> * B &lt; 4.56<br/> * <br/> * Examples of tests for nominal attributes with more then 2 values:<br/> * A = rain <br/> * A != rain<br/> * <br/> * Examples of tests for nominal attribute with exactly 2 values:<br/> * A = false <br/> * A = true<br/> * <br/> * <br/> * The Prolog notation is only supplied for numeric attributes and for nominal * attributes that have the values "true" and "false".<br/> * <br/> * Following examples for the Prolog notation provided.<br/> * <br/> * Examples of tests for numeric attributes:<br/> * The same as for standard notation above.<br/> * <br/> * Examples of tests for nominal attributes with values "true"and "false":<br/> * A<br/> * not(A)<br/> * <br/> * (Other nominal attributes are not supported by the Prolog notation.)<br/> * <br/> * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @version $Revision$ **/ public class Test implements Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = -8890645875887157782L; /** the attribute index */ int m_AttIndex; /** the split */ double m_Split; /** whether to negate the test */ boolean m_Not; /** the dataset */ Instances m_Dataset; /** * Constructor * * @param i the attribute index * @param s the split * @param dataset the dataset */ public Test(int i, double s, Instances dataset) { m_AttIndex = i; m_Split = s; m_Dataset = dataset; m_Not = false; } /** * Constructor * * @param i the attribute index * @param s the split * @param dataset the dataset * @param n whether to negate the test */ public Test(int i, double s, Instances dataset, boolean n) { m_AttIndex = i; m_Split = s; m_Dataset = dataset; m_Not = n; } /** * Negates the test. * * @return the test itself negated */ public Test getNot() { // returns a modified copy return new Test(m_AttIndex, m_Split, m_Dataset, m_Not ? false : true); } /** * Determines whether an instance passes the test. * * @param inst the instance * @return true if the instance satisfies the test, false otherwise * @throws Exception if something goes wrong */ public boolean passesTest(Instance inst) throws Exception { if (inst.isMissing(m_AttIndex)) { return false; // missing values fail } boolean isNominal = inst.attribute(m_AttIndex).isNominal(); double attribVal = inst.value(m_AttIndex); if (!m_Not) { if (isNominal) { if (((int) attribVal) != ((int) m_Split)) { return false; } } else if (attribVal >= m_Split) { return false; } } else { if (isNominal) { if (((int) attribVal) == ((int) m_Split)) { return false; } } else if (attribVal < m_Split) { return false; } } return true; } /** * Returns the test represented by a string. * * @return a string representing the test */ @Override public String toString() { return (m_Dataset.attribute(m_AttIndex).name() + " " + testComparisonString()); } /** * Returns the test represented by a string in Prolog notation. * * @return a string representing the test in Prolog notation */ public String toPrologString() { Attribute att = m_Dataset.attribute(m_AttIndex); StringBuffer str = new StringBuffer(); String attName = m_Dataset.attribute(m_AttIndex).name(); if (att.isNumeric()) { str = str.append(attName + " "); if (m_Not) { str = str.append(">= " + Utils.doubleToString(m_Split, 3)); } else { str = str.append("< " + Utils.doubleToString(m_Split, 3)); } } else { String value = att.value((int) m_Split); if (value == "false") { str = str.append("not(" + attName + ")"); } else { str = str.append(attName); } } return str.toString(); } /** * Gives a string representation of the test, starting from the comparison * symbol. * * @return a string representing the test */ private String testComparisonString() { Attribute att = m_Dataset.attribute(m_AttIndex); if (att.isNumeric()) { return ((m_Not ? ">= " : "< ") + Utils.doubleToString(m_Split, 3)); } else { if (att.numValues() != 2) { return ((m_Not ? "!= " : "= ") + att.value((int) m_Split)); } else { return ("= " + (m_Not ? att.value((int) m_Split == 0 ? 1 : 0) : att .value((int) m_Split))); } } } /** * Compares the test with the test that is given as parameter. * * @param t the test the object is compared to * @return true if the two Tests are equal */ public boolean equalTo(Test t) { return (m_AttIndex == t.m_AttIndex && m_Split == t.m_Split && m_Not == t.m_Not); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers/classification/Agrawal.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Agrawal.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.classifiers.classification; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.SelectedTag; import weka.core.Tag; import weka.core.TechnicalInformation; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.datagenerators.ClassificationGenerator; /** * <!-- globalinfo-start --> Generates a people database and is based on the * paper by Agrawal et al.:<br/> * R. Agrawal, T. Imielinski, A. Swami (1993). Database Mining: A Performance * Perspective. IEEE Transactions on Knowledge and Data Engineering. * 5(6):914-925. URL * http://www.almaden.ibm.com/software/quest/Publications/ByDate.html. * <p/> * <!-- globalinfo-end --> * * <!-- technical-bibtex-start --> BibTeX: * * <pre> * &#64;article{Agrawal1993, * author = {R. Agrawal and T. Imielinski and A. Swami}, * journal = {IEEE Transactions on Knowledge and Data Engineering}, * note = {Special issue on Learning and Discovery in Knowledge-Based Databases}, * number = {6}, * pages = {914-925}, * title = {Database Mining: A Performance Perspective}, * volume = {5}, * year = {1993}, * URL = {http://www.almaden.ibm.com/software/quest/Publications/ByDate.html}, * PDF = {http://www.almaden.ibm.com/software/quest/Publications/papers/tkde93.pdf} * } * </pre> * <p/> * <!-- technical-bibtex-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -F &lt;num&gt; * The function to use for generating the data. (default 1) * </pre> * * <pre> * -B * Whether to balance the class. * </pre> * * <pre> * -P &lt;num&gt; * The perturbation factor. (default 0.05) * </pre> * * <!-- options-end --> * * @author Richard Kirkby (rkirkby at cs dot waikato dot ac dot nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class Agrawal extends ClassificationGenerator implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 2254651939636143025L; /** * the interface for the class functions */ protected interface ClassFunction { /** * returns a class value based on the given inputs * * @param salary the salary * @param commission the commission * @param age the age * @param elevel the education level * @param car * @param zipcode the zip code * @param hvalue * @param hyears * @param loan */ public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan); } /** * built in functions are based on the paper (page 924), which turn out to be * functions pred20 thru pred29 in the public c code */ protected static ClassFunction[] builtInFunctions = { // function 1 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { if (age < 40 || 60 <= age) { return 0; } else { return 1; } } }, // function 2 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { if (age < 40) { if (50000 <= salary && salary <= 100000) { return 0; } else { return 1; } } else if (age < 60) { if (75000 <= salary && salary <= 125000) { return 0; } else { return 1; } } else // age >= 60 if (25000 <= salary && salary <= 75000) { return 0; } else { return 1; } } }, // function 3 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { if (age < 40) { if (elevel == 0 || elevel == 1) { return 0; } else { return 1; } } else if (age < 60) { if (elevel == 1 || elevel == 2 || elevel == 3) { return 0; } else { return 1; } } else // age >= 60 if (elevel == 2 || elevel == 3 || elevel == 4) { return 0; } else { return 1; } } }, // function 4 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { if (age < 40) { if (elevel == 0 || elevel == 1) { if (25000 <= salary && salary <= 75000) { return 0; } else { return 1; } } else if (50000 <= salary && salary <= 100000) { return 0; } else { return 1; } } else if (age < 60) { if (elevel == 1 || elevel == 2 || elevel == 3) { if (50000 <= salary && salary <= 100000) { return 0; } else { return 1; } } else if (75000 <= salary && salary <= 125000) { return 0; } else { return 1; } } else // age >= 60 if (elevel == 2 || elevel == 3 || elevel == 4) { if (50000 <= salary && salary <= 100000) { return 0; } else { return 1; } } else if (25000 <= salary && salary <= 75000) { return 0; } else { return 1; } } }, // function 5 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { if (age < 40) { if (50000 <= salary && salary <= 100000) { if (100000 <= loan && loan <= 300000) { return 0; } else { return 1; } } else if (200000 <= loan && loan <= 400000) { return 0; } else { return 1; } } else if (age < 60) { if (75000 <= salary && salary <= 125000) { if (200000 <= loan && loan <= 400000) { return 0; } else { return 1; } } else if (300000 <= loan && loan <= 500000) { return 0; } else { return 1; } } else // age >= 60 if (25000 <= salary && salary <= 75000) { if (300000 <= loan && loan <= 500000) { return 0; } else { return 1; } } else if (100000 <= loan && loan <= 300000) { return 0; } else { return 1; } } }, // function 6 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { double totalSalary = salary + commission; if (age < 40) { if (50000 <= totalSalary && totalSalary <= 100000) { return 0; } else { return 1; } } else if (age < 60) { if (75000 <= totalSalary && totalSalary <= 125000) { return 0; } else { return 1; } } else // age >= 60 if (25000 <= totalSalary && totalSalary <= 75000) { return 0; } else { return 1; } } }, // function 7 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { double disposable = (2.0 * (salary + commission) / 3.0 - loan / 5.0 - 20000.0); return disposable > 0 ? 0 : 1; } }, // function 8 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { double disposable = (2.0 * (salary + commission) / 3.0 - 5000.0 * elevel - 20000.0); return disposable > 0 ? 0 : 1; } }, // function 9 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { double disposable = (2.0 * (salary + commission) / 3.0 - 5000.0 * elevel - loan / 5.0 - 10000.0); return disposable > 0 ? 0 : 1; } }, // function 10 new ClassFunction() { @Override public long determineClass(double salary, double commission, int age, int elevel, int car, int zipcode, double hvalue, int hyears, double loan) { double equity = 0.0; if (hyears >= 20) { equity = hvalue * (hyears - 20.0) / 10.0; } double disposable = (2.0 * (salary + commission) / 3.0 - 5000.0 * elevel + equity / 5.0 - 10000.0); return disposable > 0 ? 0 : 1; } } }; /** function 1 */ public final static int FUNCTION_1 = 1; /** function 2 */ public final static int FUNCTION_2 = 2; /** function 3 */ public final static int FUNCTION_3 = 3; /** function 4 */ public final static int FUNCTION_4 = 4; /** function 5 */ public final static int FUNCTION_5 = 5; /** function 6 */ public final static int FUNCTION_6 = 6; /** function 7 */ public final static int FUNCTION_7 = 7; /** function 8 */ public final static int FUNCTION_8 = 8; /** function 9 */ public final static int FUNCTION_9 = 9; /** function 10 */ public final static int FUNCTION_10 = 10; /** the funtion tags */ public static final Tag[] FUNCTION_TAGS = { new Tag(FUNCTION_1, "Function 1"), new Tag(FUNCTION_2, "Function 2"), new Tag(FUNCTION_3, "Function 3"), new Tag(FUNCTION_4, "Function 4"), new Tag(FUNCTION_5, "Function 5"), new Tag(FUNCTION_6, "Function 6"), new Tag(FUNCTION_7, "Function 7"), new Tag(FUNCTION_8, "Function 8"), new Tag(FUNCTION_9, "Function 9"), new Tag(FUNCTION_10, "Function 10"), }; /** the function to use for generating the data */ protected int m_Function; /** whether to balance the class */ protected boolean m_BalanceClass; /** the perturabation fraction */ protected double m_PerturbationFraction; /** used for balancing the class */ protected boolean m_nextClassShouldBeZero; /** the last class label that was generated */ protected double m_lastLabel; /** * initializes the generator with default values */ public Agrawal() { super(); setFunction(defaultFunction()); setBalanceClass(defaultBalanceClass()); setPerturbationFraction(defaultPerturbationFraction()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Generates a people database and is based on the paper by Agrawal " + "et al.:\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "R. Agrawal and T. Imielinski and A. Swami"); result.setValue(Field.YEAR, "1993"); result.setValue(Field.TITLE, "Database Mining: A Performance Perspective"); result.setValue(Field.JOURNAL, "IEEE Transactions on Knowledge and Data Engineering"); result.setValue(Field.VOLUME, "5"); result.setValue(Field.NUMBER, "6"); result.setValue(Field.PAGES, "914-925"); result.setValue(Field.NOTE, "Special issue on Learning and Discovery in Knowledge-Based Databases"); result.setValue(Field.URL, "http://www.almaden.ibm.com/software/quest/Publications/ByDate.html"); result .setValue(Field.PDF, "http://www.almaden.ibm.com/software/quest/Publications/papers/tkde93.pdf"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result .add(new Option( "\tThe function to use for generating the data. (default " + defaultFunction().getSelectedTag().getID() + ")", "F", 1, "-F <num>")); result.add(new Option("\tWhether to balance the class.", "B", 0, "-B")); result.add(new Option("\tThe perturbation factor. (default " + defaultPerturbationFraction() + ")", "P", 1, "-P <num>")); return result.elements(); } /** * Parses a list of options for this object. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -F &lt;num&gt; * The function to use for generating the data. (default 1) * </pre> * * <pre> * -B * Whether to balance the class. * </pre> * * <pre> * -P &lt;num&gt; * The perturbation factor. (default 0.05) * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('F', options); if (tmpStr.length() != 0) { setFunction(new SelectedTag(Integer.parseInt(tmpStr), FUNCTION_TAGS)); } else { setFunction(defaultFunction()); } setBalanceClass(Utils.getFlag('B', options)); tmpStr = Utils.getOption('P', options); if (tmpStr.length() != 0) { setPerturbationFraction(Double.parseDouble(tmpStr)); } else { setPerturbationFraction(defaultPerturbationFraction()); } } /** * Gets the current settings of the datagenerator. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); Collections.addAll(result, super.getOptions()); result.add("-F"); result.add("" + m_Function); if (getBalanceClass()) { result.add("-B"); } result.add("-P"); result.add("" + getPerturbationFraction()); return result.toArray(new String[result.size()]); } /** * returns the default function * * @return the default function */ protected SelectedTag defaultFunction() { return new SelectedTag(FUNCTION_1, FUNCTION_TAGS); } /** * Gets the function for generating the data. * * @return the function. * @see #FUNCTION_TAGS */ public SelectedTag getFunction() { return new SelectedTag(m_Function, FUNCTION_TAGS); } /** * Sets the function for generating the data. * * @param value the function. * @see #FUNCTION_TAGS */ public void setFunction(SelectedTag value) { if (value.getTags() == FUNCTION_TAGS) { m_Function = value.getSelectedTag().getID(); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String functionTipText() { return "The function to use for generating the data."; } /** * returns the default for balancing the class * * @return the default for balancing the class */ protected boolean defaultBalanceClass() { return false; } /** * Gets whether the class is balanced. * * @return whether the class is balanced. */ public boolean getBalanceClass() { return m_BalanceClass; } /** * Sets whether the class is balanced. * * @param value whether to balance the class. */ public void setBalanceClass(boolean value) { m_BalanceClass = value; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String balanceClassTipText() { return "Whether to balance the class."; } /** * returns the default perturbation fraction * * @return the default perturbation fraction */ protected double defaultPerturbationFraction() { return 0.05; } /** * Gets the perturbation fraction. * * @return the perturbation fraction. */ public double getPerturbationFraction() { return m_PerturbationFraction; } /** * Sets the perturbation fraction. * * @param value the perturbation fraction. */ public void setPerturbationFraction(double value) { if ((value >= 0.0) && (value <= 1.0)) { m_PerturbationFraction = value; } else { throw new IllegalArgumentException( "Perturbation fraction must be in [0,1] (provided: " + value + ")!"); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String perturbationFractionTipText() { return "The perturbation fraction: 0 <= fraction <= 1."; } /** * Return if single mode is set for the given data generator mode depends on * option setting and or generator type. * * @return single mode flag * @throws Exception if mode is not set yet */ @Override public boolean getSingleModeFlag() throws Exception { return true; } /** * Initializes the format for the dataset produced. Must be called before the * generateExample or generateExamples methods are used. Re-initializes the * random number generator with the given seed. * * @return the format for the dataset * @throws Exception if the generating of the format failed * @see #getSeed() */ @Override public Instances defineDataFormat() throws Exception { ArrayList<Attribute> atts; ArrayList<String> attValues; int i; m_Random = new Random(getSeed()); m_nextClassShouldBeZero = true; m_lastLabel = Double.NaN; // number of examples is the same as given per option setNumExamplesAct(getNumExamples()); // set up attributes atts = new ArrayList<Attribute>(); atts.add(new Attribute("salary")); atts.add(new Attribute("commission")); atts.add(new Attribute("age")); attValues = new ArrayList<String>(); for (i = 0; i < 5; i++) { attValues.add("" + i); } atts.add(new Attribute("elevel", attValues)); attValues = new ArrayList<String>(); for (i = 1; i <= 20; i++) { attValues.add("" + i); } atts.add(new Attribute("car", attValues)); attValues = new ArrayList<String>(); for (i = 0; i < 9; i++) { attValues.add("" + i); } atts.add(new Attribute("zipcode", attValues)); atts.add(new Attribute("hvalue")); atts.add(new Attribute("hyears")); atts.add(new Attribute("loan")); attValues = new ArrayList<String>(); for (i = 0; i < 2; i++) { attValues.add("" + i); } atts.add(new Attribute("group", attValues)); // dataset m_DatasetFormat = new Instances(getRelationNameToUse(), atts, 0); return m_DatasetFormat; } /** * perturbs the given value * * @param val the value to perturb * @param min the minimum * @param max the maximum * @return the perturbed value */ protected double perturbValue(double val, double min, double max) { return perturbValue(val, max - min, min, max); } /** * perturbs the given value * * @param val the value to perturb * @param range the range for the perturbation * @param min the minimum * @param max the maximum * @return the perturbed value */ protected double perturbValue(double val, double range, double min, double max) { val += range * (2.0 * (getRandom().nextDouble() - 0.5)) * getPerturbationFraction(); if (val < min) { val = min; } else if (val > max) { val = max; } return val; } /** * Generates one example of the dataset. * * @return the generated example * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExamples which * means in non single mode */ @Override public Instance generateExample() throws Exception { Instance result; double salary; double commission; double hvalue; double loan; int age; int elevel; int car; int zipcode; int hyears; boolean desiredClassFound; double[] atts; Random random; ClassFunction classFunction; result = null; random = getRandom(); if (m_DatasetFormat == null) { throw new Exception("Dataset format not defined."); } salary = 0; commission = 0; hvalue = 0; loan = 0; age = 0; elevel = 0; car = 0; zipcode = 0; hyears = 0; desiredClassFound = false; classFunction = builtInFunctions[m_Function - 1]; while (!desiredClassFound) { // generate attributes salary = 20000.0 + 130000.0 * random.nextDouble(); commission = (salary >= 75000.0) ? 0 : (10000.0 + 65000.0 * random .nextDouble()); age = 20 + random.nextInt(61); elevel = random.nextInt(5); car = 1 + random.nextInt(20); zipcode = random.nextInt(9); hvalue = (9.0 - zipcode) * 100000.0 * (0.5 + random.nextDouble()); hyears = 1 + random.nextInt(30); loan = random.nextDouble() * 500000.0; // determine class m_lastLabel = classFunction.determineClass(salary, commission, age, elevel, car, zipcode, hvalue, hyears, loan); if (!getBalanceClass()) { desiredClassFound = true; } else { // balance the classes if ((m_nextClassShouldBeZero && (m_lastLabel == 0)) || (!m_nextClassShouldBeZero && (m_lastLabel == 1))) { desiredClassFound = true; m_nextClassShouldBeZero = !m_nextClassShouldBeZero; } // else keep searching } } // perturb values if (getPerturbationFraction() > 0.0) { salary = perturbValue(salary, 20000, 150000); if (commission > 0) { commission = perturbValue(commission, 10000, 75000); } age = (int) Math.round(perturbValue(age, 20, 80)); hvalue = perturbValue(hvalue, (9.0 - zipcode) * 100000.0, 0, 135000); hyears = (int) Math.round(perturbValue(hyears, 1, 30)); loan = perturbValue(loan, 0, 500000); } // create instance atts = new double[m_DatasetFormat.numAttributes()]; atts[0] = salary; atts[1] = commission; atts[2] = age; atts[3] = elevel; atts[4] = car - 1; atts[5] = zipcode; atts[6] = hvalue; atts[7] = hyears; atts[8] = loan; atts[9] = m_lastLabel; result = new DenseInstance(1.0, atts); result.setDataset(m_DatasetFormat); return result; } /** * Generates all examples of the dataset. Re-initializes the random number * generator with the given seed, before generating instances. * * @return the generated dataset * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExample, which * means in single mode * @see #getSeed() */ @Override public Instances generateExamples() throws Exception { Instances result; int i; result = new Instances(m_DatasetFormat, 0); m_Random = new Random(getSeed()); for (i = 0; i < getNumExamplesAct(); i++) { result.add(generateExample()); } return result; } /** * Generates a comment string that documentates the data generator. By default * this string is added at the beginning of the produced output as ARFF file * type, next after the options. * * @return string contains info about the generated rules */ @Override public String generateStart() { return ""; } /** * Generates a comment string that documentats the data generator. By default * this string is added at the end of theproduces output as ARFF file type. * * @return string contains info about the generated rules * @throws Exception if the generating of the documentaion fails */ @Override public String generateFinished() throws Exception { return ""; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for executing this class. * * @param args should contain arguments for the data producer: */ public static void main(String[] args) { runDataGenerator(new Agrawal(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers/classification/BayesNet.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * BayesNet.java * Copyright (C) 2005-2012,2015 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.classifiers.classification; import weka.classifiers.bayes.net.BayesNetGenerator; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.Utils; import weka.datagenerators.ClassificationGenerator; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; /** <!-- globalinfo-start --> * Generates random instances based on a Bayes network. * <br><br> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p> * * <pre> -h * Prints this help.</pre> * * <pre> -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout.</pre> * * <pre> -r &lt;name&gt; * The name of the relation.</pre> * * <pre> -d * Whether to print debug informations.</pre> * * <pre> -S * The seed for random function (default 1)</pre> * * <pre> -n &lt;num&gt; * The number of examples to generate (default 100)</pre> * * <pre> -A &lt;num&gt; * The number of arcs to use. (default 20)</pre> * * <pre> -N &lt;num&gt; * The number of attributes to generate. (default 10)</pre> * * <pre> -C &lt;num&gt; * The cardinality of the attributes and the class. (default 2)</pre> * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ * @see BayesNetGenerator */ public class BayesNet extends ClassificationGenerator { /** for serialization */ static final long serialVersionUID = -796118162379901512L; /** the bayesian net generator, that produces the actual data */ protected BayesNetGenerator m_Generator; /** * initializes the generator */ public BayesNet() { super(); setNumAttributes(defaultNumAttributes()); setNumArcs(defaultNumArcs()); setCardinality(defaultCardinality()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Generates random instances based on a Bayes network."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.add(new Option("\tThe number of arcs to use. (default " + defaultNumArcs() + ")", "A", 1, "-A <num>")); result.add(new Option("\tThe number of attributes to generate. (default " + defaultNumAttributes() + ")", "N", 1, "-N <num>")); result.add(new Option( "\tThe cardinality of the attributes and the class. (default " + defaultCardinality() + ")", "C", 1, "-C <num>")); return result.elements(); } /** * Parses a list of options for this object. * <p/> * <!-- options-start --> * Valid options are: <p> * * <pre> -h * Prints this help.</pre> * * <pre> -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout.</pre> * * <pre> -r &lt;name&gt; * The name of the relation.</pre> * * <pre> -d * Whether to print debug informations.</pre> * * <pre> -S * The seed for random function (default 1)</pre> * * <pre> -n &lt;num&gt; * The number of examples to generate (default 100)</pre> * * <pre> -A &lt;num&gt; * The number of arcs to use. (default 20)</pre> * * <pre> -N &lt;num&gt; * The number of attributes to generate. (default 10)</pre> * * <pre> -C &lt;num&gt; * The cardinality of the attributes and the class. (default 2)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; Vector<String> list; super.setOptions(options); list = new Vector<String>(); list.add("-N"); tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { list.add(tmpStr); } else { list.add("" + defaultNumAttributes()); } // handled via -n option list.add("-M"); list.add("" + getNumExamples()); list.add("-S"); tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) { list.add(tmpStr); } else { list.add("" + defaultSeed()); } list.add("-A"); tmpStr = Utils.getOption('A', options); if (tmpStr.length() != 0) { list.add(tmpStr); } else { list.add("" + defaultNumArcs()); } list.add("-C"); tmpStr = Utils.getOption('C', options); if (tmpStr.length() != 0) { list.add(tmpStr); } else { list.add("" + defaultCardinality()); } setGeneratorOptions(list); } /** * Gets the current settings of the datagenerator. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); String[] options = removeBlacklist(super.getOptions()); Collections.addAll(result, options); // determine options from generator options = getGenerator().getOptions(); result.add("-N"); result.add("" + getNumAttributes()); result.add("-S"); result.add("" + getSeed()); try { result.add("-A"); result.add(Utils.getOption('A', options)); } catch (Exception e) { e.printStackTrace(); } try { result.add("-C"); result.add(Utils.getOption('C', options)); } catch (Exception e) { e.printStackTrace(); } return result.toArray(new String[result.size()]); } /** * sets the given options of the BayesNetGenerator * * @param generator the generator to set the options for * @param options the options to set */ protected void setGeneratorOptions(BayesNetGenerator generator, Vector<String> options) { try { generator.setOptions(options.toArray(new String[options.size()])); } catch (Exception e) { e.printStackTrace(); } } /** * returns the actual datagenerator * * @return the actual datagenerator */ protected BayesNetGenerator getGenerator() { if (m_Generator == null) { m_Generator = new BayesNetGenerator(); } return m_Generator; } /** * sets the given options of the BayesNetGenerator * * @param options the options to set */ protected void setGeneratorOptions(Vector<String> options) { setGeneratorOptions(getGenerator(), options); } /** * sets a specific option/value of the generator (option must be w/o then '-') * * @param generator the generator to set the option for * @param option the option to set * @param value the new value for the option */ protected void setGeneratorOption(BayesNetGenerator generator, String option, String value) { String[] options; Vector<String> list; int i; try { // get options and remove specific option options = generator.getOptions(); Utils.getOption(option, options); // add option and set the new options list = new Vector<String>(); for (i = 0; i < options.length; i++) { if (options[i].length() != 0) { list.add(options[i]); } } list.add("-" + option); list.add(value); setGeneratorOptions(generator, list); } catch (Exception e) { e.printStackTrace(); } } /** * sets a specific option/value of the generator (option must be w/o then '-') * * @param option the option to set * @param value the new value for the option */ protected void setGeneratorOption(String option, String value) { setGeneratorOption(getGenerator(), option, value); } /** * returns the default number of attributes * * @return the default number of attributes */ protected int defaultNumAttributes() { return 10; } /** * Sets the number of attributes the dataset should have. * * @param numAttributes the new number of attributes */ public void setNumAttributes(int numAttributes) { setGeneratorOption("N", "" + numAttributes); } /** * Gets the number of attributes that should be produced. * * @return the number of attributes that should be produced */ public int getNumAttributes() { int result; result = -1; try { result = Integer.parseInt(Utils.getOption('N', getGenerator() .getOptions())); } catch (Exception e) { e.printStackTrace(); result = -1; } return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numAttributesTipText() { return "The number of attributes the generated data will contain (including class attribute), ie the number of nodes in the bayesian net."; } /** * returns the default cardinality * * @return the default cardinality */ protected int defaultCardinality() { return 2; } /** * Sets the cardinality of the attributes (incl class attribute) * * @param value the cardinality */ public void setCardinality(int value) { setGeneratorOption("C", "" + value); } /** * Gets the cardinality of the attributes (incl class attribute) * * @return the cardinality of the attributes */ public int getCardinality() { int result; result = -1; try { result = Integer.parseInt(Utils.getOption('C', getGenerator() .getOptions())); } catch (Exception e) { e.printStackTrace(); result = -1; } return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String cardinalityTipText() { return "The cardinality of the attributes, incl the class attribute."; } /** * returns the default number of arcs * * @return the default number of arcs */ protected int defaultNumArcs() { return 20; } /** * Sets the number of arcs for the bayesian net * * @param value the number of arcs */ public void setNumArcs(int value) { int nodes; int minArcs; int maxArcs; nodes = getNumAttributes(); minArcs = nodes - 1; maxArcs = nodes * (nodes - 1) / 2; if (value > maxArcs) { throw new IllegalArgumentException( "Number of arcs should be at most nodes * (nodes - 1) / 2 = " + maxArcs + " instead of " + value + " (nodes = numAttributes)!"); } else if (value < minArcs) { throw new IllegalArgumentException( "Number of arcs should be at least (nodes - 1) = " + minArcs + " instead of " + value + " (nodes = numAttributes)!"); } else { setGeneratorOption("A", "" + value); } } /** * Gets the number of arcs for the bayesian net * * @return the number of arcs */ public int getNumArcs() { int result; result = -1; try { result = Integer.parseInt(Utils.getOption('A', getGenerator() .getOptions())); } catch (Exception e) { e.printStackTrace(); result = -1; } return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numArcsTipText() { return "The number of arcs in the bayesian net, at most: n * (n - 1) / 2 and at least: (n - 1); with n = numAttributes"; } /** * Sets the number of examples, given by option. * * @param numExamples the new number of examples */ @Override public void setNumExamples(int numExamples) { super.setNumExamples(numExamples); setGeneratorOption("M", "" + numExamples); } /** * Gets the number of examples, given by option. * * @return the number of examples, given by option */ @Override public int getNumExamples() { int result; result = -1; try { result = Integer.parseInt(Utils.getOption('M', getGenerator() .getOptions())); } catch (Exception e) { e.printStackTrace(); result = -1; } return result; } /** * Gets the random number seed. * * @return the random number seed. */ @Override public int getSeed() { int result; result = -1; try { result = Integer.parseInt(Utils.getOption('S', getGenerator() .getOptions())); } catch (Exception e) { e.printStackTrace(); result = -1; } return result; } /** * Sets the random number seed. * * @param newSeed the new random number seed. */ @Override public void setSeed(int newSeed) { super.setSeed(newSeed); setGeneratorOption("S", "" + newSeed); } /** * Return if single mode is set for the given data generator mode depends on * option setting and or generator type. * * @return single mode flag * @throws Exception if mode is not set yet */ @Override public boolean getSingleModeFlag() throws Exception { return false; } /** * Initializes the format for the dataset produced. Must be called before the * generateExample or generateExamples methods are used. Re-initializes the * random number generator with the given seed. * * @return the format for the dataset * @throws Exception if the generating of the format failed * @see #getSeed() */ @Override public Instances defineDataFormat() throws Exception { BayesNetGenerator bng; bng = new BayesNetGenerator(); bng.setOptions(getGenerator().getOptions()); setGeneratorOption(bng, "M", "1"); bng.generateRandomNetwork(); bng.generateInstances(); bng.m_Instances.renameAttribute(0, "class"); bng.m_Instances.setRelationName(getRelationNameToUse()); return bng.m_Instances; } /** * Generates one example of the dataset. * * @return the generated example * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExamples which * means in non single mode */ @Override public Instance generateExample() throws Exception { throw new Exception("Cannot generate examples one-by-one!"); } /** * Generates all examples of the dataset. Re-initializes the random number * generator with the given seed, before generating instances. * * @return the generated dataset * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExample, which * means in single mode * @see #getSeed() */ @Override public Instances generateExamples() throws Exception { getGenerator().setOptions(getGenerator().getOptions()); getGenerator().generateRandomNetwork(); getGenerator().generateInstances(); getGenerator().m_Instances.renameAttribute(0, "class"); getGenerator().m_Instances.setRelationName(getRelationNameToUse()); return getGenerator().m_Instances; } /** * Generates a comment string that documentates the data generator. By default * this string is added at the beginning of the produced output as ARFF file * type, next after the options. * * @return string contains info about the generated rules */ @Override public String generateStart() { return ""; } /** * Generates a comment string that documentats the data generator. By default * this string is added at the end of theproduces output as ARFF file type. * * @return string contains info about the generated rules * @throws Exception if the generating of the documentaion fails */ @Override public String generateFinished() throws Exception { return ""; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for executing this class. * * @param args should contain arguments for the data producer: */ public static void main(String[] args) { runDataGenerator(new BayesNet(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers/classification/LED24.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * LED24.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.classifiers.classification; import java.util.ArrayList; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.datagenerators.ClassificationGenerator; /** * <!-- globalinfo-start --> This generator produces data for a display with 7 * LEDs. The original output consists of 10 concepts and 7 boolean attributes. * Here, in addition to the 7 necessary boolean attributes, 17 other, irrelevant * boolean attributes with random values are added to make it harder. By default * 10 percent of noise are added to the data.<br/> * <br/> * More information can be found here:<br/> * L. Breiman J.H. Friedman R.A. Olshen, C.J. Stone (1984). Classification and * Regression Trees. Belmont, California. URL * http://www.ics.uci.edu/~mlearn/databases/led-display-creator/. * <p/> * <!-- globalinfo-end --> * * Link: <br/> * <a * href="http://www.ics.uci.edu/~mlearn/databases/led-display-creator/">http:/ * /www.ics.uci.edu/~mlearn/databases/led-display-creator/</a> * <p/> * * <!-- technical-bibtex-start --> BibTeX: * * <pre> * &#64;inbook{Olshen1984, * address = {Belmont, California}, * author = {L. Breiman J.H. Friedman R.A. Olshen and C.J. Stone}, * pages = {43-49}, * publisher = {Wadsworth International Group}, * title = {Classification and Regression Trees}, * year = {1984}, * ISBN = {0412048418}, * URL = {http://www.ics.uci.edu/\~mlearn/databases/led-display-creator/} * } * </pre> * <p/> * <!-- technical-bibtex-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -N &lt;num&gt; * The noise percentage. (default 10.0) * </pre> * * <!-- options-end --> * * @author Richard Kirkby (rkirkby at cs dot waikato dot ac dot nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class LED24 extends ClassificationGenerator implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -7880209100415868737L; /** the noise rate */ protected double m_NoisePercent; /** the 7-bit LEDs */ protected static final int m_originalInstances[][] = { { 1, 1, 1, 0, 1, 1, 1 }, { 0, 0, 1, 0, 0, 1, 0 }, { 1, 0, 1, 1, 1, 0, 1 }, { 1, 0, 1, 1, 0, 1, 1 }, { 0, 1, 1, 1, 0, 1, 0 }, { 1, 1, 0, 1, 0, 1, 1 }, { 1, 1, 0, 1, 1, 1, 1 }, { 1, 0, 1, 0, 0, 1, 0 }, { 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 0, 1, 1 } }; /** used for generating the output, i.e., the additional noise attributes */ protected int m_numIrrelevantAttributes = 17; /** * initializes the generator with default values */ public LED24() { super(); setNoisePercent(defaultNoisePercent()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "This generator produces data for a display with 7 LEDs. The original " + "output consists of 10 concepts and 7 boolean attributes. Here, in " + "addition to the 7 necessary boolean attributes, 17 other, irrelevant " + "boolean attributes with random values are added to make it harder. " + "By default 10 percent of noise are added to the data.\n" + "\n" + "More information can be found here:\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INBOOK); result.setValue(Field.AUTHOR, "L. Breiman J.H. Friedman R.A. Olshen and C.J. Stone"); result.setValue(Field.YEAR, "1984"); result.setValue(Field.TITLE, "Classification and Regression Trees"); result.setValue(Field.PUBLISHER, "Wadsworth International Group"); result.setValue(Field.ADDRESS, "Belmont, California"); result.setValue(Field.PAGES, "43-49"); result.setValue(Field.ISBN, "0412048418"); result.setValue(Field.URL, "http://www.ics.uci.edu/~mlearn/databases/led-display-creator/"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.add(new Option("\tThe noise percentage. (default " + defaultNoisePercent() + ")", "N", 1, "-N <num>")); return result.elements(); } /** * Parses a list of options for this object. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -N &lt;num&gt; * The noise percentage. (default 10.0) * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setNoisePercent(Double.parseDouble(tmpStr)); } else { setNoisePercent(defaultNoisePercent()); } } /** * Gets the current settings of the datagenerator. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; String[] options; int i; result = new Vector<String>(); options = super.getOptions(); for (i = 0; i < options.length; i++) { result.add(options[i]); } result.add("-N"); result.add("" + getNoisePercent()); return result.toArray(new String[result.size()]); } /** * returns the default noise percentage * * @return the default noise percentage */ protected double defaultNoisePercent() { return 10; } /** * Gets the noise percentage. * * @return the noise percentage. */ public double getNoisePercent() { return m_NoisePercent; } /** * Sets the noise percentage. * * @param value the noise percentage. */ public void setNoisePercent(double value) { if ((value >= 0.0) && (value <= 100.0)) { m_NoisePercent = value; } else { throw new IllegalArgumentException( "Noise percent must be in [0,100] (provided: " + value + ")!"); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String noisePercentTipText() { return "The noise percent: 0 <= perc <= 100."; } /** * Return if single mode is set for the given data generator mode depends on * option setting and or generator type. * * @return single mode flag * @throws Exception if mode is not set yet */ @Override public boolean getSingleModeFlag() throws Exception { return true; } /** * Initializes the format for the dataset produced. Must be called before the * generateExample or generateExamples methods are used. Re-initializes the * random number generator with the given seed. * * @return the format for the dataset * @throws Exception if the generating of the format failed * @see #getSeed() */ @Override public Instances defineDataFormat() throws Exception { ArrayList<Attribute> atts; ArrayList<String> attValues; int i; int n; m_Random = new Random(getSeed()); // number of examples is the same as given per option setNumExamplesAct(getNumExamples()); // set up attributes atts = new ArrayList<Attribute>(); for (n = 1; n <= 24; n++) { attValues = new ArrayList<String>(); for (i = 0; i < 2; i++) { attValues.add("" + i); } atts.add(new Attribute("att" + n, attValues)); } attValues = new ArrayList<String>(); for (i = 0; i < 10; i++) { attValues.add("" + i); } atts.add(new Attribute("class", attValues)); // dataset m_DatasetFormat = new Instances(getRelationNameToUse(), atts, 0); return m_DatasetFormat; } /** * Generates one example of the dataset. * * @return the generated example * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExamples which * means in non single mode */ @Override public Instance generateExample() throws Exception { Instance result; double[] atts; int i; int selected; Random random; result = null; random = getRandom(); if (m_DatasetFormat == null) { throw new Exception("Dataset format not defined."); } atts = new double[m_DatasetFormat.numAttributes()]; selected = random.nextInt(10); for (i = 0; i < 7; i++) { if ((1 + (random.nextInt(100))) <= getNoisePercent()) { atts[i] = m_originalInstances[selected][i] == 0 ? 1 : 0; } else { atts[i] = m_originalInstances[selected][i]; } } for (i = 0; i < m_numIrrelevantAttributes; i++) { atts[i + 7] = random.nextInt(2); } atts[atts.length - 1] = selected; // create instance result = new DenseInstance(1.0, atts); result.setDataset(m_DatasetFormat); return result; } /** * Generates all examples of the dataset. Re-initializes the random number * generator with the given seed, before generating instances. * * @return the generated dataset * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExample, which * means in single mode * @see #getSeed() */ @Override public Instances generateExamples() throws Exception { Instances result; int i; result = new Instances(m_DatasetFormat, 0); m_Random = new Random(getSeed()); for (i = 0; i < getNumExamplesAct(); i++) { result.add(generateExample()); } return result; } /** * Generates a comment string that documentates the data generator. By default * this string is added at the beginning of the produced output as ARFF file * type, next after the options. * * @return string contains info about the generated rules */ @Override public String generateStart() { return ""; } /** * Generates a comment string that documentats the data generator. By default * this string is added at the end of theproduces output as ARFF file type. * * @return string contains info about the generated rules * @throws Exception if the generating of the documentaion fails */ @Override public String generateFinished() throws Exception { return ""; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for executing this class. * * @param args should contain arguments for the data producer: */ public static void main(String[] args) { runDataGenerator(new LED24(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers/classification/RDG1.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RDG1.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.classifiers.classification; import java.io.Serializable; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.WekaEnumeration; import weka.datagenerators.ClassificationGenerator; import weka.datagenerators.Test; /** * <!-- globalinfo-start --> A data generator that produces data randomly by * producing a decision list.<br/> * The decision list consists of rules.<br/> * Instances are generated randomly one by one. If decision list fails to * classify the current instance, a new rule according to this current instance * is generated and added to the decision list.<br/> * <br/> * The option -V switches on voting, which means that at the end of the * generation all instances are reclassified to the class value that is * supported by the most rules.<br/> * <br/> * This data generator can generate 'boolean' attributes (= nominal with the * values {true, false}) and numeric attributes. The rules can be 'A' or 'NOT A' * for boolean values and 'B &lt; random_value' or 'B &gt;= random_value' for * numeric values. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -a &lt;num&gt; * The number of attributes (default 10). * </pre> * * <pre> * -c &lt;num&gt; * The number of classes (default 2) * </pre> * * <pre> * -R &lt;num&gt; * maximum size for rules (default 10) * </pre> * * <pre> * -M &lt;num&gt; * minimum size for rules (default 1) * </pre> * * <pre> * -I &lt;num&gt; * number of irrelevant attributes (default 0) * </pre> * * <pre> * -N * number of numeric attributes (default 0) * </pre> * * <pre> * -V * switch on voting (default is no voting) * </pre> * * <!-- options-end --> * * Following an example of a generated dataset: <br/> * * <pre> * % * % weka.datagenerators.RDG1 -r expl -a 2 -c 3 -n 4 -N 1 -I 0 -M 2 -R 10 -S 2 * % * relation expl * * attribute a0 {false,true} * attribute a1 numeric * attribute class {c0,c1,c2} * * data * * true,0.496823,c0 * false,0.743158,c1 * false,0.408285,c1 * false,0.993687,c2 * % * % Number of attributes chosen as irrelevant = 0 * % * % DECISIONLIST (number of rules = 3): * % RULE 0: c0 := a1 &lt; 0.986, a0 * % RULE 1: c1 := a1 &lt; 0.95, not(a0) * % RULE 2: c2 := not(a0), a1 &gt;= 0.562 * </pre> * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @version $Revision$ */ public class RDG1 extends ClassificationGenerator { /** for serialization */ static final long serialVersionUID = 7751005204635320414L; /** * class to represent decisionlist */ private class RuleList implements Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = 2830125413361938177L; /** rule list */ private ArrayList<Test> m_RuleList = null; /** class */ double m_ClassValue = 0.0; /** * returns the class value * * @return the class value */ public double getClassValue() { return m_ClassValue; } /** * sets the class value * * @param newClassValue the new classvalue */ public void setClassValue(double newClassValue) { m_ClassValue = newClassValue; } /** * adds the given test to the list * * @param newTest the test to add */ private void addTest(Test newTest) { if (m_RuleList == null) { m_RuleList = new ArrayList<Test>(); } m_RuleList.add(newTest); } /** * classifies the given example * * @param example the instance to classify * @return the classification * @throws Exception if classification fails */ private double classifyInstance(Instance example) throws Exception { boolean passedAllTests = true; for (Enumeration<Test> e = new WekaEnumeration<Test>(m_RuleList); passedAllTests && e.hasMoreElements();) { Test test = e.nextElement(); passedAllTests = test.passesTest(example); } if (passedAllTests) { return m_ClassValue; } else { return -1.0; } } /** * returns a string representation of the rule list * * @return the rule list as string */ @Override public String toString() { StringBuffer str = new StringBuffer(); str = str.append(" c" + (int) m_ClassValue + " := "); Enumeration<Test> e = new WekaEnumeration<Test>(m_RuleList); if (e.hasMoreElements()) { Test test = e.nextElement(); str = str.append(test.toPrologString()); } while (e.hasMoreElements()) { Test test = e.nextElement(); str = str.append(", " + test.toPrologString()); } return str.toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } /* end class RuleList ***** */ /** Number of attribute the dataset should have */ protected int m_NumAttributes; /** Number of Classes the dataset should have */ protected int m_NumClasses; /** maximum rule size */ private int m_MaxRuleSize; /** minimum rule size */ private int m_MinRuleSize; /** number of irrelevant attributes. */ private int m_NumIrrelevant; /** number of numeric attribute */ private int m_NumNumeric; /** flag that stores if voting is wished */ private boolean m_VoteFlag = false; /** decision list */ private ArrayList<RuleList> m_DecisionList = null; /** * array defines which attributes are irrelevant, with: true = attribute is * irrelevant; false = attribute is not irrelevant */ boolean[] m_AttList_Irr; /** * initializes the generator with default values */ public RDG1() { super(); setNumAttributes(defaultNumAttributes()); setNumClasses(defaultNumClasses()); setMaxRuleSize(defaultMaxRuleSize()); setMinRuleSize(defaultMinRuleSize()); setNumIrrelevant(defaultNumIrrelevant()); setNumNumeric(defaultNumNumeric()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "A data generator that produces data randomly by producing a decision list.\n" + "The decision list consists of rules.\n" + "Instances are generated randomly one by one. If decision list fails " + "to classify the current instance, a new rule according to this current " + "instance is generated and added to the decision list.\n\n" + "The option -V switches on voting, which means that at the end " + "of the generation all instances are " + "reclassified to the class value that is supported by the most rules.\n\n" + "This data generator can generate 'boolean' attributes (= nominal with " + "the values {true, false}) and numeric attributes. The rules can be " + "'A' or 'NOT A' for boolean values and 'B < random_value' or " + "'B >= random_value' for numeric values."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option("\tThe number of attributes (default " + defaultNumAttributes() + ").", "a", 1, "-a <num>")); result.addElement(new Option("\tThe number of classes (default " + defaultNumClasses() + ")", "c", 1, "-c <num>")); result.addElement(new Option("\tmaximum size for rules (default " + defaultMaxRuleSize() + ") ", "R", 1, "-R <num>")); result.addElement(new Option("\tminimum size for rules (default " + defaultMinRuleSize() + ") ", "M", 1, "-M <num>")); result.addElement(new Option("\tnumber of irrelevant attributes (default " + defaultNumIrrelevant() + ")", "I", 1, "-I <num>")); result.addElement(new Option("\tnumber of numeric attributes (default " + defaultNumNumeric() + ")", "N", 1, "-N")); result.addElement(new Option("\tswitch on voting (default is no voting)", "V", 1, "-V")); return result.elements(); } /** * Parses a list of options for this object. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -a &lt;num&gt; * The number of attributes (default 10). * </pre> * * <pre> * -c &lt;num&gt; * The number of classes (default 2) * </pre> * * <pre> * -R &lt;num&gt; * maximum size for rules (default 10) * </pre> * * <pre> * -M &lt;num&gt; * minimum size for rules (default 1) * </pre> * * <pre> * -I &lt;num&gt; * number of irrelevant attributes (default 0) * </pre> * * <pre> * -N * number of numeric attributes (default 0) * </pre> * * <pre> * -V * switch on voting (default is no voting) * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('a', options); if (tmpStr.length() != 0) { setNumAttributes(Integer.parseInt(tmpStr)); } else { setNumAttributes(defaultNumAttributes()); } tmpStr = Utils.getOption('c', options); if (tmpStr.length() != 0) { setNumClasses(Integer.parseInt(tmpStr)); } else { setNumClasses(defaultNumClasses()); } tmpStr = Utils.getOption('R', options); if (tmpStr.length() != 0) { setMaxRuleSize(Integer.parseInt(tmpStr)); } else { setMaxRuleSize(defaultMaxRuleSize()); } tmpStr = Utils.getOption('M', options); if (tmpStr.length() != 0) { setMinRuleSize(Integer.parseInt(tmpStr)); } else { setMinRuleSize(defaultMinRuleSize()); } tmpStr = Utils.getOption('I', options); if (tmpStr.length() != 0) { setNumIrrelevant(Integer.parseInt(tmpStr)); } else { setNumIrrelevant(defaultNumIrrelevant()); } if ((getNumAttributes() - getNumIrrelevant()) < getMinRuleSize()) { throw new Exception("Possible rule size is below minimal rule size."); } tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setNumNumeric(Integer.parseInt(tmpStr)); } else { setNumNumeric(defaultNumNumeric()); } setVoteFlag(Utils.getFlag('V', options)); } /** * Gets the current settings of the datagenerator RDG1. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); Collections.addAll(result, super.getOptions()); result.add("-a"); result.add("" + getNumAttributes()); result.add("-c"); result.add("" + getNumClasses()); result.add("-N"); result.add("" + getNumNumeric()); result.add("-I"); result.add("" + getNumIrrelevant()); result.add("-M"); result.add("" + getMinRuleSize()); result.add("-R"); result.add("" + getMaxRuleSize()); if (getVoteFlag()) { result.add("-V"); } return result.toArray(new String[result.size()]); } /** * returns the default number of attributes * * @return the default number of attributes */ protected int defaultNumAttributes() { return 10; } /** * Sets the number of attributes the dataset should have. * * @param numAttributes the new number of attributes */ public void setNumAttributes(int numAttributes) { m_NumAttributes = numAttributes; } /** * Gets the number of attributes that should be produced. * * @return the number of attributes that should be produced */ public int getNumAttributes() { return m_NumAttributes; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numAttributesTipText() { return "The number of attributes the generated data will contain."; } /** * returns the default number of classes * * @return the default number of classes */ protected int defaultNumClasses() { return 2; } /** * Sets the number of classes the dataset should have. * * @param numClasses the new number of classes */ public void setNumClasses(int numClasses) { m_NumClasses = numClasses; } /** * Gets the number of classes the dataset should have. * * @return the number of classes the dataset should have */ public int getNumClasses() { return m_NumClasses; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numClassesTipText() { return "The number of classes to generate."; } /** * returns the default max size of rules * * @return the default max size of rules */ protected int defaultMaxRuleSize() { return 10; } /** * Gets the maximum number of tests in rules. * * @return the maximum number of tests allowed in rules */ public int getMaxRuleSize() { return m_MaxRuleSize; } /** * Sets the maximum number of tests in rules. * * @param newMaxRuleSize new maximum number of tests allowed in rules. */ public void setMaxRuleSize(int newMaxRuleSize) { m_MaxRuleSize = newMaxRuleSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxRuleSizeTipText() { return "The maximum number of tests in rules."; } /** * returns the default min size of rules * * @return the default min size of rules */ protected int defaultMinRuleSize() { return 1; } /** * Gets the minimum number of tests in rules. * * @return the minimum number of tests allowed in rules */ public int getMinRuleSize() { return m_MinRuleSize; } /** * Sets the minimum number of tests in rules. * * @param newMinRuleSize new minimum number of test in rules. */ public void setMinRuleSize(int newMinRuleSize) { m_MinRuleSize = newMinRuleSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minRuleSizeTipText() { return "The minimum number of tests in rules."; } /** * returns the default number of irrelevant attributes * * @return the default number of irrelevant attributes */ protected int defaultNumIrrelevant() { return 0; } /** * Gets the number of irrelevant attributes. * * @return the number of irrelevant attributes */ public int getNumIrrelevant() { return m_NumIrrelevant; } /** * Sets the number of irrelevant attributes. * * @param newNumIrrelevant the number of irrelevant attributes. */ public void setNumIrrelevant(int newNumIrrelevant) { m_NumIrrelevant = newNumIrrelevant; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numIrrelevantTipText() { return "The number of irrelevant attributes."; } /** * returns the default number of numeric attributes * * @return the default number of numeric attributes */ protected int defaultNumNumeric() { return 0; } /** * Gets the number of numerical attributes. * * @return the number of numerical attributes. */ public int getNumNumeric() { return m_NumNumeric; } /** * Sets the number of numerical attributes. * * @param newNumNumeric the number of numerical attributes. */ public void setNumNumeric(int newNumNumeric) { m_NumNumeric = newNumNumeric; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numNumericTipText() { return "The number of numerical attributes."; } /** * Gets the vote flag. * * @return voting flag. */ public boolean getVoteFlag() { return m_VoteFlag; } /** * Sets the vote flag. * * @param newVoteFlag boolean with the new setting of the vote flag. */ public void setVoteFlag(boolean newVoteFlag) { m_VoteFlag = newVoteFlag; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String voteFlagTipText() { return "Whether to use voting or not."; } /** * Gets the single mode flag. * * @return true if methode generateExample can be used. */ @Override public boolean getSingleModeFlag() { return (!getVoteFlag()); } /** * Gets the array that defines which of the attributes are seen to be * irrelevant. * * @return the array that defines the irrelevant attributes */ public boolean[] getAttList_Irr() { return m_AttList_Irr; } /** * Sets the array that defines which of the attributes are seen to be * irrelevant. * * @param newAttList_Irr array that defines the irrelevant attributes. */ public void setAttList_Irr(boolean[] newAttList_Irr) { m_AttList_Irr = newAttList_Irr; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String attList_IrrTipText() { return "The array with the indices of the irrelevant attributes."; } /** * Initializes the format for the dataset produced. * * @return the output data format * @throws Exception data format could not be defined */ @Override public Instances defineDataFormat() throws Exception { Instances dataset; Random random = new Random(getSeed()); setRandom(random); m_DecisionList = new ArrayList<RuleList>(); // number of examples is the same as given per option setNumExamplesAct(getNumExamples()); // define dataset dataset = defineDataset(random); return dataset; } /** * Generate an example of the dataset dataset. * * @return the instance generated * @throws Exception if format not defined or generating <br/> * examples one by one is not possible, because voting is chosen */ @Override public Instance generateExample() throws Exception { Random random = getRandom(); Instances format = getDatasetFormat(); if (format == null) { throw new Exception("Dataset format not defined."); } if (getVoteFlag()) { throw new Exception("Examples cannot be generated one by one."); } // generate values for all attributes format = generateExamples(1, random, format); return format.lastInstance(); } /** * Generate all examples of the dataset. * * @return the instance generated * @throws Exception if format not defined or generating <br/> * examples one by one is not possible, because voting is chosen */ @Override public Instances generateExamples() throws Exception { Random random = getRandom(); Instances format = getDatasetFormat(); if (format == null) { throw new Exception("Dataset format not defined."); } // generate values for all attributes format = generateExamples(getNumExamplesAct(), random, format); // vote all examples, and set new class value if (getVoteFlag()) { format = voteDataset(format); } return format; } /** * Generate all examples of the dataset. * * @param num the number of examples to generate * @param random the random number generator to use * @param format the dataset format * @return the instance generated * @throws Exception if format not defined or generating <br/> * examples one by one is not possible, because voting is chosen */ public Instances generateExamples(int num, Random random, Instances format) throws Exception { if (format == null) { throw new Exception("Dataset format not defined."); } // generate values for all attributes for (int i = 0; i < num; i++) { // over all examples to be produced Instance example = generateExample(random, format); // set class of example using decision list boolean classDefined = classifyExample(example); if (!classDefined) { // set class with newly generated rule example = updateDecisionList(random, example); } example.setDataset(format); format.add(example); } return (format); } /** * Generates a new rule for the decision list. and classifies the new example * * @param random random number generator * @param example example used to update decision list * @return the classified example * @throws Exception if dataset format not defined */ private Instance updateDecisionList(Random random, Instance example) throws Exception { ArrayList<Test> TestList; Instances format = getDatasetFormat(); if (format == null) { throw new Exception("Dataset format not defined."); } TestList = generateTestList(random, example); int maxSize = getMaxRuleSize() < TestList.size() ? getMaxRuleSize() : TestList.size(); int ruleSize = ((int) (random.nextDouble() * (maxSize - getMinRuleSize()))) + getMinRuleSize(); RuleList newRule = new RuleList(); for (int i = 0; i < ruleSize; i++) { int testIndex = (int) (random.nextDouble() * TestList.size()); Test test = TestList.get(testIndex); newRule.addTest(test); TestList.remove(testIndex); } double newClassValue = 0.0; if (m_DecisionList.size() > 0) { RuleList r = (m_DecisionList.get(m_DecisionList.size() - 1)); double oldClassValue = (r.getClassValue()); newClassValue = (double) ((int) oldClassValue + 1) % getNumClasses(); } newRule.setClassValue(newClassValue); m_DecisionList.add(newRule); example = (Instance) example.copy(); example.setDataset(format); example.setClassValue(newClassValue); return example; } /** * Generates a new rule for the decision list and classifies the new example. * * @param random random number generator * @param example the instance to classify * @return a list of tests * @throws Exception if dataset format not defined */ private ArrayList<Test> generateTestList(Random random, Instance example) throws Exception { Instances format = getDatasetFormat(); if (format == null) { throw new Exception("Dataset format not defined."); } int numTests = getNumAttributes() - getNumIrrelevant(); ArrayList<Test> TestList = new ArrayList<Test>(numTests); boolean[] irrelevant = getAttList_Irr(); for (int i = 0; i < getNumAttributes(); i++) { if (!irrelevant[i]) { Test newTest = null; Attribute att = example.attribute(i); if (att.isNumeric()) { double newSplit = random.nextDouble(); boolean newNot = newSplit < example.value(i); newTest = new Test(i, newSplit, format, newNot); } else { newTest = new Test(i, example.value(i), format, false); } TestList.add(newTest); } } return TestList; } /** * Generates an example with its classvalue set to missing and binds it to the * datasets. * * @param random random number generator * @param format dataset the example gets bind to * @return the generated example * @throws Exception if attribute type not supported */ private Instance generateExample(Random random, Instances format) throws Exception { double[] attributes; Instance example; attributes = new double[getNumAttributes() + 1]; for (int i = 0; i < getNumAttributes(); i++) { double value = random.nextDouble(); if (format.attribute(i).isNumeric()) { attributes[i] = value; } else { if (format.attribute(i).isNominal()) { attributes[i] = (value > 0.5) ? 1.0 : 0.0; } else { throw new Exception("Attribute type is not supported."); } } } example = new DenseInstance(1.0, attributes); example.setDataset(format); example.setClassMissing(); return example; } /** * Tries to classify an example. * * @param example the example to classify * @return true if it could be classified * @throws Exception if something goes wrong */ private boolean classifyExample(Instance example) throws Exception { double classValue = -1.0; for (Enumeration<RuleList> e = new WekaEnumeration<RuleList>(m_DecisionList); e .hasMoreElements() && classValue < 0.0;) { RuleList rl = e.nextElement(); classValue = rl.classifyInstance(example); } if (classValue >= 0.0) { example.setClassValue(classValue); return true; } else { return false; } } /** * Classify example with maximum vote the following way. With every rule in * the decisionlist, it is evaluated if the given instance could be the class * of the rule. Finally the class value that receives the highest number of * votes is assigned to the example. * * @param example example to be reclassified * @return instance with new class value * @throws Exception if classification fails */ private Instance votedReclassifyExample(Instance example) throws Exception { int classVotes[] = new int[getNumClasses()]; for (int i = 0; i < classVotes.length; i++) { classVotes[i] = 0; } for (Enumeration<RuleList> e = new WekaEnumeration<RuleList>(m_DecisionList); e .hasMoreElements();) { RuleList rl = e.nextElement(); int classValue = (int) rl.classifyInstance(example); if (classValue >= 0) { classVotes[classValue]++; } } int maxVote = 0; int vote = -1; for (int i = 0; i < classVotes.length; i++) { if (classVotes[i] > maxVote) { maxVote = classVotes[i]; vote = i; } } if (vote >= 0) { example.setClassValue(vote); } else { throw new Exception("Error in instance classification."); } return example; } /** * Returns a dataset header. * * @param random random number generator * @return dataset header * @throws Exception if something goes wrong */ private Instances defineDataset(Random random) throws Exception { boolean[] attList_Irr; int[] attList_Num; ArrayList<Attribute> attributes = new ArrayList<Attribute>(); Attribute attribute; ArrayList<String> nominalValues = new ArrayList<String>(2); nominalValues.add("false"); nominalValues.add("true"); ArrayList<String> classValues = new ArrayList<String>(getNumClasses()); Instances dataset; // set randomly those attributes that are irrelevant attList_Irr = defineIrrelevant(random); setAttList_Irr(attList_Irr); // set randomly those attributes that are numeric attList_Num = defineNumeric(random); // define dataset for (int i = 0; i < getNumAttributes(); i++) { if (attList_Num[i] == Attribute.NUMERIC) { attribute = new Attribute("a" + i); } else { attribute = new Attribute("a" + i, nominalValues); } attributes.add(attribute); } for (int i = 0; i < getNumClasses(); i++) { classValues.add("c" + i); } attribute = new Attribute("class", classValues); attributes.add(attribute); dataset = new Instances(getRelationNameToUse(), attributes, getNumExamplesAct()); dataset.setClassIndex(getNumAttributes()); // set dataset format of this class Instances format = new Instances(dataset, 0); setDatasetFormat(format); return dataset; } /** * Defines randomly the attributes as irrelevant. Number of attributes to be * set as irrelevant is either set with a preceeding call of * setNumIrrelevant() or is per default 0. * * @param random the random number generator to use * @return list of boolean values with one value for each attribute, and each * value set true or false according to if the corresponding attribute * was defined irrelevant or not */ private boolean[] defineIrrelevant(Random random) { boolean[] irr = new boolean[getNumAttributes()]; // initialize for (int i = 0; i < irr.length; i++) { irr[i] = false; } // set randomly int numIrr = 0; for (int i = 0; (numIrr < getNumIrrelevant()) && (i < getNumAttributes() * 5); i++) { int maybeNext = (int) (random.nextDouble() * irr.length); if (irr[maybeNext] == false) { irr[maybeNext] = true; numIrr++; } } return irr; } /** * Chooses randomly the attributes that get datatyp numeric. * * @param random the random number generator to use * @return list of integer values, with one value for each attribute, and each * value set to Attribut.NOMINAL or Attribut.NUMERIC */ private int[] defineNumeric(Random random) { int[] num = new int[getNumAttributes()]; // initialize for (int i = 0; i < num.length; i++) { num[i] = Attribute.NOMINAL; } int numNum = 0; for (int i = 0; (numNum < getNumNumeric()) && (i < getNumAttributes() * 5); i++) { int maybeNext = (int) (random.nextDouble() * num.length); if (num[maybeNext] != Attribute.NUMERIC) { num[maybeNext] = Attribute.NUMERIC; numNum++; } } return num; } /** * Generates a comment string that documentates the data generator. By default * this string is added at the beginning of the produced output as ARFF file * type, next after the options. * * @return string contains info about the generated rules */ @Override public String generateStart() { return ""; } /** * Compiles documentation about the data generation. This is the number of * irrelevant attributes and the decisionlist with all rules. Considering that * the decisionlist might get enhanced until the last instance is generated, * this method should be called at the end of the data generation process. * * @return string with additional information about generated dataset * @throws Exception no input structure has been defined */ @Override public String generateFinished() throws Exception { StringBuffer dLString = new StringBuffer(); // string for output at end of ARFF-File boolean[] attList_Irr = getAttList_Irr(); Instances format = getDatasetFormat(); dLString.append("%\n% Number of attributes chosen as irrelevant = " + getNumIrrelevant() + "\n"); for (int i = 0; i < attList_Irr.length; i++) { if (attList_Irr[i]) { dLString.append("% " + format.attribute(i).name() + "\n"); } } dLString.append("%\n% DECISIONLIST (number of rules = " + m_DecisionList.size() + "):\n"); for (int i = 0; i < m_DecisionList.size(); i++) { RuleList rl = m_DecisionList.get(i); dLString.append("% RULE " + i + ": " + rl.toString() + "\n"); } return dLString.toString(); } /** * Resets the class values of all instances using voting. For each instance * the class value that satisfies the most rules is choosen as new class * value. * * @param dataset the dataset to work on * @return the changed instances * @throws Exception if something goes wrong */ private Instances voteDataset(Instances dataset) throws Exception { for (int i = 0; i < dataset.numInstances(); i++) { Instance inst = dataset.firstInstance(); inst = votedReclassifyExample(inst); dataset.add(inst); dataset.delete(0); } return dataset; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param args should contain arguments for the data producer: */ public static void main(String[] args) { runDataGenerator(new RDG1(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers/classification/RandomRBF.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RandomRBF.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.classifiers.classification; import java.util.ArrayList; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.Utils; import weka.datagenerators.ClassificationGenerator; /** * <!-- globalinfo-start --> RandomRBF data is generated by first creating a * random set of centers for each class. Each center is randomly assigned a * weight, a central point per attribute, and a standard deviation. To generate * new instances, a center is chosen at random taking the weights of each center * into consideration. Attribute values are randomly generated and offset from * the center, where the overall vector has been scaled so that its length * equals a value sampled randomly from the Gaussian distribution of the center. * The particular center chosen determines the class of the instance.<br/> * RandomRBF data contains only numeric attributes as it is non-trivial to * include nominal values. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -a &lt;num&gt; * The number of attributes (default 10). * </pre> * * <pre> * -c &lt;num&gt; * The number of classes (default 2) * </pre> * * <pre> * -C &lt;num&gt; * The number of centroids to use. (default 50) * </pre> * * <!-- options-end --> * * @author Richard Kirkby (rkirkby at cs dot waikato dot ac dot nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class RandomRBF extends ClassificationGenerator { /** for serialization */ static final long serialVersionUID = 6069033710635728720L; /** Number of attribute the dataset should have */ protected int m_NumAttributes; /** Number of Classes the dataset should have */ protected int m_NumClasses; /** the number of centroids to use for generation */ protected int m_NumCentroids; /** the centroids */ protected double[][] m_centroids; /** the classes of the centroids */ protected int[] m_centroidClasses; /** the weights of the centroids */ protected double[] m_centroidWeights; /** the stddevs of the centroids */ protected double[] m_centroidStdDevs; /** * initializes the generator with default values */ public RandomRBF() { super(); setNumAttributes(defaultNumAttributes()); setNumClasses(defaultNumClasses()); setNumCentroids(defaultNumCentroids()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "RandomRBF data is generated by first creating a random set of " + "centers for each class. Each center is randomly assigned a weight, " + "a central point per attribute, and a standard deviation. To " + "generate new instances, a center is chosen at random taking the " + "weights of each center into consideration. Attribute values are " + "randomly generated and offset from the center, where the overall " + "vector has been scaled so that its length equals a value sampled " + "randomly from the Gaussian distribution of the center. The " + "particular center chosen determines the class of the instance.\n " + "RandomRBF data contains only numeric attributes as it is " + "non-trivial to include nominal values."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option("\tThe number of attributes (default " + defaultNumAttributes() + ").", "a", 1, "-a <num>")); result.addElement(new Option("\tThe number of classes (default " + defaultNumClasses() + ")", "c", 1, "-c <num>")); result.add(new Option("\tThe number of centroids to use. (default " + defaultNumCentroids() + ")", "C", 1, "-C <num>")); return result.elements(); } /** * Parses a list of options for this object. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -a &lt;num&gt; * The number of attributes (default 10). * </pre> * * <pre> * -c &lt;num&gt; * The number of classes (default 2) * </pre> * * <pre> * -C &lt;num&gt; * The number of centroids to use. (default 50) * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('a', options); if (tmpStr.length() != 0) { setNumAttributes(Integer.parseInt(tmpStr)); } else { setNumAttributes(defaultNumAttributes()); } tmpStr = Utils.getOption('c', options); if (tmpStr.length() != 0) { setNumClasses(Integer.parseInt(tmpStr)); } else { setNumClasses(defaultNumClasses()); } tmpStr = Utils.getOption('C', options); if (tmpStr.length() != 0) { setNumCentroids(Integer.parseInt(tmpStr)); } else { setNumCentroids(defaultNumCentroids()); } } /** * Gets the current settings of the datagenerator. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; String[] options; int i; result = new Vector<String>(); options = super.getOptions(); for (i = 0; i < options.length; i++) { result.add(options[i]); } result.add("-a"); result.add("" + getNumAttributes()); result.add("-c"); result.add("" + getNumClasses()); result.add("-C"); result.add("" + getNumCentroids()); return result.toArray(new String[result.size()]); } /** * returns the default number of attributes * * @return the default number of attributes */ protected int defaultNumAttributes() { return 10; } /** * Sets the number of attributes the dataset should have. * * @param numAttributes the new number of attributes */ public void setNumAttributes(int numAttributes) { m_NumAttributes = numAttributes; } /** * Gets the number of attributes that should be produced. * * @return the number of attributes that should be produced */ public int getNumAttributes() { return m_NumAttributes; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numAttributesTipText() { return "The number of attributes the generated data will contain."; } /** * returns the default number of classes * * @return the default number of classes */ protected int defaultNumClasses() { return 2; } /** * Sets the number of classes the dataset should have. * * @param numClasses the new number of classes */ public void setNumClasses(int numClasses) { m_NumClasses = numClasses; } /** * Gets the number of classes the dataset should have. * * @return the number of classes the dataset should have */ public int getNumClasses() { return m_NumClasses; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numClassesTipText() { return "The number of classes to generate."; } /** * returns the default number of centroids * * @return the default number of centroids */ protected int defaultNumCentroids() { return 50; } /** * Gets the number of centroids. * * @return the number of centroids. */ public int getNumCentroids() { return m_NumCentroids; } /** * Sets the number of centroids to use. * * @param value the number of centroids to use. */ public void setNumCentroids(int value) { if (value > 0) { m_NumCentroids = value; } else { System.out.println("At least 1 centroid is necessary (provided: " + value + ")!"); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numCentroidsTipText() { return "The number of centroids to use."; } /** * Return if single mode is set for the given data generator mode depends on * option setting and or generator type. * * @return single mode flag * @throws Exception if mode is not set yet */ @Override public boolean getSingleModeFlag() throws Exception { return true; } /** * returns a random index based on the given proportions * * @param proportionArray the proportions * @param random the random number generator to use * @return the random index */ protected int chooseRandomIndexBasedOnProportions(double[] proportionArray, Random random) { double probSum; double val; int index; double sum; probSum = Utils.sum(proportionArray); val = random.nextDouble() * probSum; index = 0; sum = 0.0; while ((sum <= val) && (index < proportionArray.length)) { sum += proportionArray[index++]; } return index - 1; } /** * Initializes the format for the dataset produced. Must be called before the * generateExample or generateExamples methods are used. Re-initializes the * random number generator with the given seed. * * @return the format for the dataset * @throws Exception if the generating of the format failed * @see #getSeed() */ @Override public Instances defineDataFormat() throws Exception { int i; int j; ArrayList<Attribute> atts; ArrayList<String> clsValues; Random rand; m_Random = new Random(getSeed()); rand = getRandom(); // number of examples is the same as given per option setNumExamplesAct(getNumExamples()); // initialize centroids m_centroids = new double[getNumCentroids()][getNumAttributes()]; m_centroidClasses = new int[getNumCentroids()]; m_centroidWeights = new double[getNumCentroids()]; m_centroidStdDevs = new double[getNumCentroids()]; for (i = 0; i < getNumCentroids(); i++) { for (j = 0; j < getNumAttributes(); j++) { m_centroids[i][j] = rand.nextDouble(); } m_centroidClasses[i] = rand.nextInt(getNumClasses()); m_centroidWeights[i] = rand.nextDouble(); m_centroidStdDevs[i] = rand.nextDouble(); } // initialize dataset format atts = new ArrayList<Attribute>(); for (i = 0; i < getNumAttributes(); i++) { atts.add(new Attribute("a" + i)); } clsValues = new ArrayList<String>(); for (i = 0; i < getNumClasses(); i++) { clsValues.add("c" + i); } atts.add(new Attribute("class", clsValues)); m_DatasetFormat = new Instances(getRelationNameToUse(), atts, 0); return m_DatasetFormat; } /** * Generates one example of the dataset. * * @return the generated example * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExamples which * means in non single mode */ @Override public Instance generateExample() throws Exception { Instance result; int centroid; double[] atts; double magnitude; double desiredMag; double scale; int i; double label; Random rand; result = null; rand = getRandom(); if (m_DatasetFormat == null) { throw new Exception("Dataset format not defined."); } // generate class label based on class probs centroid = chooseRandomIndexBasedOnProportions(m_centroidWeights, rand); label = m_centroidClasses[centroid]; // generate attributes atts = new double[getNumAttributes() + 1]; for (i = 0; i < getNumAttributes(); i++) { atts[i] = (rand.nextDouble() * 2.0) - 1.0; } atts[atts.length - 1] = label; magnitude = 0.0; for (i = 0; i < getNumAttributes(); i++) { magnitude += atts[i] * atts[i]; } magnitude = Math.sqrt(magnitude); desiredMag = rand.nextGaussian() * m_centroidStdDevs[centroid]; scale = desiredMag / magnitude; for (i = 0; i < getNumAttributes(); i++) { atts[i] *= scale; atts[i] += m_centroids[centroid][i]; result = new DenseInstance(1.0, atts); } // dataset reference result.setDataset(m_DatasetFormat); return result; } /** * Generates all examples of the dataset. Re-initializes the random number * generator with the given seed, before generating instances. * * @return the generated dataset * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExample, which * means in single mode * @see #getSeed() */ @Override public Instances generateExamples() throws Exception { Instances result; int i; result = new Instances(m_DatasetFormat, 0); m_Random = new Random(getSeed()); for (i = 0; i < getNumExamplesAct(); i++) { result.add(generateExample()); } return result; } /** * Generates a comment string that documentates the data generator. By default * this string is added at the beginning of the produced output as ARFF file * type, next after the options. * * @return string contains info about the generated rules */ @Override public String generateStart() { StringBuffer result; int i; result = new StringBuffer(); result.append("%\n"); result.append("% centroids:\n"); for (i = 0; i < getNumCentroids(); i++) { result.append("% " + i + ".: " + Utils.arrayToString(m_centroids[i]) + "\n"); } result.append("%\n"); result.append("% centroidClasses: " + Utils.arrayToString(m_centroidClasses) + "\n"); result.append("%\n"); result.append("% centroidWeights: " + Utils.arrayToString(m_centroidWeights) + "\n"); result.append("%\n"); result.append("% centroidStdDevs: " + Utils.arrayToString(m_centroidStdDevs) + "\n"); result.append("%\n"); return result.toString(); } /** * Generates a comment string that documentats the data generator. By default * this string is added at the end of theproduces output as ARFF file type. * * @return string contains info about the generated rules * @throws Exception if the generating of the documentaion fails */ @Override public String generateFinished() throws Exception { return ""; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for executing this class. * * @param args should contain arguments for the data producer: */ public static void main(String[] args) { runDataGenerator(new RandomRBF(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers/regression/Expression.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Expression.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.classifiers.regression; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.Utils; import weka.filters.unsupervised.attribute.AddExpression; /** * <!-- globalinfo-start --> A data generator for generating y according to a * given expression out of randomly generated x.<br/> * E.g., the mexican hat can be generated like this:<br/> * sin(abs(a1)) / abs(a1)<br/> * In addition to this function, the amplitude can be changed and gaussian noise * can be added. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -A &lt;num&gt; * The amplitude multiplier (default 1.0). * </pre> * * <pre> * -R &lt;num&gt;..&lt;num&gt; * The range x is randomly drawn from (default -10.0..10.0). * </pre> * * <pre> * -N &lt;num&gt; * The noise rate (default 0.0). * </pre> * * <pre> * -V &lt;num&gt; * The noise variance (default 1.0). * </pre> * * <pre> * -E &lt;expression&gt; * The expression to use for generating y out of x * (default sin(abs(a1)) / abs(a1)). * </pre> * * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ * @see AddExpression * @see MexicanHat */ public class Expression extends MexicanHat { /** for serialization */ static final long serialVersionUID = -4237047357682277211L; /** the expression for computing y */ protected String m_Expression; /** the filter for generating y out of x */ protected AddExpression m_Filter; /** the input data structure for the filter */ protected Instances m_RawData; /** * initializes the generator */ public Expression() { super(); setExpression(defaultExpression()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ @Override public String globalInfo() { return "A data generator for generating y according to a given expression " + "out of randomly generated x.\n" + "E.g., the mexican hat can be generated like this:\n" + " sin(abs(a1)) / abs(a1)\n" + "In addition to this function, the amplitude can be changed and " + "gaussian noise can be added."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option( "\tThe expression to use for generating y out of x \n" + "\t(default " + defaultExpression() + ").", "E", 1, "-E <expression>")); return result.elements(); } /** * Parses a list of options for this object. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -A &lt;num&gt; * The amplitude multiplier (default 1.0). * </pre> * * <pre> * -R &lt;num&gt;..&lt;num&gt; * The range x is randomly drawn from (default -10.0..10.0). * </pre> * * <pre> * -N &lt;num&gt; * The noise rate (default 0.0). * </pre> * * <pre> * -V &lt;num&gt; * The noise variance (default 1.0). * </pre> * * <pre> * -E &lt;expression&gt; * The expression to use for generating y out of x * (default sin(abs(a1)) / abs(a1)). * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('E', options); if (tmpStr.length() != 0) { setExpression(tmpStr); } else { setExpression(defaultExpression()); } } /** * Gets the current settings of the datagenerator BIRCHCluster. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; String[] options; result = new Vector<String>(); options = super.getOptions(); Collections.addAll(result, options); result.add("-E"); result.add("" + getExpression()); return result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ @Override public String amplitudeTipText() { return "The amplitude to multiply the y value with."; } /** * returns the default expression * * @return the default expression */ protected String defaultExpression() { return "sin(abs(a1)) / abs(a1)"; } /** * Gets the mathematical expression for generating y out of x * * @return the expression for computing y */ public String getExpression() { return m_Expression; } /** * Sets the mathematical expression to generate y out of x. * * @param value the expression for computing y */ public void setExpression(String value) { if (value.length() != 0) { m_Expression = value; } else { throw new IllegalArgumentException("An expression has to be provided!"); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String expressionTipText() { return "The expression for generating y out of x."; } /** * Return if single mode is set for the given data generator mode depends on * option setting and or generator type. * * @return single mode flag * @throws Exception if mode is not set yet */ @Override public boolean getSingleModeFlag() throws Exception { return true; } /** * Initializes the format for the dataset produced. Must be called before the * generateExample or generateExamples methods are used. Re-initializes the * random number generator with the given seed. * * @return the format for the dataset * @throws Exception if the generating of the format failed * @see #getSeed() */ @Override public Instances defineDataFormat() throws Exception { ArrayList<Attribute> atts; // initialize input format atts = new ArrayList<Attribute>(); atts.add(new Attribute("x")); m_RawData = new Instances(getRelationNameToUse(), atts, 0); m_Filter = new AddExpression(); m_Filter.setName("y"); m_Filter.setExpression(getExpression()); m_Filter.setInputFormat(m_RawData); return super.defineDataFormat(); } /** * Generates one example of the dataset. * * @return the generated example * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExamples which * means in non single mode */ @Override public Instance generateExample() throws Exception { Instance result; Random rand; double x; double y; double[] atts; Instance inst; rand = getRandom(); if (m_DatasetFormat == null) { throw new Exception("Dataset format not defined."); } // random x x = rand.nextDouble(); // fit into range x = x * (getMaxRange() - getMinRange()) + getMinRange(); // generate y atts = new double[1]; atts[0] = x; inst = new DenseInstance(1.0, atts); inst.setDataset(m_RawData); m_Filter.input(inst); m_Filter.batchFinished(); inst = m_Filter.output(); // noise y = inst.value(1) + getAmplitude() * m_NoiseRandom.nextGaussian() * getNoiseRate() * getNoiseVariance(); // generate attributes atts = new double[m_DatasetFormat.numAttributes()]; atts[0] = x; atts[1] = y; result = new DenseInstance(1.0, atts); // dataset reference result.setDataset(m_DatasetFormat); return result; } /** * Generates all examples of the dataset. Re-initializes the random number * generator with the given seed, before generating instances. * * @return the generated dataset * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExample, which * means in single mode * @see #getSeed() */ @Override public Instances generateExamples() throws Exception { Instances result; int i; result = new Instances(m_DatasetFormat, 0); m_Random = new Random(getSeed()); for (i = 0; i < getNumExamplesAct(); i++) { result.add(generateExample()); } return result; } /** * Generates a comment string that documentates the data generator. By default * this string is added at the beginning of the produced output as ARFF file * type, next after the options. * * @return string contains info about the generated rules */ @Override public String generateStart() { return ""; } /** * Generates a comment string that documentats the data generator. By default * this string is added at the end of theproduces output as ARFF file type. * * @return string contains info about the generated rules * @throws Exception if the generating of the documentaion fails */ @Override public String generateFinished() throws Exception { return ""; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param args should contain arguments for the data producer: */ public static void main(String[] args) { runDataGenerator(new Expression(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/classifiers/regression/MexicanHat.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * MexicanHat.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.classifiers.regression; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.Utils; import weka.datagenerators.RegressionGenerator; /** * <!-- globalinfo-start --> A data generator for the simple 'Mexian Hat' * function:<br/> * y = sin|x| / |x|<br/> * In addition to this simple function, the amplitude can be changed and * gaussian noise can be added. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -A &lt;num&gt; * The amplitude multiplier (default 1.0). * </pre> * * <pre> * -R &lt;num&gt;..&lt;num&gt; * The range x is randomly drawn from (default -10.0..10.0). * </pre> * * <pre> * -N &lt;num&gt; * The noise rate (default 0.0). * </pre> * * <pre> * -V &lt;num&gt; * The noise variance (default 1.0). * </pre> * * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class MexicanHat extends RegressionGenerator { /** for serialization */ static final long serialVersionUID = 4577016375261512975L; /** the amplitude of y */ protected double m_Amplitude; /** the lower boundary of the range, x is drawn from */ protected double m_MinRange; /** the upper boundary of the range, x is drawn from */ protected double m_MaxRange; /** the rate of the gaussian noise */ protected double m_NoiseRate; /** the variance of the gaussian noise */ protected double m_NoiseVariance; /** the random number generator for the noise */ protected Random m_NoiseRandom = null; /** * initializes the generator */ public MexicanHat() { super(); setAmplitude(defaultAmplitude()); setMinRange(defaultMinRange()); setMaxRange(defaultMaxRange()); setNoiseRate(defaultNoiseRate()); setNoiseVariance(defaultNoiseVariance()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "A data generator for the simple 'Mexian Hat' function:\n" + " y = sin|x| / |x|\n" + "In addition to this simple function, the amplitude can be changed and " + "gaussian noise can be added."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option("\tThe amplitude multiplier (default " + defaultAmplitude() + ").", "A", 1, "-A <num>")); result.addElement(new Option( "\tThe range x is randomly drawn from (default " + defaultMinRange() + ".." + defaultMaxRange() + ").", "R", 1, "-R <num>..<num>")); result.addElement(new Option("\tThe noise rate (default " + defaultNoiseRate() + ").", "N", 1, "-N <num>")); result.addElement(new Option("\tThe noise variance (default " + defaultNoiseVariance() + ").", "V", 1, "-V <num>")); return result.elements(); } /** * Parses a list of options for this object. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -n &lt;num&gt; * The number of examples to generate (default 100) * </pre> * * <pre> * -A &lt;num&gt; * The amplitude multiplier (default 1.0). * </pre> * * <pre> * -R &lt;num&gt;..&lt;num&gt; * The range x is randomly drawn from (default -10.0..10.0). * </pre> * * <pre> * -N &lt;num&gt; * The noise rate (default 0.0). * </pre> * * <pre> * -V &lt;num&gt; * The noise variance (default 1.0). * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('A', options); if (tmpStr.length() != 0) { setAmplitude(Double.parseDouble(tmpStr)); } else { setAmplitude(defaultAmplitude()); } tmpStr = Utils.getOption('R', options); if (tmpStr.length() != 0) { setRange(tmpStr); } else { setRange(defaultMinRange() + ".." + defaultMaxRange()); } tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setNoiseRate(Double.parseDouble(tmpStr)); } else { setNoiseRate(defaultNoiseRate()); } tmpStr = Utils.getOption('V', options); if (tmpStr.length() != 0) { setNoiseVariance(Double.parseDouble(tmpStr)); } else { setNoiseVariance(defaultNoiseVariance()); } } /** * Gets the current settings of the datagenerator BIRCHCluster. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; String[] options; result = new Vector<String>(); options = removeBlacklist(super.getOptions()); Collections.addAll(result, options); result.add("-A"); result.add("" + getAmplitude()); result.add("-R"); result.add("" + getRange()); result.add("-N"); result.add("" + getNoiseRate()); result.add("-V"); result.add("" + getNoiseVariance()); return result.toArray(new String[result.size()]); } /** * returns the default amplitude * * @return the default amplitude */ protected double defaultAmplitude() { return 1.0; } /** * Gets the amplitude multiplier. * * @return the amplitude multiplier */ public double getAmplitude() { return m_Amplitude; } /** * Sets the amplitude multiplier. * * @param value the amplitude multiplier */ public void setAmplitude(double value) { m_Amplitude = value; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String amplitudeTipText() { return "The amplitude of the mexican hat."; } /** * Sets the upper and lower boundary for the range of x * * @param fromTo the string containing the upper and lower boundary for the * range of x, separated by .. */ protected void setRange(String fromTo) { int i = fromTo.indexOf(".."); String from = fromTo.substring(0, i); setMinRange(Double.valueOf(from).doubleValue()); String to = fromTo.substring(i + 2, fromTo.length()); setMaxRange(Double.valueOf(to).doubleValue()); } /** * Gets the upper and lower boundary for the range of x * * @return the string containing the upper and lower boundary for the range of * x, separated by .. */ protected String getRange() { String fromTo = "" + Utils.doubleToString(getMinRange(), 2) + ".." + Utils.doubleToString(getMaxRange(), 2); return fromTo; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ protected String rangeTipText() { return "The upper and lower boundary for the range x is drawn from randomly."; } /** * returns the default min range * * @return the default min range */ protected double defaultMinRange() { return -10; } /** * Sets the lower boundary for the range of x * * @param value the lower boundary */ public void setMinRange(double value) { m_MinRange = value; } /** * Gets the lower boundary for the range of x * * @return the lower boundary for the range of x */ public double getMinRange() { return m_MinRange; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minRangeTipText() { return "The lower boundary for the range x is drawn from randomly."; } /** * returns the default max range * * @return the default max range */ protected double defaultMaxRange() { return 10; } /** * Sets the upper boundary for the range of x * * @param value the upper boundary */ public void setMaxRange(double value) { m_MaxRange = value; } /** * Gets the upper boundary for the range of x * * @return the upper boundary for the range of x */ public double getMaxRange() { return m_MaxRange; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxRangeTipText() { return "The upper boundary for the range x is drawn from randomly."; } /** * returns the default gaussian noise rate * * @return the default gaussian noise rate */ protected double defaultNoiseRate() { return 0.0; } /** * Gets the gaussian noise rate. * * @return the gaussian noise rate */ public double getNoiseRate() { return m_NoiseRate; } /** * Sets the gaussian noise rate. * * @param value the gaussian noise rate */ public void setNoiseRate(double value) { m_NoiseRate = value; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String noiseRateTipText() { return "The gaussian noise rate to use."; } /** * returns the default variance of the noise rate * * @return the default variance of the noise rate */ protected double defaultNoiseVariance() { return 1.0; } /** * Gets the noise variance * * @return the noise variance */ public double getNoiseVariance() { return m_NoiseVariance; } /** * Sets the noise variance * * @param value the noise variance */ public void setNoiseVariance(double value) { if (value > 0) { m_NoiseVariance = value; } else { throw new IllegalArgumentException( "Noise variance needs to be > 0 (provided: " + value + ")!"); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String noiseVarianceTipText() { return "The noise variance to use."; } /** * Return if single mode is set for the given data generator mode depends on * option setting and or generator type. * * @return single mode flag * @throws Exception if mode is not set yet */ @Override public boolean getSingleModeFlag() throws Exception { return true; } /** * Initializes the format for the dataset produced. Must be called before the * generateExample or generateExamples methods are used. Re-initializes the * random number generator with the given seed. * * @return the format for the dataset * @throws Exception if the generating of the format failed * @see #getSeed() */ @Override public Instances defineDataFormat() throws Exception { ArrayList<Attribute> atts; m_Random = new Random(getSeed()); m_NoiseRandom = new Random(getSeed()); // number of examples is the same as given per option setNumExamplesAct(getNumExamples()); // initialize dataset format atts = new ArrayList<Attribute>(); atts.add(new Attribute("x")); atts.add(new Attribute("y")); m_DatasetFormat = new Instances(getRelationNameToUse(), atts, 0); return m_DatasetFormat; } /** * Generates one example of the dataset. * * @return the generated example * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExamples which * means in non single mode */ @Override public Instance generateExample() throws Exception { Instance result; Random rand; double x; double y; double[] atts; result = null; rand = getRandom(); if (m_DatasetFormat == null) { throw new Exception("Dataset format not defined."); } // generate attributes atts = new double[m_DatasetFormat.numAttributes()]; // random x x = rand.nextDouble(); // fit into range x = x * (getMaxRange() - getMinRange()) + getMinRange(); // generate y if (Utils.eq(x, 0)) { y = getAmplitude(); } else { y = getAmplitude() * StrictMath.sin(StrictMath.abs(x)) / StrictMath.abs(x); } // noise y = y + getAmplitude() * m_NoiseRandom.nextGaussian() * getNoiseRate() * getNoiseVariance(); atts[0] = x; atts[1] = y; result = new DenseInstance(1.0, atts); // dataset reference result.setDataset(m_DatasetFormat); return result; } /** * Generates all examples of the dataset. Re-initializes the random number * generator with the given seed, before generating instances. * * @return the generated dataset * @throws Exception if the format of the dataset is not yet defined * @throws Exception if the generator only works with generateExample, which * means in single mode * @see #getSeed() */ @Override public Instances generateExamples() throws Exception { Instances result; int i; result = new Instances(m_DatasetFormat, 0); m_Random = new Random(getSeed()); for (i = 0; i < getNumExamplesAct(); i++) { result.add(generateExample()); } return result; } /** * Generates a comment string that documentates the data generator. By default * this string is added at the beginning of the produced output as ARFF file * type, next after the options. * * @return string contains info about the generated rules */ @Override public String generateStart() { return ""; } /** * Generates a comment string that documentats the data generator. By default * this string is added at the end of theproduces output as ARFF file type. * * @return string contains info about the generated rules * @throws Exception if the generating of the documentaion fails */ @Override public String generateFinished() throws Exception { return ""; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param args should contain arguments for the data producer: */ public static void main(String[] args) { runDataGenerator(new MexicanHat(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/clusterers/BIRCHCluster.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * BIRCHCluster.java * Copyright (C) 2001-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.clusterers; import java.io.Serializable; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.SelectedTag; import weka.core.Tag; import weka.core.TechnicalInformation; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WekaEnumeration; import weka.datagenerators.ClusterGenerator; /** * <!-- globalinfo-start --> Cluster data generator designed for the BIRCH * System<br/> * <br/> * Dataset is generated with instances in K clusters.<br/> * Instances are 2-d data points.<br/> * Each cluster is characterized by the number of data points in itits radius * and its center. The location of the cluster centers isdetermined by the * pattern parameter. Three patterns are currentlysupported grid, sine and * random.<br/> * <br/> * For more information refer to:<br/> * <br/> * Tian Zhang, Raghu Ramakrishnan, Miron Livny: BIRCH: An Efficient Data * Clustering Method for Very Large Databases. In: ACM SIGMOD International * Conference on Management of Data, 103-114, 1996. * <p/> * <!-- globalinfo-end --> * * <!-- technical-bibtex-start --> BibTeX: * * <pre> * &#64;inproceedings{Zhang1996, * author = {Tian Zhang and Raghu Ramakrishnan and Miron Livny}, * booktitle = {ACM SIGMOD International Conference on Management of Data}, * pages = {103-114}, * publisher = {ACM Press}, * title = {BIRCH: An Efficient Data Clustering Method for Very Large Databases}, * year = {1996} * } * </pre> * <p/> * <!-- technical-bibtex-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -a &lt;num&gt; * The number of attributes (default 10). * </pre> * * <pre> * -c * Class Flag, if set, the cluster is listed in extra attribute. * </pre> * * <pre> * -b &lt;range&gt; * The indices for boolean attributes. * </pre> * * <pre> * -m &lt;range&gt; * The indices for nominal attributes. * </pre> * * <pre> * -k &lt;num&gt; * The number of clusters (default 4) * </pre> * * <pre> * -G * Set pattern to grid (default is random). * This flag cannot be used at the same time as flag I. * The pattern is random, if neither flag G nor flag I is set. * </pre> * * <pre> * -I * Set pattern to sine (default is random). * This flag cannot be used at the same time as flag I. * The pattern is random, if neither flag G nor flag I is set. * </pre> * * <pre> * -N &lt;num&gt;..&lt;num&gt; * The range of number of instances per cluster (default 1..50). * Lower number must be between 0 and 2500, * upper number must be between 50 and 2500. * </pre> * * <pre> * -R &lt;num&gt;..&lt;num&gt; * The range of radius per cluster (default 0.1..1.4142135623730951). * Lower number must be between 0 and SQRT(2), * upper number must be between SQRT(2) and SQRT(32). * </pre> * * <pre> * -M &lt;num&gt; * The distance multiplier (default 4.0). * </pre> * * <pre> * -C &lt;num&gt; * The number of cycles (default 4). * </pre> * * <pre> * -O * Flag for input order is ORDERED. If flag is not set then * input order is RANDOMIZED. RANDOMIZED is currently not * implemented, therefore is the input order always ORDERED. * </pre> * * <pre> * -P &lt;num&gt; * The noise rate in percent (default 0.0). * Can be between 0% and 30%. (Remark: The original * algorithm only allows noise up to 10%.) * </pre> * * <!-- options-end --> * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class BIRCHCluster extends ClusterGenerator implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -334820527230755027L; /** Number of Clusters the dataset should have */ protected int m_NumClusters; /** minimal number of instances per cluster (option N) */ private int m_MinInstNum; /** maximal number of instances per cluster (option N) */ private int m_MaxInstNum; /** minimum radius (option R) */ private double m_MinRadius; /** maximum radius (option R) */ private double m_MaxRadius; /** Constant set for choice of pattern. (option G) */ public static final int GRID = 0; /** Constant set for choice of pattern. (option I) */ public static final int SINE = 1; /** Constant set for choice of pattern. (default) */ public static final int RANDOM = 2; /** the pattern tags */ public static final Tag[] TAGS_PATTERN = { new Tag(GRID, "Grid"), new Tag(SINE, "Sine"), new Tag(RANDOM, "Random") }; /** pattern (changed with options G or S) */ private int m_Pattern; /** distance multiplier (option M) */ private double m_DistMult; /** number of cycles (option C) */ private int m_NumCycles; /** Constant set for input order (option O) */ public static final int ORDERED = 0; /** Constant set for input order (default) */ public static final int RANDOMIZED = 1; /** the input order tags */ public static final Tag[] TAGS_INPUTORDER = { new Tag(ORDERED, "ordered"), new Tag(RANDOMIZED, "randomized") }; /** input order (changed with option O) */ private int m_InputOrder; /** noise rate in percent (option P, between 0 and 30) */ private double m_NoiseRate; /** cluster list */ private ArrayList<Cluster> m_ClusterList; // following are used for pattern is GRID /** grid size */ private int m_GridSize; /** grid width */ private double m_GridWidth; /** * class to represent cluster */ private class Cluster implements Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = -8336901069823498140L; /** number of instances for this cluster */ private final int m_InstNum; /** * radius of cluster variance is radius ** 2 / 2 */ private final double m_Radius; /** center of cluster = array of Double values */ private final double[] m_Center; /** * Constructor, used for pattern = RANDOM * * @param instNum the number of instances * @param radius radius of the cluster * @param random the random number generator to use */ private Cluster(int instNum, double radius, Random random) { m_InstNum = instNum; m_Radius = radius; m_Center = new double[getNumAttributes()]; for (int i = 0; i < getNumAttributes(); i++) { m_Center[i] = random.nextDouble() * m_NumClusters; } } /** * Constructor, used for pattern = GRID * * @param instNum the number of instances * @param radius radius of the cluster * @param gridVector vector for grid positions * @param gridWidth factor for grid position */ // center is defined in the constructor of cluster private Cluster(int instNum, double radius, int[] gridVector, double gridWidth) { m_InstNum = instNum; m_Radius = radius; m_Center = new double[getNumAttributes()]; for (int i = 0; i < getNumAttributes(); i++) { m_Center[i] = (gridVector[i] + 1.0) * gridWidth; } } /** * returns the number of instances * * @return the number of instances */ private int getInstNum() { return m_InstNum; } /** * returns the standard deviation * * @return the standard deviation */ private double getStdDev() { return (m_Radius / Math.pow(2.0, 0.5)); } /** * returns the centers * * @return the centers */ private double[] getCenter() { return m_Center; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // end class Cluster /** * class to represent Vector for placement of the center in space */ private class GridVector implements Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = -1900309948991039522L; /** array of integer */ private final int[] m_GridVector; /** * one higher then the highest possible integer value in any of the integers * in the gridvector */ private final int m_Base; /** size of vector */ private final int m_Size; /** * Constructor * * @param numDim number of dimensions = number of attributes * @param base is one higher then the highest possible integer value in any * of the integers in the gridvector */ private GridVector(int numDim, int base) { m_Size = numDim; m_Base = base; m_GridVector = new int[numDim]; for (int i = 0; i < numDim; i++) { m_GridVector[i] = 0; } } /** * returns the integer array * * @return the integer array */ private int[] getGridVector() { return m_GridVector; } /** * Overflow has occurred when integer is zero. * * @param digit the input integer * @return true if digit is 0 */ private boolean overflow(int digit) { return (digit == 0); } /** * Adds one to integer and sets to zero, if new value was equal m_Base. * * @param digit the input integer * @return new integer object */ private int addOne(int digit) { int value = digit + 1; if (value >= m_Base) { value = 0; } return value; } /** * add 1 to vector */ private void addOne() { m_GridVector[0] = addOne(m_GridVector[0]); int i = 1; while (overflow(m_GridVector[i - 1]) && i < m_Size) { m_GridVector[i] = addOne(m_GridVector[i]); i++; } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // end class GridVector /** * initializes the generator with default values */ public BIRCHCluster() { super(); setNumClusters(defaultNumClusters()); setMinInstNum(defaultMinInstNum()); setMaxInstNum(defaultMaxInstNum()); setMinRadius(defaultMinRadius()); setMaxRadius(defaultMaxRadius()); setPattern(defaultPattern()); setDistMult(defaultDistMult()); setNumCycles(defaultNumCycles()); setInputOrder(defaultInputOrder()); setNoiseRate(defaultNoiseRate()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Cluster data generator designed for the BIRCH System\n\n" + "Dataset is generated with instances in K clusters.\n" + "Instances are 2-d data points.\n" + "Each cluster is characterized by the number of data points in it" + "its radius and its center. The location of the cluster centers is" + "determined by the pattern parameter. Three patterns are currently" + "supported grid, sine and random.\n\n" + "For more information refer to:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Tian Zhang and Raghu Ramakrishnan and Miron Livny"); result.setValue(Field.TITLE, "BIRCH: An Efficient Data Clustering Method for Very Large Databases"); result.setValue(Field.BOOKTITLE, "ACM SIGMOD International Conference on Management of Data"); result.setValue(Field.YEAR, "1996"); result.setValue(Field.PAGES, "103-114"); result.setValue(Field.PUBLISHER, "ACM Press"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option("\tThe number of clusters (default " + defaultNumClusters() + ")", "k", 1, "-k <num>")); result.addElement(new Option("\tSet pattern to grid (default is random).\n" + "\tThis flag cannot be used at the same time as flag I.\n" + "\tThe pattern is random, if neither flag G nor flag I is set.", "G", 0, "-G")); result.addElement(new Option("\tSet pattern to sine (default is random).\n" + "\tThis flag cannot be used at the same time as flag I.\n" + "\tThe pattern is random, if neither flag G nor flag I is set.", "I", 0, "-I")); result.addElement(new Option( "\tThe range of number of instances per cluster (default " + defaultMinInstNum() + ".." + defaultMaxInstNum() + ").\n" + "\tLower number must be between 0 and 2500,\n" + "\tupper number must be between 50 and 2500.", "N", 1, "-N <num>..<num>")); result.addElement(new Option("\tThe range of radius per cluster (default " + defaultMinRadius() + ".." + defaultMaxRadius() + ").\n" + "\tLower number must be between 0 and SQRT(2), \n" + "\tupper number must be between SQRT(2) and SQRT(32).", "R", 1, "-R <num>..<num>")); result.addElement(new Option("\tThe distance multiplier (default " + defaultDistMult() + ").", "M", 1, "-M <num>")); result.addElement(new Option("\tThe number of cycles (default " + defaultNumCycles() + ").", "C", 1, "-C <num>")); result.addElement(new Option( "\tFlag for input order is ORDERED. If flag is not set then \n" + "\tinput order is RANDOMIZED. RANDOMIZED is currently not \n" + "\timplemented, therefore is the input order always ORDERED.", "O", 0, "-O")); result.addElement(new Option("\tThe noise rate in percent (default " + defaultNoiseRate() + ").\n" + "\tCan be between 0% and 30%. (Remark: The original \n" + "\talgorithm only allows noise up to 10%.)", "P", 1, "-P <num>")); return result.elements(); } /** * Parses a list of options for this object. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -a &lt;num&gt; * The number of attributes (default 10). * </pre> * * <pre> * -c * Class Flag, if set, the cluster is listed in extra attribute. * </pre> * * <pre> * -b &lt;range&gt; * The indices for boolean attributes. * </pre> * * <pre> * -m &lt;range&gt; * The indices for nominal attributes. * </pre> * * <pre> * -k &lt;num&gt; * The number of clusters (default 4) * </pre> * * <pre> * -G * Set pattern to grid (default is random). * This flag cannot be used at the same time as flag I. * The pattern is random, if neither flag G nor flag I is set. * </pre> * * <pre> * -I * Set pattern to sine (default is random). * This flag cannot be used at the same time as flag I. * The pattern is random, if neither flag G nor flag I is set. * </pre> * * <pre> * -N &lt;num&gt;..&lt;num&gt; * The range of number of instances per cluster (default 1..50). * Lower number must be between 0 and 2500, * upper number must be between 50 and 2500. * </pre> * * <pre> * -R &lt;num&gt;..&lt;num&gt; * The range of radius per cluster (default 0.1..1.4142135623730951). * Lower number must be between 0 and SQRT(2), * upper number must be between SQRT(2) and SQRT(32). * </pre> * * <pre> * -M &lt;num&gt; * The distance multiplier (default 4.0). * </pre> * * <pre> * -C &lt;num&gt; * The number of cycles (default 4). * </pre> * * <pre> * -O * Flag for input order is ORDERED. If flag is not set then * input order is RANDOMIZED. RANDOMIZED is currently not * implemented, therefore is the input order always ORDERED. * </pre> * * <pre> * -P &lt;num&gt; * The noise rate in percent (default 0.0). * Can be between 0% and 30%. (Remark: The original * algorithm only allows noise up to 10%.) * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('k', options); if (tmpStr.length() != 0) { setNumClusters(Integer.parseInt(tmpStr)); } else { setNumClusters(defaultNumClusters()); } tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setInstNums(tmpStr); } else { setInstNums(defaultMinInstNum() + ".." + defaultMaxInstNum()); } tmpStr = Utils.getOption('R', options); if (tmpStr.length() != 0) { setRadiuses(tmpStr); } else { setRadiuses(defaultMinRadius() + ".." + defaultMaxRadius()); } boolean grid = Utils.getFlag('G', options); boolean sine = Utils.getFlag('I', options); if (grid && sine) { throw new Exception("Flags -G and -I can only be set mutually exclusiv."); } setPattern(new SelectedTag(RANDOM, TAGS_PATTERN)); if (grid) { setPattern(new SelectedTag(GRID, TAGS_PATTERN)); } if (sine) { setPattern(new SelectedTag(SINE, TAGS_PATTERN)); } tmpStr = Utils.getOption('M', options); if (tmpStr.length() != 0) { if (!grid) { throw new Exception("Option M can only be used with GRID pattern."); } setDistMult(Double.parseDouble(tmpStr)); } else { setDistMult(defaultDistMult()); } tmpStr = Utils.getOption('C', options); if (tmpStr.length() != 0) { if (!sine) { throw new Exception("Option C can only be used with SINE pattern."); } setNumCycles(Integer.parseInt(tmpStr)); } else { setNumCycles(defaultNumCycles()); } if (Utils.getFlag('O', options)) { setInputOrder(new SelectedTag(ORDERED, TAGS_INPUTORDER)); } else { setInputOrder(defaultInputOrder()); } tmpStr = Utils.getOption('P', options); if (tmpStr.length() != 0) { setNoiseRate(Double.parseDouble(tmpStr)); } else { setNoiseRate(defaultNoiseRate()); } } /** * Gets the current settings of the datagenerator BIRCHCluster. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; result = new Vector<String>(); Collections.addAll(result, super.getOptions()); result.add("-k"); result.add("" + getNumClusters()); result.add("-N"); result.add("" + getInstNums()); result.add("-R"); result.add("" + getRadiuses()); if (m_Pattern == GRID) { result.add("-G"); result.add("-M"); result.add("" + getDistMult()); } if (m_Pattern == SINE) { result.add("-I"); result.add("-C"); result.add("" + getNumCycles()); } if (getOrderedFlag()) { result.add("-O"); } result.add("-P"); result.add("" + getNoiseRate()); return result.toArray(new String[result.size()]); } /** * returns the default number of clusters * * @return the default number of clusters */ protected int defaultNumClusters() { return 4; } /** * Sets the number of clusters the dataset should have. * * @param numClusters the new number of clusters */ public void setNumClusters(int numClusters) { m_NumClusters = numClusters; } /** * Gets the number of clusters the dataset should have. * * @return the number of clusters the dataset should have */ public int getNumClusters() { return m_NumClusters; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numClustersTipText() { return "The number of clusters to generate."; } /** * Sets the upper and lower boundary for instances per cluster. * * @param fromTo the string containing the upper and lower boundary for * instances per cluster separated by .. */ protected void setInstNums(String fromTo) { int i = fromTo.indexOf(".."); String from = fromTo.substring(0, i); setMinInstNum(Integer.parseInt(from)); String to = fromTo.substring(i + 2, fromTo.length()); setMaxInstNum(Integer.parseInt(to)); } /** * Gets the upper and lower boundary for instances per cluster. * * @return the string containing the upper and lower boundary for instances * per cluster separated by .. */ protected String getInstNums() { String fromTo = "" + getMinInstNum() + ".." + getMaxInstNum(); return fromTo; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ protected String instNumsTipText() { return "The upper and lowet boundary for instances per cluster."; } /** * returns the default min number of instances * * @return the default min number of instances */ protected int defaultMinInstNum() { return 1; } /** * Gets the lower boundary for instances per cluster. * * @return the the lower boundary for instances per cluster */ public int getMinInstNum() { return m_MinInstNum; } /** * Sets the lower boundary for instances per cluster. * * @param newMinInstNum new lower boundary for instances per cluster */ public void setMinInstNum(int newMinInstNum) { m_MinInstNum = newMinInstNum; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minInstNumTipText() { return "The lower boundary for instances per cluster."; } /** * returns the default max number of instances * * @return the default max number of instances */ protected int defaultMaxInstNum() { return 50; } /** * Gets the upper boundary for instances per cluster. * * @return the upper boundary for instances per cluster */ public int getMaxInstNum() { return m_MaxInstNum; } /** * Sets the upper boundary for instances per cluster. * * @param newMaxInstNum new upper boundary for instances per cluster */ public void setMaxInstNum(int newMaxInstNum) { m_MaxInstNum = newMaxInstNum; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxInstNumTipText() { return "The upper boundary for instances per cluster."; } /** * Sets the upper and lower boundary for the radius of the clusters. * * @param fromTo the string containing the upper and lower boundary for the * radius of the clusters, separated by .. */ protected void setRadiuses(String fromTo) { int i = fromTo.indexOf(".."); String from = fromTo.substring(0, i); setMinRadius(Double.valueOf(from).doubleValue()); String to = fromTo.substring(i + 2, fromTo.length()); setMaxRadius(Double.valueOf(to).doubleValue()); } /** * Gets the upper and lower boundary for the radius of the clusters. * * @return the string containing the upper and lower boundary for the radius * of the clusters, separated by .. */ protected String getRadiuses() { String fromTo = "" + Utils.doubleToString(getMinRadius(), 2) + ".." + Utils.doubleToString(getMaxRadius(), 2); return fromTo; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ protected String radiusesTipText() { return "The upper and lower boundary for the radius of the clusters."; } /** * returns the default min radius * * @return the default min radius */ protected double defaultMinRadius() { return 0.1; } /** * Gets the lower boundary for the radiuses of the clusters. * * @return the lower boundary for the radiuses of the clusters */ public double getMinRadius() { return m_MinRadius; } /** * Sets the lower boundary for the radiuses of the clusters. * * @param newMinRadius new lower boundary for the radiuses of the clusters */ public void setMinRadius(double newMinRadius) { m_MinRadius = newMinRadius; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minRadiusTipText() { return "The lower boundary for the radius of the clusters."; } /** * returns the default max radius * * @return the default max radius */ protected double defaultMaxRadius() { return Math.sqrt(2.0); } /** * Gets the upper boundary for the radiuses of the clusters. * * @return the upper boundary for the radiuses of the clusters */ public double getMaxRadius() { return m_MaxRadius; } /** * Sets the upper boundary for the radiuses of the clusters. * * @param newMaxRadius new upper boundary for the radiuses of the clusters */ public void setMaxRadius(double newMaxRadius) { m_MaxRadius = newMaxRadius; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxRadiusTipText() { return "The upper boundary for the radius of the clusters."; } /** * returns the default pattern * * @return the default pattern */ protected SelectedTag defaultPattern() { return new SelectedTag(RANDOM, TAGS_PATTERN); } /** * Gets the pattern type. * * @return the current pattern type */ public SelectedTag getPattern() { return new SelectedTag(m_Pattern, TAGS_PATTERN); } /** * Sets the pattern type. * * @param value new pattern type */ public void setPattern(SelectedTag value) { if (value.getTags() == TAGS_PATTERN) { m_Pattern = value.getSelectedTag().getID(); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String patternTipText() { return "The pattern for generating the data."; } /** * returns the default distance multiplier * * @return the default distance multiplier */ protected double defaultDistMult() { return 4.0; } /** * Gets the distance multiplier. * * @return the distance multiplier */ public double getDistMult() { return m_DistMult; } /** * Sets the distance multiplier. * * @param newDistMult new distance multiplier */ public void setDistMult(double newDistMult) { m_DistMult = newDistMult; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String distMultTipText() { return "The distance multiplier (in combination with the 'Grid' pattern)."; } /** * returns the default number of cycles * * @return the default number of cycles */ protected int defaultNumCycles() { return 4; } /** * Gets the number of cycles. * * @return the number of cycles */ public int getNumCycles() { return m_NumCycles; } /** * Sets the the number of cycles. * * @param newNumCycles new number of cycles */ public void setNumCycles(int newNumCycles) { m_NumCycles = newNumCycles; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numCyclesTipText() { return "The number of cycles to use (in combination with the 'Sine' pattern)."; } /** * returns the default input order * * @return the default input order */ protected SelectedTag defaultInputOrder() { return new SelectedTag(ORDERED, TAGS_INPUTORDER); // TODO: the only one that // is currently // implemented, normally // RANDOMIZED } /** * Gets the input order. * * @return the current input order */ public SelectedTag getInputOrder() { return new SelectedTag(m_InputOrder, TAGS_INPUTORDER); } /** * Sets the input order. * * @param value new input order */ public void setInputOrder(SelectedTag value) { if (value.getTags() == TAGS_INPUTORDER) { m_InputOrder = value.getSelectedTag().getID(); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String inputOrderTipText() { return "The input order to use."; } /** * Gets the ordered flag (option O). * * @return true if ordered flag is set */ public boolean getOrderedFlag() { return m_InputOrder == ORDERED; } /** * returns the default noise rate * * @return the default noise rate */ protected double defaultNoiseRate() { return 0.0; } /** * Gets the percentage of noise set. * * @return the percentage of noise set */ public double getNoiseRate() { return m_NoiseRate; } /** * Sets the percentage of noise set. * * @param newNoiseRate new percentage of noise */ public void setNoiseRate(double newNoiseRate) { m_NoiseRate = newNoiseRate; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String noiseRateTipText() { return "The noise rate to use."; } /** * Gets the single mode flag. * * @return true if methode generateExample can be used. */ @Override public boolean getSingleModeFlag() { return false; } /** * Initializes the format for the dataset produced. * * @return the output data format * @throws Exception data format could not be defined */ @Override public Instances defineDataFormat() throws Exception { Random random = new Random(getSeed()); setRandom(random); Instances dataset; ArrayList<Attribute> attributes = new ArrayList<Attribute>(3); Attribute attribute; boolean classFlag = getClassFlag(); ArrayList<String> classValues = null; if (classFlag) { classValues = new ArrayList<String>(m_NumClusters); } // define dataset for (int i = 0; i < getNumAttributes(); i++) { attribute = new Attribute("X" + i); attributes.add(attribute); } if (classFlag) { for (int i = 0; i < m_NumClusters; i++) { classValues.add("c" + i); } attribute = new Attribute("class", classValues); attributes.add(attribute); } dataset = new Instances(getRelationNameToUse(), attributes, 0); if (classFlag) { dataset.setClassIndex(getNumAttributes()); } // set dataset format of this class Instances format = new Instances(dataset, 0); setDatasetFormat(format); m_ClusterList = defineClusters(random); // System.out.println("dataset" + dataset.numAttributes()); return dataset; } /** * Generate an example of the dataset. * * @return the instance generated * @throws Exception if format not defined or generating <br/> * examples one by one is not possible, because voting is chosen */ @Override public Instance generateExample() throws Exception { throw new Exception("Examples cannot be generated" + " one by one."); } /** * Generate all examples of the dataset. * * @return the instance generated * @throws Exception if format not defined */ @Override public Instances generateExamples() throws Exception { Random random = getRandom(); Instances data = getDatasetFormat(); if (data == null) { throw new Exception("Dataset format not defined."); } // generate examples if (getOrderedFlag()) { data = generateExamples(random, data); } else { throw new Exception("RANDOMIZED is not yet implemented."); } return (data); } /** * Generate all examples of the dataset. * * @param random the random number generator to use * @param format the dataset format * @return the instance generated * @throws Exception if format not defined */ public Instances generateExamples(Random random, Instances format) throws Exception { Instance example = null; if (format == null) { throw new Exception("Dataset format not defined."); } // generate examples for one cluster after another int cNum = 0; for (Enumeration<Cluster> enm = new WekaEnumeration<Cluster>(m_ClusterList); enm .hasMoreElements(); cNum++) { Cluster cl = enm.nextElement(); double stdDev = cl.getStdDev(); int instNum = cl.getInstNum(); double[] center = cl.getCenter(); String cName = "c" + cNum; for (int i = 0; i < instNum; i++) { // generate example example = generateInstance(format, random, stdDev, center, cName); if (example != null) { example.setDataset(format); } format.add(example); } } return (format); } /** * Generate an example of the dataset. * * @param format the dataset format * @param randomG the random number generator * @param stdDev the standard deviation to use * @param center the centers * @param cName the class value * @return the instance generated examples one by one is not possible, because * voting is chosen */ private Instance generateInstance(Instances format, Random randomG, double stdDev, double[] center, String cName) { Instance example; int numAtts = getNumAttributes(); if (getClassFlag()) { numAtts++; } double[] data = new double[numAtts]; for (int i = 0; i < getNumAttributes(); i++) { data[i] = randomG.nextGaussian() * stdDev + center[i]; } if (getClassFlag()) { data[format.classIndex()] = format.classAttribute().indexOfValue(cName); } example = new DenseInstance(1.0, data); example.setDataset(format); return example; } /** * Defines the clusters * * @param random random number generator * @return the cluster definitions * @throws Exception if defining fails */ private ArrayList<Cluster> defineClusters(Random random) throws Exception { if (m_Pattern == GRID) { return defineClustersGRID(random); } else { return defineClustersRANDOM(random); } } /** * Defines the clusters if pattern is GRID * * @param random random number generator * @return the defined clusters for GRID * @throws Exception if something goes wrong */ private ArrayList<Cluster> defineClustersGRID(Random random) throws Exception { ArrayList<Cluster> clusters = new ArrayList<Cluster>(m_NumClusters); double diffInstNum = m_MaxInstNum - m_MinInstNum; double minInstNum = m_MinInstNum; double diffRadius = m_MaxRadius - m_MinRadius; Cluster cluster; // compute gridsize double gs = Math.pow(m_NumClusters, 1.0 / getNumAttributes()); if (gs - (((int) gs)) > 0.0) { m_GridSize = (int) (gs + 1.0); } else { m_GridSize = (int) gs; } // compute gridwidth m_GridWidth = ((m_MaxRadius + m_MinRadius) / 2) * m_DistMult; // System.out.println("GridSize= " + m_GridSize); // System.out.println("GridWidth= " + m_GridWidth); // initialize gridvector with zeros GridVector gv = new GridVector(getNumAttributes(), m_GridSize); for (int i = 0; i < m_NumClusters; i++) { int instNum = (int) (random.nextDouble() * diffInstNum + minInstNum); double radius = (random.nextDouble() * diffRadius) + m_MinRadius; // center is defined in the constructor of cluster cluster = new Cluster(instNum, radius, gv.getGridVector(), m_GridWidth); clusters.add(cluster); gv.addOne(); } return clusters; } /** * Defines the clusters if pattern is RANDOM * * @param random random number generator * @return the cluster definitions * @throws Exception if something goes wrong */ private ArrayList<Cluster> defineClustersRANDOM(Random random) throws Exception { ArrayList<Cluster> clusters = new ArrayList<Cluster>(m_NumClusters); double diffInstNum = m_MaxInstNum - m_MinInstNum; double minInstNum = m_MinInstNum; double diffRadius = m_MaxRadius - m_MinRadius; Cluster cluster; for (int i = 0; i < m_NumClusters; i++) { int instNum = (int) (random.nextDouble() * diffInstNum + minInstNum); double radius = (random.nextDouble() * diffRadius) + m_MinRadius; // center is defined in the constructor of cluster cluster = new Cluster(instNum, radius, random); clusters.add(cluster); } return clusters; } /** * Compiles documentation about the data generation after the generation * process * * @return string with additional information about generated dataset * @throws Exception no input structure has been defined */ @Override public String generateFinished() throws Exception { return ""; } /** * Compiles documentation about the data generation before the generation * process * * @return string with additional information */ @Override public String generateStart() { StringBuffer docu = new StringBuffer(); int sumInst = 0; int cNum = 0; for (Enumeration<Cluster> enm = new WekaEnumeration<Cluster>(m_ClusterList); enm .hasMoreElements(); cNum++) { Cluster cl = enm.nextElement(); docu.append("%\n"); docu.append("% Cluster: c" + cNum + "\n"); docu.append("% ----------------------------------------------\n"); docu.append("% StandardDeviation: " + Utils.doubleToString(cl.getStdDev(), 2) + "\n"); docu.append("% Number of instances: " + cl.getInstNum() + "\n"); sumInst += cl.getInstNum(); double[] center = cl.getCenter(); docu.append("% "); for (int i = 0; i < center.length - 1; i++) { docu.append(Utils.doubleToString(center[i], 2) + ", "); } docu.append(Utils.doubleToString(center[center.length - 1], 2) + "\n"); } docu.append("%\n% ----------------------------------------------\n"); docu.append("% Total number of instances: " + sumInst + "\n"); docu.append("% in " + cNum + " clusters\n"); docu.append("% Pattern chosen : "); if (m_Pattern == GRID) { docu.append("GRID, " + "distance multiplier = " + Utils.doubleToString(m_DistMult, 2) + "\n"); } else if (m_Pattern == SINE) { docu.append("SINE\n"); } else { docu.append("RANDOM\n"); } return docu.toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param args should contain arguments for the data producer: */ public static void main(String[] args) { runDataGenerator(new BIRCHCluster(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/clusterers/SubspaceCluster.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * SubspaceCluster.java * Copyright (C) 2001-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.clusterers; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.Range; import weka.core.RevisionUtils; import weka.core.Tag; import weka.core.Utils; import weka.datagenerators.ClusterDefinition; import weka.datagenerators.ClusterGenerator; /** * <!-- globalinfo-start --> A data generator that produces data points in * hyperrectangular subspace clusters. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -a &lt;num&gt; * The number of attributes (default 1). * </pre> * * <pre> * -c * Class Flag, if set, the cluster is listed in extra attribute. * </pre> * * <pre> * -b &lt;range&gt; * The indices for boolean attributes. * </pre> * * <pre> * -m &lt;range&gt; * The indices for nominal attributes. * </pre> * * <pre> * -P &lt;num&gt; * The noise rate in percent (default 0.0). * Can be between 0% and 30%. (Remark: The original * algorithm only allows noise up to 10%.) * </pre> * * <pre> * -C &lt;cluster-definition&gt; * A cluster definition of class 'SubspaceClusterDefinition' * (definition needs to be quoted to be recognized as * a single argument). * </pre> * * <pre> * Options specific to weka.datagenerators.clusterers.SubspaceClusterDefinition: * </pre> * * <pre> * -A &lt;range&gt; * Generates randomly distributed instances in the cluster. * </pre> * * <pre> * -U &lt;range&gt; * Generates uniformly distributed instances in the cluster. * </pre> * * <pre> * -G &lt;range&gt; * Generates gaussian distributed instances in the cluster. * </pre> * * <pre> * -D &lt;num&gt;,&lt;num&gt; * The attribute min/max (-A and -U) or mean/stddev (-G) for * the cluster. * </pre> * * <pre> * -N &lt;num&gt;..&lt;num&gt; * The range of number of instances per cluster (default 1..50). * </pre> * * <pre> * -I * Uses integer instead of continuous values (default continuous). * </pre> * * <!-- options-end --> * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class SubspaceCluster extends ClusterGenerator { /** for serialization */ static final long serialVersionUID = -3454999858505621128L; /** noise rate in percent (option P, between 0 and 30) */ protected double m_NoiseRate; /** cluster list */ protected ClusterDefinition[] m_Clusters; /** if nominal, store number of values */ protected int[] m_numValues; /** cluster type: uniform/random */ public static final int UNIFORM_RANDOM = 0; /** cluster type: total uniform */ public static final int TOTAL_UNIFORM = 1; /** cluster type: gaussian */ public static final int GAUSSIAN = 2; /** the tags for the cluster types */ public static final Tag[] TAGS_CLUSTERTYPE = { new Tag(UNIFORM_RANDOM, "uniform/random"), new Tag(TOTAL_UNIFORM, "total uniform"), new Tag(GAUSSIAN, "gaussian") }; /** cluster subtype: continuous */ public static final int CONTINUOUS = 0; /** cluster subtype: integer */ public static final int INTEGER = 1; /** the tags for the cluster types */ public static final Tag[] TAGS_CLUSTERSUBTYPE = { new Tag(CONTINUOUS, "continuous"), new Tag(INTEGER, "integer") }; /** * initializes the generator, sets the number of clusters to 0, since user has * to specify them explicitly */ public SubspaceCluster() { super(); setNoiseRate(defaultNoiseRate()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "A data generator that produces data points in " + "hyperrectangular subspace clusters."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option("\tThe noise rate in percent (default " + defaultNoiseRate() + ").\n" + "\tCan be between 0% and 30%. (Remark: The original \n" + "\talgorithm only allows noise up to 10%.)", "P", 1, "-P <num>")); result.addElement(new Option("\tA cluster definition of class '" + SubspaceClusterDefinition.class.getName().replaceAll(".*\\.", "") + "'\n" + "\t(definition needs to be quoted to be recognized as \n" + "\ta single argument).", "C", 1, "-C <cluster-definition>")); result.addElement(new Option("", "", 0, "\nOptions specific to " + SubspaceClusterDefinition.class.getName() + ":")); result.addAll(enumToVector(new SubspaceClusterDefinition(this) .listOptions())); return result.elements(); } /** * Parses a list of options for this object. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -h * Prints this help. * </pre> * * <pre> * -o &lt;file&gt; * The name of the output file, otherwise the generated data is * printed to stdout. * </pre> * * <pre> * -r &lt;name&gt; * The name of the relation. * </pre> * * <pre> * -d * Whether to print debug informations. * </pre> * * <pre> * -S * The seed for random function (default 1) * </pre> * * <pre> * -a &lt;num&gt; * The number of attributes (default 1). * </pre> * * <pre> * -c * Class Flag, if set, the cluster is listed in extra attribute. * </pre> * * <pre> * -b &lt;range&gt; * The indices for boolean attributes. * </pre> * * <pre> * -m &lt;range&gt; * The indices for nominal attributes. * </pre> * * <pre> * -P &lt;num&gt; * The noise rate in percent (default 0.0). * Can be between 0% and 30%. (Remark: The original * algorithm only allows noise up to 10%.) * </pre> * * <pre> * -C &lt;cluster-definition&gt; * A cluster definition of class 'SubspaceClusterDefinition' * (definition needs to be quoted to be recognized as * a single argument). * </pre> * * <pre> * Options specific to weka.datagenerators.clusterers.SubspaceClusterDefinition: * </pre> * * <pre> * -A &lt;range&gt; * Generates randomly distributed instances in the cluster. * </pre> * * <pre> * -U &lt;range&gt; * Generates uniformly distributed instances in the cluster. * </pre> * * <pre> * -G &lt;range&gt; * Generates gaussian distributed instances in the cluster. * </pre> * * <pre> * -D &lt;num&gt;,&lt;num&gt; * The attribute min/max (-A and -U) or mean/stddev (-G) for * the cluster. * </pre> * * <pre> * -N &lt;num&gt;..&lt;num&gt; * The range of number of instances per cluster (default 1..50). * </pre> * * <pre> * -I * Uses integer instead of continuous values (default continuous). * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; SubspaceClusterDefinition cl; Vector<SubspaceClusterDefinition> list; super.setOptions(options); m_numValues = new int[getNumAttributes()]; // numValues might be changed by a cluster definition // (only relevant for nominal data) for (int i = 0; i < getNumAttributes(); i++) { m_numValues[i] = 1; } tmpStr = Utils.getOption('P', options); if (tmpStr.length() != 0) { setNoiseRate(Double.parseDouble(tmpStr)); } else { setNoiseRate(defaultNoiseRate()); } // cluster definitions list = new Vector<SubspaceClusterDefinition>(); do { tmpStr = Utils.getOption('C', options); if (tmpStr.length() != 0) { cl = new SubspaceClusterDefinition(this); cl.setOptions(Utils.splitOptions(tmpStr)); list.add(cl); } } while (tmpStr.length() != 0); m_Clusters = list.toArray(new ClusterDefinition[list.size()]); // in case no cluster definition was provided, make sure that there's at // least one definition present -> see getClusters() getClusters(); } /** * Gets the current settings of the datagenerator. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); Collections.addAll(result, super.getOptions()); result.add("-P"); result.add("" + getNoiseRate()); for (int i = 0; i < getClusters().length; i++) { result.add("-C"); result.add(Utils.joinOptions(getClusters()[i].getOptions())); } return result.toArray(new String[result.size()]); } /** * returns the current cluster definitions, if necessary initializes them * * @return the current cluster definitions */ protected ClusterDefinition[] getClusters() { if ((m_Clusters == null) || (m_Clusters.length == 0)) { if (m_Clusters != null) { System.out.println("NOTE: at least 1 cluster definition is necessary, " + "created default one."); } m_Clusters = new ClusterDefinition[] { new SubspaceClusterDefinition(this) }; } return m_Clusters; } /** * returns the default number of attributes * * @return the default number of attributes */ @Override protected int defaultNumAttributes() { return 1; } /** * Sets the number of attributes the dataset should have. * * @param numAttributes the new number of attributes */ @Override public void setNumAttributes(int numAttributes) { super.setNumAttributes(numAttributes); m_numValues = new int[getNumAttributes()]; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ @Override public String numAttributesTipText() { return "The number of attributes the generated data will contain (Note: they must be covered by the cluster definitions!)"; } /** * returns the default noise rate * * @return the default noise rate */ protected double defaultNoiseRate() { return 0.0; } /** * Gets the percentage of noise set. * * @return the percentage of noise set */ public double getNoiseRate() { return m_NoiseRate; } /** * Sets the percentage of noise set. * * @param newNoiseRate new percentage of noise */ public void setNoiseRate(double newNoiseRate) { m_NoiseRate = newNoiseRate; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String noiseRateTipText() { return "The noise rate to use."; } /** * returns the currently set clusters * * @return the currently set clusters */ public ClusterDefinition[] getClusterDefinitions() { return getClusters(); } /** * sets the clusters to use * * @param value the clusters do use * @throws Exception if clusters are not the correct class */ public void setClusterDefinitions(ClusterDefinition[] value) throws Exception { String indexStr; indexStr = ""; m_Clusters = value; for (int i = 0; i < getClusters().length; i++) { if (!(getClusters()[i] instanceof SubspaceClusterDefinition)) { if (indexStr.length() != 0) { indexStr += ","; } indexStr += "" + (i + 1); } getClusters()[i].setParent(this); getClusters()[i].setOptions(getClusters()[i].getOptions()); // for // initializing! } // any wrong classes encountered? if (indexStr.length() != 0) { throw new Exception("These cluster definitions are not '" + SubspaceClusterDefinition.class.getName() + "': " + indexStr); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String clusterDefinitionsTipText() { return "The clusters to use."; } /** * Checks, whether all attributes are covered by cluster definitions and * returns TRUE in that case. * * @return whether all attributes are covered */ protected boolean checkCoverage() { int i; int n; int[] count; Range r; String attrIndex; SubspaceClusterDefinition cl; // check whether all the attributes are covered count = new int[getNumAttributes()]; for (i = 0; i < getNumAttributes(); i++) { if (m_nominalCols.isInRange(i)) { count[i]++; } if (m_booleanCols.isInRange(i)) { count[i]++; } for (n = 0; n < getClusters().length; n++) { cl = (SubspaceClusterDefinition) getClusters()[n]; r = new Range(cl.getAttrIndexRange()); r.setUpper(getNumAttributes()); if (r.isInRange(i)) { count[i]++; } } } // list all indices that are not covered attrIndex = ""; for (i = 0; i < count.length; i++) { if (count[i] == 0) { if (attrIndex.length() != 0) { attrIndex += ","; } attrIndex += (i + 1); } } if (attrIndex.length() != 0) { throw new IllegalArgumentException( "The following attributes are not covered by a cluster " + "definition: " + attrIndex + "\n"); } return true; } /** * Gets the single mode flag. * * @return true if methode generateExample can be used. */ @Override public boolean getSingleModeFlag() { return false; } /** * Initializes the format for the dataset produced. * * @return the output data format * @throws Exception data format could not be defined */ @Override public Instances defineDataFormat() throws Exception { // initialize setOptions(getOptions()); checkCoverage(); Random random = new Random(getSeed()); setRandom(random); Instances dataset; ArrayList<Attribute> attributes = new ArrayList<Attribute>(3); Attribute attribute; boolean classFlag = getClassFlag(); ArrayList<String> classValues = null; if (classFlag) { classValues = new ArrayList<String>(getClusters().length); } ArrayList<String> boolValues = new ArrayList<String>(2); boolValues.add("false"); boolValues.add("true"); ArrayList<String> nomValues = null; // define dataset for (int i = 0; i < getNumAttributes(); i++) { // define boolean attribute if (m_booleanCols.isInRange(i)) { attribute = new Attribute("B" + i, boolValues); } else if (m_nominalCols.isInRange(i)) { // define nominal attribute nomValues = new ArrayList<String>(m_numValues[i]); for (int j = 0; j < m_numValues[i]; j++) { nomValues.add("value-" + j); } attribute = new Attribute("N" + i, nomValues); } else { // numerical attribute attribute = new Attribute("X" + i); } attributes.add(attribute); } if (classFlag) { for (int i = 0; i < getClusters().length; i++) { classValues.add("c" + i); } attribute = new Attribute("class", classValues); attributes.add(attribute); } dataset = new Instances(getRelationNameToUse(), attributes, 0); if (classFlag) { dataset.setClassIndex(m_NumAttributes); } // set dataset format of this class Instances format = new Instances(dataset, 0); setDatasetFormat(format); for (int i = 0; i < getClusters().length; i++) { SubspaceClusterDefinition cl = (SubspaceClusterDefinition) getClusters()[i]; cl.setNumInstances(random); cl.setParent(this); } return dataset; } /** * Returns true if attribute is boolean * * @param index of the attribute * @return true if the attribute is boolean */ public boolean isBoolean(int index) { return m_booleanCols.isInRange(index); } /** * Returns true if attribute is nominal * * @param index of the attribute * @return true if the attribute is nominal */ public boolean isNominal(int index) { return m_nominalCols.isInRange(index); } /** * returns array that stores the number of values for a nominal attribute. * * @return the array that stores the number of values for a nominal attribute */ public int[] getNumValues() { return m_numValues; } /** * Generate an example of the dataset. * * @return the instance generated * @throws Exception if format not defined or generating <br/> * examples one by one is not possible, because voting is chosen */ @Override public Instance generateExample() throws Exception { throw new Exception("Examples cannot be generated one by one."); } /** * Generate all examples of the dataset. * * @return the instance generated * @throws Exception if format not defined */ @Override public Instances generateExamples() throws Exception { Instances format = getDatasetFormat(); Instance example = null; if (format == null) { throw new Exception("Dataset format not defined."); } // generate examples for one cluster after another for (int cNum = 0; cNum < getClusters().length; cNum++) { SubspaceClusterDefinition cl = (SubspaceClusterDefinition) getClusters()[cNum]; // get the number of instances to create int instNum = cl.getNumInstances(); // class value is c + cluster number String cName = "c" + cNum; switch (cl.getClusterType().getSelectedTag().getID()) { case (UNIFORM_RANDOM): for (int i = 0; i < instNum; i++) { // generate example example = generateExample(format, getRandom(), cl, cName); if (example != null) { format.add(example); } } break; case (TOTAL_UNIFORM): // generate examples if (!cl.isInteger()) { generateUniformExamples(format, instNum, cl, cName); } else { generateUniformIntegerExamples(format, instNum, cl, cName); } break; case (GAUSSIAN): // generate examples generateGaussianExamples(format, instNum, getRandom(), cl, cName); break; } } return format; } /** * Generate an example of the dataset. * * @param format the dataset format * @param randomG the random number generator to use * @param cl the cluster definition * @param cName the class value * @return the generated instance */ private Instance generateExample(Instances format, Random randomG, SubspaceClusterDefinition cl, String cName) { boolean makeInteger = cl.isInteger(); int num = -1; int numAtts = m_NumAttributes; if (getClassFlag()) { numAtts++; } double[] values = new double[numAtts]; boolean[] attributes = cl.getAttributes(); double[] minValue = cl.getMinValue(); double[] maxValue = cl.getMaxValue(); double value; int clusterI = -1; for (int i = 0; i < m_NumAttributes; i++) { if (attributes[i]) { clusterI++; num++; // boolean or nominal attribute if (isBoolean(i) || isNominal(i)) { if (minValue[clusterI] == maxValue[clusterI]) { value = minValue[clusterI]; } else { int numValues = (int) (maxValue[clusterI] - minValue[clusterI] + 1.0); value = randomG.nextInt(numValues); value += minValue[clusterI]; } } else { // numeric attribute value = randomG.nextDouble() * (maxValue[num] - minValue[num]) + minValue[num]; if (makeInteger) { value = Math.round(value); } } values[i] = value; } else { values[i] = Utils.missingValue(); } } if (getClassFlag()) { values[format.classIndex()] = format.classAttribute().indexOfValue(cName); } DenseInstance example = new DenseInstance(1.0, values); example.setDataset(format); return example; } /** * Generate examples for a uniform cluster dataset. * * @param format the dataset format * @param numInstances the number of instances to generator * @param cl the cluster definition * @param cName the class value */ private void generateUniformExamples(Instances format, int numInstances, SubspaceClusterDefinition cl, String cName) { int numAtts = m_NumAttributes; if (getClassFlag()) { numAtts++; } boolean[] attributes = cl.getAttributes(); double[] minValue = cl.getMinValue(); double[] maxValue = cl.getMaxValue(); double[] diff = new double[minValue.length]; for (int i = 0; i < minValue.length; i++) { diff[i] = (maxValue[i] - minValue[i]); } for (int j = 0; j < numInstances; j++) { double[] values = new double[numAtts]; int num = -1; for (int i = 0; i < m_NumAttributes; i++) { if (attributes[i]) { num++; double value = minValue[num] + (diff[num] * ((double) j / (double) (numInstances - 1))); values[i] = value; } else { values[i] = Utils.missingValue(); } } if (getClassFlag()) { values[format.classIndex()] = format.classAttribute().indexOfValue(cName); } DenseInstance example = new DenseInstance(1.0, values); example.setDataset(format); format.add(example); } } /** * Generate examples for a uniform cluster dataset. * * @param format the dataset format * @param numInstances the number of instances to generator * @param cl the cluster definition * @param cName the class value */ private void generateUniformIntegerExamples(Instances format, int numInstances, SubspaceClusterDefinition cl, String cName) { int numAtts = m_NumAttributes; if (getClassFlag()) { numAtts++; } double[] values = new double[numAtts]; boolean[] attributes = cl.getAttributes(); double[] minValue = cl.getMinValue(); double[] maxValue = cl.getMaxValue(); int[] minInt = new int[minValue.length]; int[] maxInt = new int[maxValue.length]; int[] intValue = new int[maxValue.length]; int[] numInt = new int[minValue.length]; int num = 1; for (int i = 0; i < minValue.length; i++) { minInt[i] = (int) Math.ceil(minValue[i]); maxInt[i] = (int) Math.floor(maxValue[i]); numInt[i] = (maxInt[i] - minInt[i] + 1); num = num * numInt[i]; } int numEach = numInstances / num; int rest = numInstances - numEach * num; // initialize with smallest values combination for (int i = 0; i < m_NumAttributes; i++) { if (attributes[i]) { values[i] = minInt[i]; intValue[i] = minInt[i]; } else { values[i] = Utils.missingValue(); } } if (getClassFlag()) { values[format.classIndex()] = format.classAttribute().indexOfValue(cName); } DenseInstance example = new DenseInstance(1.0, values); example.setDataset(format); int added = 0; int attr = 0; // do while not added all do { // add all for one value combination for (int k = 0; k < numEach; k++) { format.add(example); // Instance will be copied here added++; } if (rest > 0) { format.add(example); // Instance will be copied here added++; rest--; } if (added >= numInstances) { break; } // switch to the next value combination boolean done = false; do { if (attributes[attr] && (intValue[attr] + 1 <= maxInt[attr])) { intValue[attr]++; done = true; } else { attr++; } } while (!done); example.setValue(attr, intValue[attr]); } while (added < numInstances); } /** * Generate examples for a uniform cluster dataset. * * @param format the dataset format * @param numInstances the number of instances to generate * @param random the random number generator * @param cl the cluster definition * @param cName the class value */ private void generateGaussianExamples(Instances format, int numInstances, Random random, SubspaceClusterDefinition cl, String cName) { boolean makeInteger = cl.isInteger(); int numAtts = m_NumAttributes; if (getClassFlag()) { numAtts++; } boolean[] attributes = cl.getAttributes(); double[] meanValue = cl.getMeanValue(); double[] stddevValue = cl.getStddevValue(); for (int j = 0; j < numInstances; j++) { double[] values = new double[numAtts]; int num = -1; for (int i = 0; i < m_NumAttributes; i++) { if (attributes[i]) { num++; double value = meanValue[num] + (random.nextGaussian() * stddevValue[num]); if (makeInteger) { value = Math.round(value); } values[i] = value; } else { values[i] = Utils.missingValue(); } } if (getClassFlag()) { values[format.classIndex()] = format.classAttribute().indexOfValue(cName); } DenseInstance example = new DenseInstance(1.0, values); example.setDataset(format); format.add(example); } } /** * Compiles documentation about the data generation after the generation * process * * @return string with additional information about generated dataset * @throws Exception no input structure has been defined */ @Override public String generateFinished() throws Exception { return ""; } /** * Compiles documentation about the data generation before the generation * process * * @return string with additional information */ @Override public String generateStart() { StringBuffer docu = new StringBuffer(); int sumInst = 0; for (int cNum = 0; cNum < getClusters().length; cNum++) { SubspaceClusterDefinition cl = (SubspaceClusterDefinition) getClusters()[cNum]; docu.append("%\n"); docu.append("% Cluster: c" + cNum + " "); switch (cl.getClusterType().getSelectedTag().getID()) { case UNIFORM_RANDOM: docu.append("Uniform Random"); break; case TOTAL_UNIFORM: docu.append("Total Random"); break; case GAUSSIAN: docu.append("Gaussian"); break; } if (cl.isInteger()) { docu.append(" / INTEGER"); } docu.append("\n% ----------------------------------------------\n"); docu.append("%" + cl.attributesToString()); docu.append("\n% Number of Instances: " + cl.getInstNums() + "\n"); docu.append("% Generated Number of Instances: " + cl.getNumInstances() + "\n"); sumInst += cl.getNumInstances(); } docu.append("%\n% ----------------------------------------------\n"); docu.append("% Total Number of Instances: " + sumInst + "\n"); docu.append("% in " + getClusters().length + " Cluster(s)\n%"); return docu.toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param args should contain arguments for the data producer: */ public static void main(String[] args) { runDataGenerator(new SubspaceCluster(), args); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/datagenerators/clusterers/SubspaceClusterDefinition.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * SubspaceClusterDefinition.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.datagenerators.clusterers; import java.util.Enumeration; import java.util.Random; import java.util.StringTokenizer; import java.util.Vector; import weka.core.Option; import weka.core.Range; import weka.core.RevisionUtils; import weka.core.SelectedTag; import weka.core.Utils; import weka.datagenerators.ClusterDefinition; import weka.datagenerators.ClusterGenerator; /** * <!-- globalinfo-start --> A single cluster for the SubspaceCluster * datagenerator * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -A &lt;range&gt; * Generates randomly distributed instances in the cluster. * </pre> * * <pre> * -U &lt;range&gt; * Generates uniformly distributed instances in the cluster. * </pre> * * <pre> * -G &lt;range&gt; * Generates gaussian distributed instances in the cluster. * </pre> * * <pre> * -D &lt;num&gt;,&lt;num&gt; * The attribute min/max (-A and -U) or mean/stddev (-G) for * the cluster. * </pre> * * <pre> * -N &lt;num&gt;..&lt;num&gt; * The range of number of instances per cluster (default 1..50). * </pre> * * <pre> * -I * Uses integer instead of continuous values (default continuous). * </pre> * * <!-- options-end --> * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ * @see SubspaceCluster */ public class SubspaceClusterDefinition extends ClusterDefinition { /** for serialization */ static final long serialVersionUID = 3135678125044007231L; /** cluster type */ protected int m_clustertype; /** cluster subtypes */ protected int m_clustersubtype; /** number of attributes the cluster is defined for */ protected int m_numClusterAttributes; /** number of instances for this cluster */ protected int m_numInstances; /** minimal number of instances for this cluster */ protected int m_MinInstNum; /** maximal number of instances for this cluster */ protected int m_MaxInstNum; /** range of atttributes */ protected Range m_AttrIndexRange; /** attributes of this cluster */ protected boolean[] m_attributes; /** global indices of the attributes of the cluster */ protected int[] m_attrIndices; /** min or mean */ protected double[] m_valueA; /** max or stddev */ protected double[] m_valueB; /** * initializes the cluster, without a parent cluster (necessary for GOE) */ public SubspaceClusterDefinition() { super(); } /** * initializes the cluster with default values * * @param parent the datagenerator this cluster belongs to */ public SubspaceClusterDefinition(ClusterGenerator parent) { super(parent); } /** * sets the default values * * @throws Exception if setting of defaults fails */ @Override protected void setDefaults() throws Exception { setClusterType(defaultClusterType()); setClusterSubType(defaultClusterSubType()); setMinInstNum(defaultMinInstNum()); setMaxInstNum(defaultMaxInstNum()); setAttrIndexRange(defaultAttrIndexRange()); m_numClusterAttributes = 1; setValuesList(defaultValuesList()); } /** * Returns a string describing this data generator. * * @return a description of the data generator suitable for displaying in the * explorer/experimenter gui */ @Override public String globalInfo() { return "A single cluster for the SubspaceCluster datagenerator"; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option( "\tGenerates randomly distributed instances in the cluster.", "A", 1, "-A <range>")); result.addElement(new Option( "\tGenerates uniformly distributed instances in the cluster.", "U", 1, "-U <range>")); result.addElement(new Option( "\tGenerates gaussian distributed instances in the cluster.", "G", 1, "-G <range>")); result.addElement(new Option( "\tThe attribute min/max (-A and -U) or mean/stddev (-G) for\n" + "\tthe cluster.", "D", 1, "-D <num>,<num>")); result.addElement(new Option( "\tThe range of number of instances per cluster (default " + defaultMinInstNum() + ".." + defaultMaxInstNum() + ").", "N", 1, "-N <num>..<num>")); result.addElement(new Option( "\tUses integer instead of continuous values (default continuous).", "I", 0, "-I")); return result.elements(); } /** * Parses a list of options for this object. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -A &lt;range&gt; * Generates randomly distributed instances in the cluster. * </pre> * * <pre> * -U &lt;range&gt; * Generates uniformly distributed instances in the cluster. * </pre> * * <pre> * -G &lt;range&gt; * Generates gaussian distributed instances in the cluster. * </pre> * * <pre> * -D &lt;num&gt;,&lt;num&gt; * The attribute min/max (-A and -U) or mean/stddev (-G) for * the cluster. * </pre> * * <pre> * -N &lt;num&gt;..&lt;num&gt; * The range of number of instances per cluster (default 1..50). * </pre> * * <pre> * -I * Uses integer instead of continuous values (default continuous). * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; String fromToStr; int typeCount; typeCount = 0; fromToStr = ""; tmpStr = Utils.getOption('A', options); if (tmpStr.length() != 0) { fromToStr = tmpStr; setClusterType(new SelectedTag(SubspaceCluster.UNIFORM_RANDOM, SubspaceCluster.TAGS_CLUSTERTYPE)); typeCount++; } tmpStr = Utils.getOption('U', options); if (tmpStr.length() != 0) { fromToStr = tmpStr; setClusterType(new SelectedTag(SubspaceCluster.TOTAL_UNIFORM, SubspaceCluster.TAGS_CLUSTERTYPE)); typeCount++; } tmpStr = Utils.getOption('G', options); if (tmpStr.length() != 0) { fromToStr = tmpStr; setClusterType(new SelectedTag(SubspaceCluster.GAUSSIAN, SubspaceCluster.TAGS_CLUSTERTYPE)); typeCount++; } // default is uniform/random if (typeCount == 0) { setClusterType(new SelectedTag(SubspaceCluster.UNIFORM_RANDOM, SubspaceCluster.TAGS_CLUSTERTYPE)); } else if (typeCount > 1) { throw new Exception("Only one cluster type can be specified!"); } setAttrIndexRange(fromToStr); tmpStr = Utils.getOption('D', options); if (tmpStr.length() != 0) { setValuesList(tmpStr); } else { setValuesList(defaultValuesList()); } tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setInstNums(tmpStr); } else { setInstNums(defaultMinInstNum() + ".." + defaultMaxInstNum()); } if (Utils.getFlag('I', options)) { setClusterSubType(new SelectedTag(SubspaceCluster.INTEGER, SubspaceCluster.TAGS_CLUSTERSUBTYPE)); } else { setClusterSubType(new SelectedTag(SubspaceCluster.CONTINUOUS, SubspaceCluster.TAGS_CLUSTERSUBTYPE)); } } /** * Gets the current settings of the datagenerator BIRCHCluster. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; result = new Vector<String>(); if (isRandom()) { result.add("-A"); result.add("" + getAttrIndexRange()); } else if (isUniform()) { result.add("-U"); result.add("" + getAttrIndexRange()); } else if (isGaussian()) { result.add("-G"); result.add("" + getAttrIndexRange()); } result.add("-D"); result.add("" + getValuesList()); result.add("-N"); result.add("" + getInstNums()); if (m_clustersubtype == SubspaceCluster.INTEGER) { result.add("-I"); } return result.toArray(new String[result.size()]); } /** * Make a string from the attribues list. * * @return the attributes as string */ public String attributesToString() { StringBuffer text = new StringBuffer(); int j = 0; for (int i = 0; i < m_attributes.length; i++) { if (m_attributes[i]) { if (isGaussian()) { text.append(" Attribute: " + i); text.append(" Mean: " + m_valueA[j]); text.append(" StdDev: " + m_valueB[j] + "\n%"); } else { text.append(" Attribute: " + i); text.append(" Range: " + m_valueA[j]); text.append(" - " + m_valueB[j] + "\n%"); } j++; } } return text.toString(); } /** * Make a string from the cluster features. * * @return the cluster features as string */ @Override public String toString() { StringBuffer text = new StringBuffer(); text.append("attributes " + attributesToString() + "\n"); text.append("number of instances " + getInstNums()); return text.toString(); } /** * sets the parent datagenerator this cluster belongs to * * @param parent the parent datagenerator */ public void setParent(SubspaceCluster parent) { super.setParent(parent); m_AttrIndexRange.setUpper(getParent().getNumAttributes()); } /** * returns the default attribute index range * * @return the default attribute index range */ protected String defaultAttrIndexRange() { return "1"; } /** * Sets which attributes are used in the cluster attributes among the * selection will be discretized. * * @param rangeList a string representing the list of attributes. Since the * string will typically come from a user, attributes are indexed * from 1. <br/> * eg: first-3,5,6-last */ public void setAttrIndexRange(String rangeList) { m_numClusterAttributes = 0; if (m_AttrIndexRange == null) { m_AttrIndexRange = new Range(); } m_AttrIndexRange.setRanges(rangeList); if (getParent() != null) { m_AttrIndexRange.setUpper(getParent().getNumAttributes()); m_attributes = new boolean[getParent().getNumAttributes()]; for (int i = 0; i < m_attributes.length; i++) { if (m_AttrIndexRange.isInRange(i)) { m_numClusterAttributes++; m_attributes[i] = true; } else { m_attributes[i] = false; } } // store translation from attr in cluster to attr in whole dataset m_attrIndices = new int[m_numClusterAttributes]; int clusterI = -1; for (int i = 0; i < m_attributes.length; i++) { if (m_AttrIndexRange.isInRange(i)) { clusterI++; m_attrIndices[clusterI] = i; } } } } /** * returns the attribute range(s). * * @return the attribute range(s). */ public String getAttrIndexRange() { return m_AttrIndexRange.getRanges(); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String attrIndexRangeTipText() { return "The attribute range(s)."; } public boolean[] getAttributes() { return m_attributes; } public double[] getMinValue() { return m_valueA; } public double[] getMaxValue() { return m_valueB; } public double[] getMeanValue() { return m_valueA; } public double[] getStddevValue() { return m_valueB; } public int getNumInstances() { return m_numInstances; } /** * returns the default cluster type * * @return the default cluster type */ protected SelectedTag defaultClusterType() { return new SelectedTag(SubspaceCluster.UNIFORM_RANDOM, SubspaceCluster.TAGS_CLUSTERTYPE); } /** * Gets the cluster type. * * @return the cluster type * @see SubspaceCluster#TAGS_CLUSTERTYPE */ public SelectedTag getClusterType() { return new SelectedTag(m_clustertype, SubspaceCluster.TAGS_CLUSTERTYPE); } /** * Sets the cluster type. * * @param value the new cluster type. * @see SubspaceCluster#TAGS_CLUSTERTYPE */ public void setClusterType(SelectedTag value) { if (value.getTags() == SubspaceCluster.TAGS_CLUSTERTYPE) { m_clustertype = value.getSelectedTag().getID(); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String clusterTypeTipText() { return "The type of cluster to use."; } /** * returns the default cluster sub type * * @return the default cluster sub type */ protected SelectedTag defaultClusterSubType() { return new SelectedTag(SubspaceCluster.CONTINUOUS, SubspaceCluster.TAGS_CLUSTERSUBTYPE); } /** * Gets the cluster sub type. * * @return the cluster sub type * @see SubspaceCluster#TAGS_CLUSTERSUBTYPE */ public SelectedTag getClusterSubType() { return new SelectedTag(m_clustersubtype, SubspaceCluster.TAGS_CLUSTERSUBTYPE); } /** * Sets the cluster sub type. * * @param value the new cluster sub type. * @see SubspaceCluster#TAGS_CLUSTERSUBTYPE */ public void setClusterSubType(SelectedTag value) { if (value.getTags() == SubspaceCluster.TAGS_CLUSTERSUBTYPE) { m_clustersubtype = value.getSelectedTag().getID(); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String clusterSubTypeTipText() { return "The sub-type of cluster to use."; } /** * checks, whether cluster type is random * * @return true if cluster type is random */ public boolean isRandom() { return (m_clustertype == SubspaceCluster.UNIFORM_RANDOM); } /** * checks, whether cluster type is uniform * * @return true if cluster type is uniform */ public boolean isUniform() { return (m_clustertype == SubspaceCluster.TOTAL_UNIFORM); } /** * checks, whether cluster type is gaussian * * @return true if cluster type is gaussian */ public boolean isGaussian() { return (m_clustertype == SubspaceCluster.GAUSSIAN); } /** * checks, whether cluster sub type is continuous * * @return true if cluster sub type is continuous */ public boolean isContinuous() { return (m_clustertype == SubspaceCluster.CONTINUOUS); } /** * checks, whether cluster sub type is integer * * @return true if cluster sub type is integer */ public boolean isInteger() { return (m_clustersubtype == SubspaceCluster.INTEGER); } /** * Sets the upper and lower boundary for instances for this cluster. * * @param fromTo the string containing the upper and lower boundary for * instances per cluster separated by .. */ protected void setInstNums(String fromTo) { int i = fromTo.indexOf(".."); if (i == -1) { i = fromTo.length(); } String from = fromTo.substring(0, i); m_MinInstNum = Integer.parseInt(from); if (i < fromTo.length()) { String to = fromTo.substring(i + 2, fromTo.length()); m_MaxInstNum = Integer.parseInt(to); } else { m_MaxInstNum = m_MinInstNum; } } /** * Get a string with the upper and lower boundary for the number of instances * for this cluster. * * @return the string containing the upper and lower boundary for instances * per cluster separated by .. */ protected String getInstNums() { String text = new String("" + m_MinInstNum + ".." + m_MaxInstNum); return text; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ protected String instNumsTipText() { return "The lower and upper boundary for the number of instances in this cluster."; } /** * returns the default min number of instances * * @return the default min number of instances */ protected int defaultMinInstNum() { return 1; } /** * Gets the lower boundary for instances per cluster. * * @return the the lower boundary for instances per cluster */ public int getMinInstNum() { return m_MinInstNum; } /** * Sets the lower boundary for instances per cluster. * * @param newMinInstNum new lower boundary for instances per cluster */ public void setMinInstNum(int newMinInstNum) { m_MinInstNum = newMinInstNum; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minInstNumTipText() { return "The lower boundary for instances per cluster."; } /** * returns the default max number of instances * * @return the default max number of instances */ protected int defaultMaxInstNum() { return 50; } /** * Gets the upper boundary for instances per cluster. * * @return the upper boundary for instances per cluster */ public int getMaxInstNum() { return m_MaxInstNum; } /** * Sets the upper boundary for instances per cluster. * * @param newMaxInstNum new upper boundary for instances per cluster */ public void setMaxInstNum(int newMaxInstNum) { m_MaxInstNum = newMaxInstNum; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxInstNumTipText() { return "The upper boundary for instances per cluster."; } /** * Sets the real number of instances for this cluster. * * @param r random number generator */ public void setNumInstances(Random r) { if (m_MaxInstNum > m_MinInstNum) { m_numInstances = (int) (r.nextDouble() * (m_MaxInstNum - m_MinInstNum) + m_MinInstNum); } else { m_numInstances = m_MinInstNum; } } /** * returns the default values list * * @return the default values list */ protected String defaultValuesList() { return "1,10"; } /** * Sets the ranges for each attribute. * * @param fromToList the string containing the upper and lower boundary for * instances per cluster separated by .. * @throws Exception if values are not correct in number or value */ public void setValuesList(String fromToList) throws Exception { m_valueA = new double[m_numClusterAttributes]; m_valueB = new double[m_numClusterAttributes]; setValuesList(fromToList, m_valueA, m_valueB, "D"); SubspaceCluster parent = (SubspaceCluster) getParent(); for (int i = 0; i < m_numClusterAttributes; i++) { if ((!isGaussian()) && (m_valueA[i] > m_valueB[i])) { throw new Exception("Min must be smaller than max."); } if (getParent() != null) { // boolean values are only 0.0 and 1.0 if (parent.isBoolean(m_attrIndices[i])) { parent.getNumValues()[m_attrIndices[i]] = 2; if (((m_valueA[i] != 0.0) && (m_valueA[i] != 1.0)) || ((m_valueB[i] != 0.0) && (m_valueB[i] != 1.0))) { throw new Exception("Ranges for boolean must be 0 or 1 only."); } } if (parent.isNominal(m_attrIndices[i])) { // nominal values: attributes range might have to be enlarged double rest = m_valueA[i] - Math.rint(m_valueA[i]); if (rest != 0.0) { throw new Exception(" Ranges for nominal must be integer"); } rest = m_valueB[i] - Math.rint(m_valueB[i]); if (rest != 0.0) { throw new Exception("Ranges for nominal must be integer"); } if (m_valueA[i] < 0.0) { throw new Exception( "Range for nominal must start with number 0.0 or higher"); } if (m_valueB[i] + 1 > parent.getNumValues()[m_attrIndices[i]]) { // add new values to attribute // (actual format is not yet defined) parent.getNumValues()[m_attrIndices[i]] = (int) m_valueB[i] + 1; } } } } } /** * returns the range for each attribute as string */ public String getValuesList() { String result; int i; result = ""; if (m_valueA != null) { for (i = 0; i < m_valueA.length; i++) { if (i > 0) { result += ","; } result += "" + m_valueA[i] + "," + m_valueB[i]; } } return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String valuesListTipText() { return "The min (mean) and max (standard deviation) for each attribute as a comma-separated string."; } /** * Sets the ranges for each attribute. * * @param fromToList the string containing the upper and lower boundary for * instances per cluster separated by .. * @param first the "from's" * @param second the "to's" * @param optionLetter the option, from which the list came * @throws Exception if values are not correct in number or value */ public void setValuesList(String fromToList, double[] first, double[] second, String optionLetter) throws Exception { StringTokenizer tok; int index; tok = new StringTokenizer(fromToList, ","); if (tok.countTokens() != first.length + second.length) { throw new Exception("Wrong number of values for option '-" + optionLetter + "'."); } index = 0; while (tok.hasMoreTokens()) { first[index] = Double.parseDouble(tok.nextToken()); second[index] = Double.parseDouble(tok.nextToken()); index++; } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/CheckEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * CheckEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.Attribute; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.TestInstances; import weka.core.Utils; import weka.core.WeightedInstancesHandler; /** * Class for examining the capabilities and finding problems with estimators. If * you implement a estimator using the WEKA.libraries, you should run the checks * on it to ensure robustness and correct operation. Passing all the tests of * this object does not mean bugs in the estimator don't exist, but this will * help find some common ones. * <p/> * * Typical usage: * <p/> * <code>java weka.estimators.CheckEstimator -W estimator_name * estimator_options </code> * <p/> * * This class uses code from the CheckEstimatorClass ATTENTION! Current * estimators can only 1. split on a nominal class attribute 2. build estimators * for nominal and numeric attributes 3. build estimators independendly of the * class type The functionality to test on other class and attribute types is * left in big parts in the code. * * CheckEstimator reports on the following: * <ul> * <li>Estimator abilities * <ul> * <li>Possible command line options to the estimator</li> * <li>Whether the estimator can predict nominal, numeric, string, date or * relational class attributes. Warnings will be displayed if performance is * worse than ZeroR</li> * <li>Whether the estimator can be trained incrementally</li> * <li>Whether the estimator can build estimates for numeric attributes</li> * <li>Whether the estimator can handle nominal attributes</li> * <li>Whether the estimator can handle string attributes</li> * <li>Whether the estimator can handle date attributes</li> * <li>Whether the estimator can handle relational attributes</li> * <li>Whether the estimator build estimates for multi-instance data</li> * <li>Whether the estimator can handle missing attribute values</li> * <li>Whether the estimator can handle missing class values</li> * <li>Whether a nominal estimator only handles 2 class problems</li> * <li>Whether the estimator can handle instance weights</li> * </ul> * </li> * <li>Correct functioning * <ul> * <li>Correct initialisation during addvalues (i.e. no result changes when * addValues called repeatedly)</li> * <li>Whether incremental training produces the same results as during * non-incremental training (which may or may not be OK)</li> * <li>Whether the estimator alters the data pased to it (number of instances, * instance order, instance weights, etc)</li> * </ul> * </li> * <li>Degenerate cases * <ul> * <li>building estimator with zero training instances</li> * <li>all but one attribute attribute values missing</li> * <li>all attribute attribute values missing</li> * <li>all but one class values missing</li> * <li>all class values missing</li> * </ul> * </li> * </ul> * Running CheckEstimator with the debug option set will output the training and * test datasets for any failed tests. * <p/> * * The <code>weka.estimators.AbstractEstimatorTest</code> uses this class to * test all the estimators. Any changes here, have to be checked in that * abstract test class, too. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -D * Turn on debugging output. * </pre> * * <pre> * -S * Silent mode - prints nothing to stdout. * </pre> * * <pre> * -N &lt;num&gt; * The number of instances in the datasets (default 100). * </pre> * * <pre> * -W * Full name of the estimator analysed. * eg: weka.estimators.NormalEstimator * </pre> * * <pre> * Options specific to estimator weka.estimators.NormalEstimator: * </pre> * * <pre> * -D * If set, estimator is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * Options after -- are passed to the designated estimator. * <p/> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ * @see TestInstances */ public class CheckEstimator implements OptionHandler, RevisionHandler { /* * Note about test methods: - methods return array of booleans - first index: * success or not - second index: acceptable or not (e.g., Exception is OK) - * in case the performance is worse than that of ZeroR both indices are true * * FracPete (fracpete at waikato dot ac dot nz) */ /** * a class for postprocessing the test-data */ public class PostProcessor implements RevisionHandler { /** * Provides a hook for derived classes to further modify the data. * Currently, the data is just passed through. * * @param data the data to process * @return the processed data */ protected Instances process(Instances data) { return data; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } /*** The estimator to be examined */ protected Estimator m_Estimator = new weka.estimators.NormalEstimator( 0.000001); /** The options to be passed to the base estimator. */ protected String[] m_EstimatorOptions; /** The results of the analysis as a string */ protected String m_AnalysisResults; /** Debugging mode, gives extra output if true */ protected boolean m_Debug = false; /** Silent mode, for no output at all to stdout */ protected boolean m_Silent = false; /** The number of instances in the datasets */ protected int m_NumInstances = 100; /** for post-processing the data even further */ protected PostProcessor m_PostProcessor = null; /** whether classpath problems occurred */ protected boolean m_ClasspathProblems = false; /** * class that contains info about the attribute types the estimator can * estimate estimator work on one attribute only */ public static class AttrTypes implements RevisionHandler { boolean nominal = false; boolean numeric = false; boolean string = false; boolean date = false; boolean relational = false; AttrTypes() { } AttrTypes(AttrTypes newTypes) { nominal = newTypes.nominal; numeric = newTypes.numeric; string = newTypes.string; date = newTypes.date; relational = newTypes.relational; } AttrTypes(int type) { if (type == Attribute.NOMINAL) { nominal = true; } if (type == Attribute.NUMERIC) { numeric = true; } if (type == Attribute.STRING) { string = true; } if (type == Attribute.DATE) { date = true; } if (type == Attribute.RELATIONAL) { relational = true; } } int getSetType() throws Exception { int sum = 0; int type = -1; if (nominal) { sum++; type = Attribute.NOMINAL; } if (numeric) { sum++; type = Attribute.NUMERIC; } if (string) { sum++; type = Attribute.STRING; } if (date) { sum++; type = Attribute.DATE; } if (relational) { sum++; type = Attribute.RELATIONAL; } if (sum > 1) { throw new Exception("Expected to have only one type set used wrongly."); } if (type < 0) { throw new Exception("No type set."); } return type; } boolean oneIsSet() { return (nominal || numeric || string || date || relational); } public Vector<Integer> getVectorOfAttrTypes() { Vector<Integer> attrs = new Vector<Integer>(); if (nominal) { attrs.add(new Integer(Attribute.NOMINAL)); } if (numeric) { attrs.add(new Integer(Attribute.NUMERIC)); } if (string) { attrs.add(new Integer(Attribute.STRING)); } if (date) { attrs.add(new Integer(Attribute.DATE)); } if (relational) { attrs.add(new Integer(Attribute.RELATIONAL)); } return attrs; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } /** * public class that contains info about the chosen attribute type estimator * work on one attribute only */ public static class EstTypes implements RevisionHandler { boolean incremental = false; boolean weighted = false; boolean supervised = false; /** * Constructor */ public EstTypes() { } /** * Constructor */ public EstTypes(boolean i, boolean w, boolean s) { incremental = i; weighted = w; supervised = s; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(4); newVector .addElement(new Option("\tTurn on debugging output.", "D", 0, "-D")); newVector.addElement(new Option( "\tSilent mode - prints nothing to stdout.", "S", 0, "-S")); newVector.addElement(new Option( "\tThe number of instances in the datasets (default 100).", "N", 1, "-N <num>")); newVector.addElement(new Option("\tFull name of the estimator analysed.\n" + "\teg: weka.estimators.NormalEstimator", "W", 1, "-W")); if ((m_Estimator != null) && (m_Estimator instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to estimator " + m_Estimator.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_Estimator) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -D * Turn on debugging output. * </pre> * * <pre> * -S * Silent mode - prints nothing to stdout. * </pre> * * <pre> * -N &lt;num&gt; * The number of instances in the datasets (default 100). * </pre> * * <pre> * -W * Full name of the estimator analysed. * eg: weka.estimators.NormalEstimator * </pre> * * <pre> * Options specific to estimator weka.estimators.NormalEstimator: * </pre> * * <pre> * -D * If set, estimator is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; setDebug(Utils.getFlag('D', options)); setSilent(Utils.getFlag('S', options)); tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setNumInstances(Integer.parseInt(tmpStr)); } else { setNumInstances(100); } tmpStr = Utils.getOption('W', options); if (tmpStr.length() == 0) { throw new Exception("A estimator must be specified with the -W option."); } setEstimator(Estimator.forName(tmpStr, Utils.partitionOptions(options))); } /** * Gets the current settings of the CheckEstimator. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); if (getDebug()) { result.add("-D"); } if (getSilent()) { result.add("-S"); } result.add("-N"); result.add("" + getNumInstances()); if (getEstimator() != null) { result.add("-W"); result.add(getEstimator().getClass().getName()); } if ((m_Estimator != null) && (m_Estimator instanceof OptionHandler)) { String[] options = ((OptionHandler) m_Estimator).getOptions(); if (options.length > 0) { result.add("--"); Collections.addAll(result, options); } } return result.toArray(new String[result.size()]); } /** * sets the PostProcessor to use * * @param value the new PostProcessor * @see #m_PostProcessor */ public void setPostProcessor(PostProcessor value) { m_PostProcessor = value; } /** * returns the current PostProcessor, can be null * * @return the current PostProcessor */ public PostProcessor getPostProcessor() { return m_PostProcessor; } /** * returns TRUE if the estimator returned a "not in classpath" Exception * * @return true if CLASSPATH problems occurred */ public boolean hasClasspathProblems() { return m_ClasspathProblems; } /** * Begin the tests, reporting results to System.out */ public void doTests() { if (getEstimator() == null) { println("\n=== No estimator set ==="); return; } println("\n=== Check on Estimator: " + getEstimator().getClass().getName() + " ===\n"); m_ClasspathProblems = false; // Start tests with test for options canTakeOptions(); // test what type of estimator it is EstTypes estTypes = new EstTypes(); estTypes.incremental = incrementalEstimator()[0]; estTypes.weighted = weightedInstancesHandler()[0]; estTypes.supervised = supervisedEstimator()[0]; // in none of the estimators yet the functionality is depending on the class // type // since this could change the basic structure taken from checkclassifiers // is kept here int classType = Attribute.NOMINAL; AttrTypes attrTypes = testsPerClassType(classType, estTypes); // only nominal class can be split up so far canSplitUpClass(attrTypes, classType); } /** * Set debugging mode * * @param debug true if debug output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; // disable silent mode, if necessary if (getDebug()) { setSilent(false); } } /** * Get whether debugging is turned on * * @return true if debugging output is on */ public boolean getDebug() { return m_Debug; } /** * Set slient mode, i.e., no output at all to stdout * * @param value whether silent mode is active or not */ public void setSilent(boolean value) { m_Silent = value; } /** * Get whether silent mode is turned on * * @return true if silent mode is on */ public boolean getSilent() { return m_Silent; } /** * Sets the number of instances to use in the datasets (some estimators might * require more instances). * * @param value the number of instances to use */ public void setNumInstances(int value) { m_NumInstances = value; } /** * Gets the current number of instances to use for the datasets. * * @return the number of instances */ public int getNumInstances() { return m_NumInstances; } /** * Set the estimator for boosting. * * @param newEstimator the Estimator to use. */ public void setEstimator(Estimator newEstimator) { m_Estimator = newEstimator; } /** * Get the estimator used as the estimator * * @return the estimator used as the estimator */ public Estimator getEstimator() { return m_Estimator; } /** * prints the given message to stdout, if not silent mode * * @param msg the text to print to stdout */ protected void print(Object msg) { if (!getSilent()) { System.out.print(msg); } } /** * prints the given message (+ LF) to stdout, if not silent mode * * @param msg the message to println to stdout */ protected void println(Object msg) { print(msg + "\n"); } /** * prints a LF to stdout, if not silent mode */ protected void println() { print("\n"); } /** * Run a battery of tests for a given class attribute type * * @param classType true if the class attribute should be numeric * @param estTypes types the estimator is, like incremental, weighted, * supervised etc * @return attribute types estimator can work with */ protected AttrTypes testsPerClassType(int classType, EstTypes estTypes) { // in none of the estimators yet is the estimation depending on the class // type // since this could change the basic structure taken from checkclassifiers // is kept here // test A: simple test - if can estimate AttrTypes attrTypes = new AttrTypes(); AttrTypes at = new AttrTypes(Attribute.NOMINAL); attrTypes.nominal = canEstimate(at, estTypes.supervised, classType)[0]; at = new AttrTypes(Attribute.NUMERIC); attrTypes.numeric = canEstimate(at, estTypes.supervised, classType)[0]; attrTypes.string = false; attrTypes.date = false; attrTypes.relational = false; // if (!multiInstance) // PRel = canEstimate(false, false, false, false, true, classType)[0]; // else // PRel = false; // one of the attribute types succeeded if (attrTypes.oneIsSet()) { Vector<Integer> attributesSet = attrTypes.getVectorOfAttrTypes(); // make tests for each attribute for (int i = 0; i < attributesSet.size(); i++) { AttrTypes workAttrTypes = new AttrTypes(attributesSet.elementAt(i) .intValue()); // test B: weights change estimate or not if (estTypes.weighted) { instanceWeights(workAttrTypes, classType); } if (classType == Attribute.NOMINAL) { int numClasses = 4; canHandleNClasses(workAttrTypes, numClasses); } // tests with class not the last attribute and the attribute not the // first // if (!multiInstance) { int numAtt = 4; canHandleClassAsNthAttribute(workAttrTypes, numAtt, 0, classType, 1); // TODOTODOcanHandleAttrAsNthAttribute(workAttrTypes, numAtt, 2, // classType); // } canHandleZeroTraining(workAttrTypes, classType); boolean handleMissingAttributes = canHandleMissing(workAttrTypes, classType, true, false, 20)[0]; if (handleMissingAttributes) { canHandleMissing(workAttrTypes, classType, true, false, 100); } boolean handleMissingClass = canHandleMissing(workAttrTypes, classType, false, true, 20)[0]; if (handleMissingClass) { canHandleMissing(workAttrTypes, classType, false, true, 100); } correctBuildInitialisation(workAttrTypes, classType); datasetIntegrity(workAttrTypes, classType, handleMissingAttributes, handleMissingClass); if (estTypes.incremental) { incrementingEquality(workAttrTypes, classType); } } } return attrTypes; } /** * Checks whether the scheme can take command line options. * * @return index 0 is true if the estimator can take options */ protected boolean[] canTakeOptions() { boolean[] result = new boolean[2]; print("options..."); if (m_Estimator instanceof OptionHandler) { println("yes"); if (m_Debug) { println("\n=== Full report ==="); Enumeration<Option> enu = ((OptionHandler) m_Estimator).listOptions(); while (enu.hasMoreElements()) { Option option = enu.nextElement(); print(option.synopsis() + "\n" + option.description() + "\n"); } println("\n"); } result[0] = true; } else { println("no"); result[0] = false; } return result; } /** * Checks whether the scheme can build models incrementally. * * @return index 0 is true if the estimator can train incrementally */ protected boolean[] incrementalEstimator() { boolean[] result = new boolean[2]; print("incremental estimator..."); if (m_Estimator instanceof IncrementalEstimator) { println("yes"); result[0] = true; } else { println("no"); result[0] = false; } return result; } /** * Checks whether the scheme says it can handle instance weights. * * @return true if the estimator handles instance weights */ protected boolean[] weightedInstancesHandler() { boolean[] result = new boolean[2]; print("weighted instances estimator..."); if (m_Estimator instanceof WeightedInstancesHandler) { println("yes"); result[0] = true; } else { println("no"); result[0] = false; } return result; } /** * Checks whether the estimator is supervised. * * @return true if the estimator handles instance weights */ protected boolean[] supervisedEstimator() { boolean[] result = new boolean[2]; result[0] = false; return result; } /** * Checks basic estimation of one attribute of the scheme, for simple * non-troublesome datasets. * * @param attrTypes the types the estimator can work with * @param classType the class type (NOMINAL, NUMERIC, etc.) * @return index 0 is true if the test was passed, index 1 is true if test was * acceptable */ protected boolean[] canEstimate(AttrTypes attrTypes, boolean supervised, int classType) { // supervised is ignored, no supervised estimators used yet print("basic estimation"); printAttributeSummary(attrTypes, classType); print("..."); ArrayList<String> accepts = new ArrayList<String>(); accepts.add("nominal"); accepts.add("numeric"); accepts.add("string"); accepts.add("date"); accepts.add("relational"); accepts.add("not in classpath"); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean attributeMissing = false, classMissing = false; int numAtts = 1, attrIndex = 0; return runBasicTest(attrTypes, numAtts, attrIndex, classType, missingLevel, attributeMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks basic estimation of one attribute of the scheme, for simple * non-troublesome datasets. * * @param attrTypes the types the estimator can work with * @param classType the class type (NOMINAL, NUMERIC, etc.) */ protected void canSplitUpClass(AttrTypes attrTypes, int classType) { if (attrTypes.nominal) { canSplitUpClass(Attribute.NOMINAL, classType); } if (attrTypes.numeric) { canSplitUpClass(Attribute.NUMERIC, classType); } } /** * Checks basic estimation of one attribute of the scheme, for simple * non-troublesome datasets. * * @param attrType the type of the estimator * @param classType the class type (NOMINAL, NUMERIC, etc.) * @return index 0 is true if the test was passed, index 1 is true if test was * acceptable */ protected boolean[] canSplitUpClass(int attrType, int classType) { boolean[] result = new boolean[2]; ArrayList<String> accepts = new ArrayList<String>(); accepts.add("not in classpath"); // supervised is ignored, no supervised estimators used yet print("split per class type "); printAttributeSummary(attrType, Attribute.NOMINAL); print("..."); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2; int numAtts = 3, attrIndex = 0, classIndex = 1; Instances train = null; Vector<Double> test; Estimator estimator = null; boolean built = false; try { AttrTypes at = new AttrTypes(attrType); train = makeTestDataset(42, numTrain, numAtts, at, numClasses, classType, classIndex); // prepare training data set and test value list test = makeTestValueList(24, numTest, train, attrIndex, attrType); estimator = Estimator.makeCopies(getEstimator(), 1)[0]; } catch (Exception ex) { ex.printStackTrace(); throw new Error("Error setting up for tests: " + ex.getMessage()); } try { estimator.addValues(train, attrIndex, classType, classIndex); built = true; testWithTestValues(estimator, test); println("yes"); result[0] = true; } catch (Exception ex) { boolean acceptable = false; String msg; if (ex.getMessage() == null) { msg = ""; } else { msg = ex.getMessage().toLowerCase(); } if (msg.indexOf("not in classpath") > -1) { m_ClasspathProblems = true; } for (int i = 0; i < accepts.size(); i++) { if (msg.indexOf(accepts.get(i)) >= 0) { acceptable = true; } } println("no" + (acceptable ? " (OK error message)" : "")); result[1] = acceptable; if (m_Debug) { println("\n=== Full Report ==="); print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } println(": " + ex.getMessage() + "\n"); if (!acceptable) { if (accepts.size() > 0) { print("Error message doesn't mention "); for (int i = 0; i < accepts.size(); i++) { if (i != 0) { print(" or "); } print('"' + accepts.get(i) + '"'); } } println("here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); println("=== Test Dataset ===\n" + test.toString() + "\n\n"); } } } return result; } /** * Checks whether nominal schemes can handle more than two classes. If a * scheme is only designed for two-class problems it should throw an * appropriate exception for multi-class problems. * * @param attrTypes attribute types the estimator excepts * @param numClasses the number of classes to test * @return index 0 is true if the test was passed, index 1 is true if test was * acceptable */ protected boolean[] canHandleNClasses(AttrTypes attrTypes, int numClasses) { print("more than two class problems"); printAttributeSummary(attrTypes, Attribute.NOMINAL); print("..."); ArrayList<String> accepts = new ArrayList<String>(); accepts.add("number"); accepts.add("class"); int numTrain = getNumInstances(), numTest = getNumInstances(), missingLevel = 0; boolean attributeMissing = false, classMissing = false; int numAttr = 1, attrIndex = 0; return runBasicTest(attrTypes, numAttr, attrIndex, Attribute.NOMINAL, missingLevel, attributeMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme can handle class attributes as Nth attribute. * * @param attrTypes the attribute types the estimator accepts * @param numAtts of attributes * @param attrIndex the index of the attribute * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param classIndex the index of the class attribute (0-based, -1 means last * attribute) * @return index 0 is true if the test was passed, index 1 is true if test was * acceptable * @see TestInstances#CLASS_IS_LAST */ protected boolean[] canHandleClassAsNthAttribute(AttrTypes attrTypes, int numAtts, int attrIndex, int classType, int classIndex) { if (classIndex == TestInstances.CLASS_IS_LAST) { print("class attribute as last attribute"); } else { print("class attribute as " + (classIndex + 1) + ". attribute"); } printAttributeSummary(attrTypes, classType); print("..."); ArrayList<String> accepts = new ArrayList<String>(); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean attributeMissing = false, classMissing = false; return runBasicTest(attrTypes, numAtts, attrIndex, classType, classIndex, missingLevel, attributeMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme can handle zero training instances. * * @param attrTypes attribute types that can be estimated * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 is true if the test was passed, index 1 is true if test was * acceptable */ protected boolean[] canHandleZeroTraining(AttrTypes attrTypes, int classType) { print("handle zero training instances"); printAttributeSummary(attrTypes, classType); print("..."); ArrayList<String> accepts = new ArrayList<String>(); accepts.add("train"); accepts.add("value"); int numTrain = 0, numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean attributeMissing = false, classMissing = false; int numAtts = 1; int attrIndex = 0; return runBasicTest(attrTypes, numAtts, attrIndex, classType, missingLevel, attributeMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme correctly initialises models when buildEstimator * is called. This test calls buildEstimator with one training dataset and * records performance on a test set. buildEstimator is then called on a * training set with different structure, and then again with the original * training set. The performance on the test set is compared with the original * results and any performance difference noted as incorrect build * initialisation. * * @param attrTypes attribute types that can be estimated * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 is true if the test was passed, index 1 is true if the * scheme performs worse than ZeroR, but without error (index 0 is * false) */ protected boolean[] correctBuildInitialisation(AttrTypes attrTypes, int classType) { boolean[] result = new boolean[2]; print("correct initialisation during buildEstimator"); printAttributeSummary(attrTypes, classType); print("..."); int numTrain = getNumInstances(); getNumInstances(); int numClasses = 2, missingLevel = 0; boolean attributeMissing = false, classMissing = false; Instances train1 = null; Instances train2 = null; Estimator estimator = null; Estimator estimator1 = null; boolean built = false; int stage = 0; int attrIndex1 = 1; int attrIndex2 = 2; try { // Make two sets of train/test splits with different // numbers of attributes train1 = makeTestDataset(42, numTrain, 2, attrTypes, numClasses, classType); train2 = makeTestDataset(84, numTrain, 3, attrTypes, numClasses, classType); if (missingLevel > 0) { addMissing(train1, missingLevel, attributeMissing, classMissing, attrIndex1); addMissing(train2, missingLevel, attributeMissing, classMissing, attrIndex2); } estimator = Estimator.makeCopies(getEstimator(), 1)[0]; } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { // TESTING?? stage = 0; estimator.addValues(train1, attrIndex1); built = true; estimator1 = Estimator.makeCopies(getEstimator(), 1)[0]; stage = 1; built = false; estimator.addValues(train2, attrIndex2); built = true; stage = 2; built = false; estimator.addValues(train1, attrIndex1); built = true; stage = 3; if (!estimator.equals(estimator1)) { if (m_Debug) { println("\n=== Full report ===\n" + "\nFirst build estimator\n" + estimator.toString() + "\n\n"); println("\nSecond build estimator\n" + estimator.toString() + "\n\n"); } throw new Exception("Results differ between buildEstimator calls"); } println("yes"); result[0] = true; } catch (Exception ex) { String msg = ex.getMessage().toLowerCase(); if (msg.indexOf("worse than zeror") >= 0) { println("warning: performs worse than ZeroR"); result[0] = true; result[1] = true; } else { println("no"); result[0] = false; } if (m_Debug) { println("\n=== Full Report ==="); print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } switch (stage) { case 0: print(" of dataset 1"); break; case 1: print(" of dataset 2"); break; case 2: print(" of dataset 1 (2nd build)"); break; case 3: print(", comparing results from builds of dataset 1"); break; } println(": " + ex.getMessage() + "\n"); println("here are the datasets:\n"); println("=== Train1 Dataset ===\n" + train1.toString() + "\n"); println("=== Train2 Dataset ===\n" + train2.toString() + "\n"); } } return result; } /** * Checks basic missing value handling of the scheme. If the missing values * cause an exception to be thrown by the scheme, this will be recorded. * * @param attrTypes attribute types that can be estimated * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param attributeMissing true if the missing values may be in the attributes * @param classMissing true if the missing values may be in the class * @param missingLevel the percentage of missing values * @return index 0 is true if the test was passed, index 1 is true if test was * acceptable */ protected boolean[] canHandleMissing(AttrTypes attrTypes, int classType, boolean attributeMissing, boolean classMissing, int missingLevel) { if (missingLevel == 100) { print("100% "); } print("missing"); if (attributeMissing) { print(" attribute"); if (classMissing) { print(" and"); } } if (classMissing) { print(" class"); } print(" values"); printAttributeSummary(attrTypes, classType); print("..."); ArrayList<String> accepts = new ArrayList<String>(); accepts.add("missing"); accepts.add("value"); accepts.add("train"); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2; int numAtts = 1, attrIndex = 0; return runBasicTest(attrTypes, numAtts, attrIndex, classType, missingLevel, attributeMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether an incremental scheme produces the same model when trained * incrementally as when batch trained. The model itself cannot be compared, * so we compare the evaluation on test data for both models. It is possible * to get a false positive on this test (likelihood depends on the estimator). * * @param attrTypes attribute types that can be estimated * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 is true if the test was passed */ protected boolean[] incrementingEquality(AttrTypes attrTypes, int classType) { print("incremental training produces the same results" + " as batch training"); printAttributeSummary(attrTypes, classType); print("..."); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean attributeMissing = false, classMissing = false; boolean[] result = new boolean[2]; Instances train = null; Estimator[] estimators = null; boolean built = false; int attrIndex = 0; Vector<Double> test; try { train = makeTestDataset(42, numTrain, 1, attrTypes, numClasses, classType); // prepare training data set and test value list test = makeTestValueList(24, numTest, train, attrIndex, attrTypes.getSetType()); if (missingLevel > 0) { addMissing(train, missingLevel, attributeMissing, classMissing, attrIndex); } estimators = Estimator.makeCopies(getEstimator(), 2); estimators[0].addValues(train, attrIndex); } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { for (int i = 0; i < train.numInstances(); i++) { ((IncrementalEstimator) estimators[1]).addValue(train.instance(i) .value(attrIndex), 1.0); } built = true; if (!estimators[0].equals(estimators[1])) { println("no"); result[0] = false; if (m_Debug) { println("\n=== Full Report ==="); println("Results differ between batch and " + "incrementally built models.\n" + "Depending on the estimator, this may be OK"); println("Here are the results:\n"); println("batch built results\n" + estimators[0].toString()); println("incrementally built results\n" + estimators[1].toString()); println("Here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); println("=== Test Dataset ===\n" + test.toString() + "\n\n"); } } else { println("yes"); result[0] = true; } } catch (Exception ex) { result[0] = false; print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } println(": " + ex.getMessage() + "\n"); } return result; } /** * Checks whether the estimator can handle instance weights. This test * compares the estimator performance on two datasets that are identical * except for the training weights. If the results change, then the estimator * must be using the weights. It may be possible to get a false positive from * this test if the weight changes aren't significant enough to induce a * change in estimator performance (but the weights are chosen to minimize the * likelihood of this). * * @param attrTypes attribute types that can be estimated * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 true if the test was passed */ protected boolean[] instanceWeights(AttrTypes attrTypes, int classType) { print("estimator uses instance weights"); printAttributeSummary(attrTypes, classType); print("..."); int numTrain = 2 * getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean attributeMissing = false, classMissing = false; boolean[] result = new boolean[2]; Instances train = null; Vector<Double> test = null; Estimator[] estimators = null; Vector<Double> resultProbsO = null; Vector<Double> resultProbsW = null; boolean built = false; boolean evalFail = false; int attrIndex = 0; try { train = makeTestDataset(42, numTrain, 1, attrTypes, numClasses, classType); // prepare training data set and test value list test = makeTestValueList(24, numTest, train, attrIndex, attrTypes.getSetType()); if (missingLevel > 0) { addMissing(train, missingLevel, attributeMissing, classMissing, attrIndex); } estimators = Estimator.makeCopies(getEstimator(), 2); estimators[0].addValues(train, attrIndex); resultProbsO = testWithTestValues(estimators[0], test); } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { // Now modify instance weights and re-built for (int i = 0; i < train.numInstances(); i++) { train.instance(i).setWeight(0); } Random random = new Random(1); for (int i = 0; i < train.numInstances() / 2; i++) { int inst = random.nextInt(train.numInstances()); int weight = random.nextInt(10) + 1; train.instance(inst).setWeight(weight); } estimators[1].addValues(train, attrIndex); resultProbsW = testWithTestValues(estimators[1], test); built = true; if (resultProbsO.equals(resultProbsW)) { // println("no"); evalFail = true; throw new Exception("evalFail"); } println("yes"); result[0] = true; } catch (Exception ex) { println("no"); result[0] = false; if (m_Debug) { println("\n=== Full Report ==="); if (evalFail) { println("Results don't differ between non-weighted and " + "weighted instance models."); println("Here are the results:\n"); println(probsToString(resultProbsO)); } else { print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } println(": " + ex.getMessage() + "\n"); } println("Here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); println("=== Train Weights ===\n"); for (int i = 0; i < train.numInstances(); i++) { println(" " + (i + 1) + " " + train.instance(i).weight()); } println("=== Test Dataset ===\n" + test.toString() + "\n\n"); println("(test weights all 1.0\n"); } } return result; } /** * Checks whether the scheme alters the training dataset during training. If * the scheme needs to modify the training data it should take a copy of the * training data. Currently checks for changes to header structure, number of * instances, order of instances, instance weights. * * @param attrTypes attribute types that can be estimated * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param attributeMissing true if we know the estimator can handle (at least) * moderate missing attribute values * @param classMissing true if we know the estimator can handle (at least) * moderate missing class values * @return index 0 is true if the test was passed */ protected boolean[] datasetIntegrity(AttrTypes attrTypes, int classType, boolean attributeMissing, boolean classMissing) { Estimator estimator = null; print("estimator doesn't alter original datasets"); printAttributeSummary(attrTypes, classType); print("..."); int numTrain = getNumInstances(); getNumInstances(); int numClasses = 2, missingLevel = 100; boolean[] result = new boolean[2]; Instances train = null; boolean built = false; try { train = makeTestDataset(42, numTrain, 1, attrTypes, numClasses, classType); int attrIndex = 0; if (missingLevel > 0) { addMissing(train, missingLevel, attributeMissing, classMissing, attrIndex); } estimator = Estimator.makeCopies(getEstimator(), 1)[0]; } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { Instances trainCopy = new Instances(train); int attrIndex = 0; estimator.addValues(trainCopy, attrIndex); compareDatasets(train, trainCopy); built = true; println("yes"); result[0] = true; } catch (Exception ex) { println("no"); result[0] = false; if (m_Debug) { println("\n=== Full Report ==="); print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } println(": " + ex.getMessage() + "\n"); println("Here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); } } return result; } /** * Runs a text on the datasets with the given characteristics. * * @param attrTypes attribute types that can be estimated * @param numAtts number of attributes * @param attrIndex attribute index * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param missingLevel the percentage of missing values * @param attributeMissing true if the missing values may be in the attributes * @param classMissing true if the missing values may be in the class * @param numTrain the number of instances in the training set * @param numTest the number of instaces in the test set * @param numClasses the number of classes * @param accepts the acceptable string in an exception * @return index 0 is true if the test was passed, index 1 is true if test was * acceptable */ protected boolean[] runBasicTest(AttrTypes attrTypes, int numAtts, int attrIndex, int classType, int missingLevel, boolean attributeMissing, boolean classMissing, int numTrain, int numTest, int numClasses, ArrayList<String> accepts) { return runBasicTest(attrTypes, numAtts, attrIndex, classType, TestInstances.CLASS_IS_LAST, missingLevel, attributeMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Runs a text on the datasets with the given characteristics. * * @param attrTypes attribute types that can be estimated * @param numAtts number of attributes * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param classIndex the attribute index of the class * @param missingLevel the percentage of missing values * @param attributeMissing true if the missing values may be in the attributes * @param classMissing true if the missing values may be in the class * @param numTrain the number of instances in the training set * @param numTest the number of instaces in the test set * @param numClasses the number of classes * @param accepts the acceptable string in an exception * @return index 0 is true if the test was passed, index 1 is true if test was * acceptable */ protected boolean[] runBasicTest(AttrTypes attrTypes, int numAtts, int attrIndex, int classType, int classIndex, int missingLevel, boolean attributeMissing, boolean classMissing, int numTrain, int numTest, int numClasses, ArrayList<String> accepts) { boolean[] result = new boolean[2]; Instances train = null; Vector<Double> test = null; Estimator estimator = null; boolean built = false; try { train = makeTestDataset(42, numTrain, numAtts, attrTypes, numClasses, classType, classIndex); // prepare training data set and test value list if (numTrain > 0) { test = makeTestValueList(24, numTest, train, attrIndex, attrTypes.getSetType()); } else { double min = -10.0; double max = 8.0; test = makeTestValueList(24, numTest, min, max, attrTypes.getSetType()); } if (missingLevel > 0) { addMissing(train, missingLevel, attributeMissing, classMissing, attrIndex); } estimator = Estimator.makeCopies(getEstimator(), 1)[0]; } catch (Exception ex) { ex.printStackTrace(); throw new Error("Error setting up for tests: " + ex.getMessage()); } try { estimator.addValues(train, attrIndex); built = true; testWithTestValues(estimator, test); println("yes"); result[0] = true; } catch (Exception ex) { boolean acceptable = false; String msg; if (ex.getMessage() == null) { msg = ""; } else { msg = ex.getMessage().toLowerCase(); } if (msg.indexOf("not in classpath") > -1) { m_ClasspathProblems = true; } for (int i = 0; i < accepts.size(); i++) { if (msg.indexOf(accepts.get(i)) >= 0) { acceptable = true; } } println("no" + (acceptable ? " (OK error message)" : "")); result[1] = acceptable; if (m_Debug) { println("\n=== Full Report ==="); print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } println(": " + ex.getMessage() + "\n"); if (!acceptable) { if (accepts.size() > 0) { print("Error message doesn't mention "); for (int i = 0; i < accepts.size(); i++) { if (i != 0) { print(" or "); } print('"' + accepts.get(i) + '"'); } } println("here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); println("=== Test Dataset ===\n" + test.toString() + "\n\n"); } } } return result; } /** * Compare two datasets to see if they differ. * * @param data1 one set of instances * @param data2 the other set of instances * @throws Exception if the datasets differ */ protected void compareDatasets(Instances data1, Instances data2) throws Exception { if (!data2.equalHeaders(data1)) { throw new Exception("header has been modified\n" + data2.equalHeadersMsg(data1)); } if (!(data2.numInstances() == data1.numInstances())) { throw new Exception("number of instances has changed"); } for (int i = 0; i < data2.numInstances(); i++) { Instance orig = data1.instance(i); Instance copy = data2.instance(i); for (int j = 0; j < orig.numAttributes(); j++) { if (orig.isMissing(j)) { if (!copy.isMissing(j)) { throw new Exception("instances have changed"); } } else if (orig.value(j) != copy.value(j)) { throw new Exception("instances have changed"); } if (orig.weight() != copy.weight()) { throw new Exception("instance weights have changed"); } } } } /** * Add missing values to a dataset. * * @param data the instances to add missing values to * @param level the level of missing values to add (if positive, this is the * probability that a value will be set to missing, if negative all * but one value will be set to missing (not yet implemented)) * @param attributeMissing if true, attributes will be modified * @param classMissing if true, the class attribute will be modified * @param attrIndex index of the attribute */ protected void addMissing(Instances data, int level, boolean attributeMissing, boolean classMissing, int attrIndex) { int classIndex = data.classIndex(); Random random = new Random(1); for (int i = 0; i < data.numInstances(); i++) { Instance current = data.instance(i); for (int j = 0; j < data.numAttributes(); j++) { if (((j == classIndex) && classMissing) || ((j == attrIndex) && attributeMissing)) { if (random.nextInt(100) < level) { current.setMissing(j); } } } } } /** * Make a simple set of instances, which can later be modified for use in * specific tests. * * @param seed the random number seed * @param numInstances the number of instances to generate * @param numAttr the number of attributes * @param attrTypes the attribute types * @param numClasses the number of classes (if nominal class) * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return the test dataset * @throws Exception if the dataset couldn't be generated * @see #process(Instances) */ protected Instances makeTestDataset(int seed, int numInstances, int numAttr, AttrTypes attrTypes, int numClasses, int classType) throws Exception { return makeTestDataset(seed, numInstances, numAttr, attrTypes, numClasses, classType, TestInstances.CLASS_IS_LAST); } /** * Make a simple set of instances with variable position of the class * attribute, which can later be modified for use in specific tests. * * @param seed the random number seed * @param numInstances the number of instances to generate * @param numAttr the number of attributes to generate * @param attrTypes the type of attrbute that is excepted * @param numClasses the number of classes (if nominal class) * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param classIndex the index of the class (0-based, -1 as last) * @return the test dataset * @throws Exception if the dataset couldn't be generated * @see TestInstances#CLASS_IS_LAST * @see #process(Instances) */ protected Instances makeTestDataset(int seed, int numInstances, int numAttr, AttrTypes attrTypes, int numClasses, int classType, int classIndex) throws Exception { TestInstances dataset = new TestInstances(); dataset.setSeed(seed); dataset.setNumInstances(numInstances); dataset.setNumNominal(attrTypes.nominal ? numAttr : 0); dataset.setNumNumeric(attrTypes.numeric ? numAttr : 0); dataset.setNumString(attrTypes.string ? numAttr : 0); dataset.setNumDate(attrTypes.date ? numAttr : 0); dataset.setNumRelational(attrTypes.relational ? numAttr : 0); dataset.setNumClasses(numClasses); dataset.setClassType(classType); dataset.setClassIndex(classIndex); return process(dataset.generate()); } /** * Make a simple set of values. Only one of the num'type' parameters should be * larger 0. (just to make parameter similar to the makeTestDataset * parameters) * * @param seed the random number seed * @param numValues the number of values to generate * @param data the dataset to make test examples for * @param attrIndex index of the attribute * @param attrType the class type (NUMERIC, NOMINAL, etc.) * @throws Exception if the dataset couldn't be generated * @see #process(Instances) */ protected Vector<Double> makeTestValueList(int seed, int numValues, Instances data, int attrIndex, int attrType) throws Exception { // get min max double[] minMax = getMinimumMaximum(data, attrIndex); double minValue = minMax[0]; double maxValue = minMax[1]; // make value list and put into a VECTOR double range = maxValue - minValue; Vector<Double> values = new Vector<Double>(numValues); Random random = new Random(seed); if (attrType == Attribute.NOMINAL) { for (int i = 0; i < numValues; i++) { Double v = new Double(random.nextInt((int) range) + (int) minValue); values.add(v); } } if (attrType == Attribute.NUMERIC) { for (int i = 0; i < numValues; i++) { Double v = new Double(random.nextDouble() * range + minValue); values.add(v); } } return values; } /** * Make a simple set of values. Only one of the num'type' parameters should be * larger 0. (just to make parameter similar to the makeTestDataset * parameters) * * @param seed the random number seed * @param numValues the number of values to generate * @param minValue the minimal data value * @param maxValue the maximal data value * @param attrType the class type (NUMERIC, NOMINAL, etc.) * @throws Exception if the dataset couldn't be generated * @see #process(Instances) */ protected Vector<Double> makeTestValueList(int seed, int numValues, double minValue, double maxValue, int attrType) throws Exception { // make value list and put into a VECTOR double range = maxValue - minValue; Vector<Double> values = new Vector<Double>(numValues); Random random = new Random(seed); if (attrType == Attribute.NOMINAL) { for (int i = 0; i < numValues; i++) { Double v = new Double(random.nextInt((int) range) + (int) minValue); values.add(v); } } if (attrType == Attribute.NUMERIC) { for (int i = 0; i < numValues; i++) { Double v = new Double(random.nextDouble() * range + minValue); values.add(v); } } return values; } /** * Test with test values. * * @param est estimator to be tested * @param test vector with test values * **/ protected Vector<Double> testWithTestValues(Estimator est, Vector<Double> test) { Vector<Double> results = new Vector<Double>(); for (int i = 0; i < test.size(); i++) { double testValue = (test.elementAt(i)).doubleValue(); double prob = est.getProbability(testValue); Double p = new Double(prob); results.add(p); } return results; } /** * Gets the minimum and maximum of the values a the first attribute of the * given data set * * @param inst the instance * @param attrIndex the index of the attribut to find min and max * @return the array with the minimum value on index 0 and the max on index 1 */ protected double[] getMinimumMaximum(Instances inst, int attrIndex) { double[] minMax = new double[2]; try { getMinMax(inst, attrIndex, minMax); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); } return minMax; // double minValue = minMax[0]; // double maxValue = minMax[1]; } /** * Find the minimum and the maximum of the attribute and return it in the last * parameter.. * * @param inst instances used to build the estimator * @param attrIndex index of the attribute * @param minMax the array to return minimum and maximum in * @return number of not missing values * @exception Exception if parameter minMax wasn't initialized properly */ public static int getMinMax(Instances inst, int attrIndex, double[] minMax) throws Exception { double min = Double.NaN; double max = Double.NaN; Instance instance = null; int numNotMissing = 0; if ((minMax == null) || (minMax.length < 2)) { throw new Exception("Error in Program, privat method getMinMax"); } Enumeration<Instance> enumInst = inst.enumerateInstances(); if (enumInst.hasMoreElements()) { do { instance = enumInst.nextElement(); } while (instance.isMissing(attrIndex) && (enumInst.hasMoreElements())); // add values if not missing if (!instance.isMissing(attrIndex)) { numNotMissing++; min = instance.value(attrIndex); max = instance.value(attrIndex); } while (enumInst.hasMoreElements()) { instance = enumInst.nextElement(); if (!instance.isMissing(attrIndex)) { numNotMissing++; if (instance.value(attrIndex) < min) { min = (instance.value(attrIndex)); } else { if (instance.value(attrIndex) > max) { max = (instance.value(attrIndex)); } } } } } minMax[0] = min; minMax[1] = max; return numNotMissing; } /** * Print the probabilities after testing * * @param probs vector with probability values * @return string with probability values printed */ private String probsToString(Vector<Double> probs) { StringBuffer txt = new StringBuffer(" "); for (int i = 0; i < probs.size(); i++) { txt.append("" + (probs.elementAt(i)).doubleValue() + " "); } return txt.toString(); } /** * Provides a hook for derived classes to further modify the data. * * @param data the data to process * @return the processed data * @see #m_PostProcessor */ protected Instances process(Instances data) { if (getPostProcessor() == null) { return data; } else { return getPostProcessor().process(data); } } /** * Print out a short summary string for the dataset characteristics * * @param attrTypes the attribute types used (NUMERIC, NOMINAL, etc.) * @param classType the class type (NUMERIC, NOMINAL, etc.) */ protected void printAttributeSummary(AttrTypes attrTypes, int classType) { String str = ""; if (attrTypes.numeric) { str += " numeric"; } if (attrTypes.nominal) { if (str.length() > 0) { str += " &"; } str += " nominal"; } if (attrTypes.string) { if (str.length() > 0) { str += " &"; } str += " string"; } if (attrTypes.date) { if (str.length() > 0) { str += " &"; } str += " date"; } if (attrTypes.relational) { if (str.length() > 0) { str += " &"; } str += " relational"; } str += " attributes)"; switch (classType) { case Attribute.NUMERIC: str = " (numeric class," + str; break; case Attribute.NOMINAL: str = " (nominal class," + str; break; case Attribute.STRING: str = " (string class," + str; break; case Attribute.DATE: str = " (date class," + str; break; case Attribute.RELATIONAL: str = " (relational class," + str; break; } print(str); } /** * Print out a short summary string for the dataset characteristics * * @param attrType the attribute type (NUMERIC, NOMINAL, etc.) * @param classType the class type (NUMERIC, NOMINAL, etc.) */ protected void printAttributeSummary(int attrType, int classType) { String str = ""; switch (attrType) { case Attribute.NUMERIC: str = " numeric" + str; break; case Attribute.NOMINAL: str = " nominal" + str; break; case Attribute.STRING: str = " string" + str; break; case Attribute.DATE: str = " date" + str; break; case Attribute.RELATIONAL: str = " relational" + str; break; } str += " attribute(s))"; switch (classType) { case Attribute.NUMERIC: str = " (numeric class," + str; break; case Attribute.NOMINAL: str = " (nominal class," + str; break; case Attribute.STRING: str = " (string class," + str; break; case Attribute.DATE: str = " (date class," + str; break; case Attribute.RELATIONAL: str = " (relational class," + str; break; } print(str); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Test method for this class * * @param args the commandline parameters */ public static void main(String[] args) { try { CheckEstimator check = new CheckEstimator(); try { check.setOptions(args); Utils.checkForRemainingOptions(args); } catch (Exception ex) { String result = ex.getMessage() + "\n\n" + check.getClass().getName().replaceAll(".*\\.", "") + " Options:\n\n"; Enumeration<Option> enu = check.listOptions(); while (enu.hasMoreElements()) { Option option = enu.nextElement(); result += option.synopsis() + "\n" + option.description() + "\n"; } throw new Exception(result); } check.doTests(); } catch (Exception ex) { System.err.println(ex.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/ConditionalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ConditionalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.RevisionHandler; /** * Interface for conditional probability estimators. Example code: <p> * * <code> <pre> * NNConditionalEstimator newEst = new NNConditionalEstimator(); * * // Create 50 random points and add them * Random r = new Random(seed); * for(int i = 0; i < 50; i++) { * int x = Math.abs(r.nextInt() % 100); * int y = Math.abs(r.nextInt() % 100); * System.out.println("# " + x + " " + y); * newEst.addValue(x, y, 1); * } * * // Pick a random conditional value * int cond = Math.abs(r.nextInt() % 100); * System.out.println("## Conditional = " + cond); * * // Print the probabilities conditional on that value * Estimator result = newEst.getEstimator(cond); * for(int i = 0; i <= 100; i+= 5) { * System.out.println(" " + i + " " + result.getProbability(i)); * } * </pre> </code> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public interface ConditionalEstimator extends RevisionHandler { /** * Add a new data value to the current estimator. * * @param data the new data value * @param given the new value that data is conditional upon * @param weight the weight assigned to the data value */ void addValue(double data, double given, double weight); /** * Get a probability estimator for a value * * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ Estimator getEstimator(double given); /** * Get a probability for a value conditional on another value * * @param data the value to estimate the probability of * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ double getProbability(double data, double given); }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/DDConditionalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DDConditionalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.RevisionUtils; /** * Conditional probability estimator for a discrete domain conditional upon * a discrete domain. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class DDConditionalEstimator implements ConditionalEstimator { /** Hold the sub-estimators */ private DiscreteEstimator [] m_Estimators; /** * Constructor * * @param numSymbols the number of possible symbols (remember to include 0) * @param numCondSymbols the number of conditioning symbols * @param laplace if true, sub-estimators will use laplace */ public DDConditionalEstimator(int numSymbols, int numCondSymbols, boolean laplace) { m_Estimators = new DiscreteEstimator [numCondSymbols]; for(int i = 0; i < numCondSymbols; i++) { m_Estimators[i] = new DiscreteEstimator(numSymbols, laplace); } } /** * Add a new data value to the current estimator. * * @param data the new data value * @param given the new value that data is conditional upon * @param weight the weight assigned to the data value */ public void addValue(double data, double given, double weight) { m_Estimators[(int)given].addValue(data, weight); } /** * Get a probability estimator for a value * * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ public Estimator getEstimator(double given) { return m_Estimators[(int)given]; } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @param given the new value that data is conditional upon * @return the estimated probability of the supplied value */ public double getProbability(double data, double given) { return getEstimator(given).getProbability(data); } /** Display a representation of this estimator */ public String toString() { String result = "DD Conditional Estimator. " + m_Estimators.length + " sub-estimators:\n"; for(int i = 0; i < m_Estimators.length; i++) { result += "Sub-estimator " + i + ": " + m_Estimators[i]; } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param argv should contain a sequence of pairs of integers which * will be treated as symbolic. */ public static void main(String [] argv) { try { if (argv.length == 0) { System.out.println("Please specify a set of instances."); return; } int currentA = Integer.parseInt(argv[0]); int maxA = currentA; int currentB = Integer.parseInt(argv[1]); int maxB = currentB; for(int i = 2; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); if (currentA > maxA) { maxA = currentA; } if (currentB > maxB) { maxB = currentB; } } DDConditionalEstimator newEst = new DDConditionalEstimator(maxA + 1, maxB + 1, true); for(int i = 0; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); System.out.println(newEst); System.out.println("Prediction for " + currentA + '|' + currentB + " = " + newEst.getProbability(currentA, currentB)); newEst.addValue(currentA, currentB, 1); } } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/DKConditionalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DKConditionalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.RevisionUtils; /** * Conditional probability estimator for a discrete domain conditional upon * a numeric domain. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class DKConditionalEstimator implements ConditionalEstimator { /** Hold the sub-estimators */ private KernelEstimator [] m_Estimators; /** Hold the weights for each of the sub-estimators */ private DiscreteEstimator m_Weights; /** * Constructor * * @param numSymbols the number of symbols * @param precision the precision to which numeric values are given. For * example, if the precision is stated to be 0.1, the values in the * interval (0.25,0.35] are all treated as 0.3. */ public DKConditionalEstimator(int numSymbols, double precision) { m_Estimators = new KernelEstimator [numSymbols]; for(int i = 0; i < numSymbols; i++) { m_Estimators[i] = new KernelEstimator(precision); } m_Weights = new DiscreteEstimator(numSymbols, true); } /** * Add a new data value to the current estimator. * * @param data the new data value * @param given the new value that data is conditional upon * @param weight the weight assigned to the data value */ public void addValue(double data, double given, double weight) { m_Estimators[(int)data].addValue(given, weight); m_Weights.addValue((int)data, weight); } /** * Get a probability estimator for a value * * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ public Estimator getEstimator(double given) { Estimator result = new DiscreteEstimator(m_Estimators.length,false); for(int i = 0; i < m_Estimators.length; i++) { //System.out.println("Val " + i // + " Weight:" + m_Weights.getProbability(i) // +" EstProb(" + given + ")=" // + m_Estimators[i].getProbability(given)); result.addValue(i, m_Weights.getProbability(i) * m_Estimators[i].getProbability(given)); } return result; } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @param given the new value that data is conditional upon * @return the estimated probability of the supplied value */ public double getProbability(double data, double given) { return getEstimator(given).getProbability(data); } /** * Display a representation of this estimator */ public String toString() { String result = "DK Conditional Estimator. " + m_Estimators.length + " sub-estimators:\n"; for(int i = 0; i < m_Estimators.length; i++) { result += "Sub-estimator " + i + ": " + m_Estimators[i]; } result += "Weights of each estimator given by " + m_Weights; return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param argv should contain a sequence of pairs of integers which * will be treated as pairs of symbolic, numeric. */ public static void main(String [] argv) { try { if (argv.length == 0) { System.out.println("Please specify a set of instances."); return; } int currentA = Integer.parseInt(argv[0]); int maxA = currentA; int currentB = Integer.parseInt(argv[1]); int maxB = currentB; for(int i = 2; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); if (currentA > maxA) { maxA = currentA; } if (currentB > maxB) { maxB = currentB; } } DKConditionalEstimator newEst = new DKConditionalEstimator(maxA + 1, 1); for(int i = 0; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); System.out.println(newEst); System.out.println("Prediction for " + currentA + '|' + currentB + " = " + newEst.getProbability(currentA, currentB)); newEst.addValue(currentA, currentB, 1); } } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/DNConditionalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DNConditionalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.RevisionUtils; /** * Conditional probability estimator for a discrete domain conditional upon * a numeric domain. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class DNConditionalEstimator implements ConditionalEstimator { /** Hold the sub-estimators */ private NormalEstimator [] m_Estimators; /** Hold the weights for each of the sub-estimators */ private DiscreteEstimator m_Weights; /** * Constructor * * @param numSymbols the number of symbols * @param precision the precision to which numeric values are given. For * example, if the precision is stated to be 0.1, the values in the * interval (0.25,0.35] are all treated as 0.3. */ public DNConditionalEstimator(int numSymbols, double precision) { m_Estimators = new NormalEstimator [numSymbols]; for(int i = 0; i < numSymbols; i++) { m_Estimators[i] = new NormalEstimator(precision); } m_Weights = new DiscreteEstimator(numSymbols, true); } /** * Add a new data value to the current estimator. * * @param data the new data value * @param given the new value that data is conditional upon * @param weight the weight assigned to the data value */ public void addValue(double data, double given, double weight) { m_Estimators[(int)data].addValue(given, weight); m_Weights.addValue((int)data, weight); } /** * Get a probability estimator for a value * * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ public Estimator getEstimator(double given) { Estimator result = new DiscreteEstimator(m_Estimators.length,false); for(int i = 0; i < m_Estimators.length; i++) { result.addValue(i,m_Weights.getProbability(i) *m_Estimators[i].getProbability(given)); } return result; } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @param given the new value that data is conditional upon * @return the estimated probability of the supplied value */ public double getProbability(double data, double given) { return getEstimator(given).getProbability(data); } /** Display a representation of this estimator */ public String toString() { String result = "DN Conditional Estimator. " + m_Estimators.length + " sub-estimators:\n"; for(int i = 0; i < m_Estimators.length; i++) { result += "Sub-estimator " + i + ": " + m_Estimators[i]; } result += "Weights of each estimator given by " + m_Weights; return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param argv should contain a sequence of pairs of integers which * will be treated as pairs of symbolic, numeric. */ public static void main(String [] argv) { try { if (argv.length == 0) { System.out.println("Please specify a set of instances."); return; } int currentA = Integer.parseInt(argv[0]); int maxA = currentA; int currentB = Integer.parseInt(argv[1]); int maxB = currentB; for(int i = 2; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); if (currentA > maxA) { maxA = currentA; } if (currentB > maxB) { maxB = currentB; } } DNConditionalEstimator newEst = new DNConditionalEstimator(maxA + 1, 1); for(int i = 0; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); System.out.println(newEst); System.out.println("Prediction for " + currentA + '|' + currentB + " = " + newEst.getProbability(currentA, currentB)); newEst.addValue(currentA, currentB, 1); } } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/DiscreteEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DiscreteEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.Capabilities; import weka.core.Capabilities.Capability; import weka.core.Aggregateable; import weka.core.RevisionUtils; import weka.core.Utils; /** * Simple symbolic probability estimator based on symbol counts. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class DiscreteEstimator extends Estimator implements IncrementalEstimator, Aggregateable<DiscreteEstimator> { /** for serialization */ private static final long serialVersionUID = -5526486742612434779L; /** Hold the counts */ private final double[] m_Counts; /** Hold the sum of counts */ private double m_SumOfCounts; /** Initialization for counts */ private double m_FPrior; /** * Constructor * * @param numSymbols the number of possible symbols (remember to include 0) * @param laplace if true, counts will be initialised to 1 */ public DiscreteEstimator(int numSymbols, boolean laplace) { m_Counts = new double[numSymbols]; m_SumOfCounts = 0; if (laplace) { m_FPrior = 1; for (int i = 0; i < numSymbols; i++) { m_Counts[i] = 1; } m_SumOfCounts = numSymbols; } } /** * Constructor * * @param nSymbols the number of possible symbols (remember to include 0) * @param fPrior value with which counts will be initialised */ public DiscreteEstimator(int nSymbols, double fPrior) { m_Counts = new double[nSymbols]; m_FPrior = fPrior; for (int iSymbol = 0; iSymbol < nSymbols; iSymbol++) { m_Counts[iSymbol] = fPrior; } m_SumOfCounts = fPrior * nSymbols; } /** * Add a new data value to the current estimator. * * @param data the new data value * @param weight the weight assigned to the data value */ @Override public void addValue(double data, double weight) { m_Counts[(int) data] += weight; m_SumOfCounts += weight; } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @return the estimated probability of the supplied value */ @Override public double getProbability(double data) { if (m_SumOfCounts == 0) { return 0; } return m_Counts[(int) data] / m_SumOfCounts; } /** * Gets the number of symbols this estimator operates with * * @return the number of estimator symbols */ public int getNumSymbols() { return (m_Counts == null) ? 0 : m_Counts.length; } /** * Get the count for a value * * @param data the value to get the count of * @return the count of the supplied value */ public double getCount(double data) { if (m_SumOfCounts == 0) { return 0; } return m_Counts[(int) data]; } /** * Get the sum of all the counts * * @return the total sum of counts */ public double getSumOfCounts() { return m_SumOfCounts; } /** * Display a representation of this estimator */ @Override public String toString() { StringBuffer result = new StringBuffer("Discrete Estimator. Counts = "); if (m_SumOfCounts > 1) { for (int i = 0; i < m_Counts.length; i++) { result.append(" ").append(Utils.doubleToString(m_Counts[i], 2)); } result.append(" (Total = ").append( Utils.doubleToString(m_SumOfCounts, 2)); result.append(")\n"); } else { for (int i = 0; i < m_Counts.length; i++) { result.append(" ").append(m_Counts[i]); } result.append(" (Total = ").append(m_SumOfCounts).append(")\n"); } return result.toString(); } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // class if (!m_noClass) { result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); } else { result.enable(Capability.NO_CLASS); } // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } @Override public DiscreteEstimator aggregate(DiscreteEstimator toAggregate) throws Exception { if (toAggregate.m_Counts.length != m_Counts.length) { throw new Exception("DiscreteEstimator to aggregate has a different " + "number of symbols"); } m_SumOfCounts += toAggregate.m_SumOfCounts; for (int i = 0; i < m_Counts.length; i++) { m_Counts[i] += (toAggregate.m_Counts[i] - toAggregate.m_FPrior); } m_SumOfCounts -= (toAggregate.m_FPrior * m_Counts.length); return this; } @Override public void finalizeAggregation() throws Exception { // nothing to do } protected static void testAggregation() { DiscreteEstimator df = new DiscreteEstimator(5, true); DiscreteEstimator one = new DiscreteEstimator(5, true); DiscreteEstimator two = new DiscreteEstimator(5, true); java.util.Random r = new java.util.Random(1); for (int i = 0; i < 100; i++) { int z = r.nextInt(5); df.addValue(z, 1); if (i < 50) { one.addValue(z, 1); } else { two.addValue(z, 1); } } try { System.out.println("\n\nFull\n"); System.out.println(df.toString()); System.out.println("Prob (0): " + df.getProbability(0)); System.out.println("\nOne\n" + one.toString()); System.out.println("Prob (0): " + one.getProbability(0)); System.out.println("\nTwo\n" + two.toString()); System.out.println("Prob (0): " + two.getProbability(0)); one = one.aggregate(two); System.out.println("\nAggregated\n"); System.out.println(one.toString()); System.out.println("Prob (0): " + one.getProbability(0)); } catch (Exception ex) { ex.printStackTrace(); } } /** * Main method for testing this class. * * @param argv should contain a sequence of integers which will be treated as * symbolic. */ public static void main(String[] argv) { try { if (argv.length == 0) { System.out.println("Please specify a set of instances."); return; } int current = Integer.parseInt(argv[0]); int max = current; for (int i = 1; i < argv.length; i++) { current = Integer.parseInt(argv[i]); if (current > max) { max = current; } } DiscreteEstimator newEst = new DiscreteEstimator(max + 1, true); for (int i = 0; i < argv.length; i++) { current = Integer.parseInt(argv[i]); System.out.println(newEst); System.out.println("Prediction for " + current + " = " + newEst.getProbability(current)); newEst.addValue(current, 1); } DiscreteEstimator.testAggregation(); } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/Estimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Estimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.io.BufferedReader; import java.io.FileReader; import java.io.InputStreamReader; import java.io.Reader; import java.io.Serializable; import java.util.Enumeration; import java.util.Vector; import weka.core.Capabilities; import weka.core.CapabilitiesHandler; import weka.core.CapabilitiesIgnorer; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.SerializedObject; import weka.core.Utils; /** * * Abstract class for all estimators. * * Example code for a nonincremental estimator <code> <pre> * // create a histogram for estimation * EqualWidthEstimator est = new EqualWidthEstimator(); * est.addValues(instances, attrIndex); * </pre> </code> * * * Example code for an incremental estimator (incremental estimators must * implement interface IncrementalEstimator) <code> <pre> * // Create a discrete estimator that takes values 0 to 9 * DiscreteEstimator newEst = new DiscreteEstimator(10, true); * * // Create 50 random integers first predicting the probability of the * // value, then adding the value to the estimator * Random r = new Random(seed); * for(int i = 0; i < 50; i++) { * current = Math.abs(r.nextInt() % 10); * System.out.println(newEst); * System.out.println("Prediction for " + current * + " = " + newEst.getProbability(current)); * newEst.addValue(current, 1); * } * </pre> </code> * * * Example code for a main method for an estimator. * <p> * <code> <pre> * public static void main(String [] argv) { * * try { * LoglikeliEstimator est = new LoglikeliEstimator(); * Estimator.buildEstimator((Estimator) est, argv, false); * System.out.println(est.toString()); * } catch (Exception ex) { * ex.printStackTrace(); * System.out.println(ex.getMessage()); * } * } * </pre> </code> * * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public abstract class Estimator implements Cloneable, Serializable, OptionHandler, CapabilitiesHandler, CapabilitiesIgnorer, RevisionHandler { /** for serialization */ static final long serialVersionUID = -5902411487362274342L; /** Debugging mode */ private boolean m_Debug = false; /** * The class value index is > -1 if subset is taken with specific class value * only */ protected double m_classValueIndex = -1.0; /** set if class is not important */ protected boolean m_noClass = true; /** * Class to support a building process of an estimator. */ private static class Builder implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -5810927990193597303L; /** instances of the builder */ Instances m_instances = null; /** attribute index of the builder */ int m_attrIndex = -1; /** class index of the builder, only relevant if class value index is set */ int m_classIndex = -1; /** class value index of the builder */ int m_classValueIndex = -1; /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } /** Whether capabilities should not be checked */ protected boolean m_DoNotCheckCapabilities = false; /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String doNotCheckCapabilitiesTipText() { return "If set, estimator capabilities are not checked before estimator is built" + " (Use with caution to reduce runtime)."; } /** * Set whether not to check capabilities. * * @param doNotCheckCapabilities true if capabilities are not to be checked. */ public void setDoNotCheckCapabilities(boolean doNotCheckCapabilities) { m_DoNotCheckCapabilities = doNotCheckCapabilities; } /** * Get whether capabilities checking is turned off. * * @return true if capabilities checking is turned off. */ public boolean getDoNotCheckCapabilities() { return m_DoNotCheckCapabilities; } /** * Add a new data value to the current estimator. * * @param data the new data value * @param weight the weight assigned to the data value */ public void addValue(double data, double weight) { try { throw new Exception("Method to add single value is not implemented!\n" + "Estimator should implement IncrementalEstimator."); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); } } /** * Initialize the estimator with a new dataset. Finds min and max first. * * @param data the dataset used to build this estimator * @param attrIndex attribute the estimator is for * @exception Exception if building of estimator goes wrong */ public void addValues(Instances data, int attrIndex) throws Exception { // can estimator handle the data? getCapabilities().testWithFail(data); double[] minMax = new double[2]; try { EstimatorUtils.getMinMax(data, attrIndex, minMax); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); } double min = minMax[0]; double max = minMax[1]; // factor is 1.0, data set has not been reduced addValues(data, attrIndex, min, max, 1.0); } /** * Initialize the estimator with all values of one attribute of a dataset. * Some estimator might ignore the min and max values. * * @param data the dataset used to build this estimator * @param attrIndex attribute the estimator is for * @param min minimal border of range * @param max maximal border of range * @param factor number of instances has been reduced to that factor * @exception Exception if building of estimator goes wrong */ public void addValues(Instances data, int attrIndex, double min, double max, double factor) throws Exception { // no handling of factor, would have to be overridden // no handling of min and max, would have to be overridden int numInst = data.numInstances(); for (int i = 1; i < numInst; i++) { addValue(data.instance(i).value(attrIndex), 1.0); } } /** * Initialize the estimator using only the instance of one class. It is using * the values of one attribute only. * * @param data the dataset used to build this estimator * @param attrIndex attribute the estimator is for * @param classIndex index of the class attribute * @param classValue the class value * @exception Exception if building of estimator goes wrong */ public void addValues(Instances data, int attrIndex, int classIndex, int classValue) throws Exception { // can estimator handle the data? m_noClass = false; getCapabilities().testWithFail(data); // find the minimal and the maximal value double[] minMax = new double[2]; try { EstimatorUtils.getMinMax(data, attrIndex, minMax); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); } double min = minMax[0]; double max = minMax[1]; // extract the instances with the given class value Instances workData = new Instances(data, 0); double factor = getInstancesFromClass(data, attrIndex, classIndex, classValue, workData); // if no data return if (workData.numInstances() == 0) { return; } addValues(data, attrIndex, min, max, factor); } /** * Initialize the estimator using only the instance of one class. It is using * the values of one attribute only. * * @param data the dataset used to build this estimator * @param attrIndex attribute the estimator is for * @param classIndex index of the class attribute * @param classValue the class value * @param min minimal value of this attribute * @param max maximal value of this attribute * @exception Exception if building of estimator goes wrong */ public void addValues(Instances data, int attrIndex, int classIndex, int classValue, double min, double max) throws Exception { // extract the instances with the given class value Instances workData = new Instances(data, 0); double factor = getInstancesFromClass(data, attrIndex, classIndex, classValue, workData); // if no data return if (workData.numInstances() == 0) { return; } addValues(data, attrIndex, min, max, factor); } /** * Returns a dataset that contains all instances of a certain class value. * * @param data dataset to select the instances from * @param attrIndex index of the relevant attribute * @param classIndex index of the class attribute * @param classValue the relevant class value * @return a dataset with only */ private double getInstancesFromClass(Instances data, int attrIndex, int classIndex, double classValue, Instances workData) { // DBO.pln("getInstancesFromClass classValue"+classValue+" workData"+data.numInstances()); int num = 0; int numClassValue = 0; for (int i = 0; i < data.numInstances(); i++) { if (!data.instance(i).isMissing(attrIndex)) { num++; if (data.instance(i).value(classIndex) == classValue) { workData.add(data.instance(i)); numClassValue++; } } } Double alphaFactor = new Double((double) numClassValue / (double) num); return alphaFactor; } /** * Get a probability estimate for a value. * * @param data the value to estimate the probability of * @return the estimated probability of the supplied value */ public abstract double getProbability(double data); /** * Build an estimator using the options. The data is given in the options. * * @param est the estimator used * @param options the list of options * @param isIncremental true if estimator is incremental * @exception Exception if something goes wrong or the user requests help on * command options */ public static void buildEstimator(Estimator est, String[] options, boolean isIncremental) throws Exception { // DBO.pln("buildEstimator"); // read all options Builder build = new Builder(); try { setGeneralOptions(build, est, options); if (est instanceof OptionHandler) { ((OptionHandler) est).setOptions(options); } Utils.checkForRemainingOptions(options); buildEstimator(est, build.m_instances, build.m_attrIndex, build.m_classIndex, build.m_classValueIndex, isIncremental); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); String specificOptions = ""; // Output the error and also the valid options if (est instanceof OptionHandler) { specificOptions += "\nEstimator options:\n\n"; Enumeration<Option> enumOptions = ((OptionHandler) est).listOptions(); while (enumOptions.hasMoreElements()) { Option option = enumOptions.nextElement(); specificOptions += option.synopsis() + '\n' + option.description() + "\n"; } } String genericOptions = "\nGeneral options:\n\n" + "-h\n" + "\tGet help on available options.\n" + "-i <file>\n" + "\tThe name of the file containing input instances.\n" + "\tIf not supplied then instances will be read from stdin.\n" + "-a <attribute index>\n" + "\tThe number of the attribute the probability distribution\n" + "\testimation is done for.\n" + "\t\"first\" and \"last\" are also valid entries.\n" + "\tIf not supplied then no class is assigned.\n" + "-c <class index>\n" + "\tIf class value index is set, this attribute is taken as class.\n" + "\t\"first\" and \"last\" are also valid entries.\n" + "\tIf not supplied then last is default.\n" + "-v <class value index>\n" + "\tIf value is different to -1, select instances of this class value.\n" + "\t\"first\" and \"last\" are also valid entries.\n" + "\tIf not supplied then all instances are taken.\n"; throw new Exception('\n' + ex.getMessage() + specificOptions + genericOptions); } } public static void buildEstimator(Estimator est, Instances instances, int attrIndex, int classIndex, int classValueIndex, boolean isIncremental) throws Exception { // DBO.pln("buildEstimator 2 " + classValueIndex); // non-incremental estimator add all instances at once if (!isIncremental) { if (classValueIndex == -1) { // DBO.pln("before addValues -- Estimator"); est.addValues(instances, attrIndex); } else { // DBO.pln("before addValues with classvalue -- Estimator"); est.addValues(instances, attrIndex, classIndex, classValueIndex); } } else { // incremental estimator, read one value at a time Enumeration<Instance> enumInsts = (instances).enumerateInstances(); while (enumInsts.hasMoreElements()) { Instance instance = enumInsts.nextElement(); ((IncrementalEstimator) est).addValue(instance.value(attrIndex), instance.weight()); } } } /** * Parses and sets the general options * * @param build contains the data used * @param est the estimator used * @param options the options from the command line */ private static void setGeneralOptions(Builder build, Estimator est, String[] options) throws Exception { Reader input = null; // help request option boolean helpRequest = Utils.getFlag('h', options); if (helpRequest) { throw new Exception("Help requested.\n"); } // instances used String infileName = Utils.getOption('i', options); if (infileName.length() != 0) { input = new BufferedReader(new FileReader(infileName)); } else { input = new BufferedReader(new InputStreamReader(System.in)); } build.m_instances = new Instances(input); // attribute index String attrIndex = Utils.getOption('a', options); if (attrIndex.length() != 0) { if (attrIndex.equals("first")) { build.m_attrIndex = 0; } else if (attrIndex.equals("last")) { build.m_attrIndex = build.m_instances.numAttributes() - 1; } else { int index = Integer.parseInt(attrIndex) - 1; if ((index < 0) || (index >= build.m_instances.numAttributes())) { throw new IllegalArgumentException( "Option a: attribute index out of range."); } build.m_attrIndex = index; } } else { // default is the first attribute build.m_attrIndex = 0; } // class index, if not given is set to last attribute String classIndex = Utils.getOption('c', options); if (classIndex.length() == 0) { classIndex = "last"; } if (classIndex.length() != 0) { if (classIndex.equals("first")) { build.m_classIndex = 0; } else if (classIndex.equals("last")) { build.m_classIndex = build.m_instances.numAttributes() - 1; } else { int cl = Integer.parseInt(classIndex); if (cl == -1) { build.m_classIndex = build.m_instances.numAttributes() - 1; } else { build.m_classIndex = cl - 1; } } } // class value index, if not given is set to -1 String classValueIndex = Utils.getOption('v', options); if (classValueIndex.length() != 0) { if (classValueIndex.equals("first")) { build.m_classValueIndex = 0; } else if (classValueIndex.equals("last")) { build.m_classValueIndex = build.m_instances.numAttributes() - 1; } else { int cl = Integer.parseInt(classValueIndex); if (cl == -1) { build.m_classValueIndex = -1; } else { build.m_classValueIndex = cl - 1; } } } build.m_instances.setClassIndex(build.m_classIndex); } /** * Creates a deep copy of the given estimator using serialization. * * @param model the estimator to copy * @return a deep copy of the estimator * @exception Exception if an error occurs */ public static Estimator clone(Estimator model) throws Exception { return makeCopy(model); } /** * Creates a deep copy of the given estimator using serialization. * * @param model the estimator to copy * @return a deep copy of the estimator * @exception Exception if an error occurs */ public static Estimator makeCopy(Estimator model) throws Exception { return (Estimator) new SerializedObject(model).getObject(); } /** * Creates a given number of deep copies of the given estimator using * serialization. * * @param model the estimator to copy * @param num the number of estimator copies to create. * @return an array of estimators. * @exception Exception if an error occurs */ public static Estimator[] makeCopies(Estimator model, int num) throws Exception { if (model == null) { throw new Exception("No model estimator set"); } Estimator[] estimators = new Estimator[num]; SerializedObject so = new SerializedObject(model); for (int i = 0; i < estimators.length; i++) { estimators[i] = (Estimator) so.getObject(); } return estimators; } /** * Tests whether the current estimation object is equal to another estimation * object * * @param obj the object to compare against * @return true if the two objects are equal */ @Override public boolean equals(Object obj) { if ((obj == null) || !(obj.getClass().equals(this.getClass()))) { return false; } Estimator cmp = (Estimator) obj; if (m_Debug != cmp.m_Debug) { return false; } if (m_classValueIndex != cmp.m_classValueIndex) { return false; } if (m_noClass != cmp.m_noClass) { return false; } return true; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(1); newVector.addElement(new Option( "\tIf set, estimator is run in debug mode and\n" + "\tmay output additional info to the console", "D", 0, "-D")); return newVector.elements(); } /** * Parses a given list of options. Valid options are: * <p> * * -D <br> * If set, estimator is run in debug mode and may output additional info to * the console. * <p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); } /** * Gets the current settings of the Estimator. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { String[] options; if (getDebug()) { options = new String[1]; options[0] = "-D"; } else { options = new String[0]; } return options; } /** * Creates a new instance of a estimatorr given it's class name and (optional) * arguments to pass to it's setOptions method. If the estimator implements * OptionHandler and the options parameter is non-null, the estimator will * have it's options set. * * @param name the fully qualified class name of the estimatorr * @param options an array of options suitable for passing to setOptions. May * be null. * @return the newly created estimator, ready for use. * @exception Exception if the estimator name is invalid, or the options * supplied are not acceptable to the estimator */ public static Estimator forName(String name, String[] options) throws Exception { return (Estimator) Utils.forName(Estimator.class, name, options); } /** * Set debugging mode. * * @param debug true if debug output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Get whether debugging is turned on. * * @return true if debugging output is on */ public boolean getDebug() { return m_Debug; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String debugTipText() { return "If set to true, estimator may output additional info to " + "the console."; } /** * Returns the Capabilities of this Estimator. Derived estimators have to * override this method to enable capabilities. * * @return the capabilities of this object * @see Capabilities */ @Override public Capabilities getCapabilities() { Capabilities result = new Capabilities(this); result.enableAll(); /* * // class if (!m_noClass) { result.enable(Capability.NOMINAL_CLASS); * result.enable(Capability.MISSING_CLASS_VALUES); } else { * result.enable(Capability.NO_CLASS); } */ return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Test if the estimator can handle the data. * * @param data the dataset the estimator takes an attribute from * @param attrIndex the index of the attribute * @see Capabilities */ public void testCapabilities(Instances data, int attrIndex) throws Exception { getCapabilities().testWithFail(data); getCapabilities().testWithFail(data.attribute(attrIndex)); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/EstimatorUtils.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * EstimatorUtils.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.io.FileOutputStream; import java.io.PrintWriter; import java.util.Enumeration; import java.util.Vector; import weka.core.Instance; import weka.core.Instances; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * Contains static utility functions for Estimators. * <p> * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @version $Revision$ */ public class EstimatorUtils implements RevisionHandler { /** * Find the minimum distance between values * * @param inst sorted instances, sorted * @param attrIndex index of the attribute, they are sorted after * @return the minimal distance */ public static double findMinDistance(Instances inst, int attrIndex) { double min = Double.MAX_VALUE; int numInst = inst.numInstances(); double diff; if (numInst < 2) { return min; } int begin = -1; Instance instance = null; do { begin++; if (begin < numInst) { instance = inst.instance(begin); } } while (begin < numInst && instance.isMissing(attrIndex)); double secondValue = inst.instance(begin).value(attrIndex); for (int i = begin; i < numInst && !inst.instance(i).isMissing(attrIndex); i++) { double firstValue = secondValue; secondValue = inst.instance(i).value(attrIndex); if (secondValue != firstValue) { diff = secondValue - firstValue; if (diff < min && diff > 0.0) { min = diff; } } } return min; } /** * Find the minimum and the maximum of the attribute and return it in the last * parameter.. * * @param inst instances used to build the estimator * @param attrIndex index of the attribute * @param minMax the array to return minimum and maximum in * @return number of not missing values * @exception Exception if parameter minMax wasn't initialized properly */ public static int getMinMax(Instances inst, int attrIndex, double[] minMax) throws Exception { double min = Double.NaN; double max = Double.NaN; Instance instance = null; int numNotMissing = 0; if ((minMax == null) || (minMax.length < 2)) { throw new Exception("Error in Program, privat method getMinMax"); } Enumeration<Instance> enumInst = inst.enumerateInstances(); if (enumInst.hasMoreElements()) { do { instance = enumInst.nextElement(); } while (instance.isMissing(attrIndex) && (enumInst.hasMoreElements())); // add values if not missing if (!instance.isMissing(attrIndex)) { numNotMissing++; min = instance.value(attrIndex); max = instance.value(attrIndex); } while (enumInst.hasMoreElements()) { instance = enumInst.nextElement(); if (!instance.isMissing(attrIndex)) { numNotMissing++; if (instance.value(attrIndex) < min) { min = (instance.value(attrIndex)); } else { if (instance.value(attrIndex) > max) { max = (instance.value(attrIndex)); } } } } } minMax[0] = min; minMax[1] = max; return numNotMissing; } /** * Returns a dataset that contains all instances of a certain class value. * * @param data dataset to select the instances from * @param attrIndex index of the relevant attribute * @param classIndex index of the class attribute * @param classValue the relevant class value * @return a dataset with only */ public static Vector<Object> getInstancesFromClass(Instances data, int attrIndex, int classIndex, double classValue, Instances workData) { // Oops.pln("getInstancesFromClass classValue"+classValue+" workData"+data.numInstances()); Vector<Object> dataPlusInfo = new Vector<Object>(0); int num = 0; int numClassValue = 0; // workData = new Instances(data, 0); for (int i = 0; i < data.numInstances(); i++) { if (!data.instance(i).isMissing(attrIndex)) { num++; if (data.instance(i).value(classIndex) == classValue) { workData.add(data.instance(i)); numClassValue++; } } } Double alphaFactor = new Double((double) numClassValue / (double) num); dataPlusInfo.add(workData); dataPlusInfo.add(alphaFactor); return dataPlusInfo; } /** * Returns a dataset that contains of all instances of a certain class value. * * @param data dataset to select the instances from * @param classIndex index of the class attribute * @param classValue the class value * @return a dataset with only instances of one class value */ public static Instances getInstancesFromClass(Instances data, int classIndex, double classValue) { Instances workData = new Instances(data, 0); for (int i = 0; i < data.numInstances(); i++) { if (data.instance(i).value(classIndex) == classValue) { workData.add(data.instance(i)); } } return workData; } /** * Output of an n points of a density curve. Filename is parameter f + * ".curv". * * @param f string to build filename * @param est * @param min * @param max * @param numPoints * @throws Exception if something goes wrong */ public static void writeCurve(String f, Estimator est, double min, double max, int numPoints) throws Exception { PrintWriter output = null; StringBuffer text = new StringBuffer(""); if (f.length() != 0) { // add attribute indexnumber to filename and extension .hist String name = f + ".curv"; output = new PrintWriter(new FileOutputStream(name)); } else { return; } double diff = (max - min) / (numPoints - 1.0); try { text.append("" + min + " " + est.getProbability(min) + " \n"); for (double value = min + diff; value < max; value += diff) { text.append("" + value + " " + est.getProbability(value) + " \n"); } text.append("" + max + " " + est.getProbability(max) + " \n"); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); } output.println(text.toString()); // close output if (output != null) { output.close(); } } /** * Output of an n points of a density curve. Filename is parameter f + * ".curv". * * @param f string to build filename * @param est * @param classEst * @param classIndex * @param min * @param max * @param numPoints * @throws Exception if something goes wrong */ public static void writeCurve(String f, Estimator est, Estimator classEst, double classIndex, double min, double max, int numPoints) throws Exception { PrintWriter output = null; StringBuffer text = new StringBuffer(""); if (f.length() != 0) { // add attribute indexnumber to filename and extension .hist String name = f + ".curv"; output = new PrintWriter(new FileOutputStream(name)); } else { return; } double diff = (max - min) / (numPoints - 1.0); try { text.append("" + min + " " + est.getProbability(min) * classEst.getProbability(classIndex) + " \n"); for (double value = min + diff; value < max; value += diff) { text.append("" + value + " " + est.getProbability(value) * classEst.getProbability(classIndex) + " \n"); } text.append("" + max + " " + est.getProbability(max) * classEst.getProbability(classIndex) + " \n"); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); } output.println(text.toString()); // close output if (output != null) { output.close(); } } /** * Returns a dataset that contains of all instances of a certain value for the * given attribute. * * @param data dataset to select the instances from * @param index the index of the attribute * @param v the value * @return a subdataset with only instances of one value for the attribute */ public static Instances getInstancesFromValue(Instances data, int index, double v) { Instances workData = new Instances(data, 0); for (int i = 0; i < data.numInstances(); i++) { if (data.instance(i).value(index) == v) { workData.add(data.instance(i)); } } return workData; } /** * Returns a string representing the cutpoints */ public static String cutpointsToString(double[] cutPoints, boolean[] cutAndLeft) { StringBuffer text = new StringBuffer(""); if (cutPoints == null) { text.append("\n# no cutpoints found - attribute \n"); } else { text.append("\n#* " + cutPoints.length + " cutpoint(s) -\n"); for (int i = 0; i < cutPoints.length; i++) { text.append("# " + cutPoints[i] + " "); text.append("" + cutAndLeft[i] + "\n"); } text.append("# end\n"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/IncrementalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * IncrementalEstimator.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; /** * Interface for an incremental probability estimators.<p> * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @version $Revision$ */ public interface IncrementalEstimator { /** * Add one value to the current estimator. * * @param data the new data value * @param weight the weight assigned to the data value */ void addValue(double data, double weight); }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/KDConditionalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * KDConditionalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.RevisionUtils; /** * Conditional probability estimator for a numeric domain conditional upon * a discrete domain (utilises separate kernel estimators for each discrete * conditioning value). * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class KDConditionalEstimator implements ConditionalEstimator { /** Hold the sub-estimators */ private KernelEstimator [] m_Estimators; /** * Constructor * * @param numCondSymbols the number of conditioning symbols * @param precision the precision to which numeric values are given. For * example, if the precision is stated to be 0.1, the values in the * interval (0.25,0.35] are all treated as 0.3. */ public KDConditionalEstimator(int numCondSymbols, double precision) { m_Estimators = new KernelEstimator [numCondSymbols]; for(int i = 0; i < numCondSymbols; i++) { m_Estimators[i] = new KernelEstimator(precision); } } /** * Add a new data value to the current estimator. * * @param data the new data value * @param given the new value that data is conditional upon * @param weight the weight assigned to the data value */ public void addValue(double data, double given, double weight) { m_Estimators[(int)given].addValue(data, weight); } /** * Get a probability estimator for a value * * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ public Estimator getEstimator(double given) { return m_Estimators[(int)given]; } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @param given the new value that data is conditional upon * @return the estimated probability of the supplied value */ public double getProbability(double data, double given) { return getEstimator(given).getProbability(data); } /** Display a representation of this estimator */ public String toString() { String result = "KD Conditional Estimator. " + m_Estimators.length + " sub-estimators:\n"; for(int i = 0; i < m_Estimators.length; i++) { result += "Sub-estimator " + i + ": " + m_Estimators[i]; } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param argv should contain a sequence of pairs of integers which * will be treated as numeric, symbolic. */ public static void main(String [] argv) { try { if (argv.length == 0) { System.out.println("Please specify a set of instances."); return; } int currentA = Integer.parseInt(argv[0]); int maxA = currentA; int currentB = Integer.parseInt(argv[1]); int maxB = currentB; for(int i = 2; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); if (currentA > maxA) { maxA = currentA; } if (currentB > maxB) { maxB = currentB; } } KDConditionalEstimator newEst = new KDConditionalEstimator(maxB + 1, 1); for(int i = 0; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); System.out.println(newEst); System.out.println("Prediction for " + currentA + '|' + currentB + " = " + newEst.getProbability(currentA, currentB)); newEst.addValue(currentA, currentB, 1); } } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/KKConditionalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * KKConditionalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.util.Random; import weka.core.RevisionUtils; import weka.core.Statistics; import weka.core.Utils; /** * Conditional probability estimator for a numeric domain conditional upon * a numeric domain. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class KKConditionalEstimator implements ConditionalEstimator { /** Vector containing all of the values seen */ private double [] m_Values; /** Vector containing all of the conditioning values seen */ private double [] m_CondValues; /** Vector containing the associated weights */ private double [] m_Weights; /** * Number of values stored in m_Weights, m_CondValues, and m_Values so far */ private int m_NumValues; /** The sum of the weights so far */ private double m_SumOfWeights; /** Current standard dev */ private double m_StandardDev; /** Whether we can optimise the kernel summation */ private boolean m_AllWeightsOne; /** The numeric precision */ private double m_Precision; /** * Execute a binary search to locate the nearest data value * * @param key the data value to locate * @param secondaryKey the data value to locate * @return the index of the nearest data value */ private int findNearestPair(double key, double secondaryKey) { int low = 0; int high = m_NumValues; int middle = 0; while (low < high) { middle = (low + high) / 2; double current = m_CondValues[middle]; if (current == key) { double secondary = m_Values[middle]; if (secondary == secondaryKey) { return middle; } if (secondary > secondaryKey) { high = middle; } else if (secondary < secondaryKey) { low = middle+1; } } if (current > key) { high = middle; } else if (current < key) { low = middle+1; } } return low; } /** * Round a data value using the defined precision for this estimator * * @param data the value to round * @return the rounded data value */ private double round(double data) { return Math.rint(data / m_Precision) * m_Precision; } /** * Constructor * * @param precision the precision to which numeric values are given. For * example, if the precision is stated to be 0.1, the values in the * interval (0.25,0.35] are all treated as 0.3. */ public KKConditionalEstimator(double precision) { m_CondValues = new double [50]; m_Values = new double [50]; m_Weights = new double [50]; m_NumValues = 0; m_SumOfWeights = 0; m_StandardDev = 0; m_AllWeightsOne = true; m_Precision = precision; } /** * Add a new data value to the current estimator. * * @param data the new data value * @param given the new value that data is conditional upon * @param weight the weight assigned to the data value */ public void addValue(double data, double given, double weight) { data = round(data); given = round(given); int insertIndex = findNearestPair(given, data); if ((m_NumValues <= insertIndex) || (m_CondValues[insertIndex] != given) || (m_Values[insertIndex] != data)) { if (m_NumValues < m_Values.length) { int left = m_NumValues - insertIndex; System.arraycopy(m_Values, insertIndex, m_Values, insertIndex + 1, left); System.arraycopy(m_CondValues, insertIndex, m_CondValues, insertIndex + 1, left); System.arraycopy(m_Weights, insertIndex, m_Weights, insertIndex + 1, left); m_Values[insertIndex] = data; m_CondValues[insertIndex] = given; m_Weights[insertIndex] = weight; m_NumValues++; } else { double [] newValues = new double [m_Values.length*2]; double [] newCondValues = new double [m_Values.length*2]; double [] newWeights = new double [m_Values.length*2]; int left = m_NumValues - insertIndex; System.arraycopy(m_Values, 0, newValues, 0, insertIndex); System.arraycopy(m_CondValues, 0, newCondValues, 0, insertIndex); System.arraycopy(m_Weights, 0, newWeights, 0, insertIndex); newValues[insertIndex] = data; newCondValues[insertIndex] = given; newWeights[insertIndex] = weight; System.arraycopy(m_Values, insertIndex, newValues, insertIndex+1, left); System.arraycopy(m_CondValues, insertIndex, newCondValues, insertIndex+1, left); System.arraycopy(m_Weights, insertIndex, newWeights, insertIndex+1, left); m_NumValues++; m_Values = newValues; m_CondValues = newCondValues; m_Weights = newWeights; } if (weight != 1) { m_AllWeightsOne = false; } } else { m_Weights[insertIndex] += weight; m_AllWeightsOne = false; } m_SumOfWeights += weight; double range = m_CondValues[m_NumValues-1] - m_CondValues[0]; m_StandardDev = Math.max(range / Math.sqrt(m_SumOfWeights), // allow at most 3 sds within one interval m_Precision / (2 * 3)); } /** * Get a probability estimator for a value * * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ public Estimator getEstimator(double given) { Estimator result = new KernelEstimator(m_Precision); if (m_NumValues == 0) { return result; } double delta = 0, currentProb = 0; double zLower, zUpper; for(int i = 0; i < m_NumValues; i++) { delta = m_CondValues[i] - given; zLower = (delta - (m_Precision / 2)) / m_StandardDev; zUpper = (delta + (m_Precision / 2)) / m_StandardDev; currentProb = (Statistics.normalProbability(zUpper) - Statistics.normalProbability(zLower)); result.addValue(m_Values[i], currentProb * m_Weights[i]); } return result; } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @param given the new value that data is conditional upon * @return the estimated probability of the supplied value */ public double getProbability(double data, double given) { return getEstimator(given).getProbability(data); } /** * Display a representation of this estimator */ public String toString() { String result = "KK Conditional Estimator. " + m_NumValues + " Normal Kernels:\n" + "StandardDev = " + Utils.doubleToString(m_StandardDev,4,2) + " \nMeans ="; for(int i = 0; i < m_NumValues; i++) { result += " (" + m_Values[i] + ", " + m_CondValues[i] + ")"; if (!m_AllWeightsOne) { result += "w=" + m_Weights[i]; } } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. Creates some random points * in the range 0 - 100, * and prints out a distribution conditional on some value * * @param argv should contain: seed conditional_value numpoints */ public static void main(String [] argv) { try { int seed = 42; if (argv.length > 0) { seed = Integer.parseInt(argv[0]); } KKConditionalEstimator newEst = new KKConditionalEstimator(0.1); // Create 100 random points and add them Random r = new Random(seed); int numPoints = 50; if (argv.length > 2) { numPoints = Integer.parseInt(argv[2]); } for(int i = 0; i < numPoints; i++) { int x = Math.abs(r.nextInt()%100); int y = Math.abs(r.nextInt()%100); System.out.println("# " + x + " " + y); newEst.addValue(x, y, 1); } // System.out.println(newEst); int cond; if (argv.length > 1) { cond = Integer.parseInt(argv[1]); } else { cond = Math.abs(r.nextInt()%100); } System.out.println("## Conditional = " + cond); Estimator result = newEst.getEstimator(cond); for(int i = 0; i <= 100; i+= 5) { System.out.println(" " + i + " " + result.getProbability(i)); } } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/KernelEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * KernelEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.Capabilities; import weka.core.Capabilities.Capability; import weka.core.Aggregateable; import weka.core.RevisionUtils; import weka.core.Statistics; import weka.core.Utils; /** * Simple kernel density estimator. Uses one gaussian kernel per observed data * value. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class KernelEstimator extends Estimator implements IncrementalEstimator, Aggregateable<KernelEstimator> { /** for serialization */ private static final long serialVersionUID = 3646923563367683925L; /** Vector containing all of the values seen */ private double[] m_Values; /** Vector containing the associated weights */ private double[] m_Weights; /** Number of values stored in m_Weights and m_Values so far */ private int m_NumValues; /** The sum of the weights so far */ private double m_SumOfWeights; /** The standard deviation */ private double m_StandardDev; /** The precision of data values */ private double m_Precision; /** Whether we can optimise the kernel summation */ private boolean m_AllWeightsOne; /** Maximum percentage error permitted in probability calculations */ private static double MAX_ERROR = 0.01; /** * Execute a binary search to locate the nearest data value * * @param the data value to locate * @return the index of the nearest data value */ private int findNearestValue(double key) { int low = 0; int high = m_NumValues; int middle = 0; while (low < high) { middle = (low + high) / 2; double current = m_Values[middle]; if (current == key) { return middle; } if (current > key) { high = middle; } else if (current < key) { low = middle + 1; } } return low; } /** * Round a data value using the defined precision for this estimator * * @param data the value to round * @return the rounded data value */ private double round(double data) { return Math.rint(data / m_Precision) * m_Precision; } // =============== // Public methods. // =============== /** * Constructor that takes a precision argument. * * @param precision the precision to which numeric values are given. For * example, if the precision is stated to be 0.1, the values in the * interval (0.25,0.35] are all treated as 0.3. */ public KernelEstimator(double precision) { m_Values = new double[50]; m_Weights = new double[50]; m_NumValues = 0; m_SumOfWeights = 0; m_AllWeightsOne = true; m_Precision = precision; // precision cannot be zero if (m_Precision < Utils.SMALL) m_Precision = Utils.SMALL; // m_StandardDev = 1e10 * m_Precision; // Set the standard deviation // initially very wide m_StandardDev = m_Precision / (2 * 3); } /** * Add a new data value to the current estimator. * * @param data the new data value * @param weight the weight assigned to the data value */ @Override public void addValue(double data, double weight) { if (weight == 0) { return; } data = round(data); int insertIndex = findNearestValue(data); if ((m_NumValues <= insertIndex) || (m_Values[insertIndex] != data)) { if (m_NumValues < m_Values.length) { int left = m_NumValues - insertIndex; System .arraycopy(m_Values, insertIndex, m_Values, insertIndex + 1, left); System.arraycopy(m_Weights, insertIndex, m_Weights, insertIndex + 1, left); m_Values[insertIndex] = data; m_Weights[insertIndex] = weight; m_NumValues++; } else { double[] newValues = new double[m_Values.length * 2]; double[] newWeights = new double[m_Values.length * 2]; int left = m_NumValues - insertIndex; System.arraycopy(m_Values, 0, newValues, 0, insertIndex); System.arraycopy(m_Weights, 0, newWeights, 0, insertIndex); newValues[insertIndex] = data; newWeights[insertIndex] = weight; System.arraycopy(m_Values, insertIndex, newValues, insertIndex + 1, left); System.arraycopy(m_Weights, insertIndex, newWeights, insertIndex + 1, left); m_NumValues++; m_Values = newValues; m_Weights = newWeights; } if (weight != 1) { m_AllWeightsOne = false; } } else { m_Weights[insertIndex] += weight; m_AllWeightsOne = false; } m_SumOfWeights += weight; double range = m_Values[m_NumValues - 1] - m_Values[0]; if (range > 0) { m_StandardDev = Math.max(range / Math.sqrt(m_SumOfWeights), // allow at most 3 sds within one interval m_Precision / (2 * 3)); } } /** * Get a probability estimate for a value. * * @param data the value to estimate the probability of * @return the estimated probability of the supplied value */ @Override public double getProbability(double data) { double delta = 0, sum = 0, currentProb = 0; double zLower = 0, zUpper = 0; if (m_NumValues == 0) { zLower = (data - (m_Precision / 2)) / m_StandardDev; zUpper = (data + (m_Precision / 2)) / m_StandardDev; return (Statistics.normalProbability(zUpper) - Statistics .normalProbability(zLower)); } double weightSum = 0; int start = findNearestValue(data); for (int i = start; i < m_NumValues; i++) { delta = m_Values[i] - data; zLower = (delta - (m_Precision / 2)) / m_StandardDev; zUpper = (delta + (m_Precision / 2)) / m_StandardDev; currentProb = (Statistics.normalProbability(zUpper) - Statistics .normalProbability(zLower)); sum += currentProb * m_Weights[i]; /* * System.out.print("zL" + (i + 1) + ": " + zLower + " "); * System.out.print("zU" + (i + 1) + ": " + zUpper + " "); * System.out.print("P" + (i + 1) + ": " + currentProb + " "); * System.out.println("total: " + (currentProb * m_Weights[i]) + " "); */ weightSum += m_Weights[i]; if (currentProb * (m_SumOfWeights - weightSum) < sum * MAX_ERROR) { break; } } for (int i = start - 1; i >= 0; i--) { delta = m_Values[i] - data; zLower = (delta - (m_Precision / 2)) / m_StandardDev; zUpper = (delta + (m_Precision / 2)) / m_StandardDev; currentProb = (Statistics.normalProbability(zUpper) - Statistics .normalProbability(zLower)); sum += currentProb * m_Weights[i]; weightSum += m_Weights[i]; if (currentProb * (m_SumOfWeights - weightSum) < sum * MAX_ERROR) { break; } } return sum / m_SumOfWeights; } /** Display a representation of this estimator */ @Override public String toString() { String result = m_NumValues + " Normal Kernels. \nStandardDev = " + Utils.doubleToString(m_StandardDev, 6, 4) + " Precision = " + m_Precision; if (m_NumValues == 0) { result += " \nMean = 0"; } else { result += " \nMeans ="; for (int i = 0; i < m_NumValues; i++) { result += " " + m_Values[i]; } if (!m_AllWeightsOne) { result += "\nWeights = "; for (int i = 0; i < m_NumValues; i++) { result += " " + m_Weights[i]; } } } return result + "\n"; } /** * Return the number of kernels in this kernel estimator * * @return the number of kernels */ public int getNumKernels() { return m_NumValues; } /** * Return the means of the kernels. * * @return the means of the kernels */ public double[] getMeans() { return m_Values; } /** * Return the weights of the kernels. * * @return the weights of the kernels */ public double[] getWeights() { return m_Weights; } /** * Return the precision of this kernel estimator. * * @return the precision */ public double getPrecision() { return m_Precision; } /** * Return the standard deviation of this kernel estimator. * * @return the standard deviation */ public double getStdDev() { return m_StandardDev; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // class if (!m_noClass) { result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); } else { result.enable(Capability.NO_CLASS); } // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } @Override public KernelEstimator aggregate(KernelEstimator toAggregate) throws Exception { for (int i = 0; i < toAggregate.m_NumValues; i++) { addValue(toAggregate.m_Values[i], toAggregate.m_Weights[i]); } return this; } @Override public void finalizeAggregation() throws Exception { // nothing to do } public static void testAggregation() { KernelEstimator ke = new KernelEstimator(0.01); KernelEstimator one = new KernelEstimator(0.01); KernelEstimator two = new KernelEstimator(0.01); java.util.Random r = new java.util.Random(1); for (int i = 0; i < 100; i++) { double z = r.nextDouble(); ke.addValue(z, 1); if (i < 50) { one.addValue(z, 1); } else { two.addValue(z, 1); } } try { System.out.println("\n\nFull\n"); System.out.println(ke.toString()); System.out.println("Prob (0): " + ke.getProbability(0)); System.out.println("\nOne\n" + one.toString()); System.out.println("Prob (0): " + one.getProbability(0)); System.out.println("\nTwo\n" + two.toString()); System.out.println("Prob (0): " + two.getProbability(0)); one = one.aggregate(two); System.out.println("Aggregated\n"); System.out.println(one.toString()); System.out.println("Prob (0): " + one.getProbability(0)); } catch (Exception ex) { ex.printStackTrace(); } } /** * Main method for testing this class. * * @param argv should contain a sequence of numeric values */ public static void main(String[] argv) { try { if (argv.length < 2) { System.out.println("Please specify a set of instances."); return; } KernelEstimator newEst = new KernelEstimator(0.01); for (int i = 0; i < argv.length - 3; i += 2) { newEst.addValue(Double.valueOf(argv[i]).doubleValue(), Double.valueOf(argv[i + 1]).doubleValue()); } System.out.println(newEst); double start = Double.valueOf(argv[argv.length - 2]).doubleValue(); double finish = Double.valueOf(argv[argv.length - 1]).doubleValue(); for (double current = start; current < finish; current += (finish - start) / 50) { System.out.println("Data: " + current + " " + newEst.getProbability(current)); } KernelEstimator.testAggregation(); } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/MahalanobisEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * MahalanobisEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.Capabilities; import weka.core.Capabilities.Capability; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.matrix.Matrix; /** * Simple probability estimator that places a single normal distribution * over the observed values. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class MahalanobisEstimator extends Estimator implements IncrementalEstimator { /** for serialization */ private static final long serialVersionUID = 8950225468990043868L; /** The inverse of the covariance matrix */ private Matrix m_CovarianceInverse; /** The determinant of the covariance matrix */ private double m_Determinant; /** * The difference between the conditioning value and the conditioning mean */ private double m_ConstDelta; /** The mean of the values */ private double m_ValueMean; /** 2 * PI */ private static double TWO_PI = 2 * Math.PI; /** * Returns value for normal kernel * * @param x the argument to the kernel function * @param variance the variance * @return the value for a normal kernel */ private double normalKernel(double x) { Matrix thisPoint = new Matrix(1, 2); thisPoint.set(0, 0, x); thisPoint.set(0, 1, m_ConstDelta); return Math.exp(-thisPoint.times(m_CovarianceInverse). times(thisPoint.transpose()).get(0, 0) / 2) / (Math.sqrt(TWO_PI) * m_Determinant); } /** * Constructor * * @param covariance * @param constDelta * @param valueMean */ public MahalanobisEstimator(Matrix covariance, double constDelta, double valueMean) { m_CovarianceInverse = null; if ((covariance.getRowDimension() == 2) && (covariance.getColumnDimension() == 2)) { double a = covariance.get(0, 0); double b = covariance.get(0, 1); double c = covariance.get(1, 0); double d = covariance.get(1, 1); if (a == 0) { a = c; c = 0; double temp = b; b = d; d = temp; } if (a == 0) { return; } double denom = d - c * b / a; if (denom == 0) { return; } m_Determinant = covariance.get(0, 0) * covariance.get(1, 1) - covariance.get(1, 0) * covariance.get(0, 1); m_CovarianceInverse = new Matrix(2, 2); m_CovarianceInverse.set(0, 0, 1.0 / a + b * c / a / a / denom); m_CovarianceInverse.set(0, 1, -b / a / denom); m_CovarianceInverse.set(1, 0, -c / a / denom); m_CovarianceInverse.set(1, 1, 1.0 / denom); m_ConstDelta = constDelta; m_ValueMean = valueMean; } } /** * Add a new data value to the current estimator. Does nothing because the * data is provided in the constructor. * * @param data the new data value * @param weight the weight assigned to the data value */ public void addValue(double data, double weight) { } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @return the estimated probability of the supplied value */ public double getProbability(double data) { double delta = data - m_ValueMean; if (m_CovarianceInverse == null) { return 0; } return normalKernel(delta); } /** Display a representation of this estimator */ public String toString() { if (m_CovarianceInverse == null) { return "No covariance inverse\n"; } return "Mahalanovis Distribution. Mean = " + Utils.doubleToString(m_ValueMean, 4, 2) + " ConditionalOffset = " + Utils.doubleToString(m_ConstDelta, 4, 2) + "\n" + "Covariance Matrix: Determinant = " + m_Determinant + " Inverse:\n" + m_CovarianceInverse; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // class if (!m_noClass) { result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); } else { result.enable(Capability.NO_CLASS); } // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param argv should contain a sequence of numeric values */ public static void main(String [] argv) { try { double delta = 0.5; double xmean = 0; double lower = 0; double upper = 10; Matrix covariance = new Matrix(2, 2); covariance.set(0, 0, 2); covariance.set(0, 1, -3); covariance.set(1, 0, -4); covariance.set(1, 1, 5); if (argv.length > 0) { covariance.set(0, 0, Double.valueOf(argv[0]).doubleValue()); } if (argv.length > 1) { covariance.set(0, 1, Double.valueOf(argv[1]).doubleValue()); } if (argv.length > 2) { covariance.set(1, 0, Double.valueOf(argv[2]).doubleValue()); } if (argv.length > 3) { covariance.set(1, 1, Double.valueOf(argv[3]).doubleValue()); } if (argv.length > 4) { delta = Double.valueOf(argv[4]).doubleValue(); } if (argv.length > 5) { xmean = Double.valueOf(argv[5]).doubleValue(); } MahalanobisEstimator newEst = new MahalanobisEstimator(covariance, delta, xmean); if (argv.length > 6) { lower = Double.valueOf(argv[6]).doubleValue(); if (argv.length > 7) { upper = Double.valueOf(argv[7]).doubleValue(); } double increment = (upper - lower) / 50; for(double current = lower; current <= upper; current+= increment) System.out.println(current + " " + newEst.getProbability(current)); } else { System.out.println("Covariance Matrix\n" + covariance); System.out.println(newEst); } } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/MultivariateEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * MultivariateEstimator.java * Copyright (C) 2013 University of Waikato */ package weka.estimators; /** * Interface to Multivariate Distribution Estimation * * @author Uday Kamath, PhD candidate George Mason University * @version $Revision$ */ public interface MultivariateEstimator { /** * Fits the value to the density estimator. * * @param value the value to add * @param weight the weight of the value */ void estimate(double[][] value, double[] weight); /** * Returns the natural logarithm of the density estimate at the given point. * * @param value the value at which to evaluate * @return the natural logarithm of the density estimate at the given value */ double logDensity(double[] value); }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/MultivariateGaussianEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * MultivariateNormalEstimator.java * Copyright (C) 2013 University of Waikato */ package weka.estimators; import no.uib.cipr.matrix.*; import no.uib.cipr.matrix.Matrix; import weka.core.Utils; import java.io.Serializable; /** * Implementation of maximum likelihood Multivariate Distribution Estimation using Normal * Distribution. * * @author Uday Kamath, PhD, George Mason University * @author Eibe Frank, University of Waikato * @version $Revision$ * */ public class MultivariateGaussianEstimator implements MultivariateEstimator, Serializable { /** Mean vector */ protected DenseVector mean; /** Inverse of covariance matrix */ protected UpperSPDDenseMatrix covarianceInverse; /** Factor to make density integrate to one (log of this factor) */ protected double lnconstant; /** Ridge parameter to add to diagonal of covariance matrix */ protected double m_Ridge = 1e-6; /** * Log of twice the number pi: log(2*pi). */ public static final double Log2PI = Math.log(2 * Math.PI); /** * Returns string summarizing the estimator. */ public String toString() { StringBuffer sb = new StringBuffer(); sb.append("Natural logarithm of normalizing factor: " + lnconstant + "\n\n"); sb.append("Mean vector:\n\n" + mean + "\n"); sb.append("Inverse of covariance matrix:\n\n" + covarianceInverse + "\n"); return sb.toString(); } /** * Returns the mean vector. */ public double[] getMean() { return mean.getData(); } /** * Returns the log of the density value for the given vector. * * @param valuePassed input vector * @return log density based on given distribution */ @Override public double logDensity(double[] valuePassed) { // calculate mean subtractions Vector x = new DenseVector(valuePassed); return lnconstant - 0.5 * x.dot(covarianceInverse.mult(x.add(-1.0, mean), new DenseVector(x.size()))); } /** * Generates the estimator based on the given observations and weight vector. * Equal weights are assumed if the weight vector is null. */ @Override public void estimate(double[][] observations, double[] weights) { if (weights == null) { weights = new double[observations.length]; for (int i = 0; i < weights.length; i++) { weights[i] = 1.0; } } DenseVector weightVector = new DenseVector(weights); weightVector = weightVector.scale(1.0 / weightVector.norm(Vector.Norm.One)); mean = weightedMean(observations, weightVector); Matrix cov = weightedCovariance(observations, weightVector, mean); // Compute inverse of covariance matrix DenseCholesky chol = new DenseCholesky(observations[0].length, true).factor((UpperSPDDenseMatrix)cov); covarianceInverse = new UpperSPDDenseMatrix(chol.solve(Matrices.identity(observations[0].length))); double logDeterminant = 0; for (int i = 0; i < observations[0].length; i++) { logDeterminant += Math.log(chol.getU().get(i, i)); } logDeterminant *= 2; lnconstant = -(Log2PI * observations[0].length + logDeterminant) * 0.5; } /** * Generates pooled estimator for linear discriminant analysis based on the given groups of * observations and weight vectors. The pooled covariance matrix is the weighted mean * of the per-group covariance matrices. The pooled mean vector is the mean vector for all observations. * * @return the per group mean vectors */ public double[][] estimatePooled(double[][][] observations, double[][] weights) { // Establish number of attributes and number of classes int m = -1; int c = observations.length; for (int i = 0; i < observations.length; i++) { if (observations[i].length > 0) { m = observations[i][0].length; } } if (m == -1) { throw new IllegalArgumentException("Cannot compute pooled estimates with no data."); } // Compute per-group covariance matrices and mean vectors Matrix[] groupCovariance = new Matrix[c]; DenseVector[] groupMean = new DenseVector[c]; double[] groupWeights = new double[c]; for (int i = 0; i < groupCovariance.length; i++) { if (observations[i].length > 0) { DenseVector weightVector = new DenseVector(weights[i]); weightVector = weightVector.scale(1.0 / weightVector.norm(Vector.Norm.One)); groupMean[i] = weightedMean(observations[i], weightVector); groupCovariance[i] = weightedCovariance(observations[i], weightVector, groupMean[i]); groupWeights[i] = Utils.sum(weights[i]); } } Utils.normalize(groupWeights); // Pool covariance matrices and means double[][] means = new double[c][]; Matrix cov = new UpperSPDDenseMatrix(m); mean = new DenseVector(groupMean[0].size()); for (int i = 0; i < c; i++) { if (observations[i].length > 0) { cov = cov.add(groupWeights[i], groupCovariance[i]); mean = (DenseVector) mean.add(groupWeights[i], groupMean[i]); means[i] = groupMean[i].getData(); } } // Compute inverse of covariance matrix DenseCholesky chol = new DenseCholesky(m, true).factor((UpperSPDDenseMatrix)cov); covarianceInverse = new UpperSPDDenseMatrix(chol.solve(Matrices.identity(m))); double logDeterminant = 0; for (int i = 0; i < m; i++) { logDeterminant += Math.log(chol.getU().get(i, i)); } logDeterminant *= 2; lnconstant = -(Log2PI * m + logDeterminant) * 0.5; return means; } /** * Computes the mean vector * @param matrix the data (assumed to contain at least one row) * @param weights the observation weights, normalized to sum to 1. * @return the weighted mean */ private DenseVector weightedMean(double[][] matrix, DenseVector weights) { return (DenseVector)new DenseMatrix(matrix).transMult(weights, new DenseVector(matrix[0].length)); } /** * Computes the estimate of the covariance matrix. * * @param matrix A multi-dimensional array containing the matrix values (assumed to contain at least one row). * @param weights The observation weights, normalized to sum to 1. * @param mean The values' mean vector. * @return The covariance matrix, including the ridge. */ private UpperSPDDenseMatrix weightedCovariance(double[][] matrix, DenseVector weights, Vector mean) { int rows = matrix.length; int cols = matrix[0].length; if (mean.size() != cols) { throw new IllegalArgumentException("Length of the mean vector must match matrix."); } // Create matrix with centered transposed data, weighted appropriately DenseMatrix transposed = new DenseMatrix(cols, rows); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { transposed.set(j, i, Math.sqrt(weights.get(i)) * (matrix[i][j] - mean.get(j))); } } UpperSPDDenseMatrix covT = (UpperSPDDenseMatrix) new UpperSPDDenseMatrix(cols).rank1(transposed); for (int i = 0; i < cols; i++) { covT.add(i, i, m_Ridge); } return covT; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String ridgeTipText() { return "The value of the ridge parameter."; } /** * Get the value of Ridge. * * @return Value of Ridge. */ public double getRidge() { return m_Ridge; } /** * Set the value of Ridge. * * @param newRidge Value to assign to Ridge. */ public void setRidge(double newRidge) { m_Ridge = newRidge; } /** * Main method for testing this class. * @param args command-line parameters */ public static void main(String[] args) { double[][] dataset1 = new double[4][1]; dataset1[0][0] = 0.49; dataset1[1][0] = 0.46; dataset1[2][0] = 0.51; dataset1[3][0] = 0.55; MultivariateEstimator mv1 = new MultivariateGaussianEstimator(); mv1.estimate(dataset1, new double[]{0.7, 0.2, 0.05, 0.05}); System.err.println(mv1); double integral1 = 0; int numVals = 1000; for (int i = 0; i < numVals; i++) { double[] point = new double[1]; point[0] = (i + 0.5) * (1.0 / numVals); double logdens = mv1.logDensity(point); if (!Double.isNaN(logdens)) { integral1 += Math.exp(logdens) * (1.0 / numVals); } } System.err.println("Approximate integral: " + integral1); double[][] dataset = new double[4][3]; dataset[0][0] = 0.49; dataset[0][1] = 0.51; dataset[0][2] = 0.53; dataset[1][0] = 0.46; dataset[1][1] = 0.47; dataset[1][2] = 0.52; dataset[2][0] = 0.51; dataset[2][1] = 0.49; dataset[2][2] = 0.47; dataset[3][0] = 0.55; dataset[3][1] = 0.52; dataset[3][2] = 0.54; MultivariateEstimator mv = new MultivariateGaussianEstimator(); mv.estimate(dataset, new double[]{2, 0.2, 0.05, 0.05}); System.err.println(mv); double integral = 0; int numVals2 = 200; for (int i = 0; i < numVals2; i++) { for (int j = 0; j < numVals2; j++) { for (int k = 0; k < numVals2; k++) { double[] point = new double[3]; point[0] = (i + 0.5) * (1.0 / numVals2); point[1] = (j + 0.5) * (1.0 / numVals2); point[2] = (k + 0.5) * (1.0 / numVals2); double logdens = mv.logDensity(point); if (!Double.isNaN(logdens)) { integral += Math.exp(logdens) / (numVals2 * numVals2 * numVals2); } } } } System.err.println("Approximate integral: " + integral); double[][] dataset3 = new double[5][3]; dataset3[0][0] = 0.49; dataset3[0][1] = 0.51; dataset3[0][2] = 0.53; dataset3[4][0] = 0.49; dataset3[4][1] = 0.51; dataset3[4][2] = 0.53; dataset3[1][0] = 0.46; dataset3[1][1] = 0.47; dataset3[1][2] = 0.52; dataset3[2][0] = 0.51; dataset3[2][1] = 0.49; dataset3[2][2] = 0.47; dataset3[3][0] = 0.55; dataset3[3][1] = 0.52; dataset3[3][2] = 0.54; MultivariateEstimator mv3 = new MultivariateGaussianEstimator(); mv3.estimate(dataset3, new double[]{1, 0.2, 0.05, 0.05, 1}); System.err.println(mv3); double integral3 = 0; int numVals3 = 200; for (int i = 0; i < numVals3; i++) { for (int j = 0; j < numVals3; j++) { for (int k = 0; k < numVals3; k++) { double[] point = new double[3]; point[0] = (i + 0.5) * (1.0 / numVals3); point[1] = (j + 0.5) * (1.0 / numVals3); point[2] = (k + 0.5) * (1.0 / numVals3); double logdens = mv.logDensity(point); if (!Double.isNaN(logdens)) { integral3 += Math.exp(logdens) / (numVals3 * numVals3 * numVals3); } } } } System.err.println("Approximate integral: " + integral3); double[][][] dataset4 = new double[2][][]; dataset4[0] = new double[2][3]; dataset4[1] = new double[3][3]; dataset4[0][0][0] = 0.49; dataset4[0][0][1] = 0.51; dataset4[0][0][2] = 0.53; dataset4[0][1][0] = 0.49; dataset4[0][1][1] = 0.51; dataset4[0][1][2] = 0.53; dataset4[1][0][0] = 0.46; dataset4[1][0][1] = 0.47; dataset4[1][0][2] = 0.52; dataset4[1][1][0] = 0.51; dataset4[1][1][1] = 0.49; dataset4[1][1][2] = 0.47; dataset4[1][2][0] = 0.55; dataset4[1][2][1] = 0.52; dataset4[1][2][2] = 0.54; double[][] weights = new double[2][]; weights[0] = new double[] {1, 3}; weights[1] = new double[] {2, 1, 1}; MultivariateGaussianEstimator mv4 = new MultivariateGaussianEstimator(); mv4.estimatePooled(dataset4, weights); System.err.println(mv4); double integral4 = 0; int numVals4 = 200; for (int i = 0; i < numVals4; i++) { for (int j = 0; j < numVals4; j++) { for (int k = 0; k < numVals4; k++) { double[] point = new double[3]; point[0] = (i + 0.5) * (1.0 / numVals4); point[1] = (j + 0.5) * (1.0 / numVals4); point[2] = (k + 0.5) * (1.0 / numVals4); double logdens = mv.logDensity(point); if (!Double.isNaN(logdens)) { integral4 += Math.exp(logdens) / (numVals4 * numVals4 * numVals4); } } } } System.err.println("Approximate integral: " + integral4); double[][][] dataset5 = new double[2][][]; dataset5[0] = new double[4][3]; dataset5[1] = new double[4][3]; dataset5[0][0][0] = 0.49; dataset5[0][0][1] = 0.51; dataset5[0][0][2] = 0.53; dataset5[0][1][0] = 0.49; dataset5[0][1][1] = 0.51; dataset5[0][1][2] = 0.53; dataset5[0][2][0] = 0.49; dataset5[0][2][1] = 0.51; dataset5[0][2][2] = 0.53; dataset5[0][3][0] = 0.49; dataset5[0][3][1] = 0.51; dataset5[0][3][2] = 0.53; dataset5[1][0][0] = 0.46; dataset5[1][0][1] = 0.47; dataset5[1][0][2] = 0.52; dataset5[1][1][0] = 0.46; dataset5[1][1][1] = 0.47; dataset5[1][1][2] = 0.52; dataset5[1][2][0] = 0.51; dataset5[1][2][1] = 0.49; dataset5[1][2][2] = 0.47; dataset5[1][3][0] = 0.55; dataset5[1][3][1] = 0.52; dataset5[1][3][2] = 0.54; double[][] weights2 = new double[2][]; weights2[0] = new double[] {1, 1, 1, 1}; weights2[1] = new double[] {1, 1, 1, 1}; MultivariateGaussianEstimator mv5 = new MultivariateGaussianEstimator(); mv5.estimatePooled(dataset5, weights2); System.err.println(mv5); double integral5 = 0; int numVals5 = 200; for (int i = 0; i < numVals5; i++) { for (int j = 0; j < numVals5; j++) { for (int k = 0; k < numVals5; k++) { double[] point = new double[3]; point[0] = (i + 0.5) * (1.0 / numVals5); point[1] = (j + 0.5) * (1.0 / numVals5); point[2] = (k + 0.5) * (1.0 / numVals5); double logdens = mv.logDensity(point); if (!Double.isNaN(logdens)) { integral5 += Math.exp(logdens) / (numVals5 * numVals5 * numVals5); } } } } System.err.println("Approximate integral: " + integral5); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/NDConditionalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * NDConditionalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.RevisionUtils; /** * Conditional probability estimator for a numeric domain conditional upon * a discrete domain (utilises separate normal estimators for each discrete * conditioning value). * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class NDConditionalEstimator implements ConditionalEstimator { /** Hold the sub-estimators */ private NormalEstimator [] m_Estimators; /** * Constructor * * @param numCondSymbols the number of conditioning symbols * @param precision the precision to which numeric values are given. For * example, if the precision is stated to be 0.1, the values in the * interval (0.25,0.35] are all treated as 0.3. */ public NDConditionalEstimator(int numCondSymbols, double precision) { m_Estimators = new NormalEstimator [numCondSymbols]; for(int i = 0; i < numCondSymbols; i++) { m_Estimators[i] = new NormalEstimator(precision); } } /** * Add a new data value to the current estimator. * * @param data the new data value * @param given the new value that data is conditional upon * @param weight the weight assigned to the data value */ public void addValue(double data, double given, double weight) { m_Estimators[(int)given].addValue(data, weight); } /** * Get a probability estimator for a value * * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ public Estimator getEstimator(double given) { return m_Estimators[(int)given]; } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @param given the new value that data is conditional upon * @return the estimated probability of the supplied value */ public double getProbability(double data, double given) { return getEstimator(given).getProbability(data); } /** * Display a representation of this estimator */ public String toString() { String result = "ND Conditional Estimator. " + m_Estimators.length + " sub-estimators:\n"; for(int i = 0; i < m_Estimators.length; i++) { result += "Sub-estimator " + i + ": " + m_Estimators[i]; } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param argv should contain a sequence of pairs of integers which * will be treated as numeric, symbolic. */ public static void main(String [] argv) { try { if (argv.length == 0) { System.out.println("Please specify a set of instances."); return; } int currentA = Integer.parseInt(argv[0]); int maxA = currentA; int currentB = Integer.parseInt(argv[1]); int maxB = currentB; for(int i = 2; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); if (currentA > maxA) { maxA = currentA; } if (currentB > maxB) { maxB = currentB; } } NDConditionalEstimator newEst = new NDConditionalEstimator(maxB + 1, 1); for(int i = 0; i < argv.length - 1; i += 2) { currentA = Integer.parseInt(argv[i]); currentB = Integer.parseInt(argv[i + 1]); System.out.println(newEst); System.out.println("Prediction for " + currentA + '|' + currentB + " = " + newEst.getProbability(currentA, currentB)); newEst.addValue(currentA, currentB, 1); } } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/NNConditionalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * NNConditionalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.util.Random; import java.util.Vector; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.matrix.Matrix; /** * Conditional probability estimator for a numeric domain conditional upon a * numeric domain (using Mahalanobis distance). * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class NNConditionalEstimator implements ConditionalEstimator { /** Vector containing all of the values seen */ private final Vector<Double> m_Values = new Vector<Double>(); /** Vector containing all of the conditioning values seen */ private final Vector<Double> m_CondValues = new Vector<Double>(); /** Vector containing the associated weights */ private final Vector<Double> m_Weights = new Vector<Double>(); /** The sum of the weights so far */ private double m_SumOfWeights; /** Current Conditional mean */ private double m_CondMean; /** Current Values mean */ private double m_ValueMean; /** Current covariance matrix */ private Matrix m_Covariance; // =============== // Private methods // =============== /** * Execute a binary search to locate the nearest data value * * @param key the data value to locate * @param secondaryKey the data value to locate * @return the index of the nearest data value */ private int findNearestPair(double key, double secondaryKey) { int low = 0; int high = m_CondValues.size(); int middle = 0; while (low < high) { middle = (low + high) / 2; double current = m_CondValues.elementAt(middle).doubleValue(); if (current == key) { double secondary = m_Values.elementAt(middle).doubleValue(); if (secondary == secondaryKey) { return middle; } if (secondary > secondaryKey) { high = middle; } else if (secondary < secondaryKey) { low = middle + 1; } } if (current > key) { high = middle; } else if (current < key) { low = middle + 1; } } return low; } /** Calculate covariance and value means */ private void calculateCovariance() { double sumValues = 0, sumConds = 0; for (int i = 0; i < m_Values.size(); i++) { sumValues += m_Values.elementAt(i).doubleValue() * m_Weights.elementAt(i).doubleValue(); sumConds += m_CondValues.elementAt(i).doubleValue() * m_Weights.elementAt(i).doubleValue(); } m_ValueMean = sumValues / m_SumOfWeights; m_CondMean = sumConds / m_SumOfWeights; double c00 = 0, c01 = 0, c10 = 0, c11 = 0; for (int i = 0; i < m_Values.size(); i++) { double x = m_Values.elementAt(i).doubleValue(); double y = m_CondValues.elementAt(i).doubleValue(); double weight = m_Weights.elementAt(i).doubleValue(); c00 += (x - m_ValueMean) * (x - m_ValueMean) * weight; c01 += (x - m_ValueMean) * (y - m_CondMean) * weight; c11 += (y - m_CondMean) * (y - m_CondMean) * weight; } c00 /= (m_SumOfWeights - 1.0); c01 /= (m_SumOfWeights - 1.0); c10 = c01; c11 /= (m_SumOfWeights - 1.0); m_Covariance = new Matrix(2, 2); m_Covariance.set(0, 0, c00); m_Covariance.set(0, 1, c01); m_Covariance.set(1, 0, c10); m_Covariance.set(1, 1, c11); } /** * Add a new data value to the current estimator. * * @param data the new data value * @param given the new value that data is conditional upon * @param weight the weight assigned to the data value */ @Override public void addValue(double data, double given, double weight) { int insertIndex = findNearestPair(given, data); if ((m_Values.size() <= insertIndex) || (m_CondValues.elementAt(insertIndex).doubleValue() != given) || (m_Values.elementAt(insertIndex).doubleValue() != data)) { m_CondValues.insertElementAt(new Double(given), insertIndex); m_Values.insertElementAt(new Double(data), insertIndex); m_Weights.insertElementAt(new Double(weight), insertIndex); if (weight != 1) { } } else { double newWeight = m_Weights.elementAt(insertIndex).doubleValue(); newWeight += weight; m_Weights.setElementAt(new Double(newWeight), insertIndex); } m_SumOfWeights += weight; // Invalidate any previously calculated covariance matrix m_Covariance = null; } /** * Get a probability estimator for a value * * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ @Override public Estimator getEstimator(double given) { if (m_Covariance == null) { calculateCovariance(); } Estimator result = new MahalanobisEstimator(m_Covariance, given - m_CondMean, m_ValueMean); return result; } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @param given the new value that data is conditional upon * @return the estimated probability of the supplied value */ @Override public double getProbability(double data, double given) { return getEstimator(given).getProbability(data); } /** Display a representation of this estimator */ @Override public String toString() { if (m_Covariance == null) { calculateCovariance(); } String result = "NN Conditional Estimator. " + m_CondValues.size() + " data points. Mean = " + Utils.doubleToString(m_ValueMean, 4, 2) + " Conditional mean = " + Utils.doubleToString(m_CondMean, 4, 2); result += " Covariance Matrix: \n" + m_Covariance; return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param argv should contain a sequence of numeric values */ public static void main(String[] argv) { try { int seed = 42; if (argv.length > 0) { seed = Integer.parseInt(argv[0]); } NNConditionalEstimator newEst = new NNConditionalEstimator(); // Create 100 random points and add them Random r = new Random(seed); int numPoints = 50; if (argv.length > 2) { numPoints = Integer.parseInt(argv[2]); } for (int i = 0; i < numPoints; i++) { int x = Math.abs(r.nextInt() % 100); int y = Math.abs(r.nextInt() % 100); System.out.println("# " + x + " " + y); newEst.addValue(x, y, 1); } // System.out.println(newEst); int cond; if (argv.length > 1) { cond = Integer.parseInt(argv[1]); } else { cond = Math.abs(r.nextInt() % 100); } System.out.println("## Conditional = " + cond); Estimator result = newEst.getEstimator(cond); for (int i = 0; i <= 100; i += 5) { System.out.println(" " + i + " " + result.getProbability(i)); } } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/NormalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * NormalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.Capabilities; import weka.core.Capabilities.Capability; import weka.core.Aggregateable; import weka.core.RevisionUtils; import weka.core.Statistics; import weka.core.Utils; /** * Simple probability estimator that places a single normal distribution over * the observed values. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class NormalEstimator extends Estimator implements IncrementalEstimator, Aggregateable<NormalEstimator> { /** for serialization */ private static final long serialVersionUID = 93584379632315841L; /** The sum of the weights */ private double m_SumOfWeights; /** The sum of the values seen */ private double m_SumOfValues; /** The sum of the values squared */ private double m_SumOfValuesSq; /** The current mean */ private double m_Mean; /** The current standard deviation */ private double m_StandardDev; /** The precision of numeric values ( = minimum std dev permitted) */ private double m_Precision; /** * Round a data value using the defined precision for this estimator * * @param data the value to round * @return the rounded data value */ private double round(double data) { return Math.rint(data / m_Precision) * m_Precision; } // =============== // Public methods. // =============== /** * Constructor that takes a precision argument. * * @param precision the precision to which numeric values are given. For * example, if the precision is stated to be 0.1, the values in the * interval (0.25,0.35] are all treated as 0.3. */ public NormalEstimator(double precision) { m_Precision = precision; // Allow at most 3 sd's within one interval m_StandardDev = m_Precision / (2 * 3); } /** * Add a new data value to the current estimator. * * @param data the new data value * @param weight the weight assigned to the data value */ @Override public void addValue(double data, double weight) { if (weight == 0) { return; } data = round(data); m_SumOfWeights += weight; m_SumOfValues += data * weight; m_SumOfValuesSq += data * data * weight; computeParameters(); } /** * Compute the parameters of the distribution */ protected void computeParameters() { if (m_SumOfWeights > 0) { m_Mean = m_SumOfValues / m_SumOfWeights; double stdDev = Math.sqrt(Math.abs(m_SumOfValuesSq - m_Mean * m_SumOfValues) / m_SumOfWeights); // If the stdDev ~= 0, we really have no idea of scale yet, // so stick with the default. Otherwise... if (stdDev > 1e-10) { m_StandardDev = Math.max(m_Precision / (2 * 3), // allow at most 3sd's within one interval stdDev); } } } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @return the estimated probability of the supplied value */ @Override public double getProbability(double data) { data = round(data); double zLower = (data - m_Mean - (m_Precision / 2)) / m_StandardDev; double zUpper = (data - m_Mean + (m_Precision / 2)) / m_StandardDev; double pLower = Statistics.normalProbability(zLower); double pUpper = Statistics.normalProbability(zUpper); return pUpper - pLower; } /** * Display a representation of this estimator */ @Override public String toString() { return "Normal Distribution. Mean = " + Utils.doubleToString(m_Mean, 4) + " StandardDev = " + Utils.doubleToString(m_StandardDev, 4) + " WeightSum = " + Utils.doubleToString(m_SumOfWeights, 4) + " Precision = " + m_Precision + "\n"; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // class if (!m_noClass) { result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); } else { result.enable(Capability.NO_CLASS); } // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); return result; } /** * Return the value of the mean of this normal estimator. * * @return the mean */ public double getMean() { return m_Mean; } /** * Return the value of the standard deviation of this normal estimator. * * @return the standard deviation */ public double getStdDev() { return m_StandardDev; } /** * Return the value of the precision of this normal estimator. * * @return the precision */ public double getPrecision() { return m_Precision; } /** * Return the sum of the weights for this normal estimator. * * @return the sum of the weights */ public double getSumOfWeights() { return m_SumOfWeights; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } @Override public NormalEstimator aggregate(NormalEstimator toAggregate) throws Exception { m_SumOfWeights += toAggregate.m_SumOfWeights; m_SumOfValues += toAggregate.m_SumOfValues; m_SumOfValuesSq += toAggregate.m_SumOfValuesSq; if (toAggregate.m_Precision < m_Precision) { m_Precision = toAggregate.m_Precision; } computeParameters(); return this; } @Override public void finalizeAggregation() throws Exception { // nothing to do } public static void testAggregation() { NormalEstimator ne = new NormalEstimator(0.01); NormalEstimator one = new NormalEstimator(0.01); NormalEstimator two = new NormalEstimator(0.01); java.util.Random r = new java.util.Random(1); for (int i = 0; i < 100; i++) { double z = r.nextDouble(); ne.addValue(z, 1); if (i < 50) { one.addValue(z, 1); } else { two.addValue(z, 1); } } try { System.out.println("\n\nFull\n"); System.out.println(ne.toString()); System.out.println("Prob (0): " + ne.getProbability(0)); System.out.println("\nOne\n" + one.toString()); System.out.println("Prob (0): " + one.getProbability(0)); System.out.println("\nTwo\n" + two.toString()); System.out.println("Prob (0): " + two.getProbability(0)); one = one.aggregate(two); System.out.println("\nAggregated\n"); System.out.println(one.toString()); System.out.println("Prob (0): " + one.getProbability(0)); } catch (Exception ex) { ex.printStackTrace(); } } /** * Main method for testing this class. * * @param argv should contain a sequence of numeric values */ public static void main(String[] argv) { try { if (argv.length == 0) { System.out.println("Please specify a set of instances."); return; } NormalEstimator newEst = new NormalEstimator(0.01); for (int i = 0; i < argv.length; i++) { double current = Double.valueOf(argv[i]).doubleValue(); System.out.println(newEst); System.out.println("Prediction for " + current + " = " + newEst.getProbability(current)); newEst.addValue(current, 1); } NormalEstimator.testAggregation(); } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/PoissonEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * PoissonEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.Capabilities; import weka.core.Capabilities.Capability; import weka.core.RevisionUtils; import weka.core.Utils; /** * Simple probability estimator that places a single Poisson distribution * over the observed values. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class PoissonEstimator extends Estimator implements IncrementalEstimator { /** for serialization */ private static final long serialVersionUID = 7669362595289236662L; /** The number of values seen */ private double m_NumValues; /** The sum of the values seen */ private double m_SumOfValues; /** * The average number of times * an event occurs in an interval. */ private double m_Lambda; /** * Calculates the log factorial of a number. * * @param x input number. * @return log factorial of x. */ private double logFac(double x) { double result = 0; for (double i = 2; i <= x; i++) { result += Math.log(i); } return result; } /** * Returns value for Poisson distribution * * @param x the argument to the kernel function * @return the value for a Poisson kernel */ private double Poisson(double x) { return Math.exp(-m_Lambda + (x * Math.log(m_Lambda)) - logFac(x)); } /** * Add a new data value to the current estimator. * * @param data the new data value * @param weight the weight assigned to the data value */ public void addValue(double data, double weight) { m_NumValues += weight; m_SumOfValues += data * weight; if (m_NumValues != 0) { m_Lambda = m_SumOfValues / m_NumValues; } } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @return the estimated probability of the supplied value */ public double getProbability(double data) { return Poisson(data); } /** Display a representation of this estimator */ public String toString() { return "Poisson Lambda = " + Utils.doubleToString(m_Lambda, 4, 2) + "\n"; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // class if (!m_noClass) { result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); } else { result.enable(Capability.NO_CLASS); } // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class. * * @param argv should contain a sequence of numeric values */ public static void main(String [] argv) { try { if (argv.length == 0) { System.out.println("Please specify a set of instances."); return; } PoissonEstimator newEst = new PoissonEstimator(); for(int i = 0; i < argv.length; i++) { double current = Double.valueOf(argv[i]).doubleValue(); System.out.println(newEst); System.out.println("Prediction for " + current + " = " + newEst.getProbability(current)); newEst.addValue(current, 1); } } catch (Exception e) { System.out.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/UnivariateDensityEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * UnivariateDensityEstimator.java * Copyright (C) 2009-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import weka.core.RevisionHandler; /** * Interface that can be implemented by simple weighted univariate * density estimators. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ */ public interface UnivariateDensityEstimator extends RevisionHandler { /** * Adds a value to the density estimator. * * @param value the value to add * @param weight the weight of the value */ void addValue(double value, double weight); /** * Returns the natural logarithm of the density estimate at the given * point. * * @param value the value at which to evaluate * @return the natural logarithm of the density estimate at the given * value */ double logDensity(double value); }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/UnivariateEqualFrequencyHistogramEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * UnivariateEqualFrequencyEstimator.java * Copyright (C) 2009-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.io.Serializable; import java.util.ArrayList; import java.util.Arrays; import java.util.Iterator; import java.util.Map; import java.util.Random; import java.util.TreeMap; import weka.core.RevisionUtils; import weka.core.Statistics; import weka.core.Utils; /** * Simple histogram density estimator. Uses equal-frequency histograms based on * the specified number of bins (default: 10). * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ */ public class UnivariateEqualFrequencyHistogramEstimator implements UnivariateDensityEstimator, UnivariateIntervalEstimator, UnivariateQuantileEstimator, Serializable { /** For serialization */ private static final long serialVersionUID = -3180287591539683137L; /** The collection used to store the weighted values. */ protected TreeMap<Double, Double> m_TM = new TreeMap<Double, Double>(); /** The interval boundaries. */ protected double[] m_Boundaries = null; /** The weight of each interval. */ protected double[] m_Weights = null; /** The weighted sum of values */ protected double m_WeightedSum = 0; /** The weighted sum of squared values */ protected double m_WeightedSumSquared = 0; /** The total sum of weights. */ protected double m_SumOfWeights = 0; /** The number of bins to use. */ protected int m_NumBins = 10; /** The current bandwidth (only computed when needed) */ protected double m_Width = Double.MAX_VALUE; /** The exponent to use in computation of bandwidth (default: -0.25) */ protected double m_Exponent = -0.25; /** The minimum allowed value of the kernel width (default: 1.0E-6) */ protected double m_MinWidth = 1.0E-6; /** Constant for Gaussian density. */ public static final double CONST = -0.5 * Math.log(2 * Math.PI); /** The number of intervals used to approximate prediction interval. */ protected int m_NumIntervals = 1000; /** Whether boundaries are updated or only weights. */ protected boolean m_UpdateWeightsOnly = false; /** * Returns a string describing the estimator. */ public String globalInfo() { return "Provides a univariate histogram estimator based on equal-frequency bins."; } /** * Gets the number of bins * * @return the number of bins. */ public int getNumBins() { return this.m_NumBins; } /** * Sets the number of bins * * @param numBins the number of bins */ public void setNumBins(final int numBins) { this.m_NumBins = numBins; } /** * Triggers construction of estimator based on current data and then * initializes the statistics. */ public void initializeStatistics() { this.updateBoundariesAndOrWeights(); this.m_TM = new TreeMap<Double, Double>(); this.m_WeightedSum = 0; this.m_WeightedSumSquared = 0; this.m_SumOfWeights = 0; this.m_Weights = null; } /** * Sets whether only weights should be udpated. */ public void setUpdateWeightsOnly(final boolean flag) { this.m_UpdateWeightsOnly = flag; } /** * Gets whether only weights should be udpated.* */ public boolean getUpdateWeightsOnly() { return this.m_UpdateWeightsOnly; } /** * Adds a value to the density estimator. * * @param value the value to add * @param weight the weight of the value */ @Override public void addValue(final double value, final double weight) { // Add data point to collection this.m_WeightedSum += value * weight; this.m_WeightedSumSquared += value * value * weight; this.m_SumOfWeights += weight; if (this.m_TM.get(value) == null) { this.m_TM.put(value, weight); } else { this.m_TM.put(value, this.m_TM.get(value) + weight); } // Make sure estimator is updated if (!this.getUpdateWeightsOnly()) { this.m_Boundaries = null; } this.m_Weights = null; } /** * Updates the boundaries if necessary. */ protected void updateBoundariesAndOrWeights() { // Do we need to update? if (this.m_Weights != null) { return; } // Update widths for cases that are out of bounds, // using same code as in kernel estimator // First, compute variance for scaling double mean = this.m_WeightedSum / this.m_SumOfWeights; double variance = this.m_WeightedSumSquared / this.m_SumOfWeights - mean * mean; if (variance < 0) { variance = 0; } // Compute kernel bandwidth this.m_Width = Math.sqrt(variance) * Math.pow(this.m_SumOfWeights, this.m_Exponent); if (this.m_Width <= this.m_MinWidth) { this.m_Width = this.m_MinWidth; } // Do we need to update weights only if (this.getUpdateWeightsOnly()) { this.updateWeightsOnly(); } else { this.updateBoundariesAndWeights(); } } /** * Updates the weights only. */ protected void updateWeightsOnly() throws IllegalArgumentException { // Get values and keys from tree map Iterator<Map.Entry<Double, Double>> itr = this.m_TM.entrySet().iterator(); int j = 1; this.m_Weights = new double[this.m_Boundaries.length - 1]; while (itr.hasNext()) { Map.Entry<Double, Double> entry = itr.next(); double value = entry.getKey(); double weight = entry.getValue(); if ((value < this.m_Boundaries[0]) || (value > this.m_Boundaries[this.m_Boundaries.length - 1])) { throw new IllegalArgumentException("Out-of-range value during weight update"); } while (value > this.m_Boundaries[j]) { j++; } this.m_Weights[j - 1] += weight; } } /** * Updates the boundaries and weights. */ protected void updateBoundariesAndWeights() { // Get values and keys from tree map double[] values = new double[this.m_TM.size()]; double[] weights = new double[this.m_TM.size()]; Iterator<Map.Entry<Double, Double>> itr = this.m_TM.entrySet().iterator(); int j = 0; while (itr.hasNext()) { Map.Entry<Double, Double> entry = itr.next(); values[j] = entry.getKey(); weights[j] = entry.getValue(); j++; } double freq = this.m_SumOfWeights / this.m_NumBins; double[] cutPoints = new double[this.m_NumBins - 1]; double[] binWeights = new double[this.m_NumBins]; double sumOfWeights = this.m_SumOfWeights; // Compute break points double weightSumSoFar = 0, lastWeightSum = 0; int cpindex = 0, lastIndex = -1; for (int i = 0; i < values.length - 1; i++) { // Update weight statistics weightSumSoFar += weights[i]; sumOfWeights -= weights[i]; // Have we passed the ideal size? if (weightSumSoFar >= freq) { // Is this break point worse than the last one? if (((freq - lastWeightSum) < (weightSumSoFar - freq)) && (lastIndex != -1)) { cutPoints[cpindex] = (values[lastIndex] + values[lastIndex + 1]) / 2; weightSumSoFar -= lastWeightSum; binWeights[cpindex] = lastWeightSum; lastWeightSum = weightSumSoFar; lastIndex = i; } else { cutPoints[cpindex] = (values[i] + values[i + 1]) / 2; binWeights[cpindex] = weightSumSoFar; weightSumSoFar = 0; lastWeightSum = 0; lastIndex = -1; } cpindex++; freq = (sumOfWeights + weightSumSoFar) / ((cutPoints.length + 1) - cpindex); } else { lastIndex = i; lastWeightSum = weightSumSoFar; } } // Check whether there was another possibility for a cut point if ((cpindex < cutPoints.length) && (lastIndex != -1)) { cutPoints[cpindex] = (values[lastIndex] + values[lastIndex + 1]) / 2; binWeights[cpindex] = lastWeightSum; cpindex++; binWeights[cpindex] = weightSumSoFar - lastWeightSum; } else { binWeights[cpindex] = weightSumSoFar; } // Did we find any cutpoints? if (cpindex == 0) { this.m_Boundaries = null; this.m_Weights = null; } else { // Need to add weight of last data point to right-most bin binWeights[cpindex] += weights[values.length - 1]; // Copy over boundaries and weights this.m_Boundaries = new double[cpindex + 2]; this.m_Boundaries[0] = this.m_TM.firstKey(); this.m_Boundaries[cpindex + 1] = this.m_TM.lastKey(); System.arraycopy(cutPoints, 0, this.m_Boundaries, 1, cpindex); this.m_Weights = new double[cpindex + 1]; System.arraycopy(binWeights, 0, this.m_Weights, 0, cpindex + 1); } } /** * Returns the interval for the given confidence value. * * @param conf the confidence value in the interval [0, 1] * @return the interval * @throws InterruptedException */ @Override public double[][] predictIntervals(final double conf) throws InterruptedException { // Update the bandwidth this.updateBoundariesAndOrWeights(); // Compute minimum and maximum value, and delta double val = Statistics.normalInverse(1.0 - (1.0 - conf) / 2); double min = this.m_TM.firstKey() - val * this.m_Width; double max = this.m_TM.lastKey() + val * this.m_Width; double delta = (max - min) / this.m_NumIntervals; // Create array with estimated probabilities double[] probabilities = new double[this.m_NumIntervals]; double leftVal = Math.exp(this.logDensity(min)); for (int i = 0; i < this.m_NumIntervals; i++) { double rightVal = Math.exp(this.logDensity(min + (i + 1) * delta)); probabilities[i] = 0.5 * (leftVal + rightVal) * delta; leftVal = rightVal; } // Sort array based on area of bin estimates int[] sortedIndices = Utils.sort(probabilities); // Mark the intervals to use double sum = 0; boolean[] toUse = new boolean[probabilities.length]; int k = 0; while ((sum < conf) && (k < toUse.length)) { toUse[sortedIndices[toUse.length - (k + 1)]] = true; sum += probabilities[sortedIndices[toUse.length - (k + 1)]]; k++; } // Don't need probabilities anymore probabilities = null; // Create final list of intervals ArrayList<double[]> intervals = new ArrayList<double[]>(); // The current interval double[] interval = null; // Iterate through kernels boolean haveStartedInterval = false; for (int i = 0; i < this.m_NumIntervals; i++) { // Should the current bin be used? if (toUse[i]) { // Do we need to create a new interval? if (haveStartedInterval == false) { haveStartedInterval = true; interval = new double[2]; interval[0] = min + i * delta; } // Regardless, we should update the upper boundary interval[1] = min + (i + 1) * delta; } else { // We need to finalize and store the last interval // if necessary. if (haveStartedInterval) { haveStartedInterval = false; intervals.add(interval); } } } // Add last interval if there is one if (haveStartedInterval) { intervals.add(interval); } return intervals.toArray(new double[0][0]); } /** * Returns the quantile for the given percentage. * * @param percentage the percentage * @return the quantile */ @Override public double predictQuantile(final double percentage) { // Update the bandwidth this.updateBoundariesAndOrWeights(); // Compute minimum and maximum value, and delta double val = Statistics.normalInverse(1.0 - (1.0 - 0.95) / 2); double min = this.m_TM.firstKey() - val * this.m_Width; double max = this.m_TM.lastKey() + val * this.m_Width; double delta = (max - min) / this.m_NumIntervals; double sum = 0; double leftVal = Math.exp(this.logDensity(min)); for (int i = 0; i < this.m_NumIntervals; i++) { if (sum >= percentage) { return min + i * delta; } double rightVal = Math.exp(this.logDensity(min + (i + 1) * delta)); sum += 0.5 * (leftVal + rightVal) * delta; leftVal = rightVal; } return max; } /** * Returns the natural logarithm of the density estimate at the given point. * * @param value the value at which to evaluate * @return the natural logarithm of the density estimate at the given value */ @Override public double logDensity(final double value) { // Update boundaries if necessary this.updateBoundariesAndOrWeights(); if (this.m_Boundaries == null) { return Math.log(Double.MIN_VALUE); } // Find the bin int index = Arrays.binarySearch(this.m_Boundaries, value); // Is the value outside? if ((index == -1) || (index == -this.m_Boundaries.length - 1)) { // Use normal density outside double val = 0; if (index == -1) { // Smaller than minimum val = this.m_TM.firstKey() - value; } else { val = value - this.m_TM.lastKey(); } return (CONST - Math.log(this.m_Width) - 0.5 * (val * val / (this.m_Width * this.m_Width))) - Math.log(this.m_SumOfWeights + 2); } // Is value exactly equal to right-most boundary? if (index == this.m_Boundaries.length - 1) { index--; } else { // Need to reverse index if necessary if (index < 0) { index = -index - 2; } } // Figure out of width double width = this.m_Boundaries[index + 1] - this.m_Boundaries[index]; // Density compontent from smeared-out data point double densSmearedOut = 1.0 / ((this.m_SumOfWeights + 2) * (this.m_Boundaries[this.m_Boundaries.length - 1] - this.m_Boundaries[0])); // Return log of density if (this.m_Weights[index] <= 0) { /* * System.out.println(value); System.out.println(this); System.exit(1); */ // Just use one smeared-out data point return Math.log(densSmearedOut); } else { return Math.log(densSmearedOut + this.m_Weights[index] / ((this.m_SumOfWeights + 2) * width)); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Returns textual description of this estimator. */ @Override public String toString() { StringBuffer text = new StringBuffer(); text.append("EqualFrequencyHistogram estimator\n\n" + "Bandwidth for out of range cases " + this.m_Width + ", total weight " + this.m_SumOfWeights); if (this.m_Boundaries != null) { text.append("\nLeft boundary\tRight boundary\tWeight\n"); for (int i = 0; i < this.m_Boundaries.length - 1; i++) { text.append(this.m_Boundaries[i] + "\t" + this.m_Boundaries[i + 1] + "\t" + this.m_Weights[i] + "\t" + Math.exp(this.logDensity((this.m_Boundaries[i + 1] + this.m_Boundaries[i]) / 2)) + "\n"); } } return text.toString(); } /** * Main method, used for testing this class. * @throws InterruptedException */ public static void main(final String[] args) throws InterruptedException { // Get random number generator initialized by system Random r = new Random(); // Create density estimator UnivariateEqualFrequencyHistogramEstimator e = new UnivariateEqualFrequencyHistogramEstimator(); // Output the density estimator System.out.println(e); // Monte Carlo integration double sum = 0; for (int i = 0; i < 1000; i++) { sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); } System.out.println("Approximate integral: " + 10.0 * sum / 1000); // Add Gaussian values into it for (int i = 0; i < 1000; i++) { e.addValue(0.1 * r.nextGaussian() - 3, 1); e.addValue(r.nextGaussian() * 0.25, 3); } // Monte Carlo integration sum = 0; int points = 10000000; for (int i = 0; i < points; i++) { double value = r.nextDouble() * 20.0 - 10.0; sum += Math.exp(e.logDensity(value)); } // Output the density estimator System.out.println(e); System.out.println("Approximate integral: " + 20.0 * sum / points); // Check interval estimates double[][] Intervals = e.predictIntervals(0.9); System.out.println("Printing histogram intervals ---------------------"); for (double[] interval : Intervals) { System.out.println("Left: " + interval[0] + "\t Right: " + interval[1]); } System.out.println("Finished histogram printing intervals ---------------------"); double Covered = 0; for (int i = 0; i < 1000; i++) { double val = -1; if (r.nextDouble() < 0.25) { val = 0.1 * r.nextGaussian() - 3.0; } else { val = r.nextGaussian() * 0.25; } for (double[] interval : Intervals) { if (val >= interval[0] && val <= interval[1]) { Covered++; break; } } } System.out.println("Coverage at 0.9 level for histogram intervals: " + Covered / 1000); for (int j = 1; j < 5; j++) { double numTrain = Math.pow(10, j); System.out.println("Number of training cases: " + numTrain); // Compare performance to normal estimator on normally distributed data UnivariateEqualFrequencyHistogramEstimator eHistogram = new UnivariateEqualFrequencyHistogramEstimator(); UnivariateNormalEstimator eNormal = new UnivariateNormalEstimator(); // Add training cases for (int i = 0; i < numTrain; i++) { double val = r.nextGaussian() * 1.5 + 0.5; /* * if (j == 4) { System.err.println(val); } */ eHistogram.addValue(val, 1); eNormal.addValue(val, 1); } // Monte Carlo integration sum = 0; points = 10000000; for (int i = 0; i < points; i++) { double value = r.nextDouble() * 20.0 - 10.0; sum += Math.exp(eHistogram.logDensity(value)); } System.out.println(eHistogram); System.out.println("Approximate integral for histogram estimator: " + 20.0 * sum / points); // Evaluate estimators double loglikelihoodHistogram = 0, loglikelihoodNormal = 0; for (int i = 0; i < 1000; i++) { double val = r.nextGaussian() * 1.5 + 0.5; loglikelihoodHistogram += eHistogram.logDensity(val); loglikelihoodNormal += eNormal.logDensity(val); } System.out.println("Loglikelihood for histogram estimator: " + loglikelihoodHistogram / 1000); System.out.println("Loglikelihood for normal estimator: " + loglikelihoodNormal / 1000); // Check interval estimates double[][] histogramIntervals = eHistogram.predictIntervals(0.95); double[][] normalIntervals = eNormal.predictIntervals(0.95); System.out.println("Printing histogram intervals ---------------------"); for (double[] histogramInterval : histogramIntervals) { System.out.println("Left: " + histogramInterval[0] + "\t Right: " + histogramInterval[1]); } System.out.println("Finished histogram printing intervals ---------------------"); System.out.println("Printing normal intervals ---------------------"); for (double[] normalInterval : normalIntervals) { System.out.println("Left: " + normalInterval[0] + "\t Right: " + normalInterval[1]); } System.out.println("Finished normal printing intervals ---------------------"); double histogramCovered = 0; double normalCovered = 0; for (int i = 0; i < 1000; i++) { double val = r.nextGaussian() * 1.5 + 0.5; for (double[] histogramInterval : histogramIntervals) { if (val >= histogramInterval[0] && val <= histogramInterval[1]) { histogramCovered++; break; } } for (double[] normalInterval : normalIntervals) { if (val >= normalInterval[0] && val <= normalInterval[1]) { normalCovered++; break; } } } System.out.println("Coverage at 0.95 level for histogram intervals: " + histogramCovered / 1000); System.out.println("Coverage at 0.95 level for normal intervals: " + normalCovered / 1000); histogramIntervals = eHistogram.predictIntervals(0.8); normalIntervals = eNormal.predictIntervals(0.8); histogramCovered = 0; normalCovered = 0; for (int i = 0; i < 1000; i++) { double val = r.nextGaussian() * 1.5 + 0.5; for (double[] histogramInterval : histogramIntervals) { if (val >= histogramInterval[0] && val <= histogramInterval[1]) { histogramCovered++; break; } } for (double[] normalInterval : normalIntervals) { if (val >= normalInterval[0] && val <= normalInterval[1]) { normalCovered++; break; } } } System.out.println("Coverage at 0.8 level for histogram intervals: " + histogramCovered / 1000); System.out.println("Coverage at 0.8 level for normal intervals: " + normalCovered / 1000); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/UnivariateIntervalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * UnivariateIntervalEstimator.java * Copyright (C) 2009-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; /** * Interface that can be implemented by simple weighted univariate * interval estimators. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ */ public interface UnivariateIntervalEstimator { /** * Adds a value to the interval estimator. * * @param value the value to add * @param weight the weight of the value */ void addValue(double value, double weight); /** * Returns the intervals at the given confidence value. Each row has * one interval. The first element in each row is the lower bound, * the second element the upper one. * * @param confidenceValue the value at which to evaluate * @return the interval * @throws InterruptedException */ double[][] predictIntervals(double confidenceValue) throws InterruptedException; }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/UnivariateKernelEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * UnivariateKernelEstimator.java * Copyright (C) 2009-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.io.Serializable; import java.util.ArrayList; import java.util.Iterator; import java.util.Map; import java.util.Random; import java.util.Set; import java.util.TreeMap; import weka.core.RevisionUtils; import weka.core.Statistics; import weka.core.Utils; /** * Simple weighted kernel density estimator. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ */ public class UnivariateKernelEstimator implements UnivariateDensityEstimator, UnivariateIntervalEstimator, UnivariateQuantileEstimator, Serializable { /** For serialization */ private static final long serialVersionUID = -1163983347810498880L; /** The collection used to store the weighted values. */ protected TreeMap<Double, Double> m_TM = new TreeMap<Double, Double>(); /** The weighted sum of values */ protected double m_WeightedSum = 0; /** The weighted sum of squared values */ protected double m_WeightedSumSquared = 0; /** The weight of the values collected so far */ protected double m_SumOfWeights = 0; /** The current bandwidth (only computed when needed) */ protected double m_Width = Double.MAX_VALUE; /** The exponent to use in computation of bandwidth (default: -0.25) */ protected double m_Exponent = -0.25; /** The minimum allowed value of the kernel width (default: 1.0E-6) */ protected double m_MinWidth = 1.0E-6; /** Constant for Gaussian density. */ public static final double CONST = -0.5 * Math.log(2 * Math.PI); /** Threshold at which further kernels are no longer added to sum. */ protected double m_Threshold = 1.0E-6; /** The number of intervals used to approximate prediction interval. */ protected int m_NumIntervals = 1000; /** * Returns a string describing the estimator. */ public String globalInfo() { return "Provides a univariate kernel estimator."; } /** * Adds a value to the density estimator. * * @param value the value to add * @param weight the weight of the value */ @Override public void addValue(final double value, final double weight) { this.m_WeightedSum += value * weight; this.m_WeightedSumSquared += value * value * weight; this.m_SumOfWeights += weight; if (this.m_TM.get(value) == null) { this.m_TM.put(value, weight); } else { this.m_TM.put(value, this.m_TM.get(value) + weight); } } /** * Updates bandwidth: the sample standard deviation is multiplied by the total * weight to the power of the given exponent. * * If the total weight is not greater than zero, the width is set to * Double.MAX_VALUE. If that is not the case, but the width becomes smaller * than m_MinWidth, the width is set to the value of m_MinWidth. */ public void updateWidth() { // OK, need to do some work if (this.m_SumOfWeights > 0) { // Compute variance for scaling double mean = this.m_WeightedSum / this.m_SumOfWeights; double variance = this.m_WeightedSumSquared / this.m_SumOfWeights - mean * mean; if (variance < 0) { variance = 0; } // Compute kernel bandwidth this.m_Width = Math.sqrt(variance) * Math.pow(this.m_SumOfWeights, this.m_Exponent); if (this.m_Width <= this.m_MinWidth) { this.m_Width = this.m_MinWidth; } } else { this.m_Width = Double.MAX_VALUE; } } /** * Returns the interval for the given confidence value. * * @param conf the confidence value in the interval [0, 1] * @return the interval * @throws InterruptedException */ @Override public double[][] predictIntervals(final double conf) throws InterruptedException { // Update the bandwidth this.updateWidth(); // Compute minimum and maximum value, and delta double val = Statistics.normalInverse(1.0 - (1.0 - conf) / 2); double min = this.m_TM.firstKey() - val * this.m_Width; double max = this.m_TM.lastKey() + val * this.m_Width; double delta = (max - min) / this.m_NumIntervals; // Create array with estimated probabilities double[] probabilities = new double[this.m_NumIntervals]; double leftVal = Math.exp(this.logDensity(min)); for (int i = 0; i < this.m_NumIntervals; i++) { double rightVal = Math.exp(this.logDensity(min + (i + 1) * delta)); probabilities[i] = 0.5 * (leftVal + rightVal) * delta; leftVal = rightVal; } // Sort array based on area of bin estimates int[] sortedIndices = Utils.sort(probabilities); // Mark the intervals to use double sum = 0; boolean[] toUse = new boolean[probabilities.length]; int k = 0; while ((sum < conf) && (k < toUse.length)) { toUse[sortedIndices[toUse.length - (k + 1)]] = true; sum += probabilities[sortedIndices[toUse.length - (k + 1)]]; k++; } // Don't need probabilities anymore probabilities = null; // Create final list of intervals ArrayList<double[]> intervals = new ArrayList<double[]>(); // The current interval double[] interval = null; // Iterate through kernels boolean haveStartedInterval = false; for (int i = 0; i < this.m_NumIntervals; i++) { // Should the current bin be used? if (toUse[i]) { // Do we need to create a new interval? if (haveStartedInterval == false) { haveStartedInterval = true; interval = new double[2]; interval[0] = min + i * delta; } // Regardless, we should update the upper boundary interval[1] = min + (i + 1) * delta; } else { // We need to finalize and store the last interval // if necessary. if (haveStartedInterval) { haveStartedInterval = false; intervals.add(interval); } } } // Add last interval if there is one if (haveStartedInterval) { intervals.add(interval); } return intervals.toArray(new double[0][0]); } /** * Returns the quantile for the given percentage. * * @param percentage the percentage * @return the quantile */ @Override public double predictQuantile(final double percentage) { // Update the bandwidth this.updateWidth(); // Compute minimum and maximum value, and delta double val = Statistics.normalInverse(1.0 - (1.0 - 0.95) / 2); double min = this.m_TM.firstKey() - val * this.m_Width; double max = this.m_TM.lastKey() + val * this.m_Width; double delta = (max - min) / this.m_NumIntervals; double sum = 0; double leftVal = Math.exp(this.logDensity(min)); for (int i = 0; i < this.m_NumIntervals; i++) { if (sum >= percentage) { return min + i * delta; } double rightVal = Math.exp(this.logDensity(min + (i + 1) * delta)); sum += 0.5 * (leftVal + rightVal) * delta; leftVal = rightVal; } return max; } /** * Computes the logarithm of x and y given the logarithms of x and y. * * This is based on Tobias P. Mann's description in "Numerically Stable Hidden * Markov Implementation" (2006). */ protected double logOfSum(final double logOfX, final double logOfY) { // Check for cases where log of zero is present if (Double.isNaN(logOfX)) { return logOfY; } if (Double.isNaN(logOfY)) { return logOfX; } // Otherwise return proper result, taken care of overflows if (logOfX > logOfY) { return logOfX + Math.log(1 + Math.exp(logOfY - logOfX)); } else { return logOfY + Math.log(1 + Math.exp(logOfX - logOfY)); } } /** * Compute running sum of density values and weights. */ protected void runningSum(final Set<Map.Entry<Double, Double>> c, final double value, final double[] sums) { // Auxiliary variables double offset = CONST - Math.log(this.m_Width); double logFactor = Math.log(this.m_Threshold) - Math.log(1 - this.m_Threshold); double logSumOfWeights = Math.log(this.m_SumOfWeights); // Iterate through values Iterator<Map.Entry<Double, Double>> itr = c.iterator(); while (itr.hasNext()) { Map.Entry<Double, Double> entry = itr.next(); // Skip entry if weight is zero because it cannot contribute to sum if (entry.getValue() > 0) { double diff = (entry.getKey() - value) / this.m_Width; double logDensity = offset - 0.5 * diff * diff; double logWeight = Math.log(entry.getValue()); sums[0] = this.logOfSum(sums[0], logWeight + logDensity); sums[1] = this.logOfSum(sums[1], logWeight); // Can we stop assuming worst case? if (logDensity + logSumOfWeights < this.logOfSum(logFactor + sums[0], logDensity + sums[1])) { break; } } } } /** * Returns the natural logarithm of the density estimate at the given point. * * @param value the value at which to evaluate * @return the natural logarithm of the density estimate at the given value */ @Override public double logDensity(final double value) { // Update the bandwidth this.updateWidth(); // Array used to keep running sums double[] sums = new double[2]; sums[0] = Double.NaN; sums[1] = Double.NaN; // Examine right-hand size of value this.runningSum(this.m_TM.tailMap(value, true).entrySet(), value, sums); // Examine left-hand size of value this.runningSum(this.m_TM.headMap(value, false).descendingMap().entrySet(), value, sums); // Need to normalize return sums[0] - Math.log(this.m_SumOfWeights); } /** * Returns textual description of this estimator. */ @Override public String toString() { return "Kernel estimator with bandwidth " + this.m_Width + " and total weight " + this.m_SumOfWeights + " based on\n" + this.m_TM.toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method, used for testing this class. * @throws InterruptedException */ public static void main(final String[] args) throws InterruptedException { // Get random number generator initialized by system Random r = new Random(); // Create density estimator UnivariateKernelEstimator e = new UnivariateKernelEstimator(); // Output the density estimator System.out.println(e); // Monte Carlo integration double sum = 0; for (int i = 0; i < 1000; i++) { sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); } System.out.println("Approximate integral: " + 10.0 * sum / 1000); // Add Gaussian values into it for (int i = 0; i < 1000; i++) { e.addValue(0.1 * r.nextGaussian() - 3, 1); e.addValue(r.nextGaussian() * 0.25, 3); } // Monte Carlo integration sum = 0; int points = 10000; for (int i = 0; i < points; i++) { double value = r.nextDouble() * 10.0 - 5.0; sum += Math.exp(e.logDensity(value)); } System.out.println("Approximate integral: " + 10.0 * sum / points); // Check interval estimates double[][] Intervals = e.predictIntervals(0.9); System.out.println("Printing kernel intervals ---------------------"); for (double[] interval : Intervals) { System.out.println("Left: " + interval[0] + "\t Right: " + interval[1]); } System.out.println("Finished kernel printing intervals ---------------------"); double Covered = 0; for (int i = 0; i < 1000; i++) { double val = -1; if (r.nextDouble() < 0.25) { val = 0.1 * r.nextGaussian() - 3.0; } else { val = r.nextGaussian() * 0.25; } for (double[] interval : Intervals) { if (val >= interval[0] && val <= interval[1]) { Covered++; break; } } } System.out.println("Coverage at 0.9 level for kernel intervals: " + Covered / 1000); // Compare performance to normal estimator on normally distributed data UnivariateKernelEstimator eKernel = new UnivariateKernelEstimator(); UnivariateNormalEstimator eNormal = new UnivariateNormalEstimator(); for (int j = 1; j < 5; j++) { double numTrain = Math.pow(10, j); System.out.println("Number of training cases: " + numTrain); // Add training cases for (int i = 0; i < numTrain; i++) { double val = r.nextGaussian() * 1.5 + 0.5; eKernel.addValue(val, 1); eNormal.addValue(val, 1); } // Monte Carlo integration sum = 0; points = 10000; for (int i = 0; i < points; i++) { double value = r.nextDouble() * 20.0 - 10.0; sum += Math.exp(eKernel.logDensity(value)); } System.out.println("Approximate integral for kernel estimator: " + 20.0 * sum / points); // Evaluate estimators double loglikelihoodKernel = 0, loglikelihoodNormal = 0; for (int i = 0; i < 1000; i++) { double val = r.nextGaussian() * 1.5 + 0.5; loglikelihoodKernel += eKernel.logDensity(val); loglikelihoodNormal += eNormal.logDensity(val); } System.out.println("Loglikelihood for kernel estimator: " + loglikelihoodKernel / 1000); System.out.println("Loglikelihood for normal estimator: " + loglikelihoodNormal / 1000); // Check interval estimates double[][] kernelIntervals = eKernel.predictIntervals(0.95); double[][] normalIntervals = eNormal.predictIntervals(0.95); System.out.println("Printing kernel intervals ---------------------"); for (double[] kernelInterval : kernelIntervals) { System.out.println("Left: " + kernelInterval[0] + "\t Right: " + kernelInterval[1]); } System.out.println("Finished kernel printing intervals ---------------------"); System.out.println("Printing normal intervals ---------------------"); for (double[] normalInterval : normalIntervals) { System.out.println("Left: " + normalInterval[0] + "\t Right: " + normalInterval[1]); } System.out.println("Finished normal printing intervals ---------------------"); double kernelCovered = 0; double normalCovered = 0; for (int i = 0; i < 1000; i++) { double val = r.nextGaussian() * 1.5 + 0.5; for (double[] kernelInterval : kernelIntervals) { if (val >= kernelInterval[0] && val <= kernelInterval[1]) { kernelCovered++; break; } } for (double[] normalInterval : normalIntervals) { if (val >= normalInterval[0] && val <= normalInterval[1]) { normalCovered++; break; } } } System.out.println("Coverage at 0.95 level for kernel intervals: " + kernelCovered / 1000); System.out.println("Coverage at 0.95 level for normal intervals: " + normalCovered / 1000); kernelIntervals = eKernel.predictIntervals(0.8); normalIntervals = eNormal.predictIntervals(0.8); kernelCovered = 0; normalCovered = 0; for (int i = 0; i < 1000; i++) { double val = r.nextGaussian() * 1.5 + 0.5; for (double[] kernelInterval : kernelIntervals) { if (val >= kernelInterval[0] && val <= kernelInterval[1]) { kernelCovered++; break; } } for (double[] normalInterval : normalIntervals) { if (val >= normalInterval[0] && val <= normalInterval[1]) { normalCovered++; break; } } } System.out.println("Coverage at 0.8 level for kernel intervals: " + kernelCovered / 1000); System.out.println("Coverage at 0.8 level for normal intervals: " + normalCovered / 1000); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/UnivariateMixtureEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * UnivariateMixtureEstimator.java * Copyright (C) 2014 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.io.Serializable; import java.util.ArrayList; import java.util.Arrays; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.ContingencyTables; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.Statistics; import weka.core.Utils; /** * Simple weighted mixture density estimator. Uses a mixture of Gaussians * and applies the leave-one-out bootstrap for model selection. Can alternatively use normalized entropy. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 8034 $ */ public class UnivariateMixtureEstimator implements UnivariateDensityEstimator, UnivariateIntervalEstimator, UnivariateQuantileEstimator, OptionHandler, Serializable { /** Constant for normal distribution. */ private static double m_normConst = Math.log(Math.sqrt(2 * Math.PI)); /** * Fast univariate mixture model implementation. */ public class MM { /** Means */ protected double[] m_Means = null; /** Standard deviations */ protected double[] m_StdDevs = null; /** The priors, on log scale */ protected double[] m_LogPriors = null; /** The number of actual components */ protected int m_K; /** * Returns string describing the estimator. */ @Override public String toString() { StringBuffer sb = new StringBuffer(); sb.append("Mixture model estimator\n\n"); for (int i = 0; i < this.m_LogPriors.length; i++) { sb.append("Mean: " + this.m_Means[i] + "\tStd. dev.: " + this.m_StdDevs[i] + "\tPrior prob.: " + Math.exp(this.m_LogPriors[i]) + "\n"); } return sb.toString(); } /** * Returns smallest distance to given elements. * Assumes m_Means has at least one element (i.e. m_K >= 1). */ protected double smallestDistance(final double val) { double min = Math.abs(val - this.m_Means[0]); for (int i = 1; i < this.m_K; i++) { if (Math.abs(val - this.m_Means[i]) < min) { min = Math.abs(val - this.m_Means[i]); } } return min; } /** * Returns the index of the nearest mean. * Assumes m_Means has at least one element (i.e. m_K >= 1). */ protected int nearestMean(final double val) { double min = Math.abs(val - this.m_Means[0]); int index = 0; for (int i = 1; i < this.m_K; i++) { if (Math.abs(val - this.m_Means[i]) < min) { min = Math.abs(val - this.m_Means[i]); index = i; } } return index; } /** * Initializes the model. Assumes K >= 1, values.length >= 1, * and values.length = weights.length. */ public void initializeModel(final int K, final double[] values, final double[] weights, final Random r) { // Initialize means using farthest points this.m_Means = new double[K]; // Randomly choose first point double furthestVal = values[r.nextInt(values.length)]; // Find K maximally distant points (if possible) this.m_K = 0; do { this.m_Means[this.m_K] = furthestVal; this.m_K++; if (this.m_K >= K) { break; } double maxMinDist = this.smallestDistance(values[0]); furthestVal = values[0]; for (int i = 1; i < values.length; i++) { double minDist = this.smallestDistance(values[i]); if (minDist > maxMinDist) { maxMinDist = minDist; furthestVal = values[i]; } } if (maxMinDist <= 0) { break; } } while (true); // Shrink array of means if necessary if (this.m_K < K) { double[] tempMeans = new double[this.m_K]; System.arraycopy(this.m_Means, 0, tempMeans, 0, this.m_K); this.m_Means = tempMeans; } // Establish initial cluster assignments double[][] probs = new double[this.m_K][values.length]; for (int i = 0; i < values.length; i++) { probs[this.nearestMean(values[i])][i] = 1.0; } // Compute initial parameters this.m_StdDevs = new double[this.m_K]; this.m_LogPriors = new double[this.m_K]; this.estimateParameters(values, weights, probs); } /** * Estimate parameters. */ protected void estimateParameters(final double[] values, final double[] weights, final double[][] probs) { double totalSumOfWeights = 0; for (int j = 0; j < this.m_K; j++) { double sum = 0; double sumWeights = 0; for (int i = 0; i < values.length; i++) { double weight = probs[j][i] * weights[i]; sum += weight * values[i]; sumWeights += weight; } if (sumWeights <= 0) { this.m_Means[j] = 0; } else { this.m_Means[j] = sum / sumWeights; } totalSumOfWeights += sumWeights; } for (int j = 0; j < this.m_K; j++) { double sum = 0; double sumWeights = 0; for (int i = 0; i < values.length; i++) { double weight = probs[j][i] * weights[i]; double diff = values[i] - this.m_Means[j]; sum += weight * diff * diff; sumWeights += weight; } if ((sum <= 0) || (sumWeights <= 0)) { this.m_StdDevs[j] = 1.0e-6; // Hack to prevent unpleasantness } else { this.m_StdDevs[j] = Math.sqrt(sum / sumWeights); if (this.m_StdDevs[j] < 1.0e-6) { this.m_StdDevs[j] = 1.0e-6; } } if (sumWeights <= 0) { this.m_LogPriors[j] = -Double.MAX_VALUE; } else { this.m_LogPriors[j] = Math.log(sumWeights / totalSumOfWeights); } } } /** * Computes loglikelihood of current model. */ public double loglikelihood(final double[] values, final double[] weights) { double sum = 0; double sumOfWeights = 0; for (int i = 0; i < values.length; i++) { sum += weights[i] * this.logDensity(values[i]); sumOfWeights += weights[i]; } return sum / sumOfWeights; } /** * Returns average of squared errors for current model. */ public double MSE() { double mse = 0; for (int i = 0; i < this.m_K; i++) { mse += this.m_StdDevs[i] * this.m_StdDevs[i] * Math.exp(this.m_LogPriors[i]); } return mse; } /** * Density function of normal distribution. */ protected double logNormalDens(final double x, final double mean, final double stdDev) { double diff = x - mean; return -(diff * diff / (2 * stdDev * stdDev)) - m_normConst - Math.log(stdDev); } /** * Joint densities per cluster. */ protected double[] logJointDensities(final double value) { double[] a = new double[this.m_K]; for (int i = 0; i < this.m_K; i++) { a[i] = this.m_LogPriors[i] + this.logNormalDens(value, this.m_Means[i], this.m_StdDevs[i]); } return a; } /** * Computes log of density for given value. */ public double logDensity(final double value) { double[] a = this.logJointDensities(value); double max = a[Utils.maxIndex(a)]; double sum = 0.0; for (int i = 0; i < a.length; i++) { sum += Math.exp(a[i] - max); } return max + Math.log(sum); } /** * Returns the interval for the given confidence value. * * @param conf the confidence value in the interval [0, 1] * @return the interval * @throws InterruptedException */ public double[][] predictIntervals(final double conf) throws InterruptedException { // Compute minimum and maximum value, and delta double val = Statistics.normalInverse(1.0 - (1.0 - conf) / 2); double min = Double.MAX_VALUE; double max = -Double.MAX_VALUE; for (int i = 0; i < this.m_Means.length; i++) { double l = this.m_Means[i] - val * this.m_StdDevs[i]; if (l < min) { min = l; } double r = this.m_Means[i] + val * this.m_StdDevs[i]; if (r > max) { max = r; } } double delta = (max - min) / UnivariateMixtureEstimator.this.m_NumIntervals; // Create array with estimated probabilities double[] probabilities = new double[UnivariateMixtureEstimator.this.m_NumIntervals]; double leftVal = Math.exp(this.logDensity(min)); for (int i = 0; i < UnivariateMixtureEstimator.this.m_NumIntervals; i++) { double rightVal = Math.exp(this.logDensity(min + (i + 1) * delta)); probabilities[i] = 0.5 * (leftVal + rightVal) * delta; leftVal = rightVal; } // Sort array based on area of bin estimates int[] sortedIndices = Utils.sort(probabilities); // Mark the intervals to use double sum = 0; boolean[] toUse = new boolean[probabilities.length]; int k = 0; while ((sum < conf) && (k < toUse.length)) { toUse[sortedIndices[toUse.length - (k + 1)]] = true; sum += probabilities[sortedIndices[toUse.length - (k + 1)]]; k++; } // Don't need probabilities anymore probabilities = null; // Create final list of intervals ArrayList<double[]> intervals = new ArrayList<double[]>(); // The current interval double[] interval = null; // Calculate actual intervals boolean haveStartedInterval = false; for (int i = 0; i < UnivariateMixtureEstimator.this.m_NumIntervals; i++) { // Should the current bin be used? if (toUse[i]) { // Do we need to create a new interval? if (haveStartedInterval == false) { haveStartedInterval = true; interval = new double[2]; interval[0] = min + i * delta; } // Regardless, we should update the upper boundary interval[1] = min + (i + 1) * delta; } else { // We need to finalize and store the last interval // if necessary. if (haveStartedInterval) { haveStartedInterval = false; intervals.add(interval); } } } // Add last interval if there is one if (haveStartedInterval) { intervals.add(interval); } return intervals.toArray(new double[0][0]); } /** * Returns the quantile for the given percentage. * * @param percentage the percentage * @return the quantile */ public double predictQuantile(final double percentage) { // Compute minimum and maximum value, and delta double valRight = Statistics.normalInverse(percentage); double valLeft = Statistics.normalInverse(0.001); double min = Double.MAX_VALUE; double max = -Double.MAX_VALUE; for (int i = 0; i < this.m_Means.length; i++) { double l = this.m_Means[i] - valLeft * this.m_StdDevs[i]; if (l < min) { min = l; } double r = this.m_Means[i] + valRight * this.m_StdDevs[i]; if (r > max) { max = r; } } double delta = (max - min) / UnivariateMixtureEstimator.this.m_NumIntervals; double sum = 0; double leftVal = Math.exp(this.logDensity(min)); for (int i = 0; i < UnivariateMixtureEstimator.this.m_NumIntervals; i++) { if (sum >= percentage) { return min + i * delta; } double rightVal = Math.exp(this.logDensity(min + (i + 1) * delta)); sum += 0.5 * (leftVal + rightVal) * delta; leftVal = rightVal; } return max; } } /** For serialization */ private static final long serialVersionUID = -2035274930137353656L; /** The values used for this estimator */ protected double[] m_Values = new double[1000]; /** The weights used for this estimator */ protected double[] m_Weights = new double[1000]; /** The number of values that have been seen */ protected int m_NumValues; /** The current mixture model */ protected MM m_MixtureModel; /** The number of components to use (default is -1)*/ protected int m_NumComponents = -1; /** The maximum number of components to use (default is 5) */ protected int m_MaxNumComponents = 5; /** The random number seed to use (default is 1*/ protected int m_Seed = 1; /** The number of Bootstrap runs to use to select the number of components (default is 10) */ protected int m_NumBootstrapRuns = 10; /** The number of intervals used to approximate prediction interval. */ protected int m_NumIntervals = 1000; /** Whether to use normalized entropy instance of bootstrap. */ protected boolean m_UseNormalizedEntropy = false; /** Whether to output debug info. */ protected boolean m_Debug = false; /** The random number generator. */ protected Random m_Random = new Random(this.m_Seed); /** * Returns a string describing the estimator. */ public String globalInfo() { return "Estimates a univariate mixture model."; } /** * @return whether normalized entropy is used */ public boolean getUseNormalizedEntropy() { return this.m_UseNormalizedEntropy; } /** * @param useNormalizedEntropy whether to use normalized entropy */ public void setUseNormalizedEntropy(final boolean useNormalizedEntropy) { this.m_UseNormalizedEntropy = useNormalizedEntropy; } /** * The tool tip for this property. */ public String numBootstrapRunsToolTipText() { return "The number of Bootstrap runs to choose the number of components."; } /** * Returns the number of Bootstrap runs. * * @return the number of Bootstrap runs */ public int getNumBootstrapRuns() { return this.m_NumBootstrapRuns; } /** * Sets the number of Bootstrap runs. * * @param mnumBootstrapRuns the number of Bootstrap runs */ public void setNumBootstrapRuns(final int numBootstrapRuns) { this.m_NumBootstrapRuns = numBootstrapRuns; } /** * The tool tip for this property. */ public String numComponentsToolTipText() { return "The number of mixture components to use."; } /** * Returns the number of components to use. * * @return the m_NumComponents */ public int getNumComponents() { return this.m_NumComponents; } /** * Sets the number of components to use. * * @param m_NumComponents the m_NumComponents to set */ public void setNumComponents(final int numComponents) { this.m_NumComponents = numComponents; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "The random number seed to be used."; } /** * Set the seed for random number generation. * * @param seed the seed */ public void setSeed(final int seed) { this.m_Seed = seed; this.m_Random = new Random(seed); } /** * Gets the seed for the random number generations * * @return the seed for the random number generation */ public int getSeed() { return this.m_Seed; } /** * The tool tip for this property. */ public String maxNumComponentsToolTipText() { return "The maximum number of mixture components to use."; } /** * Returns the number of components to use. * * @return the maximum number of components to use */ public int getMaxNumComponents() { return this.m_MaxNumComponents; } /** * Sets the number of components to use. * * @param maxNumComponents the maximum number of components to evaluate */ public void setMaxNumComponents(final int maxNumComponents) { this.m_MaxNumComponents = maxNumComponents; } /** * Adds a value to the density estimator. * * @param value the value to add * @param weight the weight of the value */ @Override public void addValue(final double value, final double weight) { // Do we need to add value at all? if (!Utils.eq(weight, 0)) { // Invalidate current model this.m_MixtureModel = null; // Do we need to expand the arrays? if (this.m_NumValues == this.m_Values.length) { double[] newWeights = new double[2 * this.m_NumValues]; double[] newValues = new double[2 * this.m_NumValues]; System.arraycopy(this.m_Values, 0, newValues, 0, this.m_NumValues); System.arraycopy(this.m_Weights, 0, newWeights, 0, this.m_NumValues); this.m_Values = newValues; this.m_Weights = newWeights; } // Add values this.m_Values[this.m_NumValues] = value; this.m_Weights[this.m_NumValues] = weight; this.m_NumValues++; } } /** * Build mixture model. Assumes K >= 1, values.length >= 1, * and values.length = weights.length. */ public MM buildModel(final int K, final double[] values, final double[] weights) { // Initialize model using k-means MM model = null; double bestMSE = Double.MAX_VALUE; int numAttempts = 0; while (numAttempts < 5) { // Initialize model MM tempModel = new UnivariateMixtureEstimator().new MM(); tempModel.initializeModel(K, values, weights, this.m_Random); // Run k-means until MSE converges double oldMSE = Double.MAX_VALUE; double MSE = tempModel.MSE(); if (this.m_Debug) { System.err.println("MSE: " + MSE); } double[][] probs = new double[tempModel.m_K][values.length]; while (Utils.sm(MSE, oldMSE)) { // Compute memberships for (int j = 0; j < probs.length; j++) { Arrays.fill(probs[j], 0); } for (int i = 0; i < values.length; i++) { probs[tempModel.nearestMean(values[i])][i] = 1.0; } // Estimate parameters tempModel.estimateParameters(values, weights, probs); // Compute MSE for updated model oldMSE = MSE; MSE = tempModel.MSE(); if (this.m_Debug) { System.err.println("MSE: " + MSE); } } if (MSE < bestMSE) { bestMSE = MSE; model = tempModel; } if (this.m_Debug) { System.err.println("Best MSE: " + bestMSE); } numAttempts++; } // Run until likelihood converges double oldLogLikelihood = -Double.MAX_VALUE; double loglikelihood = model.loglikelihood(values, weights); double[][] probs = new double[model.m_K][values.length]; while (Utils.gr(loglikelihood, oldLogLikelihood)) { // Establish membership probabilities for (int i = 0; i < values.length; i++) { double[] p = Utils.logs2probs(model.logJointDensities(values[i])); for (int j = 0; j < p.length; j++) { probs[j][i] = p[j]; } } // Estimate parameters model.estimateParameters(values, weights, probs); // Compute loglikelihood for updated model oldLogLikelihood = loglikelihood; loglikelihood = model.loglikelihood(values, weights); } return model; } /** * Creates a new dataset of the same size using random sampling with * replacement according to the given weight vector. The weights of the * instances in the new dataset are set to one. */ public double[][] resampleWithWeights(final Random random, final boolean[] sampled) { // Walker's method, see pp. 232 of "Stochastic Simulation" by B.D. Ripley double[] P = new double[this.m_Weights.length]; System.arraycopy(this.m_Weights, 0, P, 0, this.m_Weights.length); Utils.normalize(P); double[] Q = new double[this.m_Weights.length]; int[] A = new int[this.m_Weights.length]; int[] W = new int[this.m_Weights.length]; int M = this.m_Weights.length; int NN = -1; int NP = M; for (int I = 0; I < M; I++) { if (P[I] < 0) { throw new IllegalArgumentException("Weights have to be positive."); } Q[I] = M * P[I]; if (Q[I] < 1.0) { W[++NN] = I; } else { W[--NP] = I; } } if (NN > -1 && NP < M) { for (int S = 0; S < M - 1; S++) { int I = W[S]; int J = W[NP]; A[I] = J; Q[J] += Q[I] - 1.0; if (Q[J] < 1.0) { NP++; } if (NP >= M) { break; } } // A[W[M]] = W[M]; } for (int I = 0; I < M; I++) { Q[I] += I; } // Do we need to keep track of how many copies to use? int[] counts = new int[M]; int count = 0; for (int i = 0; i < this.m_Weights.length; i++) { int ALRV; double U = M * random.nextDouble(); int I = (int) U; if (U < Q[I]) { ALRV = I; } else { ALRV = A[I]; } counts[ALRV]++; if (!sampled[ALRV]) { sampled[ALRV] = true; count++; } } // Generate output double[][] output = new double[2][count]; int index = 0; for (int i = 0; i < M; i++) { if (counts[i] > 0) { output[0][index] = this.m_Values[i]; output[1][index] = counts[i]; index++; } } return output; } /** * Selects the number of components using leave-one-out Bootstrap, estimating loglikelihood. * * @return the number of components to use */ protected int findNumComponentsUsingBootStrap() { if (this.m_NumComponents > 0) { return this.m_NumComponents; } if (this.m_MaxNumComponents <= 1) { return 1; } double bestLogLikelihood = -Double.MAX_VALUE; int bestNumComponents = 1; for (int i = 1; i <= this.m_MaxNumComponents; i++) { double logLikelihood = 0; for (int k = 0; k < this.m_NumBootstrapRuns; k++) { boolean[] inBag = new boolean[this.m_NumValues]; double[][] output = this.resampleWithWeights(this.m_Random, inBag); MM mixtureModel = this.buildModel(i, output[0], output[1]); double locLogLikelihood = 0; double totalWeight = 0; for (int j = 0; j < this.m_NumValues; j++) { if (!inBag[j]) { double weight = this.m_Weights[j]; locLogLikelihood += weight * mixtureModel.logDensity(this.m_Values[j]); totalWeight += weight; } } locLogLikelihood /= totalWeight; logLikelihood += locLogLikelihood; } logLikelihood /= this.m_NumBootstrapRuns; if (this.m_Debug) { System.err.println("Loglikelihood: " + logLikelihood + "\tNumber of components: " + i); } if (logLikelihood > bestLogLikelihood) { bestNumComponents = i; bestLogLikelihood = logLikelihood; } } return bestNumComponents; } /** * Calculates entrpy for given model and data. */ protected double entropy(final MM mixtureModel) { double entropy = 0; for (int j = 0; j < this.m_NumValues; j++) { entropy += this.m_Weights[j] * ContingencyTables.entropy(Utils.logs2probs(mixtureModel.logJointDensities(this.m_Values[j]))); } entropy *= Utils.log2; // Need natural logarithm, not base-2 logarithm return entropy / this.m_NumValues; } /** * Selects the number of components using normalized entropy. * * @return the model to use */ protected MM findModelUsingNormalizedEntropy() { if (this.m_NumComponents > 0) { return this.buildModel(this.m_NumComponents, this.m_Values, this.m_Weights); } if (this.m_MaxNumComponents <= 1) { return this.buildModel(1, this.m_Values, this.m_Weights); } // Loglikelihood for one cluster MM bestMixtureModel = this.buildModel(1, this.m_Values, this.m_Weights); double loglikelihoodForOneCluster = bestMixtureModel.loglikelihood(this.m_Values, this.m_Weights); double bestNormalizedEntropy = 1; for (int i = 2; i <= this.m_MaxNumComponents; i++) { MM mixtureModel = this.buildModel(i, this.m_Values, this.m_Weights); double loglikelihood = mixtureModel.loglikelihood(this.m_Values, this.m_Weights); if (loglikelihood < loglikelihoodForOneCluster) { // This appears to happen in practice, hopefully not because of a bug... if (this.m_Debug) { System.err.println("Likelihood for one cluster greater than for " + i + " clusters."); } continue; } double entropy = this.entropy(mixtureModel); double normalizedEntropy = entropy / (loglikelihood - loglikelihoodForOneCluster); if (this.m_Debug) { System.err.println( "Entropy: " + entropy + "\tLogLikelihood: " + loglikelihood + "\tLoglikelihood for one cluster: " + loglikelihoodForOneCluster + "\tNormalized entropy: " + normalizedEntropy + "\tNumber of components: " + i); } if (normalizedEntropy < bestNormalizedEntropy) { bestMixtureModel = mixtureModel; bestNormalizedEntropy = normalizedEntropy; } } return bestMixtureModel; } /** * Updates the model based on the current data. * Uses the leave-one-out Bootstrap to choose the number of components. */ protected void updateModel() { if (this.m_MixtureModel != null) { return; } else if (this.m_NumValues > 0) { // Shrink arrays if necessary if (this.m_Values.length > this.m_NumValues) { double[] values = new double[this.m_NumValues]; double[] weights = new double[this.m_NumValues]; System.arraycopy(this.m_Values, 0, values, 0, this.m_NumValues); System.arraycopy(this.m_Weights, 0, weights, 0, this.m_NumValues); this.m_Values = values; this.m_Weights = weights; } if (this.m_UseNormalizedEntropy) { this.m_MixtureModel = this.findModelUsingNormalizedEntropy(); } else { this.m_MixtureModel = this.buildModel(this.findNumComponentsUsingBootStrap(), this.m_Values, this.m_Weights); } } } /** * Returns the interval for the given confidence value. * * @param conf the confidence value in the interval [0, 1] * @return the interval * @throws InterruptedException */ @Override public double[][] predictIntervals(final double conf) throws InterruptedException { this.updateModel(); return this.m_MixtureModel.predictIntervals(conf); } /** * Returns the quantile for the given percentage. * * @param percentage the percentage * @return the quantile */ @Override public double predictQuantile(final double percentage) { this.updateModel(); return this.m_MixtureModel.predictQuantile(percentage); } /** * Returns the natural logarithm of the density estimate at the given * point. * * @param value the value at which to evaluate * @return the natural logarithm of the density estimate at the given * value */ @Override public double logDensity(final double value) { this.updateModel(); if (this.m_MixtureModel == null) { return Math.log(Double.MIN_VALUE); } return this.m_MixtureModel.logDensity(value); } /** * Returns textual description of this estimator. */ @Override public String toString() { this.updateModel(); if (this.m_MixtureModel == null) { return ""; } return this.m_MixtureModel.toString(); } /** * Returns an enumeration that lists the command-line options that are available * * @return the list of options as an enumeration */ @Override public Enumeration<Option> listOptions() { Vector<Option> options = new Vector<Option>(); options.addElement(new Option("\tNumber of components to use (default: -1).", "N", 1, "-N")); options.addElement(new Option("\tMaximum number of components to use (default: 5).", "M", 1, "-M")); options.addElement(new Option("\tSeed for the random number generator (default: 1).", "S", 1, "-S")); options.addElement(new Option("\tThe number of bootstrap runs to use (default: 10).", "B", 1, "-B")); options.addElement(new Option("\tUse normalized entropy instead of bootstrap.", "E", 1, "-E")); return options.elements(); } /** * Sets options based on the given array of strings. * * @param options the list of options to parse */ @Override public void setOptions(final String[] options) throws Exception { String optionString = Utils.getOption("N", options); if (optionString.length() > 0) { this.setNumComponents(Integer.parseInt(optionString)); } else { this.setNumComponents(-1); } optionString = Utils.getOption("M", options); if (optionString.length() > 0) { this.setMaxNumComponents(Integer.parseInt(optionString)); } else { this.setMaxNumComponents(5); } optionString = Utils.getOption("S", options); if (optionString.length() > 0) { this.setSeed(Integer.parseInt(optionString)); } else { this.setSeed(1); } optionString = Utils.getOption("B", options); if (optionString.length() > 0) { this.setNumBootstrapRuns(Integer.parseInt(optionString)); } else { this.setNumBootstrapRuns(10); } this.m_UseNormalizedEntropy = Utils.getFlag("E", options); Utils.checkForRemainingOptions(options); } /** * Returns the current set of options. * * @return the current set of options as a string */ @Override public String[] getOptions() { Vector<String> options = new Vector<String>(); options.add("-N"); options.add("" + this.getNumComponents()); options.add("-M"); options.add("" + this.getMaxNumComponents()); options.add("-S"); options.add("" + this.getSeed()); options.add("-B"); options.add("" + this.getNumBootstrapRuns()); if (this.m_UseNormalizedEntropy) { options.add("-E"); } return options.toArray(new String[0]); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 10971 $"); } /** * Main method, used for testing this class. */ public static void main(final String[] args) throws Exception { // Get random number generator initialized by system Random r = new Random(); // Create density estimator UnivariateMixtureEstimator e = new UnivariateMixtureEstimator(); e.setOptions(Arrays.copyOf(args, args.length)); // Output the density estimator System.out.println(e); // Monte Carlo integration double sum = 0; for (int i = 0; i < 100000; i++) { sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); } System.out.println("Approximate integral: " + 10.0 * sum / 100000); // Add Gaussian values into it for (int i = 0; i < 100000; i++) { e.addValue(r.nextGaussian() * 0.5 - 1, 1); e.addValue(r.nextGaussian() * 0.5 + 1, 3); } // Output the density estimator System.out.println(e); // Monte Carlo integration sum = 0; for (int i = 0; i < 100000; i++) { sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); } System.out.println("Approximate integral: " + 10.0 * sum / 100000); // Create density estimator e = new UnivariateMixtureEstimator(); e.setOptions(Arrays.copyOf(args, args.length)); // Add Gaussian values into it for (int i = 0; i < 100000; i++) { e.addValue(r.nextGaussian() * 0.5 - 1, 1); e.addValue(r.nextGaussian() * 0.5 + 1, 1); e.addValue(r.nextGaussian() * 0.5 + 1, 1); e.addValue(r.nextGaussian() * 0.5 + 1, 1); } // Output the density estimator System.out.println(e); // Monte Carlo integration sum = 0; for (int i = 0; i < 100000; i++) { sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); } System.out.println("Approximate integral: " + 10.0 * sum / 100000); // Create density estimator e = new UnivariateMixtureEstimator(); e.setOptions(Arrays.copyOf(args, args.length)); // Add Gaussian values into it for (int i = 0; i < 100000; i++) { e.addValue(r.nextGaussian() * 5.0 + 3.0, 1); } // Output the density estimator System.out.println(e); // Check interval estimates double[][] intervals = e.predictIntervals(0.95); System.out.println("Lower: " + intervals[0][0] + " Upper: " + intervals[0][1]); double covered = 0; for (int i = 0; i < 100000; i++) { double val = r.nextGaussian() * 5.0 + 3.0; if (val >= intervals[0][0] && val <= intervals[0][1]) { covered++; } } System.out.println("Coverage: " + covered / 100000); intervals = e.predictIntervals(0.8); System.out.println("Lower: " + intervals[0][0] + " Upper: " + intervals[0][1]); covered = 0; for (int i = 0; i < 100000; i++) { double val = r.nextGaussian() * 5.0 + 3.0; if (val >= intervals[0][0] && val <= intervals[0][1]) { covered++; } } System.out.println("Coverage: " + covered / 100000); // Output quantile System.out.println("95% quantile: " + e.predictQuantile(0.95)); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/UnivariateNormalEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * UnivariateNormalEstimator.java * Copyright (C) 2009-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.io.Serializable; import java.util.Random; import weka.core.RevisionUtils; import weka.core.Statistics; /** * Simple weighted normal density estimator. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ */ public class UnivariateNormalEstimator implements UnivariateDensityEstimator, UnivariateIntervalEstimator, UnivariateQuantileEstimator, Serializable { /** For serialization */ private static final long serialVersionUID = -1669009817825826548L; /** The weighted sum of values */ protected double m_WeightedSum = 0; /** The weighted sum of squared values */ protected double m_WeightedSumSquared = 0; /** The weight of the values collected so far */ protected double m_SumOfWeights = 0; /** The mean value (only updated when needed) */ protected double m_Mean = 0; /** The variance (only updated when needed) */ protected double m_Variance = Double.MAX_VALUE; /** The minimum allowed value of the variance (default: 1.0E-6 * 1.0E-6) */ protected double m_MinVar = 1.0E-6 * 1.0E-6; /** Constant for Gaussian density */ public static final double CONST = Math.log(2 * Math.PI); /** * Returns a string describing the estimator. */ public String globalInfo() { return "Estimates a univariate normal density."; } /** * Adds a value to the density estimator. * * @param value the value to add * @param weight the weight of the value */ public void addValue(double value, double weight) { m_WeightedSum += value * weight; m_WeightedSumSquared += value * value * weight; m_SumOfWeights += weight; } /** * Updates mean and variance based on sufficient statistics. * Variance is set to m_MinVar if it becomes smaller than that * value. It is set to Double.MAX_VALUE if the sum of weights is * zero. */ protected void updateMeanAndVariance() { // Compute mean m_Mean = 0; if (m_SumOfWeights > 0) { m_Mean = m_WeightedSum / m_SumOfWeights; } // Compute variance m_Variance = Double.MAX_VALUE; if (m_SumOfWeights > 0) { m_Variance = m_WeightedSumSquared / m_SumOfWeights - m_Mean * m_Mean; } // Hack for case where variance is 0 if (m_Variance <= m_MinVar) { m_Variance = m_MinVar; } } /** * Returns the interval for the given confidence value. * * @param conf the confidence value in the interval [0, 1] * @return the interval */ public double[][] predictIntervals(double conf) { updateMeanAndVariance(); double val = Statistics.normalInverse(1.0 - (1.0 - conf) / 2.0); double[][] arr = new double[1][2]; arr[0][1] = m_Mean + val * Math.sqrt(m_Variance); arr[0][0] = m_Mean - val * Math.sqrt(m_Variance); return arr; } /** * Returns the quantile for the given percentage. * * @param percentage the percentage * @return the quantile */ public double predictQuantile(double percentage) { updateMeanAndVariance(); return m_Mean + Statistics.normalInverse(percentage) * Math.sqrt(m_Variance); } /** * Returns the natural logarithm of the density estimate at the given * point. * * @param value the value at which to evaluate * @return the natural logarithm of the density estimate at the given * value */ public double logDensity(double value) { updateMeanAndVariance(); // Return natural logarithm of density double val = -0.5 * (CONST + Math.log(m_Variance) + (value - m_Mean) * (value - m_Mean) / m_Variance); return val; } /** * Returns textual description of this estimator. */ public String toString() { updateMeanAndVariance(); return "Mean: " + m_Mean + "\t" + "Variance: " + m_Variance; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method, used for testing this class. */ public static void main(String[] args) { // Get random number generator initialized by system Random r = new Random(); // Create density estimator UnivariateNormalEstimator e = new UnivariateNormalEstimator(); // Output the density estimator System.out.println(e); // Monte Carlo integration double sum = 0; for (int i = 0; i < 100000; i++) { sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); } System.out.println("Approximate integral: " + 10.0 * sum / 100000); // Add Gaussian values into it for (int i = 0; i < 100000; i++) { e.addValue(r.nextGaussian(), 1); e.addValue(r.nextGaussian() * 2.0, 3); } // Output the density estimator System.out.println(e); // Monte Carlo integration sum = 0; for (int i = 0; i < 100000; i++) { sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); } System.out.println("Approximate integral: " + 10.0 * sum / 100000); // Create density estimator e = new UnivariateNormalEstimator(); // Add Gaussian values into it for (int i = 0; i < 100000; i++) { e.addValue(r.nextGaussian(), 1); e.addValue(r.nextGaussian() * 2.0, 1); e.addValue(r.nextGaussian() * 2.0, 1); e.addValue(r.nextGaussian() * 2.0, 1); } // Output the density estimator System.out.println(e); // Monte Carlo integration sum = 0; for (int i = 0; i < 100000; i++) { sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); } System.out.println("Approximate integral: " + 10.0 * sum / 100000); // Create density estimator e = new UnivariateNormalEstimator(); // Add Gaussian values into it for (int i = 0; i < 100000; i++) { e.addValue(r.nextGaussian() * 5.0 + 3.0 , 1); } // Output the density estimator System.out.println(e); // Check interval estimates double[][] intervals = e.predictIntervals(0.95); System.out.println("Lower: " + intervals[0][0] + " Upper: " + intervals[0][1]); double covered = 0; for (int i = 0; i < 100000; i++) { double val = r.nextGaussian() * 5.0 + 3.0; if (val >= intervals[0][0] && val <= intervals[0][1]) { covered++; } } System.out.println("Coverage: " + covered / 100000); intervals = e.predictIntervals(0.8); System.out.println("Lower: " + intervals[0][0] + " Upper: " + intervals[0][1]); covered = 0; for (int i = 0; i < 100000; i++) { double val = r.nextGaussian() * 5.0 + 3.0; if (val >= intervals[0][0] && val <= intervals[0][1]) { covered++; } } System.out.println("Coverage: " + covered / 100000); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/estimators/UnivariateQuantileEstimator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * UnivariateQuantileEstimator.java * Copyright (C) 2009-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; /** * Interface that can be implemented by simple weighted univariate * quantile estimators. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ */ public interface UnivariateQuantileEstimator { /** * Adds a value to the interval estimator. * * @param value the value to add * @param weight the weight of the value */ void addValue(double value, double weight); /** * Returns the quantile for the given percentage * * @param value the value at which to evaluate * @return the quantile */ double predictQuantile(double quantile); }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/AveragingResultProducer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * AveragingResultProducer.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Hashtable; import java.util.Vector; import weka.core.AdditionalMeasureProducer; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Takes the results from a ResultProducer and submits * the average to the result listener. Normally used with a * CrossValidationResultProducer to perform n x m fold cross validation. For * non-numeric result fields, the first value is used. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -F &lt;field name&gt; * The name of the field to average over. * (default "Fold") * </pre> * * <pre> * -X &lt;num results&gt; * The number of results expected per average. * (default 10) * </pre> * * <pre> * -S * Calculate standard deviations. * (default only averages) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer * </pre> * * <pre> * Options specific to result producer weka.experiment.CrossValidationResultProducer: * </pre> * * <pre> * -X &lt;number of folds&gt; * The number of folds to use for the cross-validation. * (default 10) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the result producer. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class AveragingResultProducer implements ResultListener, ResultProducer, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = 2551284958501991352L; /** The dataset of interest */ protected Instances m_Instances; /** The ResultListener to send results to */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The ResultProducer used to generate results */ protected ResultProducer m_ResultProducer = new CrossValidationResultProducer(); /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_AdditionalMeasures = null; /** The number of results expected to average over for each run */ protected int m_ExpectedResultsPerAverage = 10; /** True if standard deviation fields should be produced */ protected boolean m_CalculateStdDevs; /** * The name of the field that will contain the number of results averaged * over. */ protected String m_CountFieldName = "Num_" + CrossValidationResultProducer.FOLD_FIELD_NAME; /** The name of the key field to average over */ protected String m_KeyFieldName = CrossValidationResultProducer.FOLD_FIELD_NAME; /** The index of the field to average over in the resultproducers key */ protected int m_KeyIndex = -1; /** Collects the keys from a single run */ protected ArrayList<Object[]> m_Keys = new ArrayList<Object[]>(); /** Collects the results from a single run */ protected ArrayList<Object[]> m_Results = new ArrayList<Object[]>(); /** * Returns a string describing this result producer * * @return a description of the result producer suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Takes the results from a ResultProducer " + "and submits the average to the result listener. Normally used with " + "a CrossValidationResultProducer to perform n x m fold cross " + "validation. For non-numeric result fields, the first value is used."; } /** * Scans through the key field names of the result producer to find the index * of the key field to average over. Sets the value of m_KeyIndex to the * index, or -1 if no matching key field was found. * * @return the index of the key field to average over */ protected int findKeyIndex() { m_KeyIndex = -1; try { if (m_ResultProducer != null) { String[] keyNames = m_ResultProducer.getKeyNames(); for (int i = 0; i < keyNames.length; i++) { if (keyNames[i].equals(m_KeyFieldName)) { m_KeyIndex = i; break; } } } } catch (Exception ex) { } return m_KeyIndex; } /** * Determines if there are any constraints (imposed by the destination) on the * result columns to be produced by resultProducers. Null should be returned * if there are NO constraints, otherwise a list of column names should be * returned as an array of Strings. * * @param rp the ResultProducer to which the constraints will apply * @return an array of column names to which resutltProducer's results will be * restricted. * @throws Exception if constraints can't be determined */ @Override public String[] determineColumnConstraints(ResultProducer rp) throws Exception { return null; } /** * Simulates a run to collect the keys the sub-resultproducer could generate. * Does some checking on the keys and determines the template key. * * @param run the run number * @return a template key (null for the field being averaged) * @throws Exception if an error occurs */ protected Object[] determineTemplate(int run) throws Exception { if (m_Instances == null) { throw new Exception("No Instances set"); } m_ResultProducer.setInstances(m_Instances); // Clear the collected results m_Keys.clear(); m_Results.clear(); m_ResultProducer.doRunKeys(run); checkForMultipleDifferences(); Object[] template = m_Keys.get(0).clone(); template[m_KeyIndex] = null; // Check for duplicate keys checkForDuplicateKeys(template); return template; } /** * Gets the keys for a specified run number. Different run numbers correspond * to different randomizations of the data. Keys produced should be sent to * the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ @Override public void doRunKeys(int run) throws Exception { // Generate the template Object[] template = determineTemplate(run); String[] newKey = new String[template.length - 1]; System.arraycopy(template, 0, newKey, 0, m_KeyIndex); System.arraycopy(template, m_KeyIndex + 1, newKey, m_KeyIndex, template.length - m_KeyIndex - 1); m_ResultListener.acceptResult(this, newKey, null); } /** * Gets the results for a specified run number. Different run numbers * correspond to different randomizations of the data. Results produced should * be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ @Override public void doRun(int run) throws Exception { // Generate the key and ask whether the result is required Object[] template = determineTemplate(run); String[] newKey = new String[template.length - 1]; System.arraycopy(template, 0, newKey, 0, m_KeyIndex); System.arraycopy(template, m_KeyIndex + 1, newKey, m_KeyIndex, template.length - m_KeyIndex - 1); if (m_ResultListener.isResultRequired(this, newKey)) { // Clear the collected keys m_Keys.clear(); m_Results.clear(); m_ResultProducer.doRun(run); // Average the results collected // System.err.println("Number of results collected: " + m_Keys.size()); // Check that the keys only differ on the selected key field checkForMultipleDifferences(); template = m_Keys.get(0).clone(); template[m_KeyIndex] = null; // Check for duplicate keys checkForDuplicateKeys(template); // Calculate the average and submit it if necessary doAverageResult(template); } } /** * Compares a key to a template to see whether they match. Null fields in the * template are ignored in the matching. * * @param template the template to match against * @param test the key to test * @return true if the test key matches the template on all non-null template * fields */ protected boolean matchesTemplate(Object[] template, Object[] test) { if (template.length != test.length) { return false; } for (int i = 0; i < test.length; i++) { if ((template[i] != null) && (!template[i].equals(test[i]))) { return false; } } return true; } /** * Asks the resultlistener whether an average result is required, and if so, * calculates it. * * @param template the template to match keys against when calculating the * average * @throws Exception if an error occurs */ protected void doAverageResult(Object[] template) throws Exception { // Generate the key and ask whether the result is required String[] newKey = new String[template.length - 1]; System.arraycopy(template, 0, newKey, 0, m_KeyIndex); System.arraycopy(template, m_KeyIndex + 1, newKey, m_KeyIndex, template.length - m_KeyIndex - 1); if (m_ResultListener.isResultRequired(this, newKey)) { Object[] resultTypes = m_ResultProducer.getResultTypes(); Stats[] stats = new Stats[resultTypes.length]; for (int i = 0; i < stats.length; i++) { stats[i] = new Stats(); } Object[] result = getResultTypes(); int numMatches = 0; for (int i = 0; i < m_Keys.size(); i++) { Object[] currentKey = m_Keys.get(i); // Skip non-matching keys if (!matchesTemplate(template, currentKey)) { continue; } // Add the results to the stats accumulator Object[] currentResult = m_Results.get(i); numMatches++; for (int j = 0; j < resultTypes.length; j++) { if (resultTypes[j] instanceof Double) { if (currentResult[j] == null) { // set the stats object for this result to null--- // more than likely this is an additional measure field // not supported by the low level split evaluator if (stats[j] != null) { stats[j] = null; } /* * throw new Exception("Null numeric result field found:\n" + * DatabaseUtils.arrayToString(currentKey) + " -- " + * DatabaseUtils .arrayToString(currentResult)); */ } if (stats[j] != null) { double currentVal = ((Double) currentResult[j]).doubleValue(); stats[j].add(currentVal); } } } } if (numMatches != m_ExpectedResultsPerAverage) { throw new Exception("Expected " + m_ExpectedResultsPerAverage + " results matching key \"" + DatabaseUtils.arrayToString(template) + "\" but got " + numMatches); } result[0] = new Double(numMatches); Object[] currentResult = m_Results.get(0); int k = 1; for (int j = 0; j < resultTypes.length; j++) { if (resultTypes[j] instanceof Double) { if (stats[j] != null) { stats[j].calculateDerived(); result[k++] = new Double(stats[j].mean); } else { result[k++] = null; } if (getCalculateStdDevs()) { if (stats[j] != null) { result[k++] = new Double(stats[j].stdDev); } else { result[k++] = null; } } } else { result[k++] = currentResult[j]; } } m_ResultListener.acceptResult(this, newKey, result); } } /** * Checks whether any duplicate results (with respect to a key template) were * received. * * @param template the template key. * @throws Exception if duplicate results are detected */ protected void checkForDuplicateKeys(Object[] template) throws Exception { Hashtable<Object, Object> hash = new Hashtable<Object, Object>(); int numMatches = 0; for (int i = 0; i < m_Keys.size(); i++) { Object[] current = m_Keys.get(i); // Skip non-matching keys if (!matchesTemplate(template, current)) { continue; } if (hash.containsKey(current[m_KeyIndex])) { throw new Exception("Duplicate result received:" + DatabaseUtils.arrayToString(current)); } numMatches++; hash.put(current[m_KeyIndex], current[m_KeyIndex]); } if (numMatches != m_ExpectedResultsPerAverage) { throw new Exception("Expected " + m_ExpectedResultsPerAverage + " results matching key \"" + DatabaseUtils.arrayToString(template) + "\" but got " + numMatches); } } /** * Checks that the keys for a run only differ in one key field. If they differ * in more than one field, a more sophisticated averager will submit multiple * results - for now an exception is thrown. Currently assumes that the most * differences will be shown between the first and last result received. * * @throws Exception if the keys differ on fields other than the key averaging * field */ protected void checkForMultipleDifferences() throws Exception { Object[] firstKey = m_Keys.get(0); Object[] lastKey = m_Keys.get(m_Keys.size() - 1); /* * System.err.println("First key:" + DatabaseUtils.arrayToString(firstKey)); * System.err.println("Last key :" + DatabaseUtils.arrayToString(lastKey)); */ for (int i = 0; i < firstKey.length; i++) { if ((i != m_KeyIndex) && !firstKey[i].equals(lastKey[i])) { throw new Exception("Keys differ on fields other than \"" + m_KeyFieldName + "\" -- time to implement multiple averaging"); } } } /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess(ResultProducer rp) throws Exception { if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * Prepare to generate results. The ResultProducer should call * preProcess(this) on the ResultListener it is to send results to. * * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess() throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); findKeyIndex(); if (m_KeyIndex == -1) { throw new Exception("No key field called " + m_KeyFieldName + " produced by " + m_ResultProducer.getClass().getName()); } m_ResultProducer.preProcess(); } /** * When this method is called, it indicates that no more results will be sent * that need to be grouped together in any way. * * @param rp the ResultProducer that generated the results * @throws Exception if an error occurs */ @Override public void postProcess(ResultProducer rp) throws Exception { m_ResultListener.postProcess(this); } /** * When this method is called, it indicates that no more requests to generate * results for the current experiment will be sent. The ResultProducer should * call preProcess(this) on the ResultListener it is to send results to. * * @throws Exception if an error occurs */ @Override public void postProcess() throws Exception { m_ResultProducer.postProcess(); } /** * Accepts results from a ResultProducer. * * @param rp the ResultProducer that generated the results * @param key an array of Objects (Strings or Doubles) that uniquely identify * a result for a given ResultProducer with given compatibilityState * @param result the results stored in an array. The objects stored in the * array may be Strings, Doubles, or null (for the missing value). * @throws Exception if the result could not be accepted. */ @Override public void acceptResult(ResultProducer rp, Object[] key, Object[] result) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } m_Keys.add(key); m_Results.add(result); } /** * Determines whether the results for a specified key must be generated. * * @param rp the ResultProducer wanting to generate the results * @param key an array of Objects (Strings or Doubles) that uniquely identify * a result for a given ResultProducer with given compatibilityState * @return true if the result should be generated * @throws Exception if it could not be determined if the result is needed. */ @Override public boolean isResultRequired(ResultProducer rp, Object[] key) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } return true; } /** * Gets the names of each of the columns produced for a single run. * * @return an array containing the name of each column * @throws Exception if key names cannot be generated */ @Override public String[] getKeyNames() throws Exception { if (m_KeyIndex == -1) { throw new Exception("No key field called " + m_KeyFieldName + " produced by " + m_ResultProducer.getClass().getName()); } String[] keyNames = m_ResultProducer.getKeyNames(); String[] newKeyNames = new String[keyNames.length - 1]; System.arraycopy(keyNames, 0, newKeyNames, 0, m_KeyIndex); System.arraycopy(keyNames, m_KeyIndex + 1, newKeyNames, m_KeyIndex, keyNames.length - m_KeyIndex - 1); return newKeyNames; } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. * @throws Exception if the key types could not be determined (perhaps because * of a problem from a nested sub-resultproducer) */ @Override public Object[] getKeyTypes() throws Exception { if (m_KeyIndex == -1) { throw new Exception("No key field called " + m_KeyFieldName + " produced by " + m_ResultProducer.getClass().getName()); } Object[] keyTypes = m_ResultProducer.getKeyTypes(); // Find and remove the key field that is being averaged over Object[] newKeyTypes = new String[keyTypes.length - 1]; System.arraycopy(keyTypes, 0, newKeyTypes, 0, m_KeyIndex); System.arraycopy(keyTypes, m_KeyIndex + 1, newKeyTypes, m_KeyIndex, keyTypes.length - m_KeyIndex - 1); return newKeyTypes; } /** * Gets the names of each of the columns produced for a single run. A new * result field is added for the number of results used to produce each * average. If only averages are being produced the names are not altered, if * standard deviations are produced then "Dev_" and "Avg_" are prepended to * each result deviation and average field respectively. * * @return an array containing the name of each column * @throws Exception if the result names could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ @Override public String[] getResultNames() throws Exception { String[] resultNames = m_ResultProducer.getResultNames(); // Add in the names of our extra Result fields if (getCalculateStdDevs()) { Object[] resultTypes = m_ResultProducer.getResultTypes(); int numNumeric = 0; for (Object resultType : resultTypes) { if (resultType instanceof Double) { numNumeric++; } } String[] newResultNames = new String[resultNames.length + 1 + numNumeric]; newResultNames[0] = m_CountFieldName; int j = 1; for (int i = 0; i < resultNames.length; i++) { newResultNames[j++] = "Avg_" + resultNames[i]; if (resultTypes[i] instanceof Double) { newResultNames[j++] = "Dev_" + resultNames[i]; } } return newResultNames; } else { String[] newResultNames = new String[resultNames.length + 1]; newResultNames[0] = m_CountFieldName; System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length); return newResultNames; } } /** * Gets the data types of each of the columns produced for a single run. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. * @throws Exception if the result types could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ @Override public Object[] getResultTypes() throws Exception { Object[] resultTypes = m_ResultProducer.getResultTypes(); // Add in the types of our extra Result fields if (getCalculateStdDevs()) { int numNumeric = 0; for (Object resultType : resultTypes) { if (resultType instanceof Double) { numNumeric++; } } Object[] newResultTypes = new Object[resultTypes.length + 1 + numNumeric]; newResultTypes[0] = new Double(0); int j = 1; for (Object resultType : resultTypes) { newResultTypes[j++] = resultType; if (resultType instanceof Double) { newResultTypes[j++] = new Double(0); } } return newResultTypes; } else { Object[] newResultTypes = new Object[resultTypes.length + 1]; newResultTypes[0] = new Double(0); System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length); return newResultTypes; } } /** * Gets a description of the internal settings of the result producer, * sufficient for distinguishing a ResultProducer instance from another with * different settings (ignoring those settings set through this interface). * For example, a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should be * compatible. Typically if a ResultProducer is an OptionHandler, this string * will represent the command line arguments required to set the * ResultProducer to that state. * * @return the description of the ResultProducer state, or null if no state is * defined */ @Override public String getCompatibilityState() { String result = // "-F " + Utils.quote(getKeyFieldName()) " -X " + getExpectedResultsPerAverage() + " "; if (getCalculateStdDevs()) { result += "-S "; } if (m_ResultProducer == null) { result += "<null ResultProducer>"; } else { result += "-W " + m_ResultProducer.getClass().getName(); result += " -- " + m_ResultProducer.getCompatibilityState(); } return result.trim(); } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(2); newVector.addElement(new Option( "\tThe name of the field to average over.\n" + "\t(default \"Fold\")", "F", 1, "-F <field name>")); newVector.addElement(new Option( "\tThe number of results expected per average.\n" + "\t(default 10)", "X", 1, "-X <num results>")); newVector.addElement(new Option("\tCalculate standard deviations.\n" + "\t(default only averages)", "S", 0, "-S")); newVector.addElement(new Option( "\tThe full class name of a ResultProducer.\n" + "\teg: weka.experiment.CrossValidationResultProducer", "W", 1, "-W <class name>")); if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to result producer " + m_ResultProducer.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_ResultProducer) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -F &lt;field name&gt; * The name of the field to average over. * (default "Fold") * </pre> * * <pre> * -X &lt;num results&gt; * The number of results expected per average. * (default 10) * </pre> * * <pre> * -S * Calculate standard deviations. * (default only averages) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer * </pre> * * <pre> * Options specific to result producer weka.experiment.CrossValidationResultProducer: * </pre> * * <pre> * -X &lt;number of folds&gt; * The number of folds to use for the cross-validation. * (default 10) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the result producer. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String keyFieldName = Utils.getOption('F', options); if (keyFieldName.length() != 0) { setKeyFieldName(keyFieldName); } else { setKeyFieldName(CrossValidationResultProducer.FOLD_FIELD_NAME); } String numResults = Utils.getOption('X', options); if (numResults.length() != 0) { setExpectedResultsPerAverage(Integer.parseInt(numResults)); } else { setExpectedResultsPerAverage(10); } setCalculateStdDevs(Utils.getFlag('S', options)); String rpName = Utils.getOption('W', options); if (rpName.length() == 0) { throw new Exception("A ResultProducer must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // RP. setResultProducer((ResultProducer) Utils.forName(ResultProducer.class, rpName, null)); if (getResultProducer() instanceof OptionHandler) { ((OptionHandler) getResultProducer()).setOptions(Utils .partitionOptions(options)); } } /** * Gets the current settings of the result producer. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { String[] seOptions = new String[0]; if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { seOptions = ((OptionHandler) m_ResultProducer).getOptions(); } String[] options = new String[seOptions.length + 8]; int current = 0; options[current++] = "-F"; options[current++] = "" + getKeyFieldName(); options[current++] = "-X"; options[current++] = "" + getExpectedResultsPerAverage(); if (getCalculateStdDevs()) { options[current++] = "-S"; } if (getResultProducer() != null) { options[current++] = "-W"; options[current++] = getResultProducer().getClass().getName(); } options[current++] = "--"; System.arraycopy(seOptions, 0, options, current, seOptions.length); current += seOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set a list of method names for additional measures to look for in * SplitEvaluators. This could contain many measures (of which only a subset * may be produceable by the current resultProducer) if an experiment is the * type that iterates over a set of properties. * * @param additionalMeasures an array of measure names, null if none */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; if (m_ResultProducer != null) { System.err.println("AveragingResultProducer: setting additional " + "measures for " + "ResultProducer"); m_ResultProducer.setAdditionalMeasures(m_AdditionalMeasures); } } /** * Returns an enumeration of any additional measure names that might be in the * result producer * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> newVector = new Vector<String>(); if (m_ResultProducer instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_ResultProducer) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_ResultProducer instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer) m_ResultProducer) .getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("AveragingResultProducer: " + "Can't return value for : " + additionalMeasureName + ". " + m_ResultProducer.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ @Override public void setInstances(Instances instances) { m_Instances = instances; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String calculateStdDevsTipText() { return "Record standard deviations for each run."; } /** * Get the value of CalculateStdDevs. * * @return Value of CalculateStdDevs. */ public boolean getCalculateStdDevs() { return m_CalculateStdDevs; } /** * Set the value of CalculateStdDevs. * * @param newCalculateStdDevs Value to assign to CalculateStdDevs. */ public void setCalculateStdDevs(boolean newCalculateStdDevs) { m_CalculateStdDevs = newCalculateStdDevs; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String expectedResultsPerAverageTipText() { return "Set the expected number of results to average per run. " + "For example if a CrossValidationResultProducer is being used " + "(with the number of folds set to 10), then the expected number " + "of results per run is 10."; } /** * Get the value of ExpectedResultsPerAverage. * * @return Value of ExpectedResultsPerAverage. */ public int getExpectedResultsPerAverage() { return m_ExpectedResultsPerAverage; } /** * Set the value of ExpectedResultsPerAverage. * * @param newExpectedResultsPerAverage Value to assign to * ExpectedResultsPerAverage. */ public void setExpectedResultsPerAverage(int newExpectedResultsPerAverage) { m_ExpectedResultsPerAverage = newExpectedResultsPerAverage; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String keyFieldNameTipText() { return "Set the field name that will be unique for a run."; } /** * Get the value of KeyFieldName. * * @return Value of KeyFieldName. */ public String getKeyFieldName() { return m_KeyFieldName; } /** * Set the value of KeyFieldName. * * @param newKeyFieldName Value to assign to KeyFieldName. */ public void setKeyFieldName(String newKeyFieldName) { m_KeyFieldName = newKeyFieldName; m_CountFieldName = "Num_" + m_KeyFieldName; findKeyIndex(); } /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ @Override public void setResultListener(ResultListener listener) { m_ResultListener = listener; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String resultProducerTipText() { return "Set the resultProducer for which results are to be averaged."; } /** * Get the ResultProducer. * * @return the ResultProducer. */ public ResultProducer getResultProducer() { return m_ResultProducer; } /** * Set the ResultProducer. * * @param newResultProducer new ResultProducer to use. */ public void setResultProducer(ResultProducer newResultProducer) { m_ResultProducer = newResultProducer; m_ResultProducer.setResultListener(this); findKeyIndex(); } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ @Override public String toString() { String result = "AveragingResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ": <null Instances>"; } else { result += ": " + Utils.backQuoteChars(m_Instances.relationName()); } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // AveragingResultProducer
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/CSVResultListener.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * CSVResultListener.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileOutputStream; import java.io.PrintWriter; import java.util.Enumeration; import java.util.Vector; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; import weka.gui.FilePropertyMetadata; import javax.swing.*; /** * <!-- globalinfo-start --> Takes results from a result producer and assembles * them into comma separated value form. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -O &lt;file name&gt; * The filename where output will be stored. Use - for stdout. * (default temp file) * </pre> * * <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class CSVResultListener implements ResultListener, OptionHandler, RevisionHandler { /** for serialization */ static final long serialVersionUID = -623185072785174658L; /** The ResultProducer sending us results */ protected ResultProducer m_RP; /** The destination output file, null sends to System.out */ protected File m_OutputFile = null; /** The name of the output file. Empty for temporary file. */ protected String m_OutputFileName = ""; /** The destination for results (typically connected to the output file) */ protected transient PrintWriter m_Out = new PrintWriter(System.out, true); /** * Sets temporary file. */ public CSVResultListener() { File resultsFile; try { resultsFile = File.createTempFile("weka_experiment", ".csv"); resultsFile.deleteOnExit(); } catch (Exception e) { System.err.println("Cannot create temp file, writing to standard out."); resultsFile = new File("-"); } setOutputFile(resultsFile); setOutputFileName(""); } /** * Returns a string describing this result listener * * @return a description of the result listener suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Takes results from a result producer and assembles them into " + "comma separated value form."; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(1); newVector.addElement(new Option( "\tThe filename where output will be stored. Use - for stdout.\n" + "\t(default temp file)", "O", 1, "-O <file name>")); return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -O &lt;file name&gt; * The filename where output will be stored. Use - for stdout. * (default temp file) * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String fName = Utils.getOption('O', options); if (fName.length() != 0) { setOutputFile(new File(fName)); } else { File resultsFile; try { resultsFile = File.createTempFile("weka_experiment", null); resultsFile.deleteOnExit(); } catch (Exception e) { System.err.println("Cannot create temp file, writing to standard out."); resultsFile = new File("-"); } setOutputFile(resultsFile); setOutputFileName(""); } } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { String[] options = new String[2]; int current = 0; options[current++] = "-O"; options[current++] = getOutputFile().getName(); while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String outputFileTipText() { return "File to save to. Use '-' to write to standard out."; } /** * Get the value of OutputFile. * * @return Value of OutputFile. */ @FilePropertyMetadata(fileChooserDialogType = JFileChooser.SAVE_DIALOG, directoriesOnly = false) public File getOutputFile() { return m_OutputFile; } /** * Set the value of OutputFile. Also sets the OutputFileName. * * @param newOutputFile Value to assign to OutputFile. */ public void setOutputFile(File newOutputFile) { m_OutputFile = newOutputFile; setOutputFileName(newOutputFile.getName()); } /** * Get the value of OutputFileName. * * @return Value of OutputFile. */ public String outputFileName() { return m_OutputFileName; } /** * Set the value of OutputFileName. Must be used AFTER setOutputFile. * * @param name the name of OutputFile. */ public void setOutputFileName(String name) { m_OutputFileName = name; } /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess(ResultProducer rp) throws Exception { m_RP = rp; if ((m_OutputFile == null) || (m_OutputFile.getName().equals("-"))) { m_Out = new PrintWriter(System.out, true); } else { m_Out = new PrintWriter(new BufferedOutputStream(new FileOutputStream( m_OutputFile)), true); } printResultNames(m_RP); } /** * Perform any postprocessing. When this method is called, it indicates that * no more results will be sent that need to be grouped together in any way. * * @param rp the ResultProducer that generated the results * @throws Exception if an error occurs */ @Override public void postProcess(ResultProducer rp) throws Exception { if (!(m_OutputFile == null) && !(m_OutputFile.getName().equals("-"))) { m_Out.close(); } } /** * Determines if there are any constraints (imposed by the destination) on the * result columns to be produced by resultProducers. Null should be returned * if there are NO constraints, otherwise a list of column names should be * returned as an array of Strings. * * @param rp the ResultProducer to which the constraints will apply * @return an array of column names to which resutltProducer's results will be * restricted. * @throws Exception if an error occurs. */ @Override public String[] determineColumnConstraints(ResultProducer rp) throws Exception { return null; } /** * Just prints out each result as it is received. * * @param rp the ResultProducer that generated the result * @param key The key for the results. * @param result The actual results. * @throws Exception if the result could not be accepted. */ @Override public void acceptResult(ResultProducer rp, Object[] key, Object[] result) throws Exception { if (m_RP != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } for (int i = 0; i < key.length; i++) { if (i != 0) { m_Out.print(','); } if (key[i] == null) { m_Out.print("?"); } else { m_Out.print(Utils.quote(key[i].toString())); } } for (Object element : result) { m_Out.print(','); if (element == null) { m_Out.print("?"); } else { m_Out.print(Utils.quote(element.toString())); } } m_Out.println(""); } /** * Always says a result is required. If this is the first call, prints out the * header for the csv output. * * @param rp the ResultProducer wanting to generate the result * @param key The key for which a result may be needed. * @return true if the result should be calculated. * @throws Exception if it could not be determined if the result is needed. */ @Override public boolean isResultRequired(ResultProducer rp, Object[] key) throws Exception { return true; } /** * Prints the names of each field out as the first row of the CSV output. * * @param rp the ResultProducer generating our results. * @throws Exception if the field names could not be determined. */ private void printResultNames(ResultProducer rp) throws Exception { String[] key = rp.getKeyNames(); for (int i = 0; i < key.length; i++) { if (i != 0) { m_Out.print(','); } if (key[i] == null) { m_Out.print("?"); } else { m_Out.print("Key_" + key[i].toString()); } } String[] result = rp.getResultNames(); for (String element : result) { m_Out.print(','); if (element == null) { m_Out.print("?"); } else { m_Out.print(element.toString()); } } m_Out.println(""); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // CSVResultListener
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ClassifierSplitEvaluator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ClassifierSplitEvaluator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.ByteArrayOutputStream; import java.io.ObjectOutputStream; import java.io.ObjectStreamClass; import java.io.Serializable; import java.lang.management.ManagementFactory; import java.lang.management.ThreadMXBean; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Enumeration; import java.util.List; import java.util.Vector; import weka.classifiers.AbstractClassifier; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.evaluation.AbstractEvaluationMetric; import weka.classifiers.rules.ZeroR; import weka.core.AdditionalMeasureProducer; import weka.core.Attribute; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Summarizable; import weka.core.Utils; /** * <!-- globalinfo-start --> A SplitEvaluator that produces results for a * classification scheme on a nominal class attribute. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * -no-size * Skips the determination of sizes (train/test/classifier) * (default: sizes are determined) * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the classifier. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class ClassifierSplitEvaluator implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = -8511241602760467265L; /** The template classifier */ protected Classifier m_Template = new ZeroR(); /** The classifier used for evaluation */ protected Classifier m_Classifier; /** Holds the most recently used Evaluation object */ protected Evaluation m_Evaluation; /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_AdditionalMeasures = null; /** * Array of booleans corresponding to the measures in m_AdditionalMeasures * indicating which of the AdditionalMeasures the current classifier can * produce */ protected boolean[] m_doesProduce = null; /** * The number of additional measures that need to be filled in after taking * into account column constraints imposed by the final destination for * results */ protected int m_numberAdditionalMeasures = 0; /** Holds the statistics for the most recent application of the classifier */ protected String m_result = null; /** The classifier options (if any) */ protected String m_ClassifierOptions = ""; /** The classifier version */ protected String m_ClassifierVersion = ""; /** The length of a key */ private static final int KEY_SIZE = 3; /** The length of a result */ private static final int RESULT_SIZE = 32; /** The number of IR statistics */ private static final int NUM_IR_STATISTICS = 16; /** The number of averaged IR statistics */ private static final int NUM_WEIGHTED_IR_STATISTICS = 10; /** The number of unweighted averaged IR statistics */ private static final int NUM_UNWEIGHTED_IR_STATISTICS = 2; /** Class index for information retrieval statistics (default 0) */ private int m_IRclass = 0; /** Flag for prediction and target columns output. */ private boolean m_predTargetColumn = false; /** Attribute index of instance identifier (default -1) */ private int m_attID = -1; /** whether to skip determination of sizes (train/test/classifier). */ private boolean m_NoSizeDetermination; protected final List<AbstractEvaluationMetric> m_pluginMetrics = new ArrayList<AbstractEvaluationMetric>(); protected int m_numPluginStatistics = 0; /** * No args constructor. */ public ClassifierSplitEvaluator() { updateOptions(); List<AbstractEvaluationMetric> pluginMetrics = AbstractEvaluationMetric .getPluginMetrics(); if (pluginMetrics != null) { for (AbstractEvaluationMetric m : pluginMetrics) { System.err.println(m.getMetricName()); if (m.appliesToNominalClass()) { m_pluginMetrics.add(m); m_numPluginStatistics += m.getStatisticNames().size(); } } } } /** * Returns a string describing this split evaluator * * @return a description of the split evaluator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return " A SplitEvaluator that produces results for a classification " + "scheme on a nominal class attribute."; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(5); newVector .addElement(new Option("\tThe full class name of the classifier.\n" + "\teg: weka.classifiers.bayes.NaiveBayes", "W", 1, "-W <class name>")); newVector.addElement(new Option( "\tThe index of the class for which IR statistics\n" + "\tare to be output. (default 1)", "C", 1, "-C <index>")); newVector.addElement(new Option( "\tThe index of an attribute to output in the\n" + "\tresults. This attribute should identify an\n" + "\tinstance in order to know which instances are\n" + "\tin the test set of a cross validation. if 0\n" + "\tno output (default 0).", "I", 1, "-I <index>")); newVector.addElement(new Option( "\tAdd target and prediction columns to the result\n" + "\tfor each fold.", "P", 0, "-P")); newVector.addElement(new Option( "\tSkips the determination of sizes (train/test/classifier)\n" + "\t(default: sizes are determined)", "no-size", 0, "-no-size")); if ((m_Template != null) && (m_Template instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to classifier " + m_Template.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_Template) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * -no-size * Skips the determination of sizes (train/test/classifier) * (default: sizes are determined) * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the classifier. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String cName = Utils.getOption('W', options); if (cName.length() == 0) { throw new Exception("A classifier must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // Classifier. setClassifier(AbstractClassifier.forName(cName, null)); if (getClassifier() instanceof OptionHandler) { ((OptionHandler) getClassifier()).setOptions(Utils .partitionOptions(options)); updateOptions(); } String indexName = Utils.getOption('C', options); if (indexName.length() != 0) { m_IRclass = (new Integer(indexName)).intValue() - 1; } else { m_IRclass = 0; } String attID = Utils.getOption('I', options); if (attID.length() != 0) { m_attID = (new Integer(attID)).intValue() - 1; } else { m_attID = -1; } m_predTargetColumn = Utils.getFlag('P', options); m_NoSizeDetermination = Utils.getFlag("no-size", options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; String[] classifierOptions; result = new Vector<String>(); classifierOptions = new String[0]; if ((m_Template != null) && (m_Template instanceof OptionHandler)) { classifierOptions = ((OptionHandler) m_Template).getOptions(); } if (getClassifier() != null) { result.add("-W"); result.add(getClassifier().getClass().getName()); } result.add("-I"); result.add("" + (m_attID + 1)); if (getPredTargetColumn()) { result.add("-P"); } result.add("-C"); result.add("" + (m_IRclass + 1)); if (getNoSizeDetermination()) { result.add("-no-size"); } result.add("--"); result.addAll(Arrays.asList(classifierOptions)); return result.toArray(new String[result.size()]); } /** * Set a list of method names for additional measures to look for in * Classifiers. This could contain many measures (of which only a subset may * be produceable by the current Classifier) if an experiment is the type that * iterates over a set of properties. * * @param additionalMeasures a list of method names */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { // System.err.println("ClassifierSplitEvaluator: setting additional measures"); m_AdditionalMeasures = additionalMeasures; // determine which (if any) of the additional measures this classifier // can produce if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) { m_doesProduce = new boolean[m_AdditionalMeasures.length]; if (m_Template instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_Template) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); for (int j = 0; j < m_AdditionalMeasures.length; j++) { if (mname.compareToIgnoreCase(m_AdditionalMeasures[j]) == 0) { m_doesProduce[j] = true; } } } } } else { m_doesProduce = null; } } /** * Returns an enumeration of any additional measure names that might be in the * classifier * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> newVector = new Vector<String>(); if (m_Template instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_Template) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); newVector.add(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_Template instanceof AdditionalMeasureProducer) { if (m_Classifier == null) { throw new IllegalArgumentException("ClassifierSplitEvaluator: " + "Can't return result for measure, " + "classifier has not been built yet."); } return ((AdditionalMeasureProducer) m_Classifier) .getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("ClassifierSplitEvaluator: " + "Can't return value for : " + additionalMeasureName + ". " + m_Template.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Gets the data types of each of the key columns produced for a single run. * The number of key fields must be constant for a given SplitEvaluator. * * @return an array containing objects of the type of each key column. The * objects should be Strings, or Doubles. */ @Override public Object[] getKeyTypes() { Object[] keyTypes = new Object[KEY_SIZE]; keyTypes[0] = ""; keyTypes[1] = ""; keyTypes[2] = ""; return keyTypes; } /** * Gets the names of each of the key columns produced for a single run. The * number of key fields must be constant for a given SplitEvaluator. * * @return an array containing the name of each key column */ @Override public String[] getKeyNames() { String[] keyNames = new String[KEY_SIZE]; keyNames[0] = "Scheme"; keyNames[1] = "Scheme_options"; keyNames[2] = "Scheme_version_ID"; return keyNames; } /** * Gets the key describing the current SplitEvaluator. For example This may * contain the name of the classifier used for classifier predictive * evaluation. The number of key fields must be constant for a given * SplitEvaluator. * * @return an array of objects containing the key. */ @Override public Object[] getKey() { Object[] key = new Object[KEY_SIZE]; key[0] = m_Template.getClass().getName(); key[1] = m_ClassifierOptions; key[2] = m_ClassifierVersion; return key; } /** * Gets the data types of each of the result columns produced for a single * run. The number of result fields must be constant for a given * SplitEvaluator. * * @return an array containing objects of the type of each result column. The * objects should be Strings, or Doubles. */ @Override public Object[] getResultTypes() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE + addm; overall_length += NUM_IR_STATISTICS; overall_length += NUM_WEIGHTED_IR_STATISTICS; overall_length += NUM_UNWEIGHTED_IR_STATISTICS; if (getAttributeID() >= 0) { overall_length += 1; } if (getPredTargetColumn()) { overall_length += 2; } overall_length += m_numPluginStatistics; Object[] resultTypes = new Object[overall_length]; Double doub = new Double(0); int current = 0; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // IR stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Unweighted IR stats resultTypes[current++] = doub; resultTypes[current++] = doub; // Weighted IR stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Timing stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // sizes resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Prediction interval statistics resultTypes[current++] = doub; resultTypes[current++] = doub; // ID/Targets/Predictions if (getAttributeID() >= 0) { resultTypes[current++] = ""; } if (getPredTargetColumn()) { resultTypes[current++] = ""; resultTypes[current++] = ""; } // Classifier defined extras resultTypes[current++] = ""; // add any additional measures for (int i = 0; i < addm; i++) { resultTypes[current++] = doub; } // plugin metrics for (int i = 0; i < m_numPluginStatistics; i++) { resultTypes[current++] = doub; } if (current != overall_length) { throw new Error("ResultTypes didn't fit RESULT_SIZE"); } return resultTypes; } /** * Gets the names of each of the result columns produced for a single run. The * number of result fields must be constant for a given SplitEvaluator. * * @return an array containing the name of each result column */ @Override public String[] getResultNames() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE + addm; overall_length += NUM_IR_STATISTICS; overall_length += NUM_WEIGHTED_IR_STATISTICS; overall_length += NUM_UNWEIGHTED_IR_STATISTICS; if (getAttributeID() >= 0) { overall_length += 1; } if (getPredTargetColumn()) { overall_length += 2; } overall_length += m_numPluginStatistics; String[] resultNames = new String[overall_length]; int current = 0; resultNames[current++] = "Number_of_training_instances"; resultNames[current++] = "Number_of_testing_instances"; // Basic performance stats - right vs wrong resultNames[current++] = "Number_correct"; resultNames[current++] = "Number_incorrect"; resultNames[current++] = "Number_unclassified"; resultNames[current++] = "Percent_correct"; resultNames[current++] = "Percent_incorrect"; resultNames[current++] = "Percent_unclassified"; resultNames[current++] = "Kappa_statistic"; // Sensitive stats - certainty of predictions resultNames[current++] = "Mean_absolute_error"; resultNames[current++] = "Root_mean_squared_error"; resultNames[current++] = "Relative_absolute_error"; resultNames[current++] = "Root_relative_squared_error"; // SF stats resultNames[current++] = "SF_prior_entropy"; resultNames[current++] = "SF_scheme_entropy"; resultNames[current++] = "SF_entropy_gain"; resultNames[current++] = "SF_mean_prior_entropy"; resultNames[current++] = "SF_mean_scheme_entropy"; resultNames[current++] = "SF_mean_entropy_gain"; // K&B stats resultNames[current++] = "KB_information"; resultNames[current++] = "KB_mean_information"; resultNames[current++] = "KB_relative_information"; // IR stats resultNames[current++] = "True_positive_rate"; resultNames[current++] = "Num_true_positives"; resultNames[current++] = "False_positive_rate"; resultNames[current++] = "Num_false_positives"; resultNames[current++] = "True_negative_rate"; resultNames[current++] = "Num_true_negatives"; resultNames[current++] = "False_negative_rate"; resultNames[current++] = "Num_false_negatives"; resultNames[current++] = "IR_precision"; resultNames[current++] = "IR_recall"; resultNames[current++] = "F_measure"; resultNames[current++] = "Matthews_correlation"; resultNames[current++] = "Area_under_ROC"; resultNames[current++] = "Area_under_PRC"; // Weighted IR stats resultNames[current++] = "Weighted_avg_true_positive_rate"; resultNames[current++] = "Weighted_avg_false_positive_rate"; resultNames[current++] = "Weighted_avg_true_negative_rate"; resultNames[current++] = "Weighted_avg_false_negative_rate"; resultNames[current++] = "Weighted_avg_IR_precision"; resultNames[current++] = "Weighted_avg_IR_recall"; resultNames[current++] = "Weighted_avg_F_measure"; resultNames[current++] = "Weighted_avg_matthews_correlation"; resultNames[current++] = "Weighted_avg_area_under_ROC"; resultNames[current++] = "Weighted_avg_area_under_PRC"; // Unweighted IR stats resultNames[current++] = "Unweighted_macro_avg_F_measure"; resultNames[current++] = "Unweighted_micro_avg_F_measure"; // Timing stats resultNames[current++] = "Elapsed_Time_training"; resultNames[current++] = "Elapsed_Time_testing"; resultNames[current++] = "UserCPU_Time_training"; resultNames[current++] = "UserCPU_Time_testing"; resultNames[current++] = "UserCPU_Time_millis_training"; resultNames[current++] = "UserCPU_Time_millis_testing"; // sizes resultNames[current++] = "Serialized_Model_Size"; resultNames[current++] = "Serialized_Train_Set_Size"; resultNames[current++] = "Serialized_Test_Set_Size"; // Prediction interval statistics resultNames[current++] = "Coverage_of_Test_Cases_By_Regions"; resultNames[current++] = "Size_of_Predicted_Regions"; // ID/Targets/Predictions if (getAttributeID() >= 0) { resultNames[current++] = "Instance_ID"; } if (getPredTargetColumn()) { resultNames[current++] = "Targets"; resultNames[current++] = "Predictions"; } // Classifier defined extras resultNames[current++] = "Summary"; // add any additional measures for (int i = 0; i < addm; i++) { resultNames[current++] = m_AdditionalMeasures[i]; } for (AbstractEvaluationMetric m : m_pluginMetrics) { List<String> statNames = m.getStatisticNames(); for (String s : statNames) { resultNames[current++] = s; } } if (current != overall_length) { throw new Error("ResultNames didn't fit RESULT_SIZE"); } return resultNames; } /** * Gets the results for the supplied train and test datasets. Now performs a * deep copy of the classifier before it is built and evaluated (just in case * the classifier is not initialized properly in buildClassifier()). * * @param train the training Instances. * @param test the testing Instances. * @return the results stored in an array. The objects stored in the array may * be Strings, Doubles, or null (for the missing value). * @throws Exception if a problem occurs while getting the results */ @Override public Object[] getResult(Instances train, Instances test) throws Exception { if (train.classAttribute().type() != Attribute.NOMINAL) { throw new Exception("Class attribute is not nominal!"); } if (m_Template == null) { throw new Exception("No classifier has been specified"); } int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE + addm; overall_length += NUM_IR_STATISTICS; overall_length += NUM_WEIGHTED_IR_STATISTICS; overall_length += NUM_UNWEIGHTED_IR_STATISTICS; if (getAttributeID() >= 0) { overall_length += 1; } if (getPredTargetColumn()) { overall_length += 2; } overall_length += m_numPluginStatistics; ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); if (canMeasureCPUTime && !thMonitor.isThreadCpuTimeEnabled()) { thMonitor.setThreadCpuTimeEnabled(true); } Object[] result = new Object[overall_length]; Evaluation eval = new Evaluation(train); m_Classifier = AbstractClassifier.makeCopy(m_Template); double[] predictions; long thID = Thread.currentThread().getId(); long CPUStartTime = -1, trainCPUTimeElapsed = -1, testCPUTimeElapsed = -1, trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; // training classifier trainTimeStart = System.currentTimeMillis(); if (canMeasureCPUTime) { CPUStartTime = thMonitor.getThreadUserTime(thID); } m_Classifier.buildClassifier(train); if (canMeasureCPUTime) { trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; } trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; // testing classifier testTimeStart = System.currentTimeMillis(); if (canMeasureCPUTime) { CPUStartTime = thMonitor.getThreadUserTime(thID); } predictions = eval.evaluateModel(m_Classifier, test); if (canMeasureCPUTime) { testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; } testTimeElapsed = System.currentTimeMillis() - testTimeStart; thMonitor = null; m_result = eval.toSummaryString(); // The results stored are all per instance -- can be multiplied by the // number of instances to get absolute numbers int current = 0; result[current++] = new Double(train.numInstances()); result[current++] = new Double(eval.numInstances()); result[current++] = new Double(eval.correct()); result[current++] = new Double(eval.incorrect()); result[current++] = new Double(eval.unclassified()); result[current++] = new Double(eval.pctCorrect()); result[current++] = new Double(eval.pctIncorrect()); result[current++] = new Double(eval.pctUnclassified()); result[current++] = new Double(eval.kappa()); result[current++] = new Double(eval.meanAbsoluteError()); result[current++] = new Double(eval.rootMeanSquaredError()); result[current++] = new Double(eval.relativeAbsoluteError()); result[current++] = new Double(eval.rootRelativeSquaredError()); result[current++] = new Double(eval.SFPriorEntropy()); result[current++] = new Double(eval.SFSchemeEntropy()); result[current++] = new Double(eval.SFEntropyGain()); result[current++] = new Double(eval.SFMeanPriorEntropy()); result[current++] = new Double(eval.SFMeanSchemeEntropy()); result[current++] = new Double(eval.SFMeanEntropyGain()); // K&B stats result[current++] = new Double(eval.KBInformation()); result[current++] = new Double(eval.KBMeanInformation()); result[current++] = new Double(eval.KBRelativeInformation()); // IR stats result[current++] = new Double(eval.truePositiveRate(m_IRclass)); result[current++] = new Double(eval.numTruePositives(m_IRclass)); result[current++] = new Double(eval.falsePositiveRate(m_IRclass)); result[current++] = new Double(eval.numFalsePositives(m_IRclass)); result[current++] = new Double(eval.trueNegativeRate(m_IRclass)); result[current++] = new Double(eval.numTrueNegatives(m_IRclass)); result[current++] = new Double(eval.falseNegativeRate(m_IRclass)); result[current++] = new Double(eval.numFalseNegatives(m_IRclass)); result[current++] = new Double(eval.precision(m_IRclass)); result[current++] = new Double(eval.recall(m_IRclass)); result[current++] = new Double(eval.fMeasure(m_IRclass)); result[current++] = new Double( eval.matthewsCorrelationCoefficient(m_IRclass)); result[current++] = new Double(eval.areaUnderROC(m_IRclass)); result[current++] = new Double(eval.areaUnderPRC(m_IRclass)); // Weighted IR stats result[current++] = new Double(eval.weightedTruePositiveRate()); result[current++] = new Double(eval.weightedFalsePositiveRate()); result[current++] = new Double(eval.weightedTrueNegativeRate()); result[current++] = new Double(eval.weightedFalseNegativeRate()); result[current++] = new Double(eval.weightedPrecision()); result[current++] = new Double(eval.weightedRecall()); result[current++] = new Double(eval.weightedFMeasure()); result[current++] = new Double(eval.weightedMatthewsCorrelation()); result[current++] = new Double(eval.weightedAreaUnderROC()); result[current++] = new Double(eval.weightedAreaUnderPRC()); // Unweighted IR stats result[current++] = new Double(eval.unweightedMacroFmeasure()); result[current++] = new Double(eval.unweightedMicroFmeasure()); // Timing stats result[current++] = new Double(trainTimeElapsed / 1000.0); result[current++] = new Double(testTimeElapsed / 1000.0); if (canMeasureCPUTime) { result[current++] = new Double((trainCPUTimeElapsed / 1000000.0) / 1000.0); result[current++] = new Double((testCPUTimeElapsed / 1000000.0) / 1000.0); result[current++] = new Double(trainCPUTimeElapsed / 1000000.0); result[current++] = new Double(testCPUTimeElapsed / 1000000.0); } else { result[current++] = new Double(Utils.missingValue()); result[current++] = new Double(Utils.missingValue()); result[current++] = new Double(Utils.missingValue()); result[current++] = new Double(Utils.missingValue()); } // sizes if (m_NoSizeDetermination) { result[current++] = -1.0; result[current++] = -1.0; result[current++] = -1.0; } else { ByteArrayOutputStream bastream = new ByteArrayOutputStream(); ObjectOutputStream oostream = new ObjectOutputStream(bastream); oostream.writeObject(m_Classifier); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(train); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(test); result[current++] = new Double(bastream.size()); } // Prediction interval statistics result[current++] = new Double(eval.coverageOfTestCasesByPredictedRegions()); result[current++] = new Double(eval.sizeOfPredictedRegions()); // IDs if (getAttributeID() >= 0) { String idsString = ""; if (test.attribute(m_attID).isNumeric()) { if (test.numInstances() > 0) { idsString += test.instance(0).value(m_attID); } for (int i = 1; i < test.numInstances(); i++) { idsString += "|" + test.instance(i).value(m_attID); } } else { if (test.numInstances() > 0) { idsString += test.instance(0).stringValue(m_attID); } for (int i = 1; i < test.numInstances(); i++) { idsString += "|" + test.instance(i).stringValue(m_attID); } } result[current++] = idsString; } if (getPredTargetColumn()) { if (test.classAttribute().isNumeric()) { // Targets if (test.numInstances() > 0) { String targetsString = ""; targetsString += test.instance(0).value(test.classIndex()); for (int i = 1; i < test.numInstances(); i++) { targetsString += "|" + test.instance(i).value(test.classIndex()); } result[current++] = targetsString; } // Predictions if (predictions.length > 0) { String predictionsString = ""; predictionsString += predictions[0]; for (int i = 1; i < predictions.length; i++) { predictionsString += "|" + predictions[i]; } result[current++] = predictionsString; } } else { // Targets if (test.numInstances() > 0) { String targetsString = ""; targetsString += test.instance(0).stringValue(test.classIndex()); for (int i = 1; i < test.numInstances(); i++) { targetsString += "|" + test.instance(i).stringValue(test.classIndex()); } result[current++] = targetsString; } // Predictions if (predictions.length > 0) { String predictionsString = ""; predictionsString += test.classAttribute() .value((int) predictions[0]); for (int i = 1; i < predictions.length; i++) { predictionsString += "|" + test.classAttribute().value((int) predictions[i]); } result[current++] = predictionsString; } } } if (m_Classifier instanceof Summarizable) { result[current++] = ((Summarizable) m_Classifier).toSummaryString(); } else { result[current++] = null; } for (int i = 0; i < addm; i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer) m_Classifier) .getMeasure(m_AdditionalMeasures[i]); if (!Utils.isMissingValue(dv)) { Double value = new Double(dv); result[current++] = value; } else { result[current++] = null; } } catch (Exception ex) { System.err.println(ex); } } else { result[current++] = null; } } // get the actual metrics from the evaluation object List<AbstractEvaluationMetric> metrics = eval.getPluginMetrics(); if (metrics != null) { for (AbstractEvaluationMetric m : metrics) { if (m.appliesToNominalClass()) { List<String> statNames = m.getStatisticNames(); for (String s : statNames) { result[current++] = new Double(m.getStatistic(s)); } } } } if (current != overall_length) { throw new Error("Results didn't fit RESULT_SIZE"); } m_Evaluation = eval; return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String classifierTipText() { return "The classifier to use."; } /** * Get the value of Classifier. * * @return Value of Classifier. */ public Classifier getClassifier() { return m_Template; } /** * Sets the classifier. * * @param newClassifier the new classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Template = newClassifier; updateOptions(); } /** * Get the value of ClassForIRStatistics. * * @return Value of ClassForIRStatistics. */ public int getClassForIRStatistics() { return m_IRclass; } /** * Set the value of ClassForIRStatistics. * * @param v Value to assign to ClassForIRStatistics. */ public void setClassForIRStatistics(int v) { m_IRclass = v; } /** * Get the index of Attibute Identifying the instances * * @return index of outputed Attribute. */ public int getAttributeID() { return m_attID; } /** * Set the index of Attibute Identifying the instances * * @param v index the attribute to output */ public void setAttributeID(int v) { m_attID = v; } /** * @return true if the prediction and target columns must be outputed. */ public boolean getPredTargetColumn() { return m_predTargetColumn; } /** * Set the flag for prediction and target output. * * @param v true if the 2 columns have to be outputed. false otherwise. */ public void setPredTargetColumn(boolean v) { m_predTargetColumn = v; } /** * Returns whether the size determination (train/test/classifer) is skipped. * * @return true if size determination skipped */ public boolean getNoSizeDetermination() { return m_NoSizeDetermination; } /** * Sets whether the size determination (train/test/classifer) is skipped. * * @param value true if to determine sizes */ public void setNoSizeDetermination(boolean value) { m_NoSizeDetermination = value; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String noSizeDeterminationTipText() { return "If enabled, the size determination for train/test/classifier is skipped."; } /** * Updates the options that the current classifier is using. */ protected void updateOptions() { if (m_Template instanceof OptionHandler) { m_ClassifierOptions = Utils.joinOptions(((OptionHandler) m_Template) .getOptions()); } else { m_ClassifierOptions = ""; } if (m_Template instanceof Serializable) { ObjectStreamClass obs = ObjectStreamClass.lookup(m_Template.getClass()); m_ClassifierVersion = "" + obs.getSerialVersionUID(); } else { m_ClassifierVersion = ""; } } /** * Set the Classifier to use, given it's class name. A new classifier will be * instantiated. * * @param newClassifierName the Classifier class name. * @throws Exception if the class name is invalid. */ public void setClassifierName(String newClassifierName) throws Exception { try { setClassifier((Classifier) Class.forName(newClassifierName).newInstance()); } catch (Exception ex) { throw new Exception("Can't find Classifier with class name: " + newClassifierName); } } /** * Gets the raw output from the classifier * * @return the raw output from th,0e classifier */ @Override public String getRawResultOutput() { StringBuffer result = new StringBuffer(); if (m_Classifier == null) { return "<null> classifier"; } result.append(toString()); result.append("Classifier model: \n" + m_Classifier.toString() + '\n'); // append the performance statistics if (m_result != null) { result.append(m_result); if (m_doesProduce != null) { for (int i = 0; i < m_doesProduce.length; i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer) m_Classifier) .getMeasure(m_AdditionalMeasures[i]); if (!Utils.isMissingValue(dv)) { Double value = new Double(dv); result.append(m_AdditionalMeasures[i] + " : " + value + '\n'); } else { result.append(m_AdditionalMeasures[i] + " : " + '?' + '\n'); } } catch (Exception ex) { System.err.println(ex); } } } } } return result.toString(); } /** * Returns a text description of the split evaluator. * * @return a text description of the split evaluator. */ @Override public String toString() { String result = "ClassifierSplitEvaluator: "; if (m_Template == null) { return result + "<null> classifier"; } return result + m_Template.getClass().getName() + " " + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/Compute.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Compute.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.rmi.Remote; import java.rmi.RemoteException; /** * Interface to something that can accept remote connections and execute * a task. * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision$ */ public interface Compute extends Remote { /** * Execute a task * @param t Task to be executed * @exception RemoteException if something goes wrong. * @return a unique ID for the task */ Object executeTask(Task t) throws RemoteException; /** * Check on the status of a <code>Task</code> * * @param taskId the ID for the Task to be checked * @return the status of the Task * @exception Exception if an error occurs */ Object checkStatus(Object taskId) throws Exception; }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/CostSensitiveClassifierSplitEvaluator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * CostSensitiveClassifierSplitEvaluator.java * Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.BufferedReader; import java.io.ByteArrayOutputStream; import java.io.File; import java.io.FileReader; import java.io.ObjectOutputStream; import java.lang.management.ManagementFactory; import java.lang.management.ThreadMXBean; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; import weka.classifiers.AbstractClassifier; import weka.classifiers.CostMatrix; import weka.classifiers.Evaluation; import weka.core.AdditionalMeasureProducer; import weka.core.Attribute; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.Summarizable; import weka.core.Utils; /** * <!-- globalinfo-start --> SplitEvaluator that produces results for a * classification scheme on a nominal class attribute, including weighted * misclassification costs. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <pre> * -D &lt;directory&gt; * Name of a directory to search for cost files when loading * costs on demand (default current directory). * </pre> * * <!-- options-end --> * * All options after -- will be passed to the classifier. * * @author Len Trigg (len@reeltwo.com) * @version $Revision$ */ public class CostSensitiveClassifierSplitEvaluator extends ClassifierSplitEvaluator { /** for serialization */ static final long serialVersionUID = -8069566663019501276L; /** * The directory used when loading cost files on demand, null indicates * current directory */ protected File m_OnDemandDirectory = new File(System.getProperty("user.dir")); /** The length of a result */ private static final int RESULT_SIZE = 33; /** * Returns a string describing this split evaluator * * @return a description of the split evaluator suitable for displaying in the * explorer/experimenter gui */ @Override public String globalInfo() { return " SplitEvaluator that produces results for a classification scheme " + "on a nominal class attribute, including weighted misclassification " + "costs."; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(1); newVector.addAll(Collections.list(super.listOptions())); newVector.addElement(new Option( "\tName of a directory to search for cost files when loading\n" + "\tcosts on demand (default current directory).", "D", 1, "-D <directory>")); return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <pre> * -D &lt;directory&gt; * Name of a directory to search for cost files when loading * costs on demand (default current directory). * </pre> * * <!-- options-end --> * * All options after -- will be passed to the classifier. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String demandDir = Utils.getOption('D', options); if (demandDir.length() != 0) { setOnDemandDirectory(new File(demandDir)); } super.setOptions(options); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> options = new Vector<String>(); options.add("-D"); options.add("" + getOnDemandDirectory()); Collections.addAll(options, super.getOptions()); return options.toArray(new String[0]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String onDemandDirectoryTipText() { return "The directory to look in for cost files. This directory will be " + "searched for cost files when loading on demand."; } /** * Returns the directory that will be searched for cost files when loading on * demand. * * @return The cost file search directory. */ public File getOnDemandDirectory() { return m_OnDemandDirectory; } /** * Sets the directory that will be searched for cost files when loading on * demand. * * @param newDir The cost file search directory. */ public void setOnDemandDirectory(File newDir) { if (newDir.isDirectory()) { m_OnDemandDirectory = newDir; } else { m_OnDemandDirectory = new File(newDir.getParent()); } } /** * Gets the data types of each of the result columns produced for a single * run. The number of result fields must be constant for a given * SplitEvaluator. * * @return an array containing objects of the type of each result column. The * objects should be Strings, or Doubles. */ @Override public Object[] getResultTypes() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; Object[] resultTypes = new Object[RESULT_SIZE + addm]; Double doub = new Double(0); int current = 0; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Timing stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // sizes resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = ""; // add any additional measures for (int i = 0; i < addm; i++) { resultTypes[current++] = doub; } if (current != RESULT_SIZE + addm) { throw new Error("ResultTypes didn't fit RESULT_SIZE"); } return resultTypes; } /** * Gets the names of each of the result columns produced for a single run. The * number of result fields must be constant for a given SplitEvaluator. * * @return an array containing the name of each result column */ @Override public String[] getResultNames() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; String[] resultNames = new String[RESULT_SIZE + addm]; int current = 0; resultNames[current++] = "Number_of_training_instances"; resultNames[current++] = "Number_of_testing_instances"; // Basic performance stats - right vs wrong resultNames[current++] = "Number_correct"; resultNames[current++] = "Number_incorrect"; resultNames[current++] = "Number_unclassified"; resultNames[current++] = "Percent_correct"; resultNames[current++] = "Percent_incorrect"; resultNames[current++] = "Percent_unclassified"; resultNames[current++] = "Total_cost"; resultNames[current++] = "Average_cost"; // Sensitive stats - certainty of predictions resultNames[current++] = "Mean_absolute_error"; resultNames[current++] = "Root_mean_squared_error"; resultNames[current++] = "Relative_absolute_error"; resultNames[current++] = "Root_relative_squared_error"; // SF stats resultNames[current++] = "SF_prior_entropy"; resultNames[current++] = "SF_scheme_entropy"; resultNames[current++] = "SF_entropy_gain"; resultNames[current++] = "SF_mean_prior_entropy"; resultNames[current++] = "SF_mean_scheme_entropy"; resultNames[current++] = "SF_mean_entropy_gain"; // K&B stats resultNames[current++] = "KB_information"; resultNames[current++] = "KB_mean_information"; resultNames[current++] = "KB_relative_information"; // Timing stats resultNames[current++] = "Elapsed_Time_training"; resultNames[current++] = "Elapsed_Time_testing"; resultNames[current++] = "UserCPU_Time_training"; resultNames[current++] = "UserCPU_Time_testing"; resultNames[current++] = "UserCPU_Time_millis_training"; resultNames[current++] = "UserCPU_Time_millis_testing"; // sizes resultNames[current++] = "Serialized_Model_Size"; resultNames[current++] = "Serialized_Train_Set_Size"; resultNames[current++] = "Serialized_Test_Set_Size"; // Classifier defined extras resultNames[current++] = "Summary"; // add any additional measures for (int i = 0; i < addm; i++) { resultNames[current++] = m_AdditionalMeasures[i]; } if (current != RESULT_SIZE + addm) { throw new Error("ResultNames didn't fit RESULT_SIZE"); } return resultNames; } /** * Gets the results for the supplied train and test datasets. Now performs a * deep copy of the classifier before it is built and evaluated (just in case * the classifier is not initialized properly in buildClassifier()). * * @param train the training Instances. * @param test the testing Instances. * @return the results stored in an array. The objects stored in the array may * be Strings, Doubles, or null (for the missing value). * @throws Exception if a problem occurs while getting the results */ @Override public Object[] getResult(Instances train, Instances test) throws Exception { if (train.classAttribute().type() != Attribute.NOMINAL) { throw new Exception("Class attribute is not nominal!"); } if (m_Template == null) { throw new Exception("No classifier has been specified"); } ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); if (canMeasureCPUTime && !thMonitor.isThreadCpuTimeEnabled()) { thMonitor.setThreadCpuTimeEnabled(true); } int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; Object[] result = new Object[RESULT_SIZE + addm]; long thID = Thread.currentThread().getId(); long CPUStartTime = -1, trainCPUTimeElapsed = -1, testCPUTimeElapsed = -1, trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; String costName = train.relationName() + CostMatrix.FILE_EXTENSION; File costFile = new File(getOnDemandDirectory(), costName); if (!costFile.exists()) { throw new Exception("On-demand cost file doesn't exist: " + costFile); } CostMatrix costMatrix = new CostMatrix(new BufferedReader(new FileReader( costFile))); Evaluation eval = new Evaluation(train, costMatrix); m_Classifier = AbstractClassifier.makeCopy(m_Template); trainTimeStart = System.currentTimeMillis(); if (canMeasureCPUTime) { CPUStartTime = thMonitor.getThreadUserTime(thID); } m_Classifier.buildClassifier(train); if (canMeasureCPUTime) { trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; } trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; testTimeStart = System.currentTimeMillis(); if (canMeasureCPUTime) { CPUStartTime = thMonitor.getThreadUserTime(thID); } eval.evaluateModel(m_Classifier, test); if (canMeasureCPUTime) { testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; } testTimeElapsed = System.currentTimeMillis() - testTimeStart; thMonitor = null; m_result = eval.toSummaryString(); // The results stored are all per instance -- can be multiplied by the // number of instances to get absolute numbers int current = 0; result[current++] = new Double(train.numInstances()); result[current++] = new Double(eval.numInstances()); result[current++] = new Double(eval.correct()); result[current++] = new Double(eval.incorrect()); result[current++] = new Double(eval.unclassified()); result[current++] = new Double(eval.pctCorrect()); result[current++] = new Double(eval.pctIncorrect()); result[current++] = new Double(eval.pctUnclassified()); result[current++] = new Double(eval.totalCost()); result[current++] = new Double(eval.avgCost()); result[current++] = new Double(eval.meanAbsoluteError()); result[current++] = new Double(eval.rootMeanSquaredError()); result[current++] = new Double(eval.relativeAbsoluteError()); result[current++] = new Double(eval.rootRelativeSquaredError()); result[current++] = new Double(eval.SFPriorEntropy()); result[current++] = new Double(eval.SFSchemeEntropy()); result[current++] = new Double(eval.SFEntropyGain()); result[current++] = new Double(eval.SFMeanPriorEntropy()); result[current++] = new Double(eval.SFMeanSchemeEntropy()); result[current++] = new Double(eval.SFMeanEntropyGain()); // K&B stats result[current++] = new Double(eval.KBInformation()); result[current++] = new Double(eval.KBMeanInformation()); result[current++] = new Double(eval.KBRelativeInformation()); // Timing stats result[current++] = new Double(trainTimeElapsed / 1000.0); result[current++] = new Double(testTimeElapsed / 1000.0); if (canMeasureCPUTime) { result[current++] = new Double((trainCPUTimeElapsed / 1000000.0) / 1000.0); result[current++] = new Double((testCPUTimeElapsed / 1000000.0) / 1000.0); result[current++] = new Double(trainCPUTimeElapsed / 1000000.0); result[current++] = new Double(testCPUTimeElapsed / 1000000.0); } else { result[current++] = new Double(Utils.missingValue()); result[current++] = new Double(Utils.missingValue()); result[current++] = new Double(Utils.missingValue()); result[current++] = new Double(Utils.missingValue()); } // sizes ByteArrayOutputStream bastream = new ByteArrayOutputStream(); ObjectOutputStream oostream = new ObjectOutputStream(bastream); oostream.writeObject(m_Classifier); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(train); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(test); result[current++] = new Double(bastream.size()); if (m_Classifier instanceof Summarizable) { result[current++] = ((Summarizable) m_Classifier).toSummaryString(); } else { result[current++] = null; } for (int i = 0; i < addm; i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer) m_Classifier) .getMeasure(m_AdditionalMeasures[i]); if (!Utils.isMissingValue(dv)) { Double value = new Double(dv); result[current++] = value; } else { result[current++] = null; } } catch (Exception ex) { System.err.println(ex); } } else { result[current++] = null; } } if (current != RESULT_SIZE + addm) { throw new Error("Results didn't fit RESULT_SIZE"); } m_Evaluation = eval; return result; } /** * Returns a text description of the split evaluator. * * @return a text description of the split evaluator. */ @Override public String toString() { String result = "CostSensitiveClassifierSplitEvaluator: "; if (m_Template == null) { return result + "<null> classifier"; } return result + m_Template.getClass().getName() + " " + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // CostSensitiveClassifierSplitEvaluator
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/CrossValidationResultProducer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * CrossValidationResultProducer.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.File; import java.util.Calendar; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.TimeZone; import java.util.Vector; import weka.core.AdditionalMeasureProducer; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Generates for each run, carries out an n-fold * cross-validation, using the set SplitEvaluator to generate some results. If * the class attribute is nominal, the dataset is stratified. Results for each * fold are generated, so you may wish to use this in addition with an * AveragingResultProducer to obtain averages for each run. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -X &lt;number of folds&gt; * The number of folds to use for the cross-validation. * (default 10) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the split evaluator. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class CrossValidationResultProducer implements ResultProducer, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = -1580053925080091917L; /** The dataset of interest */ protected Instances m_Instances; /** The ResultListener to send results to */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The number of folds in the cross-validation */ protected int m_NumFolds = 10; /** Save raw output of split evaluators --- for debugging purposes */ protected boolean m_debugOutput = false; /** The output zipper to use for saving raw splitEvaluator output */ protected OutputZipper m_ZipDest = null; /** The destination output file/directory for raw output */ protected File m_OutputFile = new File(new File( System.getProperty("user.dir")), "splitEvalutorOut.zip"); /** The SplitEvaluator used to generate results */ protected SplitEvaluator m_SplitEvaluator = new ClassifierSplitEvaluator(); /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_AdditionalMeasures = null; /** The name of the key field containing the dataset name */ public static String DATASET_FIELD_NAME = "Dataset"; /** The name of the key field containing the run number */ public static String RUN_FIELD_NAME = "Run"; /** The name of the key field containing the fold number */ public static String FOLD_FIELD_NAME = "Fold"; /** The name of the result field containing the timestamp */ public static String TIMESTAMP_FIELD_NAME = "Date_time"; /** * Returns a string describing this result producer * * @return a description of the result producer suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Generates for each run, carries out an n-fold cross-validation, " + "using the set SplitEvaluator to generate some results. If the class " + "attribute is nominal, the dataset is stratified. Results for each fold " + "are generated, so you may wish to use this in addition with an " + "AveragingResultProducer to obtain averages for each run."; } /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ @Override public void setInstances(Instances instances) { m_Instances = instances; } /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ @Override public void setResultListener(ResultListener listener) { m_ResultListener = listener; } /** * Set a list of method names for additional measures to look for in * SplitEvaluators. This could contain many measures (of which only a subset * may be produceable by the current SplitEvaluator) if an experiment is the * type that iterates over a set of properties. * * @param additionalMeasures an array of measure names, null if none */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; if (m_SplitEvaluator != null) { System.err.println("CrossValidationResultProducer: setting additional " + "measures for " + "split evaluator"); m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); } } /** * Returns an enumeration of any additional measure names that might be in the * SplitEvaluator * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> newVector = new Vector<String>(); if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_SplitEvaluator) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer) m_SplitEvaluator) .getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("CrossValidationResultProducer: " + "Can't return value for : " + additionalMeasureName + ". " + m_SplitEvaluator.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Gets a Double representing the current date and time. eg: 1:46pm on * 20/5/1999 -> 19990520.1346 * * @return a value of type Double */ public static Double getTimestamp() { Calendar now = Calendar.getInstance(TimeZone.getTimeZone("UTC")); double timestamp = now.get(Calendar.YEAR) * 10000 + (now.get(Calendar.MONTH) + 1) * 100 + now.get(Calendar.DAY_OF_MONTH) + now.get(Calendar.HOUR_OF_DAY) / 100.0 + now.get(Calendar.MINUTE) / 10000.0; return new Double(timestamp); } /** * Prepare to generate results. * * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess() throws Exception { if (m_SplitEvaluator == null) { throw new Exception("No SplitEvalutor set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * Perform any postprocessing. When this method is called, it indicates that * no more requests to generate results for the current experiment will be * sent. * * @throws Exception if an error occurs */ @Override public void postProcess() throws Exception { m_ResultListener.postProcess(this); if (m_debugOutput) { if (m_ZipDest != null) { m_ZipDest.finished(); m_ZipDest = null; } } } /** * Gets the keys for a specified run number. Different run numbers correspond * to different randomizations of the data. Keys produced should be sent to * the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ @Override public void doRunKeys(int run) throws Exception { if (m_Instances == null) { throw new Exception("No Instances set"); } /* * // Randomize on a copy of the original dataset Instances runInstances = * new Instances(m_Instances); runInstances.randomize(new Random(run)); if * (runInstances.classAttribute().isNominal()) { * runInstances.stratify(m_NumFolds); } */ for (int fold = 0; fold < m_NumFolds; fold++) { // Add in some fields to the key like run and fold number, dataset name Object[] seKey = m_SplitEvaluator.getKey(); Object[] key = new Object[seKey.length + 3]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; key[2] = "" + (fold + 1); System.arraycopy(seKey, 0, key, 3, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { try { m_ResultListener.acceptResult(this, key, null); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } } /** * Gets the results for a specified run number. Different run numbers * correspond to different randomizations of the data. Results produced should * be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ @Override public void doRun(int run) throws Exception { if (getRawOutput()) { if (m_ZipDest == null) { m_ZipDest = new OutputZipper(m_OutputFile); } } if (m_Instances == null) { throw new Exception("No Instances set"); } // Randomize on a copy of the original dataset Instances runInstances = new Instances(m_Instances); Random random = new Random(run); runInstances.randomize(random); if (runInstances.classAttribute().isNominal()) { runInstances.stratify(m_NumFolds); } for (int fold = 0; fold < m_NumFolds; fold++) { // Add in some fields to the key like run and fold number, dataset name Object[] seKey = m_SplitEvaluator.getKey(); Object[] key = new Object[seKey.length + 3]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; key[2] = "" + (fold + 1); System.arraycopy(seKey, 0, key, 3, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { Instances train = runInstances.trainCV(m_NumFolds, fold, random); Instances test = runInstances.testCV(m_NumFolds, fold); try { Object[] seResults = m_SplitEvaluator.getResult(train, test); Object[] results = new Object[seResults.length + 1]; results[0] = getTimestamp(); System.arraycopy(seResults, 0, results, 1, seResults.length); if (m_debugOutput) { String resultName = ("" + run + "." + (fold + 1) + "." + Utils.backQuoteChars(runInstances.relationName()) + "." + m_SplitEvaluator .toString()).replace(' ', '_'); resultName = Utils.removeSubstring(resultName, "weka.classifiers."); resultName = Utils.removeSubstring(resultName, "weka.filters."); resultName = Utils.removeSubstring(resultName, "weka.attributeSelection."); m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName); } m_ResultListener.acceptResult(this, key, results); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } } /** * Gets the names of each of the columns produced for a single run. This * method should really be static. * * @return an array containing the name of each column */ @Override public String[] getKeyNames() { String[] keyNames = m_SplitEvaluator.getKeyNames(); // Add in the names of our extra key fields String[] newKeyNames = new String[keyNames.length + 3]; newKeyNames[0] = DATASET_FIELD_NAME; newKeyNames[1] = RUN_FIELD_NAME; newKeyNames[2] = FOLD_FIELD_NAME; System.arraycopy(keyNames, 0, newKeyNames, 3, keyNames.length); return newKeyNames; } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. */ @Override public Object[] getKeyTypes() { Object[] keyTypes = m_SplitEvaluator.getKeyTypes(); // Add in the types of our extra fields Object[] newKeyTypes = new String[keyTypes.length + 3]; newKeyTypes[0] = new String(); newKeyTypes[1] = new String(); newKeyTypes[2] = new String(); System.arraycopy(keyTypes, 0, newKeyTypes, 3, keyTypes.length); return newKeyTypes; } /** * Gets the names of each of the columns produced for a single run. This * method should really be static. * * @return an array containing the name of each column */ @Override public String[] getResultNames() { String[] resultNames = m_SplitEvaluator.getResultNames(); // Add in the names of our extra Result fields String[] newResultNames = new String[resultNames.length + 1]; newResultNames[0] = TIMESTAMP_FIELD_NAME; System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length); return newResultNames; } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. */ @Override public Object[] getResultTypes() { Object[] resultTypes = m_SplitEvaluator.getResultTypes(); // Add in the types of our extra Result fields Object[] newResultTypes = new Object[resultTypes.length + 1]; newResultTypes[0] = new Double(0); System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length); return newResultTypes; } /** * Gets a description of the internal settings of the result producer, * sufficient for distinguishing a ResultProducer instance from another with * different settings (ignoring those settings set through this interface). * For example, a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should be * compatible. Typically if a ResultProducer is an OptionHandler, this string * will represent the command line arguments required to set the * ResultProducer to that state. * * @return the description of the ResultProducer state, or null if no state is * defined */ @Override public String getCompatibilityState() { String result = "-X " + m_NumFolds + " "; if (m_SplitEvaluator == null) { result += "<null SplitEvaluator>"; } else { result += "-W " + m_SplitEvaluator.getClass().getName(); } return result + " --"; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String outputFileTipText() { return "Set the destination for saving raw output. If the rawOutput " + "option is selected, then output from the splitEvaluator for " + "individual folds is saved. If the destination is a directory, " + "then each output is saved to an individual gzip file; if the " + "destination is a file, then each output is saved as an entry " + "in a zip file."; } /** * Get the value of OutputFile. * * @return Value of OutputFile. */ public File getOutputFile() { return m_OutputFile; } /** * Set the value of OutputFile. * * @param newOutputFile Value to assign to OutputFile. */ public void setOutputFile(File newOutputFile) { m_OutputFile = newOutputFile; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numFoldsTipText() { return "Number of folds to use in cross validation."; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public int getNumFolds() { return m_NumFolds; } /** * Set the value of NumFolds. * * @param newNumFolds Value to assign to NumFolds. */ public void setNumFolds(int newNumFolds) { m_NumFolds = newNumFolds; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String rawOutputTipText() { return "Save raw output (useful for debugging). If set, then output is " + "sent to the destination specified by outputFile"; } /** * Get if raw split evaluator output is to be saved * * @return true if raw split evalutor output is to be saved */ public boolean getRawOutput() { return m_debugOutput; } /** * Set to true if raw split evaluator output is to be saved * * @param d true if output is to be saved */ public void setRawOutput(boolean d) { m_debugOutput = d; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String splitEvaluatorTipText() { return "The evaluator to apply to the cross validation folds. " + "This may be a classifier, regression scheme etc."; } /** * Get the SplitEvaluator. * * @return the SplitEvaluator. */ public SplitEvaluator getSplitEvaluator() { return m_SplitEvaluator; } /** * Set the SplitEvaluator. * * @param newSplitEvaluator new SplitEvaluator to use. */ public void setSplitEvaluator(SplitEvaluator newSplitEvaluator) { m_SplitEvaluator = newSplitEvaluator; m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(4); newVector.addElement(new Option( "\tThe number of folds to use for the cross-validation.\n" + "\t(default 10)", "X", 1, "-X <number of folds>")); newVector.addElement(new Option("Save raw split evaluator output.", "D", 0, "-D")); newVector.addElement(new Option( "\tThe filename where raw output will be stored.\n" + "\tIf a directory name is specified then then individual\n" + "\toutputs will be gzipped, otherwise all output will be\n" + "\tzipped to the named file. Use in conjuction with -D." + "\t(default splitEvalutorOut.zip)", "O", 1, "-O <file/directory name/path>")); newVector.addElement(new Option( "\tThe full class name of a SplitEvaluator.\n" + "\teg: weka.experiment.ClassifierSplitEvaluator", "W", 1, "-W <class name>")); if ((m_SplitEvaluator != null) && (m_SplitEvaluator instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to split evaluator " + m_SplitEvaluator.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_SplitEvaluator) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -X &lt;number of folds&gt; * The number of folds to use for the cross-validation. * (default 10) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the split evaluator. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { setRawOutput(Utils.getFlag('D', options)); String fName = Utils.getOption('O', options); if (fName.length() != 0) { setOutputFile(new File(fName)); } String numFolds = Utils.getOption('X', options); if (numFolds.length() != 0) { setNumFolds(Integer.parseInt(numFolds)); } else { setNumFolds(10); } String seName = Utils.getOption('W', options); if (seName.length() == 0) { throw new Exception("A SplitEvaluator must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // SE. setSplitEvaluator((SplitEvaluator) Utils.forName(SplitEvaluator.class, seName, null)); if (getSplitEvaluator() instanceof OptionHandler) { ((OptionHandler) getSplitEvaluator()).setOptions(Utils .partitionOptions(options)); } } /** * Gets the current settings of the result producer. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> options = new Vector<String>(); options.add("-X"); options.add("" + getNumFolds()); if (getRawOutput()) { options.add("-D"); } options.add("-O"); options.add(getOutputFile().getName()); if (getSplitEvaluator() != null) { options.add("-W"); options.add(getSplitEvaluator().getClass().getName()); } if ((m_SplitEvaluator != null) && (m_SplitEvaluator instanceof OptionHandler)) { String[] opts = ((OptionHandler) m_SplitEvaluator).getOptions(); if (opts.length > 0) { options.add("--"); Collections.addAll(options, opts); } } return options.toArray(new String[0]); } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ @Override public String toString() { String result = "CrossValidationResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ": <null Instances>"; } else { result += ": " + Utils.backQuoteChars(m_Instances.relationName()); } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Quick test of timestamp * * @param args the commandline options */ public static void main(String[] args) { System.err.println(Utils.doubleToString(getTimestamp().doubleValue(), 4)); } } // CrossValidationResultProducer
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/CrossValidationSplitResultProducer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * CrossValidationSplitResultProducer.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.util.Random; import weka.core.Instances; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Carries out one split of a repeated k-fold * cross-validation, using the set SplitEvaluator to generate some results. Note * that the run number is actually the nth split of a repeated k-fold * cross-validation, i.e. if k=10, run number 100 is the 10th fold of the 10th * cross-validation run. This producer's sole purpose is to allow more * fine-grained distribution of cross-validation experiments. If the class * attribute is nominal, the dataset is stratified. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -X &lt;number of folds&gt; * The number of folds to use for the cross-validation. * (default 10) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the split evaluator. * * @author Len Trigg * @author Eibe Frank * @version $Revision$ */ public class CrossValidationSplitResultProducer extends CrossValidationResultProducer { /** for serialization */ static final long serialVersionUID = 1403798164046795073L; /** * Returns a string describing this result producer * * @return a description of the result producer suitable for displaying in the * explorer/experimenter gui */ @Override public String globalInfo() { return "Carries out one split of a repeated k-fold cross-validation, " + "using the set SplitEvaluator to generate some results. " + "Note that the run number is actually the nth split of a repeated " + "k-fold cross-validation, i.e. if k=10, run number 100 is the 10th " + "fold of the 10th cross-validation run. This producer's sole purpose " + "is to allow more fine-grained distribution of cross-validation " + "experiments. If the class attribute is nominal, the dataset is stratified."; } /** * Gets the keys for a specified run number. Different run numbers correspond * to different randomizations of the data. Keys produced should be sent to * the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ @Override public void doRunKeys(int run) throws Exception { if (m_Instances == null) { throw new Exception("No Instances set"); } // Add in some fields to the key like run and fold number, dataset name Object[] seKey = m_SplitEvaluator.getKey(); Object[] key = new Object[seKey.length + 3]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[2] = "" + (((run - 1) % m_NumFolds) + 1); key[1] = "" + (((run - 1) / m_NumFolds) + 1); System.arraycopy(seKey, 0, key, 3, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { try { m_ResultListener.acceptResult(this, key, null); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } /** * Gets the results for a specified run number. Different run numbers * correspond to different randomizations of the data. Results produced should * be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ @Override public void doRun(int run) throws Exception { if (getRawOutput()) { if (m_ZipDest == null) { m_ZipDest = new OutputZipper(m_OutputFile); } } if (m_Instances == null) { throw new Exception("No Instances set"); } // Compute run and fold number from given run int fold = (run - 1) % m_NumFolds; run = ((run - 1) / m_NumFolds) + 1; // Randomize on a copy of the original dataset Instances runInstances = new Instances(m_Instances); Random random = new Random(run); runInstances.randomize(random); if (runInstances.classAttribute().isNominal()) { runInstances.stratify(m_NumFolds); } // Add in some fields to the key like run and fold number, dataset name Object[] seKey = m_SplitEvaluator.getKey(); Object[] key = new Object[seKey.length + 3]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; key[2] = "" + (fold + 1); System.arraycopy(seKey, 0, key, 3, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { // Just to make behaviour absolutely consistent with // CrossValidationResultProducer for (int tempFold = 0; tempFold < fold; tempFold++) { runInstances.trainCV(m_NumFolds, tempFold, random); } Instances train = runInstances.trainCV(m_NumFolds, fold, random); Instances test = runInstances.testCV(m_NumFolds, fold); try { Object[] seResults = m_SplitEvaluator.getResult(train, test); Object[] results = new Object[seResults.length + 1]; results[0] = getTimestamp(); System.arraycopy(seResults, 0, results, 1, seResults.length); if (m_debugOutput) { String resultName = ("" + run + "." + (fold + 1) + "." + Utils.backQuoteChars(runInstances.relationName()) + "." + m_SplitEvaluator .toString()).replace(' ', '_'); resultName = Utils.removeSubstring(resultName, "weka.classifiers."); resultName = Utils.removeSubstring(resultName, "weka.filters."); resultName = Utils.removeSubstring(resultName, "weka.attributeSelection."); m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName); } m_ResultListener.acceptResult(this, key, results); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ @Override public String toString() { String result = "CrossValidationSplitResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ": <null Instances>"; } else { result += ": " + Utils.backQuoteChars(m_Instances.relationName()); } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // CrossValidationSplitResultProducer
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/DatabaseResultListener.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DatabaseResultListener.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.sql.DatabaseMetaData; import java.sql.ResultSet; import java.util.ArrayList; import weka.core.RevisionUtils; /** * <!-- globalinfo-start --> Takes results from a result producer and sends them * to a database. * <p/> * <!-- globalinfo-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class DatabaseResultListener extends DatabaseUtils implements ResultListener { /** for serialization */ static final long serialVersionUID = 7388014746954652818L; /** The ResultProducer to listen to */ protected ResultProducer m_ResultProducer; /** The name of the current results table */ protected String m_ResultsTableName; /** Holds the name of the key field to cache upon, or null if no caching */ protected String m_CacheKeyName = ""; /** Stores the index of the key column holding the cache key data */ protected int m_CacheKeyIndex; /** Stores the key for which the cache is valid */ protected Object[] m_CacheKey; /** Stores the cached values */ protected ArrayList<String> m_Cache = new ArrayList<String>(); /** * Returns a string describing this result listener * * @return a description of the result listener suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Takes results from a result producer and sends them to a " + "database."; } /** * Sets up the database drivers * * @throws Exception if an error occurs */ public DatabaseResultListener() throws Exception { super(); } /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess(ResultProducer rp) throws Exception { m_ResultProducer = rp; // Connect to the database and find out what table corresponds to this // ResultProducer updateResultsTableName(m_ResultProducer); } /** * Perform any postprocessing. When this method is called, it indicates that * no more results will be sent that need to be grouped together in any way. * * @param rp the ResultProducer that generated the results * @throws Exception if an error occurs */ @Override public void postProcess(ResultProducer rp) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer calling postProcess!!"); } disconnectFromDatabase(); } /** * Determines if there are any constraints (imposed by the destination) on any * additional measures produced by resultProducers. Null should be returned if * there are NO constraints, otherwise a list of column names should be * returned as an array of Strings. In the case of DatabaseResultListener, the * structure of an existing database will impose constraints. * * @param rp the ResultProducer to which the constraints will apply * @return an array of column names to which resutltProducer's results will be * restricted. * @throws Exception if an error occurs. */ @Override public String[] determineColumnConstraints(ResultProducer rp) throws Exception { ArrayList<String> cNames = new ArrayList<String>(); updateResultsTableName(rp); DatabaseMetaData dbmd = m_Connection.getMetaData(); ResultSet rs; // gets a result set where each row is info on a column if (m_checkForUpperCaseNames) { rs = dbmd.getColumns(null, null, m_ResultsTableName.toUpperCase(), null); } else { rs = dbmd.getColumns(null, null, m_ResultsTableName, null); } boolean tableExists = false; int numColumns = 0; while (rs.next()) { tableExists = true; // column four contains the column name String name = rs.getString(4); if (name.toLowerCase().startsWith("measure")) { numColumns++; cNames.add(name); } } // no constraints on any additional measures if the table does not exist if (!tableExists) { return null; } // a zero element array indicates maximum constraint String[] columnNames = new String[numColumns]; for (int i = 0; i < numColumns; i++) { columnNames[i] = (cNames.get(i)); } return columnNames; } /** * Submit the result to the appropriate table of the database * * @param rp the ResultProducer that generated the result * @param key The key for the results. * @param result The actual results. * @throws Exception if the result couldn't be sent to the database */ @Override public void acceptResult(ResultProducer rp, Object[] key, Object[] result) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer calling acceptResult!!"); } // null result could occur from a chain of doRunKeys calls if (result != null) { putResultInTable(m_ResultsTableName, rp, key, result); } } /** * Always says a result is required. If this is the first call, prints out the * header for the Database output. * * @param rp the ResultProducer wanting to generate the result * @param key The key for which a result may be needed. * @return true if the result should be calculated. * @throws Exception if the database couldn't be queried */ @Override public boolean isResultRequired(ResultProducer rp, Object[] key) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer calling isResultRequired!"); } if (m_Debug) { System.err.print("Is result required..."); for (Object element : key) { System.err.print(" " + element); } System.err.flush(); } boolean retval = false; // Check the key cache first if (!m_CacheKeyName.equals("")) { if (!isCacheValid(key)) { loadCache(rp, key); } retval = !isKeyInCache(rp, key); } else { // Ask whether the results are needed retval = !isKeyInTable(m_ResultsTableName, rp, key); } if (m_Debug) { System.err.println(" ..." + (retval ? "required" : "not required") + (m_CacheKeyName.equals("") ? "" : " (cache)")); System.err.flush(); } return retval; } /** * Determines the table name that results will be inserted into. If required: * a connection will be opened, an experiment index table created, and the * results table created. * * @param rp the ResultProducer * @throws Exception if an error occurs */ protected void updateResultsTableName(ResultProducer rp) throws Exception { if (!isConnected()) { connectToDatabase(); } if (!experimentIndexExists()) { createExperimentIndex(); } String tableName = getResultsTableName(rp); if (tableName == null) { tableName = createExperimentIndexEntry(rp); } if (!tableExists(tableName)) { createResultsTable(rp, tableName); } m_ResultsTableName = tableName; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String cacheKeyNameTipText() { return "Set the name of the key field by which to cache."; } /** * Get the value of CacheKeyName. * * @return Value of CacheKeyName. */ public String getCacheKeyName() { return m_CacheKeyName; } /** * Set the value of CacheKeyName. * * @param newCacheKeyName Value to assign to CacheKeyName. */ public void setCacheKeyName(String newCacheKeyName) { m_CacheKeyName = newCacheKeyName; } /** * Checks whether the current cache contents are valid for the supplied key. * * @param key the results key * @return true if the cache contents are valid for the key given */ protected boolean isCacheValid(Object[] key) { if (m_CacheKey == null) { return false; } if (m_CacheKey.length != key.length) { return false; } for (int i = 0; i < key.length; i++) { if ((i != m_CacheKeyIndex) && (!m_CacheKey[i].equals(key[i]))) { return false; } } return true; } /** * Returns true if the supplied key is in the key cache (and thus we do not * need to execute a database query). * * @param rp the ResultProducer the key belongs to. * @param key the result key * @return true if the key is in the key cache * @throws Exception if an error occurs */ protected boolean isKeyInCache(ResultProducer rp, Object[] key) throws Exception { for (int i = 0; i < m_Cache.size(); i++) { if (m_Cache.get(i).equals(key[m_CacheKeyIndex])) { return true; } } return false; } /** * Executes a database query to fill the key cache * * @param rp the ResultProducer the key belongs to * @param key the key * @throws Exception if an error occurs */ protected void loadCache(ResultProducer rp, Object[] key) throws Exception { System.err.print(" (updating cache)"); System.err.flush(); m_Cache.clear(); m_CacheKey = null; String query = "SELECT Key_" + m_CacheKeyName + " FROM " + m_ResultsTableName; String[] keyNames = rp.getKeyNames(); if (keyNames.length != key.length) { throw new Exception("Key names and key values of different lengths"); } m_CacheKeyIndex = -1; for (int i = 0; i < keyNames.length; i++) { if (keyNames[i].equalsIgnoreCase(m_CacheKeyName)) { m_CacheKeyIndex = i; break; } } if (m_CacheKeyIndex == -1) { throw new Exception("No key field named " + m_CacheKeyName + " (as specified for caching)"); } boolean first = true; for (int i = 0; i < key.length; i++) { if ((key[i] != null) && (i != m_CacheKeyIndex)) { if (first) { query += " WHERE "; first = false; } else { query += " AND "; } query += "Key_" + keyNames[i] + '='; if (key[i] instanceof String) { query += "'" + DatabaseUtils.processKeyString(key[i].toString()) + "'"; } else { query += key[i].toString(); } } } ResultSet rs = select(query); while (rs.next()) { String keyVal = rs.getString(1); if (!rs.wasNull()) { m_Cache.add(keyVal); } } close(rs); m_CacheKey = key.clone(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/DatabaseResultProducer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DatabaseResultProducer.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; import weka.core.AdditionalMeasureProducer; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Examines a database and extracts out the results * produced by the specified ResultProducer and submits them to the specified * ResultListener. If a result needs to be generated, the ResultProducer is used * to obtain the result. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -F &lt;field name&gt; * The name of the database field to cache over. * eg: "Fold" (default none) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer * </pre> * * <pre> * Options specific to result producer weka.experiment.CrossValidationResultProducer: * </pre> * * <pre> * -X &lt;number of folds&gt; * The number of folds to use for the cross-validation. * (default 10) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class DatabaseResultProducer extends DatabaseResultListener implements ResultProducer, OptionHandler, AdditionalMeasureProducer { /** for serialization */ static final long serialVersionUID = -5620660780203158666L; /** The dataset of interest */ protected Instances m_Instances; /** The ResultListener to send results to */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_AdditionalMeasures = null; /** * Returns a string describing this result producer * * @return a description of the result producer suitable for displaying in the * explorer/experimenter gui */ @Override public String globalInfo() { return "Examines a database and extracts out " + "the results produced by the specified ResultProducer " + "and submits them to the specified ResultListener. If a result needs " + "to be generated, the ResultProducer is used to obtain the result."; } /** * Creates the DatabaseResultProducer, letting the parent constructor do it's * thing. * * @throws Exception if an error occurs */ public DatabaseResultProducer() throws Exception { super(); m_ResultProducer = new CrossValidationResultProducer(); } /** * Gets the keys for a specified run number. Different run numbers correspond * to different randomizations of the data. Keys produced should be sent to * the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ @Override public void doRunKeys(int run) throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } if (m_Instances == null) { throw new Exception("No Instances set"); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); m_ResultProducer.setInstances(m_Instances); m_ResultProducer.doRunKeys(run); } /** * Gets the results for a specified run number. Different run numbers * correspond to different randomizations of the data. Results produced should * be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ @Override public void doRun(int run) throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } if (m_Instances == null) { throw new Exception("No Instances set"); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); m_ResultProducer.setInstances(m_Instances); m_ResultProducer.doRun(run); } /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess(ResultProducer rp) throws Exception { super.preProcess(rp); if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * When this method is called, it indicates that no more results will be sent * that need to be grouped together in any way. * * @param rp the ResultProducer that generated the results * @throws Exception if an error occurs */ @Override public void postProcess(ResultProducer rp) throws Exception { super.postProcess(rp); m_ResultListener.postProcess(this); } /** * Prepare to generate results. The ResultProducer should call * preProcess(this) on the ResultListener it is to send results to. * * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess() throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } m_ResultProducer.setResultListener(this); m_ResultProducer.preProcess(); } /** * When this method is called, it indicates that no more requests to generate * results for the current experiment will be sent. The ResultProducer should * call preProcess(this) on the ResultListener it is to send results to. * * @throws Exception if an error occurs */ @Override public void postProcess() throws Exception { m_ResultProducer.postProcess(); } /** * Accepts results from a ResultProducer. * * @param rp the ResultProducer that generated the results * @param key an array of Objects (Strings or Doubles) that uniquely identify * a result for a given ResultProducer with given compatibilityState * @param result the results stored in an array. The objects stored in the * array may be Strings, Doubles, or null (for the missing value). * @throws Exception if the result could not be accepted. */ @Override public void acceptResult(ResultProducer rp, Object[] key, Object[] result) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } // System.err.println("DBRP::acceptResult"); // Is the result needed by the listener? boolean isRequiredByListener = m_ResultListener.isResultRequired(this, key); // Is the result already in the database? boolean isRequiredByDatabase = super.isResultRequired(rp, key); // Insert it into the database here if (isRequiredByDatabase) { // We could alternatively throw an exception if we only want values // that are already in the database if (result != null) { // null result could occur from a chain of doRunKeys calls super.acceptResult(rp, key, result); } } // Pass it on if (isRequiredByListener) { m_ResultListener.acceptResult(this, key, result); } } /** * Determines whether the results for a specified key must be generated. * * @param rp the ResultProducer wanting to generate the results * @param key an array of Objects (Strings or Doubles) that uniquely identify * a result for a given ResultProducer with given compatibilityState * @return true if the result should be generated * @throws Exception if it could not be determined if the result is needed. */ @Override public boolean isResultRequired(ResultProducer rp, Object[] key) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } // System.err.println("DBRP::isResultRequired"); // Is the result needed by the listener? boolean isRequiredByListener = m_ResultListener.isResultRequired(this, key); // Is the result already in the database? boolean isRequiredByDatabase = super.isResultRequired(rp, key); if (!isRequiredByDatabase && isRequiredByListener) { // Pass the result through to the listener Object[] result = getResultFromTable(m_ResultsTableName, rp, key); System.err.println("Got result from database: " + DatabaseUtils.arrayToString(result)); m_ResultListener.acceptResult(this, key, result); return false; } return (isRequiredByListener || isRequiredByDatabase); } /** * Gets the names of each of the columns produced for a single run. * * @return an array containing the name of each column * @throws Exception if something goes wrong. */ @Override public String[] getKeyNames() throws Exception { return m_ResultProducer.getKeyNames(); } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. * @throws Exception if something goes wrong. */ @Override public Object[] getKeyTypes() throws Exception { return m_ResultProducer.getKeyTypes(); } /** * Gets the names of each of the columns produced for a single run. A new * result field is added for the number of results used to produce each * average. If only averages are being produced the names are not altered, if * standard deviations are produced then "Dev_" and "Avg_" are prepended to * each result deviation and average field respectively. * * @return an array containing the name of each column * @throws Exception if something goes wrong. */ @Override public String[] getResultNames() throws Exception { return m_ResultProducer.getResultNames(); } /** * Gets the data types of each of the columns produced for a single run. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. * @throws Exception if something goes wrong. */ @Override public Object[] getResultTypes() throws Exception { return m_ResultProducer.getResultTypes(); } /** * Gets a description of the internal settings of the result producer, * sufficient for distinguishing a ResultProducer instance from another with * different settings (ignoring those settings set through this interface). * For example, a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should be * compatible. Typically if a ResultProducer is an OptionHandler, this string * will represent the command line arguments required to set the * ResultProducer to that state. * * @return the description of the ResultProducer state, or null if no state is * defined */ @Override public String getCompatibilityState() { String result = ""; if (m_ResultProducer == null) { result += "<null ResultProducer>"; } else { result += "-W " + m_ResultProducer.getClass().getName(); result += " -- " + m_ResultProducer.getCompatibilityState(); } return result.trim(); } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(2); newVector.addElement(new Option( "\tThe name of the database field to cache over.\n" + "\teg: \"Fold\" (default none)", "F", 1, "-F <field name>")); newVector.addElement(new Option( "\tThe full class name of a ResultProducer.\n" + "\teg: weka.experiment.CrossValidationResultProducer", "W", 1, "-W <class name>")); if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to result producer " + m_ResultProducer.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_ResultProducer) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -F &lt;field name&gt; * The name of the database field to cache over. * eg: "Fold" (default none) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer * </pre> * * <pre> * Options specific to result producer weka.experiment.CrossValidationResultProducer: * </pre> * * <pre> * -X &lt;number of folds&gt; * The number of folds to use for the cross-validation. * (default 10) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All option after -- will be passed to the result producer. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { setCacheKeyName(Utils.getOption('F', options)); String rpName = Utils.getOption('W', options); if (rpName.length() == 0) { throw new Exception("A ResultProducer must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // RP. setResultProducer((ResultProducer) Utils.forName(ResultProducer.class, rpName, null)); if (getResultProducer() instanceof OptionHandler) { ((OptionHandler) getResultProducer()).setOptions(Utils .partitionOptions(options)); } } /** * Gets the current settings of the result producer. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { String[] seOptions = new String[0]; if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { seOptions = ((OptionHandler) m_ResultProducer).getOptions(); } String[] options = new String[seOptions.length + 8]; int current = 0; if (!getCacheKeyName().equals("")) { options[current++] = "-F"; options[current++] = getCacheKeyName(); } if (getResultProducer() != null) { options[current++] = "-W"; options[current++] = getResultProducer().getClass().getName(); } options[current++] = "--"; System.arraycopy(seOptions, 0, options, current, seOptions.length); current += seOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set a list of method names for additional measures to look for in * SplitEvaluators. This could contain many measures (of which only a subset * may be produceable by the current resultProducer) if an experiment is the * type that iterates over a set of properties. * * @param additionalMeasures an array of measure names, null if none */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; if (m_ResultProducer != null) { System.err.println("DatabaseResultProducer: setting additional " + "measures for " + "ResultProducer"); m_ResultProducer.setAdditionalMeasures(m_AdditionalMeasures); } } /** * Returns an enumeration of any additional measure names that might be in the * result producer * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> newVector = new Vector<String>(); if (m_ResultProducer instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_ResultProducer) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_ResultProducer instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer) m_ResultProducer) .getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("DatabaseResultProducer: " + "Can't return value for : " + additionalMeasureName + ". " + m_ResultProducer.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ @Override public void setInstances(Instances instances) { m_Instances = instances; } /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ @Override public void setResultListener(ResultListener listener) { m_ResultListener = listener; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String resultProducerTipText() { return "Set the result producer to use. If some results are not found " + "in the source database then this result producer is used to generate " + "them."; } /** * Get the ResultProducer. * * @return the ResultProducer. */ public ResultProducer getResultProducer() { return m_ResultProducer; } /** * Set the ResultProducer. * * @param newResultProducer new ResultProducer to use. */ public void setResultProducer(ResultProducer newResultProducer) { m_ResultProducer = newResultProducer; } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ @Override public String toString() { String result = "DatabaseResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ": <null Instances>"; } else { result += ": " + Utils.backQuoteChars(m_Instances.relationName()); } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // DatabaseResultProducer
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/DatabaseUtils.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DatabaseUtils.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.WekaException; import weka.core.WekaPackageClassLoaderManager; import weka.core.logging.Logger; import java.io.File; import java.io.FileInputStream; import java.io.Serializable; import java.sql.Connection; import java.sql.DatabaseMetaData; import java.sql.Driver; import java.sql.DriverManager; import java.sql.PreparedStatement; import java.sql.ResultSet; import java.sql.ResultSetMetaData; import java.sql.SQLException; import java.sql.Statement; import java.sql.Types; import java.util.Collections; import java.util.Enumeration; import java.util.HashSet; import java.util.Properties; import java.util.StringTokenizer; import java.util.Vector; /** * DatabaseUtils provides utility functions for accessing the experiment * database. The jdbc driver and database to be used default to "jdbc.idbDriver" * and "jdbc:idb=experiments.prp". These may be changed by creating a java * properties file called DatabaseUtils.props in user.home or the current * directory. eg: * <p> * * <code><pre> * jdbcDriver=jdbc.idbDriver * jdbcURL=jdbc:idb=experiments.prp * </pre></code> * <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class DatabaseUtils implements Serializable, RevisionHandler { /** for serialization. */ static final long serialVersionUID = -8252351994547116729L; /** The name of the table containing the index to experiments. */ public static final String EXP_INDEX_TABLE = "Experiment_index"; /** The name of the column containing the experiment type (ResultProducer). */ public static final String EXP_TYPE_COL = "Experiment_type"; /** The name of the column containing the experiment setup (parameters). */ public static final String EXP_SETUP_COL = "Experiment_setup"; /** The name of the column containing the results table name. */ public static final String EXP_RESULT_COL = "Result_table"; /** The prefix for result table names. */ public static final String EXP_RESULT_PREFIX = "Results"; /** The name of the properties file. */ public final static String PROPERTY_FILE = "weka/experiment/DatabaseUtils.props"; /** Holds the jdbc drivers to be used (only to stop them being gc'ed). */ protected Vector<String> DRIVERS = new Vector<String>(); /** keeping track of drivers that couldn't be loaded. */ protected static Vector<String> DRIVERS_ERRORS; /** Properties associated with the database connection. */ protected Properties PROPERTIES; /* Type mapping used for reading experiment results */ /** Type mapping for STRING used for reading experiment results. */ public static final int STRING = 0; /** Type mapping for BOOL used for reading experiment results. */ public static final int BOOL = 1; /** Type mapping for DOUBLE used for reading experiment results. */ public static final int DOUBLE = 2; /** Type mapping for BYTE used for reading experiment results. */ public static final int BYTE = 3; /** Type mapping for SHORT used for reading experiment results. */ public static final int SHORT = 4; /** Type mapping for INTEGER used for reading experiment results. */ public static final int INTEGER = 5; /** Type mapping for LONG used for reading experiment results. */ public static final int LONG = 6; /** Type mapping for FLOAT used for reading experiment results. */ public static final int FLOAT = 7; /** Type mapping for DATE used for reading experiment results. */ public static final int DATE = 8; /** Type mapping for TEXT used for reading, e.g., text blobs. */ public static final int TEXT = 9; /** Type mapping for TIME used for reading TIME columns. */ public static final int TIME = 10; /** Type mapping for TIMESTAMP used for reading java.sql.Timestamp columns */ public static final int TIMESTAMP = 11; /** Database URL. */ protected String m_DatabaseURL; /** The prepared statement used for database queries. */ protected transient PreparedStatement m_PreparedStatement; /** The database connection. */ protected transient Connection m_Connection; /** True if debugging output should be printed. */ protected boolean m_Debug = false; /** Database username. */ protected String m_userName = ""; /** Database Password. */ protected String m_password = ""; /* mappings used for creating Tables. Can be overridden in DatabaseUtils.props */ /** string type for the create table statement. */ protected String m_stringType = "LONGVARCHAR"; /** integer type for the create table statement. */ protected String m_intType = "INT"; /** double type for the create table statement. */ protected String m_doubleType = "DOUBLE"; /** For databases where Tables and Columns are created in upper case. */ protected boolean m_checkForUpperCaseNames = false; /** For databases where Tables and Columns are created in lower case. */ protected boolean m_checkForLowerCaseNames = false; /** setAutoCommit on the database? */ protected boolean m_setAutoCommit = true; /** create index on the database? */ protected boolean m_createIndex = false; /** the keywords for the current database type. */ protected HashSet<String> m_Keywords = new HashSet<String>(); /** the character to mask SQL keywords (by appending this character). */ protected String m_KeywordsMaskChar = "_"; /** * Reads properties and sets up the database drivers. * * @throws Exception if an error occurs */ public DatabaseUtils() throws Exception { this((Properties) null); } /** * Reads the properties from the specified file and sets up the database * drivers. * * @param propsFile the props file to load, ignored if null or pointing to a * directory * @throws Exception if an error occurs */ public DatabaseUtils(File propsFile) throws Exception { this(loadProperties(propsFile)); } /** * Uses the specified properties to set up the database drivers. * * @param props the properties to use, ignored if null * @throws Exception if an error occurs */ public DatabaseUtils(Properties props) throws Exception { if (DRIVERS_ERRORS == null) { DRIVERS_ERRORS = new Vector<String>(); } initialize(props); } /** * Initializes the database connection. * * @param propsFile the props file to load, ignored if null or pointing to a * directory */ public void initialize(File propsFile) { initialize(loadProperties(propsFile)); } /** * Initializes the database connection. * * @param props the properties to obtain the parameters from, ignored if null */ public void initialize(Properties props) { try { if (props != null) { PROPERTIES = props; } else { PROPERTIES = Utils.readProperties(PROPERTY_FILE); } // Register the drivers in jdbc DriverManager String drivers = PROPERTIES.getProperty("jdbcDriver", "jdbc.idbDriver"); if (drivers == null) { throw new Exception("No database drivers (JDBC) specified"); } // The call to newInstance() is necessary on some platforms // (with some java VM implementations) StringTokenizer st = new StringTokenizer(drivers, ", "); while (st.hasMoreTokens()) { String driver = st.nextToken(); boolean result; try { // Class.forName(driver); Object driverImpl = WekaPackageClassLoaderManager.objectForName(driver); DRIVERS.addElement(driver); result = true; } catch (Exception e) { result = false; } if (!result && !DRIVERS_ERRORS.contains(driver)) { Logger.log(Logger.Level.WARNING, "Trying to add database driver (JDBC): " + driver + " - " + "Warning, not in CLASSPATH?"); } else if (m_Debug) { System.err.println("Trying to add database driver (JDBC): " + driver + " - " + (result ? "Success!" : "Warning, not in CLASSPATH?")); } if (!result) { DRIVERS_ERRORS.add(driver); } } } catch (Exception ex) { System.err.println("Problem reading properties. Fix before continuing."); System.err.println(ex); } m_DatabaseURL = PROPERTIES.getProperty("jdbcURL", "jdbc:idb=experiments.prp"); m_stringType = PROPERTIES.getProperty("CREATE_STRING", "LONGVARCHAR"); m_intType = PROPERTIES.getProperty("CREATE_INT", "INT"); m_doubleType = PROPERTIES.getProperty("CREATE_DOUBLE", "DOUBLE"); m_checkForUpperCaseNames = PROPERTIES.getProperty("checkUpperCaseNames", "false").equals("true"); m_checkForLowerCaseNames = PROPERTIES.getProperty("checkLowerCaseNames", "false").equals("true"); m_setAutoCommit = PROPERTIES.getProperty("setAutoCommit", "true").equals("true"); m_createIndex = PROPERTIES.getProperty("createIndex", "false").equals("true"); setKeywords(PROPERTIES.getProperty("Keywords", "AND,ASC,BY,DESC,FROM,GROUP,INSERT,ORDER,SELECT,UPDATE,WHERE")); setKeywordsMaskChar(PROPERTIES.getProperty("KeywordsMaskChar", "_")); } /** * returns key column headings in their original case. Used for those * databases that create uppercase column names. * * @param columnName the column to retrieve the original case for * @return the original case */ public String attributeCaseFix(String columnName) { if (m_checkForUpperCaseNames) { String ucname = columnName.toUpperCase(); if (ucname.equals(EXP_TYPE_COL.toUpperCase())) { return EXP_TYPE_COL; } else if (ucname.equals(EXP_SETUP_COL.toUpperCase())) { return EXP_SETUP_COL; } else if (ucname.equals(EXP_RESULT_COL.toUpperCase())) { return EXP_RESULT_COL; } else { return columnName; } } else if (m_checkForLowerCaseNames) { String ucname = columnName.toLowerCase(); if (ucname.equals(EXP_TYPE_COL.toLowerCase())) { return EXP_TYPE_COL; } else if (ucname.equals(EXP_SETUP_COL.toLowerCase())) { return EXP_SETUP_COL; } else if (ucname.equals(EXP_RESULT_COL.toLowerCase())) { return EXP_RESULT_COL; } else { return columnName; } } else { return columnName; } } /** * translates the column data type string to an integer value that indicates * which data type / get()-Method to use in order to retrieve values from the * database (see DatabaseUtils.Properties, InstanceQuery()). Blanks in the * type are replaced with underscores "_", since Java property names can't * contain blanks. * * @param type the column type as retrieved with * java.sql.MetaData.getColumnTypeName(int) * @return an integer value that indicates which data type / get()-Method to * use in order to retrieve values from the */ public int translateDBColumnType(String type) { try { // Oracle, e.g., has datatypes like "DOUBLE PRECISION" // BUT property names can't have blanks in the name (unless escaped with // a backslash), hence also check for names where the blanks are // replaced with underscores "_": String value = PROPERTIES.getProperty(type); String typeUnderscore = type.replaceAll(" ", "_"); if (value == null) { value = PROPERTIES.getProperty(typeUnderscore); } return Integer.parseInt(value); } catch (NumberFormatException e) { e.printStackTrace(); throw new IllegalArgumentException("Unknown data type: " + type + ". " + "Add entry in " + PROPERTY_FILE + ".\n" + "If the type contains blanks, either escape them with a backslash " + "or use underscores instead of blanks."); } } /** * Converts an array of objects to a string by inserting a space between each * element. Null elements are printed as ? * * @param array the array of objects * @return a value of type 'String' */ public static String arrayToString(Object[] array) { String result = ""; if (array == null) { result = "<null>"; } else { for (Object element : array) { if (element == null) { result += " ?"; } else { result += " " + element; } } } return result; } /** * Returns the name associated with a SQL type. * * @param type the SQL type * @return the name of the type */ public static String typeName(int type) { switch (type) { case Types.BIGINT: return "BIGINT "; case Types.BINARY: return "BINARY"; case Types.BIT: return "BIT"; case Types.CHAR: return "CHAR"; case Types.DATE: return "DATE"; case Types.DECIMAL: return "DECIMAL"; case Types.DOUBLE: return "DOUBLE"; case Types.FLOAT: return "FLOAT"; case Types.INTEGER: return "INTEGER"; case Types.LONGVARBINARY: return "LONGVARBINARY"; case Types.LONGVARCHAR: return "LONGVARCHAR"; case Types.NULL: return "NULL"; case Types.NUMERIC: return "NUMERIC"; case Types.OTHER: return "OTHER"; case Types.REAL: return "REAL"; case Types.SMALLINT: return "SMALLINT"; case Types.TIME: return "TIME"; case Types.TIMESTAMP: return "TIMESTAMP"; case Types.TINYINT: return "TINYINT"; case Types.VARBINARY: return "VARBINARY"; case Types.VARCHAR: return "VARCHAR"; default: return "Unknown"; } } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String databaseURLTipText() { return "Set the URL to the database."; } /** * Get the value of DatabaseURL. * * @return Value of DatabaseURL. */ public String getDatabaseURL() { return m_DatabaseURL; } /** * Set the value of DatabaseURL. * * @param newDatabaseURL Value to assign to DatabaseURL. */ public void setDatabaseURL(String newDatabaseURL) { m_DatabaseURL = newDatabaseURL; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String debugTipText() { return "Whether debug information is printed."; } /** * Sets whether there should be printed some debugging output to stderr or * not. * * @param d true if output should be printed */ public void setDebug(boolean d) { m_Debug = d; } /** * Gets whether there should be printed some debugging output to stderr or * not. * * @return true if output should be printed */ public boolean getDebug() { return m_Debug; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String usernameTipText() { return "The user to use for connecting to the database."; } /** * Set the database username. * * @param username Username for Database. */ public void setUsername(String username) { m_userName = username; } /** * Get the database username. * * @return Database username */ public String getUsername() { return m_userName; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String passwordTipText() { return "The password to use for connecting to the database."; } /** * Set the database password. * * @param password Password for Database. */ public void setPassword(String password) { m_password = password; } /** * Get the database password. * * @return Password for Database. */ public String getPassword() { return m_password; } /** * Opens a connection to the database. * * @throws Exception if an error occurs */ public void connectToDatabase() throws Exception { if (m_Debug) { System.err.println("Connecting to " + m_DatabaseURL); } if (m_Connection == null) { try { connectUsingDriverManager(); } catch (Exception ex) { connectViaPackageLoadedDriver(); } if (m_Connection == null) { throw new SQLException("Unable to find a suitable driver for " + m_DatabaseURL); } m_Connection.setAutoCommit(m_setAutoCommit); } } /** * Open a connection by trying all package-loaded JDBC drivers * * @throws Exception if a problem occurs */ protected void connectViaPackageLoadedDriver() throws Exception { java.util.Properties info = new java.util.Properties(); if (m_userName.length() > 0) { info.put("user", m_userName); } if (m_password.length() > 0) { info.put("password", m_password); } for (String driverClass : DRIVERS) { Driver driver = getDriver(driverClass); if (driver != null) { Connection conn = driver.connect(m_DatabaseURL, info); if (conn != null) { m_Connection = conn; break; } } } } /** * Try to get a driver from Weka package classloaders * * @param driverClass the name of the driver class to try and instantiate * @return the instantiated driver class * @throws Exception if a problem occurs */ protected Driver getDriver(String driverClass) throws Exception { Object result = WekaPackageClassLoaderManager.objectForName(driverClass); if (!(result instanceof Driver)) { throw new WekaException("JDBC driver " + driverClass + " does not implement java.sql.Driver"); } return (Driver) result; } /** * Open a connection using {@code java.sql.DriverManager}. This covers all * JDBC drivers that are on the main CLASSPATH. * * @throws Exception if a problem occurs */ protected void connectUsingDriverManager() throws Exception { if (m_Connection == null) { if (m_userName.equals("")) { try { m_Connection = DriverManager.getConnection(m_DatabaseURL); } catch (java.sql.SQLException e) { // Try loading the drivers for (int i = 0; i < DRIVERS.size(); i++) { try { // Class.forName(DRIVERS.elementAt(i)); WekaPackageClassLoaderManager.forName(DRIVERS.elementAt(i)); } catch (Exception ex) { // Drop through } } m_Connection = DriverManager.getConnection(m_DatabaseURL); } } else { try { m_Connection = DriverManager.getConnection(m_DatabaseURL, m_userName, m_password); } catch (java.sql.SQLException e) { // Try loading the drivers for (int i = 0; i < DRIVERS.size(); i++) { try { WekaPackageClassLoaderManager.forName(DRIVERS.elementAt(i)); // Class.forName(DRIVERS.elementAt(i)); } catch (Exception ex) { // Drop through } } m_Connection = DriverManager.getConnection(m_DatabaseURL, m_userName, m_password); } } } } /** * Closes the connection to the database. * * @throws Exception if an error occurs */ public void disconnectFromDatabase() throws Exception { if (m_Debug) { System.err.println("Disconnecting from " + m_DatabaseURL); } if (m_Connection != null) { m_Connection.close(); m_Connection = null; } } /** * Returns true if a database connection is active. * * @return a value of type 'boolean' */ public boolean isConnected() { return (m_Connection != null); } /** * Returns whether the cursors only support forward movement or are scroll * sensitive (with ResultSet.CONCUR_READ_ONLY concurrency). Returns always * false if not connected * * @return true if connected and the cursor is scroll-sensitive * @see ResultSet#TYPE_SCROLL_SENSITIVE * @see ResultSet#TYPE_FORWARD_ONLY * @see ResultSet#CONCUR_READ_ONLY */ public boolean isCursorScrollSensitive() { boolean result; result = false; try { if (isConnected()) { result = m_Connection.getMetaData().supportsResultSetConcurrency( ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_READ_ONLY); } } catch (Exception e) { // ignored } return result; } /** * Checks whether cursors are scrollable in general, false otherwise (also if * not connected). * * @return true if scrollable and connected * @see #getSupportedCursorScrollType() */ public boolean isCursorScrollable() { return (getSupportedCursorScrollType() != -1); } /** * Returns the type of scrolling that the cursor supports, -1 if not supported * or not connected. Checks first for TYPE_SCROLL_SENSITIVE and then for * TYPE_SCROLL_INSENSITIVE. In both cases CONCUR_READ_ONLY as concurrency is * used. * * @return the scroll type, or -1 if not connected or no scrolling supported * @see ResultSet#TYPE_SCROLL_SENSITIVE * @see ResultSet#TYPE_SCROLL_INSENSITIVE */ public int getSupportedCursorScrollType() { int result; result = -1; try { if (isConnected()) { if (m_Connection.getMetaData().supportsResultSetConcurrency( ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_READ_ONLY)) { result = ResultSet.TYPE_SCROLL_SENSITIVE; } if (result == -1) { if (m_Connection.getMetaData().supportsResultSetConcurrency( ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY)) { result = ResultSet.TYPE_SCROLL_INSENSITIVE; } } } } catch (Exception e) { // ignored } return result; } /** * Executes a SQL query. Caller must clean up manually with * <code>close()</code>. * * @param query the SQL query * @return true if the query generated results * @throws SQLException if an error occurs * @see #close() */ public boolean execute(String query) throws SQLException { if (!isConnected()) { throw new IllegalStateException("Not connected, please connect first!"); } if (!isCursorScrollable()) { m_PreparedStatement = m_Connection.prepareStatement(query, ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY); } else { m_PreparedStatement = m_Connection.prepareStatement(query, getSupportedCursorScrollType(), ResultSet.CONCUR_READ_ONLY); } return (m_PreparedStatement.execute()); } /** * Gets the results generated by a previous query. Caller must clean up * manually with <code>close(ResultSet)</code>. Returns null if object has * been deserialized. * * @return the result set. * @throws SQLException if an error occurs * @see #close(ResultSet) */ public ResultSet getResultSet() throws SQLException { if (m_PreparedStatement != null) { return m_PreparedStatement.getResultSet(); } else { return null; } } /** * Executes a SQL DDL query or an INSERT, DELETE or UPDATE. * * @param query the SQL DDL query * @return the number of affected rows * @throws SQLException if an error occurs */ public int update(String query) throws SQLException { if (!isConnected()) { throw new IllegalStateException("Not connected, please connect first!"); } Statement statement; if (!isCursorScrollable()) { statement = m_Connection.createStatement(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY); } else { statement = m_Connection.createStatement(getSupportedCursorScrollType(), ResultSet.CONCUR_READ_ONLY); } int result = statement.executeUpdate(query); statement.close(); return result; } /** * Executes a SQL SELECT query that returns a ResultSet. Note: the ResultSet * object must be closed by the caller. * * @param query the SQL query * @return the generated ResultSet * @throws SQLException if an error occurs */ public ResultSet select(String query) throws SQLException { if (!isConnected()) { throw new IllegalStateException("Not connected, please connect first!"); } Statement statement; if (!isCursorScrollable()) { statement = m_Connection.createStatement(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY); } else { statement = m_Connection.createStatement(getSupportedCursorScrollType(), ResultSet.CONCUR_READ_ONLY); } ResultSet result = statement.executeQuery(query); return result; } /** * closes the ResultSet and the statement that generated the ResultSet to * avoid memory leaks in JDBC drivers - in contrast to the JDBC specs, a lot * of JDBC drives don't clean up correctly. * * @param rs the ResultSet to clean up */ public void close(ResultSet rs) { try { Statement statement = rs.getStatement(); rs.close(); statement.close(); statement = null; rs = null; } catch (Exception e) { // ignored } } /** * closes the m_PreparedStatement to avoid memory leaks. */ public void close() { if (m_PreparedStatement != null) { try { m_PreparedStatement.close(); m_PreparedStatement = null; } catch (Exception e) { // ignored } } } /** * Checks that a given table exists. * * @param tableName the name of the table to look for. * @return true if the table exists. * @throws Exception if an error occurs. */ public boolean tableExists(String tableName) throws Exception { if (!isConnected()) { throw new IllegalStateException("Not connected, please connect first!"); } if (m_Debug) { System.err.println("Checking if table " + tableName + " exists..."); } DatabaseMetaData dbmd = m_Connection.getMetaData(); ResultSet rs; if (m_checkForUpperCaseNames) { rs = dbmd.getTables(null, null, tableName.toUpperCase(), null); } else if (m_checkForLowerCaseNames) { rs = dbmd.getTables(null, null, tableName.toLowerCase(), null); } else { rs = dbmd.getTables(null, null, tableName, null); } boolean tableExists = rs.next(); if (rs.next()) { throw new Exception("This table seems to exist more than once!"); } rs.close(); if (m_Debug) { if (tableExists) { System.err.println("... " + tableName + " exists"); } else { System.err.println("... " + tableName + " does not exist"); } } return tableExists; } /** * processes the string in such a way that it can be stored in the database, * i.e., it changes backslashes into slashes and doubles single quotes. * * @param s the string to work on * @return the processed string */ public static String processKeyString(String s) { return s.replaceAll("\\\\", "/").replaceAll("'", "''"); } /** * Executes a database query to see whether a result for the supplied key is * already in the database. * * @param tableName the name of the table to search for the key in * @param rp the ResultProducer who will generate the result if required * @param key the key for the result * @return true if the result with that key is in the database already * @throws Exception if an error occurs */ protected boolean isKeyInTable(String tableName, ResultProducer rp, Object[] key) throws Exception { String query = "SELECT Key_Run" + " FROM " + tableName; String[] keyNames = rp.getKeyNames(); if (keyNames.length != key.length) { throw new Exception("Key names and key values of different lengths"); } boolean first = true; for (int i = 0; i < key.length; i++) { if (key[i] != null) { if (first) { query += " WHERE "; first = false; } else { query += " AND "; } query += "Key_" + keyNames[i] + '='; if (key[i] instanceof String) { query += "'" + processKeyString(key[i].toString()) + "'"; } else { query += key[i].toString(); } } } boolean retval = false; ResultSet rs = select(query); if (rs.next()) { retval = true; if (rs.next()) { throw new Exception("More than one result entry " + "for result key: " + query); } } close(rs); return retval; } /** * Executes a database query to extract a result for the supplied key from the * database. * * @param tableName the name of the table where the result is stored * @param rp the ResultProducer who will generate the result if required * @param key the key for the result * @return true if the result with that key is in the database already * @throws Exception if an error occurs */ public Object[] getResultFromTable(String tableName, ResultProducer rp, Object[] key) throws Exception { String query = "SELECT "; String[] resultNames = rp.getResultNames(); for (int i = 0; i < resultNames.length; i++) { if (i != 0) { query += ", "; } query += resultNames[i]; } query += " FROM " + tableName; String[] keyNames = rp.getKeyNames(); if (keyNames.length != key.length) { throw new Exception("Key names and key values of different lengths"); } boolean first = true; for (int i = 0; i < key.length; i++) { if (key[i] != null) { if (first) { query += " WHERE "; first = false; } else { query += " AND "; } query += "Key_" + keyNames[i] + '='; if (key[i] instanceof String) { query += "'" + processKeyString(key[i].toString()) + "'"; } else { query += key[i].toString(); } } } ResultSet rs = select(query); ResultSetMetaData md = rs.getMetaData(); int numAttributes = md.getColumnCount(); if (!rs.next()) { throw new Exception("No result for query: " + query); } // Extract the columns for the result Object[] result = new Object[numAttributes]; for (int i = 1; i <= numAttributes; i++) { switch (translateDBColumnType(md.getColumnTypeName(i))) { case STRING: result[i - 1] = rs.getString(i); if (rs.wasNull()) { result[i - 1] = null; } break; case FLOAT: case DOUBLE: result[i - 1] = new Double(rs.getDouble(i)); if (rs.wasNull()) { result[i - 1] = null; } break; default: throw new Exception("Unhandled SQL result type (field " + (i + 1) + "): " + DatabaseUtils.typeName(md.getColumnType(i))); } } if (rs.next()) { throw new Exception("More than one result entry " + "for result key: " + query); } close(rs); return result; } /** * Executes a database query to insert a result for the supplied key into the * database. * * @param tableName the name of the table where the result is stored * @param rp the ResultProducer who will generate the result if required * @param key the key for the result * @param result the result to store * @throws Exception if an error occurs */ public void putResultInTable(String tableName, ResultProducer rp, Object[] key, Object[] result) throws Exception { String query = "INSERT INTO " + tableName + " VALUES ( "; // Add the results to the table for (int i = 0; i < key.length; i++) { if (i != 0) { query += ','; } if (key[i] != null) { if (key[i] instanceof String) { query += "'" + processKeyString(key[i].toString()) + "'"; } else if (key[i] instanceof Double) { query += safeDoubleToString((Double) key[i]); } else { query += key[i].toString(); } } else { query += "NULL"; } } for (Object element : result) { query += ','; if (element != null) { if (element instanceof String) { query += "'" + element.toString() + "'"; } else if (element instanceof Double) { query += safeDoubleToString((Double) element); } else { query += element.toString(); // !! // System.err.println("res: "+ result[i].toString()); } } else { query += "NULL"; } } query += ')'; if (m_Debug) { System.err.println("Submitting result: " + query); } update(query); close(); } /** * Inserts a + if the double is in scientific notation. MySQL doesn't * understand the number otherwise. * * @param number the number to convert * @return the number as string */ private String safeDoubleToString(Double number) { // NaN is treated as NULL if (number.isNaN()) { return "NULL"; } String orig = number.toString(); int pos = orig.indexOf('E'); if ((pos == -1) || (orig.charAt(pos + 1) == '-')) { return orig; } else { StringBuffer buff = new StringBuffer(orig); buff.insert(pos + 1, '+'); return new String(buff); } } /** * Returns true if the experiment index exists. * * @return true if the index exists * @throws Exception if an error occurs */ public boolean experimentIndexExists() throws Exception { return tableExists(EXP_INDEX_TABLE); } /** * Attempts to create the experiment index table. * * @throws Exception if an error occurs. */ public void createExperimentIndex() throws Exception { if (m_Debug) { System.err.println("Creating experiment index table..."); } String query; // Workaround for MySQL (doesn't support LONGVARBINARY) // Also for InstantDB which attempts to interpret numbers when storing // in LONGVARBINARY /* * if (m_Connection.getMetaData().getDriverName(). * equals("Mark Matthews' MySQL Driver") || * (m_Connection.getMetaData().getDriverName(). * indexOf("InstantDB JDBC Driver") != -1)) { query = "CREATE TABLE " + * EXP_INDEX_TABLE + " ( " + EXP_TYPE_COL + " TEXT," + " " + EXP_SETUP_COL * + " TEXT," + " " + EXP_RESULT_COL + " INT )"; } else { */ query = "CREATE TABLE " + EXP_INDEX_TABLE + " ( " + EXP_TYPE_COL + " " + m_stringType + "," + " " + EXP_SETUP_COL + " " + m_stringType + "," + " " + EXP_RESULT_COL + " " + m_intType + " )"; // } // Other possible fields: // creator user name (from System properties) // creation date update(query); close(); } /** * Attempts to insert a results entry for the table into the experiment index. * * @param rp the ResultProducer generating the results * @return the name of the created results table * @throws Exception if an error occurs. */ public String createExperimentIndexEntry(ResultProducer rp) throws Exception { if (m_Debug) { System.err.println("Creating experiment index entry..."); } // Execute compound transaction int numRows = 0; // Workaround for MySQL (doesn't support transactions) /* * if (m_Connection.getMetaData().getDriverName(). * equals("Mark Matthews' MySQL Driver")) { * m_Statement.execute("LOCK TABLES " + EXP_INDEX_TABLE + " WRITE"); * System.err.println("LOCKING TABLE"); } else { */ // } // Get the number of rows String query = "SELECT COUNT(*) FROM " + EXP_INDEX_TABLE; ResultSet rs = select(query); if (m_Debug) { System.err.println("...getting number of rows"); } if (rs.next()) { numRows = rs.getInt(1); } close(rs); // Add an entry in the index table String expType = rp.getClass().getName(); String expParams = rp.getCompatibilityState(); query = "INSERT INTO " + EXP_INDEX_TABLE + " VALUES ('" + expType + "', '" + expParams + "', " + numRows + " )"; if (update(query) > 0) { if (m_Debug) { System.err.println("...create returned resultset"); } } close(); // Finished compound transaction // Workaround for MySQL (doesn't support transactions) /* * if (m_Connection.getMetaData().getDriverName(). * equals("Mark Matthews' MySQL Driver")) { * m_Statement.execute("UNLOCK TABLES"); * System.err.println("UNLOCKING TABLE"); } else { */ if (!m_setAutoCommit) { m_Connection.commit(); m_Connection.setAutoCommit(true); } // } String tableName = getResultsTableName(rp); if (tableName == null) { throw new Exception("Problem adding experiment index entry"); } // Drop any existing table by that name (shouldn't occur unless // the experiment index is destroyed, in which case the experimental // conditions of the existing table are unknown) try { query = "DROP TABLE " + tableName; if (m_Debug) { System.err.println(query); } update(query); } catch (SQLException ex) { System.err.println(ex.getMessage()); } return tableName; } /** * Gets the name of the experiment table that stores results from a particular * ResultProducer. * * @param rp the ResultProducer * @return the name of the table where the results for this ResultProducer are * stored, or null if there is no table for this ResultProducer. * @throws Exception if an error occurs */ public String getResultsTableName(ResultProducer rp) throws Exception { // Get the experiment table name, or create a new table if necessary. if (m_Debug) { System.err.println("Getting results table name..."); } String expType = rp.getClass().getName(); String expParams = rp.getCompatibilityState(); String query = "SELECT " + EXP_RESULT_COL + " FROM " + EXP_INDEX_TABLE + " WHERE " + EXP_TYPE_COL + "='" + expType + "' AND " + EXP_SETUP_COL + "='" + expParams + "'"; String tableName = null; ResultSet rs = select(query); if (rs.next()) { tableName = rs.getString(1); if (rs.next()) { throw new Exception("More than one index entry " + "for experiment config: " + query); } } close(rs); if (m_Debug) { System.err.println("...results table = " + ((tableName == null) ? "<null>" : EXP_RESULT_PREFIX + tableName)); } return (tableName == null) ? tableName : EXP_RESULT_PREFIX + tableName; } /** * Creates a results table for the supplied result producer. * * @param rp the ResultProducer generating the results * @param tableName the name of the resultsTable * @return the name of the created results table * @throws Exception if an error occurs. */ public String createResultsTable(ResultProducer rp, String tableName) throws Exception { if (m_Debug) { System.err.println("Creating results table " + tableName + "..."); } String query = "CREATE TABLE " + tableName + " ( "; // Loop over the key fields String[] names = rp.getKeyNames(); Object[] types = rp.getKeyTypes(); if (names.length != types.length) { throw new Exception("key names types differ in length"); } for (int i = 0; i < names.length; i++) { query += "Key_" + names[i] + " "; if (types[i] instanceof Double) { query += m_doubleType; } else if (types[i] instanceof String) { // Workaround for MySQL (doesn't support LONGVARCHAR) // Also for InstantDB which attempts to interpret numbers when storing // in LONGVARBINARY /* * if (m_Connection.getMetaData().getDriverName(). * equals("Mark Matthews' MySQL Driver") || * (m_Connection.getMetaData().getDriverName(). * indexOf("InstantDB JDBC Driver")) != -1) { query += "TEXT "; } else { */ // query += "LONGVARCHAR "; query += m_stringType + " "; // } } else { throw new Exception("Unknown/unsupported field type in key"); } query += ", "; } // Loop over the result fields names = rp.getResultNames(); types = rp.getResultTypes(); if (names.length != types.length) { throw new Exception("result names and types differ in length"); } for (int i = 0; i < names.length; i++) { query += names[i] + " "; if (types[i] instanceof Double) { query += m_doubleType; } else if (types[i] instanceof String) { // Workaround for MySQL (doesn't support LONGVARCHAR) // Also for InstantDB which attempts to interpret numbers when storing // in LONGVARBINARY /* * if (m_Connection.getMetaData().getDriverName(). * equals("Mark Matthews' MySQL Driver") || * (m_Connection.getMetaData().getDriverName(). * equals("InstantDB JDBC Driver"))) { query += "TEXT "; } else { */ // query += "LONGVARCHAR "; query += m_stringType + " "; // } } else { throw new Exception("Unknown/unsupported field type in key"); } if (i < names.length - 1) { query += ", "; } } query += " )"; update(query); if (m_Debug) { System.err.println("table created"); } close(); if (m_createIndex) { query = "CREATE UNIQUE INDEX Key_IDX ON " + tableName + " ("; String[] keyNames = rp.getKeyNames(); boolean first = true; for (String keyName : keyNames) { if (keyName != null) { if (first) { first = false; query += "Key_" + keyName; } else { query += ",Key_" + keyName; } } } query += ")"; update(query); } return tableName; } /** * Sets the keywords (comma-separated list) to use. * * @param value the list of keywords */ public void setKeywords(String value) { String[] keywords; int i; m_Keywords.clear(); keywords = value.replaceAll(" ", "").split(","); for (i = 0; i < keywords.length; i++) { m_Keywords.add(keywords[i].toUpperCase()); } } /** * Returns the currently stored keywords (as comma-separated list). * * @return the list of keywords */ public String getKeywords() { String result; Vector<String> list; int i; list = new Vector<String>(m_Keywords); Collections.sort(list); result = ""; for (i = 0; i < list.size(); i++) { if (i > 0) { result += ","; } result += list.get(i); } return result; } /** * Sets the mask character to append to table or attribute names that are a * reserved keyword. * * @param value the new character */ public void setKeywordsMaskChar(String value) { m_KeywordsMaskChar = value; } /** * Returns the currently set mask character. * * @return the character */ public String getKeywordsMaskChar() { return m_KeywordsMaskChar; } /** * Checks whether the given string is a reserved keyword. * * @param s the string to check * @return true if the string is a keyword * @see #m_Keywords */ public boolean isKeyword(String s) { return m_Keywords.contains(s.toUpperCase()); } /** * If the given string is a keyword, then the mask character will be appended * and returned. Otherwise, the same string will be returned unchanged. * * @param s the string to check * @return the potentially masked string * @see #m_KeywordsMaskChar * @see #isKeyword(String) */ public String maskKeyword(String s) { if (isKeyword(s)) { return s + m_KeywordsMaskChar; } else { return s; } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Loads a properties file from an external file. * * @param propsFile the properties file to load, ignored if null or pointing * to a directory * @return the properties, null if ignored or an error occurred */ private static Properties loadProperties(File propsFile) { Properties result; Properties defaultProps = null; try { defaultProps = Utils.readProperties(PROPERTY_FILE); } catch (Exception ex) { System.err.println("Warning, unable to read default properties file(s)."); ex.printStackTrace(); } if (propsFile == null) { return defaultProps; } if (!propsFile.exists() || propsFile.isDirectory()) { return defaultProps; } try { result = new Properties(defaultProps); result.load(new FileInputStream(propsFile)); } catch (Exception e) { result = null; System.err .println("Failed to load properties file (DatabaseUtils.java) '" + propsFile + "':"); e.printStackTrace(); } return result; } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/DensityBasedClustererSplitEvaluator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * DensityBasedClustererSplitEvaluator.java * Copyright (C) 2008-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.ByteArrayOutputStream; import java.io.ObjectOutputStream; import java.io.ObjectStreamClass; import java.io.Serializable; import java.util.Arrays; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; import weka.clusterers.AbstractClusterer; import weka.clusterers.ClusterEvaluation; import weka.clusterers.DensityBasedClusterer; import weka.clusterers.EM; import weka.core.AdditionalMeasureProducer; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Remove; /** * <!-- globalinfo-start --> A SplitEvaluator that produces results for a * density based clusterer. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -no-size * Skips the determination of sizes (train/test/clusterer) * (default: sizes are determined) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the density based clusterer. * eg: weka.clusterers.EM * </pre> * * <pre> * Options specific to clusterer weka.clusterers.EM: * </pre> * * <pre> * -N &lt;num&gt; * number of clusters. If omitted or -1 specified, then * cross validation is used to select the number of clusters. * </pre> * * <pre> * -I &lt;num&gt; * max iterations. * (default 100) * </pre> * * <pre> * -V * verbose. * </pre> * * <pre> * -M &lt;num&gt; * minimum allowable standard deviation for normal density * computation * (default 1e-6) * </pre> * * <pre> * -O * Display model in old format (good when there are many clusters) * </pre> * * <pre> * -S &lt;num&gt; * Random number seed. * (default 100) * </pre> * * <!-- options-end --> * * All options after -- will be passed to the clusterer. * * @author Mark Hall (mhall{[at]}pentaho{[dot]}org * @version $Revision$ */ public class DensityBasedClustererSplitEvaluator implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = 5124501059135692160L; /** Remove the class column (if set) from the data */ protected boolean m_removeClassColumn = true; /** The clusterer used for evaluation */ protected DensityBasedClusterer m_clusterer = new EM(); /** Holds the most recently used ClusterEvaluation object */ protected ClusterEvaluation m_Evaluation; /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_additionalMeasures = null; /** * Array of booleans corresponding to the measures in m_AdditionalMeasures * indicating which of the AdditionalMeasures the current clusterer can * produce */ protected boolean[] m_doesProduce = null; /** * The number of additional measures that need to be filled in after taking * into account column constraints imposed by the final destination for * results */ protected int m_numberAdditionalMeasures = 0; /** Holds the statistics for the most recent application of the clusterer */ protected String m_result = null; /** The clusterer options (if any) */ protected String m_clustererOptions = ""; /** The clusterer version */ protected String m_clustererVersion = ""; /** whether to skip determination of sizes (train/test/classifier). */ protected boolean m_NoSizeDetermination; /** The length of a key */ private static final int KEY_SIZE = 3; /** The length of a result */ private static final int RESULT_SIZE = 9; public DensityBasedClustererSplitEvaluator() { updateOptions(); } /** * Returns a string describing this split evaluator * * @return a description of the split evaluator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return " A SplitEvaluator that produces results for a density based clusterer. "; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(2); newVector.addElement(new Option( "\tSkips the determination of sizes (train/test/clusterer)\n" + "\t(default: sizes are determined)", "no-size", 0, "-no-size")); newVector.addElement(new Option( "\tThe full class name of the density based clusterer.\n" + "\teg: weka.clusterers.EM", "W", 1, "-W <class name>")); if ((m_clusterer != null) && (m_clusterer instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to clusterer " + m_clusterer.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_clusterer) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. Valid options are: * <p> * * -W classname <br> * Specify the full class name of the clusterer to evaluate. * <p> * * All option after -- will be passed to the classifier. * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { m_NoSizeDetermination = Utils.getFlag("no-size", options); String cName = Utils.getOption('W', options); if (cName.length() == 0) { throw new Exception("A clusterer must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // Classifier. setClusterer((DensityBasedClusterer) AbstractClusterer.forName(cName, null)); if (getClusterer() instanceof OptionHandler) { ((OptionHandler) getClusterer()).setOptions(Utils .partitionOptions(options)); updateOptions(); } } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; String[] clustererOptions; result = new Vector<String>(); clustererOptions = new String[0]; if ((m_clusterer != null) && (m_clusterer instanceof OptionHandler)) { clustererOptions = ((OptionHandler) m_clusterer).getOptions(); } if (getClusterer() != null) { result.add("-W"); result.add(getClusterer().getClass().getName()); } if (getNoSizeDetermination()) { result.add("-no-size"); } result.add("--"); result.addAll(Arrays.asList(clustererOptions)); return result.toArray(new String[result.size()]); } /** * Set a list of method names for additional measures to look for in * Classifiers. This could contain many measures (of which only a subset may * be produceable by the current Classifier) if an experiment is the type that * iterates over a set of properties. * * @param additionalMeasures a list of method names */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { // System.err.println("ClassifierSplitEvaluator: setting additional measures"); m_additionalMeasures = additionalMeasures; // determine which (if any) of the additional measures this clusterer // can produce if (m_additionalMeasures != null && m_additionalMeasures.length > 0) { m_doesProduce = new boolean[m_additionalMeasures.length]; if (m_clusterer instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_clusterer) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); for (int j = 0; j < m_additionalMeasures.length; j++) { if (mname.compareToIgnoreCase(m_additionalMeasures[j]) == 0) { m_doesProduce[j] = true; } } } } } else { m_doesProduce = null; } } /** * Returns an enumeration of any additional measure names that might be in the * classifier * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> newVector = new Vector<String>(); if (m_clusterer instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_clusterer) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @exception IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_clusterer instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer) m_clusterer) .getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException( "DensityBasedClustererSplitEvaluator: " + "Can't return value for : " + additionalMeasureName + ". " + m_clusterer.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Gets the data types of each of the key columns produced for a single run. * The number of key fields must be constant for a given SplitEvaluator. * * @return an array containing objects of the type of each key column. The * objects should be Strings, or Doubles. */ @Override public Object[] getKeyTypes() { Object[] keyTypes = new Object[KEY_SIZE]; keyTypes[0] = ""; keyTypes[1] = ""; keyTypes[2] = ""; return keyTypes; } /** * Gets the names of each of the key columns produced for a single run. The * number of key fields must be constant for a given SplitEvaluator. * * @return an array containing the name of each key column */ @Override public String[] getKeyNames() { String[] keyNames = new String[KEY_SIZE]; keyNames[0] = "Scheme"; keyNames[1] = "Scheme_options"; keyNames[2] = "Scheme_version_ID"; return keyNames; } /** * Gets the key describing the current SplitEvaluator. For example This may * contain the name of the classifier used for classifier predictive * evaluation. The number of key fields must be constant for a given * SplitEvaluator. * * @return an array of objects containing the key. */ @Override public Object[] getKey() { Object[] key = new Object[KEY_SIZE]; key[0] = m_clusterer.getClass().getName(); key[1] = m_clustererOptions; key[2] = m_clustererVersion; return key; } /** * Gets the data types of each of the result columns produced for a single * run. The number of result fields must be constant for a given * SplitEvaluator. * * @return an array containing objects of the type of each result column. The * objects should be Strings, or Doubles. */ @Override public Object[] getResultTypes() { int addm = (m_additionalMeasures != null) ? m_additionalMeasures.length : 0; int overall_length = RESULT_SIZE + addm; Object[] resultTypes = new Object[overall_length]; Double doub = new Double(0); int current = 0; // number of training and testing instances resultTypes[current++] = doub; resultTypes[current++] = doub; // log liklihood resultTypes[current++] = doub; // number of clusters resultTypes[current++] = doub; // timing stats resultTypes[current++] = doub; resultTypes[current++] = doub; // sizes resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // resultTypes[current++] = ""; // add any additional measures for (int i = 0; i < addm; i++) { resultTypes[current++] = doub; } if (current != overall_length) { throw new Error("ResultTypes didn't fit RESULT_SIZE"); } return resultTypes; } /** * Gets the names of each of the result columns produced for a single run. The * number of result fields must be constant for a given SplitEvaluator. * * @return an array containing the name of each result column */ @Override public String[] getResultNames() { int addm = (m_additionalMeasures != null) ? m_additionalMeasures.length : 0; int overall_length = RESULT_SIZE + addm; String[] resultNames = new String[overall_length]; int current = 0; resultNames[current++] = "Number_of_training_instances"; resultNames[current++] = "Number_of_testing_instances"; // Basic performance stats resultNames[current++] = "Log_likelihood"; resultNames[current++] = "Number_of_clusters"; // Timing stats resultNames[current++] = "Time_training"; resultNames[current++] = "Time_testing"; // sizes resultNames[current++] = "Serialized_Model_Size"; resultNames[current++] = "Serialized_Train_Set_Size"; resultNames[current++] = "Serialized_Test_Set_Size"; // Classifier defined extras // resultNames[current++] = "Summary"; // add any additional measures for (int i = 0; i < addm; i++) { resultNames[current++] = m_additionalMeasures[i]; } if (current != overall_length) { throw new Error("ResultNames didn't fit RESULT_SIZE"); } return resultNames; } /** * Gets the results for the supplied train and test datasets. * * @param train the training Instances. * @param test the testing Instances. * @return the results stored in an array. The objects stored in the array may * be Strings, Doubles, or null (for the missing value). * @exception Exception if a problem occurs while getting the results */ @Override public Object[] getResult(Instances train, Instances test) throws Exception { if (m_clusterer == null) { throw new Exception("No clusterer has been specified"); } int addm = (m_additionalMeasures != null) ? m_additionalMeasures.length : 0; int overall_length = RESULT_SIZE + addm; if (m_removeClassColumn && train.classIndex() != -1) { // remove the class column from the training and testing data Remove r = new Remove(); r.setAttributeIndicesArray(new int[] { train.classIndex() }); r.setInvertSelection(false); r.setInputFormat(train); train = Filter.useFilter(train, r); test = Filter.useFilter(test, r); } train.setClassIndex(-1); test.setClassIndex(-1); ClusterEvaluation eval = new ClusterEvaluation(); Object[] result = new Object[overall_length]; long trainTimeStart = System.currentTimeMillis(); m_clusterer.buildClusterer(train); double numClusters = m_clusterer.numberOfClusters(); eval.setClusterer(m_clusterer); long trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; long testTimeStart = System.currentTimeMillis(); eval.evaluateClusterer(test); long testTimeElapsed = System.currentTimeMillis() - testTimeStart; // m_result = eval.toSummaryString(); // The results stored are all per instance -- can be multiplied by the // number of instances to get absolute numbers int current = 0; result[current++] = new Double(train.numInstances()); result[current++] = new Double(test.numInstances()); result[current++] = new Double(eval.getLogLikelihood()); result[current++] = new Double(numClusters); // Timing stats result[current++] = new Double(trainTimeElapsed / 1000.0); result[current++] = new Double(testTimeElapsed / 1000.0); // sizes if (m_NoSizeDetermination) { result[current++] = -1.0; result[current++] = -1.0; result[current++] = -1.0; } else { ByteArrayOutputStream bastream = new ByteArrayOutputStream(); ObjectOutputStream oostream = new ObjectOutputStream(bastream); oostream.writeObject(m_clusterer); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(train); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(test); result[current++] = new Double(bastream.size()); } for (int i = 0; i < addm; i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer) m_clusterer) .getMeasure(m_additionalMeasures[i]); Double value = new Double(dv); result[current++] = value; } catch (Exception ex) { System.err.println(ex); } } else { result[current++] = null; } } if (current != overall_length) { throw new Error("Results didn't fit RESULT_SIZE"); } m_Evaluation = eval; return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String removeClassColumnTipText() { return "Remove the class column (if set) from the data."; } /** * Set whether the class column should be removed from the data. * * @param r true if the class column is to be removed. */ public void setRemoveClassColumn(boolean r) { m_removeClassColumn = r; } /** * Get whether the class column is to be removed. * * @return true if the class column is to be removed. */ public boolean getRemoveClassColumn() { return m_removeClassColumn; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String clustererTipText() { return "The density based clusterer to use."; } /** * Get the value of clusterer * * @return Value of clusterer. */ public DensityBasedClusterer getClusterer() { return m_clusterer; } /** * Sets the clusterer. * * @param newClusterer the new clusterer to use. */ public void setClusterer(DensityBasedClusterer newClusterer) { m_clusterer = newClusterer; updateOptions(); } /** * Returns whether the size determination (train/test/clusterer) is skipped. * * @return true if size determination skipped */ public boolean getNoSizeDetermination() { return m_NoSizeDetermination; } /** * Sets whether the size determination (train/test/clusterer) is skipped. * * @param value true if to determine sizes */ public void setNoSizeDetermination(boolean value) { m_NoSizeDetermination = value; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String noSizeDeterminationTipText() { return "If enabled, the size determination for train/test/clusterer is skipped."; } protected void updateOptions() { if (m_clusterer instanceof OptionHandler) { m_clustererOptions = Utils.joinOptions(((OptionHandler) m_clusterer) .getOptions()); } else { m_clustererOptions = ""; } if (m_clusterer instanceof Serializable) { ObjectStreamClass obs = ObjectStreamClass.lookup(m_clusterer.getClass()); m_clustererVersion = "" + obs.getSerialVersionUID(); } else { m_clustererVersion = ""; } } /** * Set the Clusterer to use, given it's class name. A new clusterer will be * instantiated. * * @param newClustererName the clusterer class name. * @exception Exception if the class name is invalid. */ public void setClustererName(String newClustererName) throws Exception { try { setClusterer((DensityBasedClusterer) Class.forName(newClustererName) .newInstance()); } catch (Exception ex) { throw new Exception("Can't find Clusterer with class name: " + newClustererName); } } /** * Gets the raw output from the classifier * * @return the raw output from the classifier */ @Override public String getRawResultOutput() { StringBuffer result = new StringBuffer(); if (m_clusterer == null) { return "<null> clusterer"; } result.append(toString()); result.append("Clustering model: \n" + m_clusterer.toString() + '\n'); // append the performance statistics if (m_result != null) { // result.append(m_result); if (m_doesProduce != null) { for (int i = 0; i < m_doesProduce.length; i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer) m_clusterer) .getMeasure(m_additionalMeasures[i]); Double value = new Double(dv); result.append(m_additionalMeasures[i] + " : " + value + '\n'); } catch (Exception ex) { System.err.println(ex); } } } } } return result.toString(); } /** * Returns a text description of the split evaluator. * * @return a text description of the split evaluator. */ @Override public String toString() { String result = "DensityBasedClustererSplitEvaluator: "; if (m_clusterer == null) { return result + "<null> clusterer"; } return result + m_clusterer.getClass().getName() + " " + m_clustererOptions + "(version " + m_clustererVersion + ")"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/Experiment.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Experiment.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.beans.PropertyDescriptor; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.Serializable; import java.lang.reflect.Array; import java.lang.reflect.Method; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Vector; import javax.swing.DefaultListModel; import weka.core.AdditionalMeasureProducer; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.SerializationHelper; import weka.core.Utils; import weka.core.converters.AbstractFileLoader; import weka.core.converters.ConverterUtils; import weka.core.xml.KOML; import weka.core.xml.XMLOptions; import weka.experiment.xml.XMLExperiment; /** * Holds all the necessary configuration information for a standard type * experiment. This object is able to be serialized for storage on disk. * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -L &lt;num&gt; * The lower run number to start the experiment from. * (default 1) * </pre> * * <pre> * -U &lt;num&gt; * The upper run number to end the experiment at (inclusive). * (default 10) * </pre> * * <pre> * -T &lt;arff file&gt; * The dataset to run the experiment on. * (required, may be specified multiple times) * </pre> * * <pre> * -P &lt;class name&gt; * The full class name of a ResultProducer (required). * eg: weka.experiment.RandomSplitResultProducer * </pre> * * <pre> * -D &lt;class name&gt; * The full class name of a ResultListener (required). * eg: weka.experiment.CSVResultListener * </pre> * * <pre> * -N &lt;string&gt; * A string containing any notes about the experiment. * (default none) * </pre> * * <pre> * Options specific to result producer weka.experiment.RandomSplitResultProducer: * </pre> * * <pre> * -P &lt;percent&gt; * The percentage of instances to use for training. * (default 66) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * -R * Set when data is not to be randomized and the data sets' size. * Is not to be determined via probabilistic rounding. * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the result producer. * <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class Experiment implements Serializable, OptionHandler, RevisionHandler { /** for serialization */ static final long serialVersionUID = 44945596742646663L; /** The filename extension that should be used for experiment files */ public static String FILE_EXTENSION = ".exp"; /** Where results will be sent */ protected ResultListener m_ResultListener = new InstancesResultListener(); /** The result producer */ protected ResultProducer m_ResultProducer = new RandomSplitResultProducer(); /** Lower run number */ protected int m_RunLower = 1; /** Upper run number */ protected int m_RunUpper = 10; /** An array of dataset files */ protected DefaultListModel m_Datasets = new DefaultListModel(); /** True if the exp should also iterate over a property of the RP */ protected boolean m_UsePropertyIterator = false; /** The path to the iterator property */ protected PropertyNode[] m_PropertyPath; /** The array of values to set the property to */ protected Object m_PropertyArray; /** User notes about the experiment */ protected String m_Notes = ""; /** * Method names of additional measures of objects contained in the custom * property iterator. Only methods names beginning with "measure" and * returning doubles are recognised */ protected String[] m_AdditionalMeasures = null; /** * True if the class attribute is the first attribute for all datasets * involved in this experiment. */ protected boolean m_ClassFirst = false; /** * If true an experiment will advance the current data set befor any custom * itererator */ protected boolean m_AdvanceDataSetFirst = true; /** * Sets whether the first attribute is treated as the class for all datasets * involved in the experiment. This information is not output with the result * of the experiments! * * @param flag whether the class attribute is the first and not the last */ public void classFirst(boolean flag) { m_ClassFirst = flag; } /** * Get the value of m_DataSetFirstFirst. * * @return Value of m_DataSetFirstFirst. */ public boolean getAdvanceDataSetFirst() { return m_AdvanceDataSetFirst; } /** * Set the value of m_AdvanceDataSetFirst. * * @param newAdvanceDataSetFirst Value to assign to m_AdvanceRunFirst. */ public void setAdvanceDataSetFirst(boolean newAdvanceDataSetFirst) { m_AdvanceDataSetFirst = newAdvanceDataSetFirst; } /** * Gets whether the custom property iterator should be used. * * @return true if so */ public boolean getUsePropertyIterator() { return m_UsePropertyIterator; } /** * Sets whether the custom property iterator should be used. * * @param newUsePropertyIterator true if so */ public void setUsePropertyIterator(boolean newUsePropertyIterator) { m_UsePropertyIterator = newUsePropertyIterator; } /** * Gets the path of properties taken to get to the custom property to iterate * over. * * @return an array of PropertyNodes */ public PropertyNode[] getPropertyPath() { return m_PropertyPath; } /** * Sets the path of properties taken to get to the custom property to iterate * over. * * @param newPropertyPath an array of PropertyNodes */ public void setPropertyPath(PropertyNode[] newPropertyPath) { m_PropertyPath = newPropertyPath; } /** * Sets the array of values to set the custom property to. * * @param newPropArray a value of type Object which should be an array of the * appropriate values. */ public void setPropertyArray(Object newPropArray) { m_PropertyArray = newPropArray; } /** * Gets the array of values to set the custom property to. * * @return a value of type Object which should be an array of the appropriate * values. */ public Object getPropertyArray() { return m_PropertyArray; } /** * Gets the number of custom iterator values that have been defined for the * experiment. * * @return the number of custom property iterator values. */ public int getPropertyArrayLength() { return Array.getLength(m_PropertyArray); } /** * Gets a specified value from the custom property iterator array. * * @param index the index of the value wanted * @return the property array value */ public Object getPropertyArrayValue(int index) { return Array.get(m_PropertyArray, index); } /* * These may potentially want to be made un-transient if it is decided that * experiments may be saved mid-run and later resumed */ /** The current run number when the experiment is running */ protected transient int m_RunNumber; /** The current dataset number when the experiment is running */ protected transient int m_DatasetNumber; /** The current custom property value index when the experiment is running */ protected transient int m_PropertyNumber; /** True if the experiment has finished running */ protected transient boolean m_Finished = true; /** The dataset currently being used */ protected transient Instances m_CurrentInstances; /** The custom property value that has actually been set */ protected transient int m_CurrentProperty; /** * When an experiment is running, this returns the current run number. * * @return the current run number. */ public int getCurrentRunNumber() { return m_RunNumber; } /** * When an experiment is running, this returns the current dataset number. * * @return the current dataset number. */ public int getCurrentDatasetNumber() { return m_DatasetNumber; } /** * When an experiment is running, this returns the index of the current custom * property value. * * @return the index of the current custom property value. */ public int getCurrentPropertyNumber() { return m_PropertyNumber; } /** * Prepares an experiment for running, initializing current iterator settings. * * @throws Exception if an error occurs */ public void initialize() throws Exception { m_RunNumber = getRunLower(); m_DatasetNumber = 0; m_PropertyNumber = 0; m_CurrentProperty = -1; m_CurrentInstances = null; m_Finished = false; if (m_UsePropertyIterator && (m_PropertyArray == null)) { throw new Exception("Null array for property iterator"); } if (getRunLower() > getRunUpper()) { throw new Exception("Lower run number is greater than upper run number"); } if (getDatasets().size() == 0) { throw new Exception("No datasets have been specified"); } if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } // if (m_UsePropertyIterator && (m_PropertyArray != null)) { determineAdditionalResultMeasures(); // } m_ResultProducer.setResultListener(m_ResultListener); m_ResultProducer.setAdditionalMeasures(m_AdditionalMeasures); m_ResultProducer.preProcess(); // constrain the additional measures to be only those allowable // by the ResultListener String[] columnConstraints = m_ResultListener .determineColumnConstraints(m_ResultProducer); if (columnConstraints != null) { m_ResultProducer.setAdditionalMeasures(columnConstraints); } } /** * Iterate over the objects in the property array to determine what (if any) * additional measures they support * * @throws Exception if additional measures don't comply to the naming * convention (starting with "measure") */ private void determineAdditionalResultMeasures() throws Exception { m_AdditionalMeasures = null; ArrayList<String> measureNames = new ArrayList<String>(); // first try the result producer, then property array if applicable if (m_ResultProducer instanceof AdditionalMeasureProducer) { Enumeration<String> am = ((AdditionalMeasureProducer) m_ResultProducer) .enumerateMeasures(); while (am.hasMoreElements()) { String mname = am.nextElement(); if (mname.startsWith("measure")) { if (measureNames.indexOf(mname) == -1) { measureNames.add(mname); } } else { throw new Exception("Additional measures in " + m_ResultProducer.getClass().getName() + " must obey the naming convention" + " of starting with \"measure\""); } } } if (m_UsePropertyIterator && (m_PropertyArray != null)) { for (int i = 0; i < Array.getLength(m_PropertyArray); i++) { Object current = Array.get(m_PropertyArray, i); if (current instanceof AdditionalMeasureProducer) { Enumeration<String> am = ((AdditionalMeasureProducer) current) .enumerateMeasures(); while (am.hasMoreElements()) { String mname = am.nextElement(); if (mname.startsWith("measure")) { if (measureNames.indexOf(mname) == -1) { measureNames.add(mname); } } else { throw new Exception("Additional measures in " + current.getClass().getName() + " must obey the naming convention" + " of starting with \"measure\""); } } } } } if (measureNames.size() > 0) { m_AdditionalMeasures = new String[measureNames.size()]; for (int i = 0; i < measureNames.size(); i++) { m_AdditionalMeasures[i] = measureNames.get(i); } } } /** * Recursively sets the custom property value, by setting all values along the * property path. * * @param propertyDepth the current position along the property path * @param origValue the value to set the property to * @throws Exception if an error occurs */ protected void setProperty(int propertyDepth, Object origValue) throws Exception { PropertyDescriptor current = m_PropertyPath[propertyDepth].property; Object subVal = null; if (propertyDepth < m_PropertyPath.length - 1) { Method getter = current.getReadMethod(); Object getArgs[] = {}; subVal = getter.invoke(origValue, getArgs); setProperty(propertyDepth + 1, subVal); } else { subVal = Array.get(m_PropertyArray, m_PropertyNumber); } Method setter = current.getWriteMethod(); Object[] args = { subVal }; setter.invoke(origValue, args); } /** * Returns true if there are more iterations to carry out in the experiment. * * @return true if so */ public boolean hasMoreIterations() { return !m_Finished; } /** * Carries out the next iteration of the experiment. * * @throws Exception if an error occurs */ public void nextIteration() throws Exception { if (m_UsePropertyIterator) { if (m_CurrentProperty != m_PropertyNumber) { setProperty(0, m_ResultProducer); m_CurrentProperty = m_PropertyNumber; } } if (m_CurrentInstances == null) { File currentFile = (File) getDatasets().elementAt(m_DatasetNumber); AbstractFileLoader loader = ConverterUtils.getLoaderForFile(currentFile); loader.setFile(currentFile); Instances data = new Instances(loader.getDataSet()); // only set class attribute if not already done by loader if (data.classIndex() == -1) { if (m_ClassFirst) { data.setClassIndex(0); } else { data.setClassIndex(data.numAttributes() - 1); } } m_CurrentInstances = data; m_ResultProducer.setInstances(m_CurrentInstances); } m_ResultProducer.doRun(m_RunNumber); advanceCounters(); } /** * Increments iteration counters appropriately. */ public void advanceCounters() { if (m_AdvanceDataSetFirst) { m_RunNumber++; if (m_RunNumber > getRunUpper()) { m_RunNumber = getRunLower(); m_DatasetNumber++; m_CurrentInstances = null; if (m_DatasetNumber >= getDatasets().size()) { m_DatasetNumber = 0; if (m_UsePropertyIterator) { m_PropertyNumber++; if (m_PropertyNumber >= Array.getLength(m_PropertyArray)) { m_Finished = true; } } else { m_Finished = true; } } } } else { // advance by custom iterator before data set m_RunNumber++; if (m_RunNumber > getRunUpper()) { m_RunNumber = getRunLower(); if (m_UsePropertyIterator) { m_PropertyNumber++; if (m_PropertyNumber >= Array.getLength(m_PropertyArray)) { m_PropertyNumber = 0; m_DatasetNumber++; m_CurrentInstances = null; if (m_DatasetNumber >= getDatasets().size()) { m_Finished = true; } } } else { m_DatasetNumber++; m_CurrentInstances = null; if (m_DatasetNumber >= getDatasets().size()) { m_Finished = true; } } } } } public void runExperiment(boolean verbose) { while (hasMoreIterations()) { try { if (verbose) { String current = "Iteration:"; if (getUsePropertyIterator()) { int cnum = getCurrentPropertyNumber(); String ctype = getPropertyArray().getClass().getComponentType() .getName(); int lastDot = ctype.lastIndexOf('.'); if (lastDot != -1) { ctype = ctype.substring(lastDot + 1); } String cname = " " + ctype + "=" + (cnum + 1) + ":" + getPropertyArrayValue(cnum).getClass().getName(); current += cname; } String dname = ((File) getDatasets().elementAt( getCurrentDatasetNumber())).getName(); current += " Dataset=" + dname + " Run=" + (getCurrentRunNumber()); System.out.println(current); } nextIteration(); } catch (Exception ex) { ex.printStackTrace(); System.err.println(ex.getMessage()); advanceCounters(); // Try to keep plowing through } } } /** * Runs all iterations of the experiment, continuing past errors. */ public void runExperiment() { runExperiment(false); } /** * Signals that the experiment is finished running, so that cleanup can be * done. * * @throws Exception if an error occurs */ public void postProcess() throws Exception { m_ResultProducer.postProcess(); } /** * Gets the datasets in the experiment. * * @return the datasets in the experiment. */ public DefaultListModel getDatasets() { return m_Datasets; } /** * Set the datasets to use in the experiment * * @param ds the list of datasets to use */ public void setDatasets(DefaultListModel ds) { m_Datasets = ds; } /** * Gets the result listener where results will be sent. * * @return the result listener where results will be sent. */ public ResultListener getResultListener() { return m_ResultListener; } /** * Sets the result listener where results will be sent. * * @param newResultListener the result listener where results will be sent. */ public void setResultListener(ResultListener newResultListener) { m_ResultListener = newResultListener; } /** * Get the result producer used for the current experiment. * * @return the result producer used for the current experiment. */ public ResultProducer getResultProducer() { return m_ResultProducer; } /** * Set the result producer used for the current experiment. * * @param newResultProducer result producer to use for the current experiment. */ public void setResultProducer(ResultProducer newResultProducer) { m_ResultProducer = newResultProducer; } /** * Get the upper run number for the experiment. * * @return the upper run number for the experiment. */ public int getRunUpper() { return m_RunUpper; } /** * Set the upper run number for the experiment. * * @param newRunUpper the upper run number for the experiment. */ public void setRunUpper(int newRunUpper) { m_RunUpper = newRunUpper; } /** * Get the lower run number for the experiment. * * @return the lower run number for the experiment. */ public int getRunLower() { return m_RunLower; } /** * Set the lower run number for the experiment. * * @param newRunLower the lower run number for the experiment. */ public void setRunLower(int newRunLower) { m_RunLower = newRunLower; } /** * Get the user notes. * * @return User notes associated with the experiment. */ public String getNotes() { return m_Notes; } /** * Set the user notes. * * @param newNotes New user notes. */ public void setNotes(String newNotes) { m_Notes = newNotes; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(6); newVector.addElement(new Option( "\tThe lower run number to start the experiment from.\n" + "\t(default 1)", "L", 1, "-L <num>")); newVector.addElement(new Option( "\tThe upper run number to end the experiment at (inclusive).\n" + "\t(default 10)", "U", 1, "-U <num>")); newVector.addElement(new Option("\tThe dataset to run the experiment on.\n" + "\t(required, may be specified multiple times)", "T", 1, "-T <arff file>")); newVector.addElement(new Option( "\tThe full class name of a ResultProducer (required).\n" + "\teg: weka.experiment.RandomSplitResultProducer", "P", 1, "-P <class name>")); newVector .addElement(new Option( "\tThe full class name of a ResultListener (required).\n" + "\teg: weka.experiment.CSVResultListener", "D", 1, "-D <class name>")); newVector.addElement(new Option( "\tA string containing any notes about the experiment.\n" + "\t(default none)", "N", 1, "-N <string>")); if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to result producer " + m_ResultProducer.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_ResultProducer) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -L &lt;num&gt; * The lower run number to start the experiment from. * (default 1) * </pre> * * <pre> * -U &lt;num&gt; * The upper run number to end the experiment at (inclusive). * (default 10) * </pre> * * <pre> * -T &lt;arff file&gt; * The dataset to run the experiment on. * (required, may be specified multiple times) * </pre> * * <pre> * -P &lt;class name&gt; * The full class name of a ResultProducer (required). * eg: weka.experiment.RandomSplitResultProducer * </pre> * * <pre> * -D &lt;class name&gt; * The full class name of a ResultListener (required). * eg: weka.experiment.CSVResultListener * </pre> * * <pre> * -N &lt;string&gt; * A string containing any notes about the experiment. * (default none) * </pre> * * <pre> * Options specific to result producer weka.experiment.RandomSplitResultProducer: * </pre> * * <pre> * -P &lt;percent&gt; * The percentage of instances to use for training. * (default 66) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * -R * Set when data is not to be randomized and the data sets' size. * Is not to be determined via probabilistic rounding. * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the result producer. * <p> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String lowerString = Utils.getOption('L', options); if (lowerString.length() != 0) { setRunLower(Integer.parseInt(lowerString)); } else { setRunLower(1); } String upperString = Utils.getOption('U', options); if (upperString.length() != 0) { setRunUpper(Integer.parseInt(upperString)); } else { setRunUpper(10); } if (getRunLower() > getRunUpper()) { throw new Exception("Lower (" + getRunLower() + ") is greater than upper (" + getRunUpper() + ")"); } setNotes(Utils.getOption('N', options)); getDatasets().removeAllElements(); String dataName; do { dataName = Utils.getOption('T', options); if (dataName.length() != 0) { File dataset = new File(dataName); getDatasets().addElement(dataset); } } while (dataName.length() != 0); if (getDatasets().size() == 0) { throw new Exception("Required: -T <arff file name>"); } String rlName = Utils.getOption('D', options); if (rlName.length() == 0) { throw new Exception("Required: -D <ResultListener class name>"); } rlName = rlName.trim(); // split off any options int breakLoc = rlName.indexOf(' '); String clName = rlName; String rlOptionsString = ""; String[] rlOptions = null; if (breakLoc != -1) { clName = rlName.substring(0, breakLoc); rlOptionsString = rlName.substring(breakLoc).trim(); rlOptions = Utils.splitOptions(rlOptionsString); } setResultListener((ResultListener) Utils.forName(ResultListener.class, clName, rlOptions)); String rpName = Utils.getOption('P', options); if (rpName.length() == 0) { throw new Exception("Required: -P <ResultProducer class name>"); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // RP. // GHF -- nice idea, but it prevents you from using result producers that // have *required* parameters setResultProducer((ResultProducer) Utils.forName(ResultProducer.class, rpName, Utils.partitionOptions(options))); // GHF // GHF if (getResultProducer() instanceof OptionHandler) { // GHF ((OptionHandler) getResultProducer()) // GHF .setOptions(Utils.partitionOptions(options)); // GHF } } /** * Gets the current settings of the experiment iterator. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { // Currently no way to set custompropertyiterators from the command line m_UsePropertyIterator = false; m_PropertyPath = null; m_PropertyArray = null; String[] rpOptions = new String[0]; if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { rpOptions = ((OptionHandler) m_ResultProducer).getOptions(); } String[] options = new String[rpOptions.length + getDatasets().size() * 2 + 11]; int current = 0; options[current++] = "-L"; options[current++] = "" + getRunLower(); options[current++] = "-U"; options[current++] = "" + getRunUpper(); if (getDatasets().size() != 0) { for (int i = 0; i < getDatasets().size(); i++) { options[current++] = "-T"; options[current++] = getDatasets().elementAt(i).toString(); } } if (getResultListener() != null) { options[current++] = "-D"; options[current++] = getResultListener().getClass().getName(); } if (getResultProducer() != null) { options[current++] = "-P"; options[current++] = getResultProducer().getClass().getName(); } if (!getNotes().equals("")) { options[current++] = "-N"; options[current++] = getNotes(); } options[current++] = "--"; System.arraycopy(rpOptions, 0, options, current, rpOptions.length); current += rpOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Gets a string representation of the experiment configuration. * * @return a value of type 'String' */ @Override public String toString() { String result = "Runs from: " + m_RunLower + " to: " + m_RunUpper + '\n'; result += "Datasets:"; for (int i = 0; i < m_Datasets.size(); i++) { result += " " + m_Datasets.elementAt(i); } result += '\n'; result += "Custom property iterator: " + (m_UsePropertyIterator ? "on" : "off") + "\n"; if (m_UsePropertyIterator) { if (m_PropertyPath == null) { throw new Error("*** null propertyPath ***"); } if (m_PropertyArray == null) { throw new Error("*** null propertyArray ***"); } if (m_PropertyPath.length > 1) { result += "Custom property path:\n"; for (int i = 0; i < m_PropertyPath.length - 1; i++) { PropertyNode pn = m_PropertyPath[i]; result += "" + (i + 1) + " " + pn.parentClass.getName() + "::" + pn.toString() + ' ' + pn.value.toString() + '\n'; } } result += "Custom property name:" + m_PropertyPath[m_PropertyPath.length - 1].toString() + '\n'; result += "Custom property values:\n"; for (int i = 0; i < Array.getLength(m_PropertyArray); i++) { Object current = Array.get(m_PropertyArray, i); result += " " + (i + 1) + " " + current.getClass().getName() + " " + current.toString() + '\n'; } } result += "ResultProducer: " + m_ResultProducer + '\n'; result += "ResultListener: " + m_ResultListener + '\n'; if (!getNotes().equals("")) { result += "Notes: " + getNotes(); } return result; } /** * Loads an experiment from a file. * * @param filename the file to load the experiment from * @return the experiment * @throws Exception if loading fails */ public static Experiment read(String filename) throws Exception { Experiment result; // KOML? if ((KOML.isPresent()) && (filename.toLowerCase().endsWith(KOML.FILE_EXTENSION))) { result = (Experiment) KOML.read(filename); } // XML? else if (filename.toLowerCase().endsWith(".xml")) { XMLExperiment xml = new XMLExperiment(); result = (Experiment) xml.read(filename); } // binary else { FileInputStream fi = new FileInputStream(filename); ObjectInputStream oi = SerializationHelper.getObjectInputStream(fi); // ObjectInputStream oi = new ObjectInputStream(new BufferedInputStream(fi)); result = (Experiment) oi.readObject(); oi.close(); } return result; } /** * Writes the experiment to disk. * * @param filename the file to write to * @param exp the experiment to save * @throws Exception if writing fails */ public static void write(String filename, Experiment exp) throws Exception { // KOML? if ((KOML.isPresent()) && (filename.toLowerCase().endsWith(KOML.FILE_EXTENSION))) { KOML.write(filename, exp); } // XML? else if (filename.toLowerCase().endsWith(".xml")) { XMLExperiment xml = new XMLExperiment(); xml.write(filename, exp); } // binary else { FileOutputStream fo = new FileOutputStream(filename); ObjectOutputStream oo = new ObjectOutputStream(new BufferedOutputStream( fo)); oo.writeObject(exp); oo.close(); } } /** * Configures/Runs the Experiment from the command line. * * @param args command line arguments to the Experiment. */ public static void main(String[] args) { try { weka.core.WekaPackageManager.loadPackages(false, true, false); Experiment exp = null; // get options from XML? String xmlOption = Utils.getOption("xml", args); if (!xmlOption.equals("")) { args = new XMLOptions(xmlOption).toArray(); } String expFile = Utils.getOption('l', args); String saveFile = Utils.getOption('s', args); boolean runExp = Utils.getFlag('r', args); boolean verbose = Utils.getFlag("verbose", args); if (expFile.length() == 0) { exp = new Experiment(); try { exp.setOptions(args); Utils.checkForRemainingOptions(args); } catch (Exception ex) { ex.printStackTrace(); String result = "Usage:\n\n" + "-l <exp|xml file>\n" + "\tLoad experiment from file (default use cli options).\n" + "\tThe type is determined, based on the extension (" + FILE_EXTENSION + " or .xml)\n" + "-s <exp|xml file>\n" + "\tSave experiment to file after setting other options.\n" + "\tThe type is determined, based on the extension (" + FILE_EXTENSION + " or .xml)\n" + "\t(default don't save)\n" + "-r\n" + "\tRun experiment (default don't run)\n" + "-xml <filename | xml-string>\n" + "\tget options from XML-Data instead from parameters.\n" + "-verbose\n" + "\toutput progress information to std out." + "\n"; Enumeration<Option> enm = ((OptionHandler) exp).listOptions(); while (enm.hasMoreElements()) { Option option = enm.nextElement(); result += option.synopsis() + "\n"; result += option.description() + "\n"; } throw new Exception(result + "\n" + ex.getMessage()); } } else { exp = read(expFile); if (exp instanceof RemoteExperiment) { throw new Exception("Cannot run remote experiment using Experiment class. Use RemoteExperiment class instead!"); } // allow extra datasets to be added to pre-loaded experiment from // command line String dataName; do { dataName = Utils.getOption('T', args); if (dataName.length() != 0) { File dataset = new File(dataName); exp.getDatasets().addElement(dataset); } } while (dataName.length() != 0); } System.err.println("Experiment:\n" + exp.toString()); if (saveFile.length() != 0) { write(saveFile, exp); } if (runExp) { System.err.println("Initializing..."); exp.initialize(); System.err.println("Iterating..."); exp.runExperiment(verbose); System.err.println("Postprocessing..."); exp.postProcess(); } } catch (Exception ex) { System.err.println(ex.getMessage()); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // Experiment
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ExplicitTestsetResultProducer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ExplicitTestsetResultProducer.java * Copyright (C) 2009-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.File; import java.util.Calendar; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.TimeZone; import java.util.Vector; import weka.core.AdditionalMeasureProducer; import weka.core.Environment; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.WekaException; import weka.core.converters.ConverterUtils.DataSource; /** * <!-- globalinfo-start --> Loads the external test set and calls the * appropriate SplitEvaluator to generate some results.<br/> * The filename of the test set is constructed as follows:<br/> * &lt;dir&gt; + / + &lt;prefix&gt; + &lt;relation-name&gt; + &lt;suffix&gt;<br/> * The relation-name can be modified by using the regular expression to replace * the matching sub-string with a specified replacement string. In order to get * rid of the string that the Weka filters add to the end of the relation name, * just use '.*-weka' as the regular expression to find.<br/> * The suffix determines the type of file to load, i.e., one is not restricted * to ARFF files. As long as Weka recognizes the extension specified in the * suffix, the data will be loaded with one of Weka's converters. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. * (default: splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * -R * Set when data is to be randomized. * </pre> * * <pre> * -dir &lt;directory&gt; * The directory containing the test sets. * (default: current directory) * </pre> * * <pre> * -prefix &lt;string&gt; * An optional prefix for the test sets (before the relation name). * (default: empty string) * </pre> * * <pre> * -suffix &lt;string&gt; * The suffix to append to the test set. * (default: _test.arff) * </pre> * * <pre> * -find &lt;regular expression&gt; * The regular expression to search the relation name with. * Not used if an empty string. * (default: empty string) * </pre> * * <pre> * -replace &lt;string&gt; * The replacement string for the all the matches of '-find'. * (default: empty string) * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the split evaluator. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class ExplicitTestsetResultProducer implements ResultProducer, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = 2613585409333652530L; /** the default suffix. */ public final static String DEFAULT_SUFFIX = "_test.arff"; /** The dataset of interest. */ protected Instances m_Instances; /** The ResultListener to send results to. */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The directory containing all the test sets. */ protected File m_TestsetDir = new File(System.getProperty("user.dir")); /** The prefix for all the test sets. */ protected String m_TestsetPrefix = ""; /** The suffix for all the test sets. */ protected String m_TestsetSuffix = DEFAULT_SUFFIX; /** The regular expression to search for in the relation name. */ protected String m_RelationFind = ""; /** The string to use to replace the matches of the regular expression. */ protected String m_RelationReplace = ""; /** Whether dataset is to be randomized. */ protected boolean m_randomize = false; /** The SplitEvaluator used to generate results. */ protected SplitEvaluator m_SplitEvaluator = new ClassifierSplitEvaluator(); /** The names of any additional measures to look for in SplitEvaluators. */ protected String[] m_AdditionalMeasures = null; /** Save raw output of split evaluators --- for debugging purposes. */ protected boolean m_debugOutput = false; /** The output zipper to use for saving raw splitEvaluator output. */ protected OutputZipper m_ZipDest = null; /** The destination output file/directory for raw output. */ protected File m_OutputFile = new File(new File( System.getProperty("user.dir")), "splitEvalutorOut.zip"); /** The name of the key field containing the dataset name. */ public static String DATASET_FIELD_NAME = "Dataset"; /** The name of the key field containing the run number. */ public static String RUN_FIELD_NAME = "Run"; /** The name of the result field containing the timestamp. */ public static String TIMESTAMP_FIELD_NAME = "Date_time"; protected transient Environment m_env; /** * Returns a string describing this result producer. * * @return a description of the result producer suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Loads the external test set and calls the appropriate " + "SplitEvaluator to generate some results.\n" + "The filename of the test set is constructed as follows:\n" + " <dir> + / + <prefix> + <relation-name> + <suffix>\n" + "The relation-name can be modified by using the regular expression " + "to replace the matching sub-string with a specified replacement " + "string. In order to get rid of the string that the Weka filters " + "add to the end of the relation name, just use '.*-weka' as the " + "regular expression to find.\n" + "The suffix determines the type of file to load, i.e., one is " + "not restricted to ARFF files. As long as Weka recognizes the " + "extension specified in the suffix, the data will be loaded with " + "one of Weka's converters."; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option("Save raw split evaluator output.", "D", 0, "-D")); result.addElement(new Option( "\tThe filename where raw output will be stored.\n" + "\tIf a directory name is specified then then individual\n" + "\toutputs will be gzipped, otherwise all output will be\n" + "\tzipped to the named file. Use in conjuction with -D.\n" + "\t(default: splitEvalutorOut.zip)", "O", 1, "-O <file/directory name/path>")); result.addElement(new Option("\tThe full class name of a SplitEvaluator.\n" + "\teg: weka.experiment.ClassifierSplitEvaluator", "W", 1, "-W <class name>")); result.addElement(new Option("\tSet when data is to be randomized.", "R", 0, "-R")); result.addElement(new Option("\tThe directory containing the test sets.\n" + "\t(default: current directory)", "dir", 1, "-dir <directory>")); result.addElement(new Option( "\tAn optional prefix for the test sets (before the relation name).\n" + "(default: empty string)", "prefix", 1, "-prefix <string>")); result .addElement(new Option("\tThe suffix to append to the test set.\n" + "\t(default: " + DEFAULT_SUFFIX + ")", "suffix", 1, "-suffix <string>")); result.addElement(new Option( "\tThe regular expression to search the relation name with.\n" + "\tNot used if an empty string.\n" + "\t(default: empty string)", "find", 1, "-find <regular expression>")); result.addElement(new Option( "\tThe replacement string for the all the matches of '-find'.\n" + "\t(default: empty string)", "replace", 1, "-replace <string>")); if ((m_SplitEvaluator != null) && (m_SplitEvaluator instanceof OptionHandler)) { result.addElement(new Option("", "", 0, "\nOptions specific to split evaluator " + m_SplitEvaluator.getClass().getName() + ":")); result.addAll(Collections.list(((OptionHandler) m_SplitEvaluator) .listOptions())); } return result.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. * (default: splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * -R * Set when data is to be randomized. * </pre> * * <pre> * -dir &lt;directory&gt; * The directory containing the test sets. * (default: current directory) * </pre> * * <pre> * -prefix &lt;string&gt; * An optional prefix for the test sets (before the relation name). * (default: empty string) * </pre> * * <pre> * -suffix &lt;string&gt; * The suffix to append to the test set. * (default: _test.arff) * </pre> * * <pre> * -find &lt;regular expression&gt; * The regular expression to search the relation name with. * Not used if an empty string. * (default: empty string) * </pre> * * <pre> * -replace &lt;string&gt; * The replacement string for the all the matches of '-find'. * (default: empty string) * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the split evaluator. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; setRawOutput(Utils.getFlag('D', options)); setRandomizeData(!Utils.getFlag('R', options)); tmpStr = Utils.getOption('O', options); if (tmpStr.length() != 0) { setOutputFile(new File(tmpStr)); } tmpStr = Utils.getOption("dir", options); if (tmpStr.length() > 0) { setTestsetDir(new File(tmpStr)); } else { setTestsetDir(new File(System.getProperty("user.dir"))); } tmpStr = Utils.getOption("prefix", options); if (tmpStr.length() > 0) { setTestsetPrefix(tmpStr); } else { setTestsetPrefix(""); } tmpStr = Utils.getOption("suffix", options); if (tmpStr.length() > 0) { setTestsetSuffix(tmpStr); } else { setTestsetSuffix(DEFAULT_SUFFIX); } tmpStr = Utils.getOption("find", options); if (tmpStr.length() > 0) { setRelationFind(tmpStr); } else { setRelationFind(""); } tmpStr = Utils.getOption("replace", options); if ((tmpStr.length() > 0) && (getRelationFind().length() > 0)) { setRelationReplace(tmpStr); } else { setRelationReplace(""); } tmpStr = Utils.getOption('W', options); if (tmpStr.length() == 0) { throw new Exception( "A SplitEvaluator must be specified with the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // SE. setSplitEvaluator((SplitEvaluator) Utils.forName(SplitEvaluator.class, tmpStr, null)); if (getSplitEvaluator() instanceof OptionHandler) { ((OptionHandler) getSplitEvaluator()).setOptions(Utils .partitionOptions(options)); } } /** * Gets the current settings of the result producer. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; String[] seOptions; int i; result = new Vector<String>(); seOptions = new String[0]; if ((m_SplitEvaluator != null) && (m_SplitEvaluator instanceof OptionHandler)) { seOptions = ((OptionHandler) m_SplitEvaluator).getOptions(); } if (getRawOutput()) { result.add("-D"); } if (!getRandomizeData()) { result.add("-R"); } result.add("-O"); result.add(getOutputFile().getName()); result.add("-dir"); result.add(getTestsetDir().getPath()); if (getTestsetPrefix().length() > 0) { result.add("-prefix"); result.add(getTestsetPrefix()); } result.add("-suffix"); result.add(getTestsetSuffix()); if (getRelationFind().length() > 0) { result.add("-find"); result.add(getRelationFind()); if (getRelationReplace().length() > 0) { result.add("-replace"); result.add(getRelationReplace()); } } if (getSplitEvaluator() != null) { result.add("-W"); result.add(getSplitEvaluator().getClass().getName()); } if (seOptions.length > 0) { result.add("--"); for (i = 0; i < seOptions.length; i++) { result.add(seOptions[i]); } } return result.toArray(new String[result.size()]); } /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ @Override public void setInstances(Instances instances) { m_Instances = instances; } /** * Set a list of method names for additional measures to look for in * SplitEvaluators. This could contain many measures (of which only a subset * may be produceable by the current SplitEvaluator) if an experiment is the * type that iterates over a set of properties. * * @param additionalMeasures an array of measure names, null if none */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; if (m_SplitEvaluator != null) { System.err.println("ExplicitTestsetResultProducer: setting additional " + "measures for split evaluator"); m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); } } /** * Returns an enumeration of any additional measure names that might be in the * SplitEvaluator. * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> result = new Vector<String>(); if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_SplitEvaluator) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); result.add(mname); } } return result.elements(); } /** * Returns the value of the named measure. * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer) m_SplitEvaluator) .getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("ExplicitTestsetResultProducer: " + "Can't return value for : " + additionalMeasureName + ". " + m_SplitEvaluator.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ @Override public void setResultListener(ResultListener listener) { m_ResultListener = listener; } /** * Gets a Double representing the current date and time. eg: 1:46pm on * 20/5/1999 -> 19990520.1346 * * @return a value of type Double */ public static Double getTimestamp() { Calendar now = Calendar.getInstance(TimeZone.getTimeZone("UTC")); double timestamp = now.get(Calendar.YEAR) * 10000 + (now.get(Calendar.MONTH) + 1) * 100 + now.get(Calendar.DAY_OF_MONTH) + now.get(Calendar.HOUR_OF_DAY) / 100.0 + now.get(Calendar.MINUTE) / 10000.0; return new Double(timestamp); } /** * Prepare to generate results. * * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess() throws Exception { if (m_SplitEvaluator == null) { throw new Exception("No SplitEvalutor set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * Perform any postprocessing. When this method is called, it indicates that * no more requests to generate results for the current experiment will be * sent. * * @throws Exception if an error occurs */ @Override public void postProcess() throws Exception { m_ResultListener.postProcess(this); if (m_debugOutput) { if (m_ZipDest != null) { m_ZipDest.finished(); m_ZipDest = null; } } } /** * Gets the keys for a specified run number. Different run numbers correspond * to different randomizations of the data. Keys produced should be sent to * the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ @Override public void doRunKeys(int run) throws Exception { if (m_Instances == null) { throw new Exception("No Instances set"); } // Add in some fields to the key like run number, dataset name Object[] seKey = m_SplitEvaluator.getKey(); Object[] key = new Object[seKey.length + 2]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; System.arraycopy(seKey, 0, key, 2, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { try { m_ResultListener.acceptResult(this, key, null); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } /** * Generates a new filename for the given relation based on the current setup. * * @param inst the instances to create the filename for * @return the generated filename */ protected String createFilename(Instances inst) { String result; String name; name = inst.relationName(); if (getRelationFind().length() > 0) { name = name.replaceAll(getRelationFind(), getRelationReplace()); } result = getTestsetDir().getPath() + File.separator; result += getTestsetPrefix() + name + getTestsetSuffix(); // substitute the run number (and any other variables) // if specified try { result = m_env.substitute(result); } catch (Exception ex) { } return result; } /** * Gets the results for a specified run number. Different run numbers * correspond to different randomizations of the data. Results produced should * be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ @Override public void doRun(int run) throws Exception { if (getRawOutput()) { if (m_ZipDest == null) { m_ZipDest = new OutputZipper(m_OutputFile); } } if (m_Instances == null) { throw new Exception("No Instances set"); } // Add in some fields to the key like run number, dataset name Object[] seKey = m_SplitEvaluator.getKey(); Object[] key = new Object[seKey.length + 2]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; System.arraycopy(seKey, 0, key, 2, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { // training set Instances train = new Instances(m_Instances); if (m_randomize) { Random rand = new Random(run); train.randomize(rand); } if (m_env == null) { m_env = new Environment(); } m_env.addVariable("RUN_NUMBER", "" + run); // test set String filename = createFilename(train); File file = new File(filename); if (!file.exists()) { throw new WekaException("Test set '" + filename + "' not found!"); } Instances test = DataSource.read(filename); // can we set the class attribute safely? if (train.numAttributes() == test.numAttributes()) { test.setClassIndex(train.classIndex()); } else { throw new WekaException("Train and test set (= " + filename + ") " + "differ in number of attributes: " + train.numAttributes() + " != " + test.numAttributes()); } // test headers if (!train.equalHeaders(test)) { throw new WekaException("Train and test set (= " + filename + ") " + "are not compatible:\n" + train.equalHeadersMsg(test)); } try { Object[] seResults = m_SplitEvaluator.getResult(train, test); Object[] results = new Object[seResults.length + 1]; results[0] = getTimestamp(); System.arraycopy(seResults, 0, results, 1, seResults.length); if (m_debugOutput) { String resultName = ("" + run + "." + Utils.backQuoteChars(train.relationName()) + "." + m_SplitEvaluator .toString()).replace(' ', '_'); resultName = Utils.removeSubstring(resultName, "weka.classifiers."); resultName = Utils.removeSubstring(resultName, "weka.filters."); resultName = Utils.removeSubstring(resultName, "weka.attributeSelection."); m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName); } m_ResultListener.acceptResult(this, key, results); } catch (Exception e) { // Save the train and test datasets for debugging purposes? throw e; } } } /** * Gets the names of each of the columns produced for a single run. This * method should really be static. * * @return an array containing the name of each column */ @Override public String[] getKeyNames() { String[] keyNames = m_SplitEvaluator.getKeyNames(); // Add in the names of our extra key fields String[] newKeyNames = new String[keyNames.length + 2]; newKeyNames[0] = DATASET_FIELD_NAME; newKeyNames[1] = RUN_FIELD_NAME; System.arraycopy(keyNames, 0, newKeyNames, 2, keyNames.length); return newKeyNames; } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. */ @Override public Object[] getKeyTypes() { Object[] keyTypes = m_SplitEvaluator.getKeyTypes(); // Add in the types of our extra fields Object[] newKeyTypes = new String[keyTypes.length + 2]; newKeyTypes[0] = new String(); newKeyTypes[1] = new String(); System.arraycopy(keyTypes, 0, newKeyTypes, 2, keyTypes.length); return newKeyTypes; } /** * Gets the names of each of the columns produced for a single run. This * method should really be static. * * @return an array containing the name of each column */ @Override public String[] getResultNames() { String[] resultNames = m_SplitEvaluator.getResultNames(); // Add in the names of our extra Result fields String[] newResultNames = new String[resultNames.length + 1]; newResultNames[0] = TIMESTAMP_FIELD_NAME; System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length); return newResultNames; } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. */ @Override public Object[] getResultTypes() { Object[] resultTypes = m_SplitEvaluator.getResultTypes(); // Add in the types of our extra Result fields Object[] newResultTypes = new Object[resultTypes.length + 1]; newResultTypes[0] = new Double(0); System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length); return newResultTypes; } /** * Gets a description of the internal settings of the result producer, * sufficient for distinguishing a ResultProducer instance from another with * different settings (ignoring those settings set through this interface). * For example, a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should be * compatible. Typically if a ResultProducer is an OptionHandler, this string * will represent the command line arguments required to set the * ResultProducer to that state. * * @return the description of the ResultProducer state, or null if no state is * defined */ @Override public String getCompatibilityState() { String result; result = ""; if (getRandomizeData()) { result += " -R"; } result += " -dir " + getTestsetDir(); if (getTestsetPrefix().length() > 0) { result += " -prefix " + getTestsetPrefix(); } result += " -suffix " + getTestsetSuffix(); if (getRelationFind().length() > 0) { result += " -find " + getRelationFind(); if (getRelationReplace().length() > 0) { result += " -replace " + getRelationReplace(); } } if (m_SplitEvaluator == null) { result += " <null SplitEvaluator>"; } else { result += " -W " + m_SplitEvaluator.getClass().getName(); } return result + " --"; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String outputFileTipText() { return "Set the destination for saving raw output. If the rawOutput " + "option is selected, then output from the splitEvaluator for " + "individual train-test splits is saved. If the destination is a " + "directory, " + "then each output is saved to an individual gzip file; if the " + "destination is a file, then each output is saved as an entry " + "in a zip file."; } /** * Get the value of OutputFile. * * @return Value of OutputFile. */ public File getOutputFile() { return m_OutputFile; } /** * Set the value of OutputFile. * * @param value Value to assign to OutputFile. */ public void setOutputFile(File value) { m_OutputFile = value; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String randomizeDataTipText() { return "Do not randomize dataset and do not perform probabilistic rounding " + "if true"; } /** * Get if dataset is to be randomized. * * @return true if dataset is to be randomized */ public boolean getRandomizeData() { return m_randomize; } /** * Set to true if dataset is to be randomized. * * @param value true if dataset is to be randomized */ public void setRandomizeData(boolean value) { m_randomize = value; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String rawOutputTipText() { return "Save raw output (useful for debugging). If set, then output is " + "sent to the destination specified by outputFile"; } /** * Get if raw split evaluator output is to be saved. * * @return true if raw split evalutor output is to be saved */ public boolean getRawOutput() { return m_debugOutput; } /** * Set to true if raw split evaluator output is to be saved. * * @param value true if output is to be saved */ public void setRawOutput(boolean value) { m_debugOutput = value; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String splitEvaluatorTipText() { return "The evaluator to apply to the test data. " + "This may be a classifier, regression scheme etc."; } /** * Get the SplitEvaluator. * * @return the SplitEvaluator. */ public SplitEvaluator getSplitEvaluator() { return m_SplitEvaluator; } /** * Set the SplitEvaluator. * * @param value new SplitEvaluator to use. */ public void setSplitEvaluator(SplitEvaluator value) { m_SplitEvaluator = value; m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String testsetDirTipText() { return "The directory containing the test sets."; } /** * Returns the currently set directory for the test sets. * * @return the directory */ public File getTestsetDir() { return m_TestsetDir; } /** * Sets the directory to use for the test sets. * * @param value the directory to use */ public void setTestsetDir(File value) { m_TestsetDir = value; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String testsetPrefixTipText() { return "The prefix to use for the filename of the test sets."; } /** * Returns the currently set prefix. * * @return the prefix */ public String getTestsetPrefix() { return m_TestsetPrefix; } /** * Sets the prefix to use for the test sets. * * @param value the prefix */ public void setTestsetPrefix(String value) { m_TestsetPrefix = value; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String testsetSuffixTipText() { return "The suffix to use for the filename of the test sets - must contain " + "the file extension."; } /** * Returns the currently set suffix. * * @return the suffix */ public String getTestsetSuffix() { return m_TestsetSuffix; } /** * Sets the suffix to use for the test sets. * * @param value the suffix */ public void setTestsetSuffix(String value) { if ((value == null) || (value.length() == 0)) { value = DEFAULT_SUFFIX; } m_TestsetSuffix = value; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String relationFindTipText() { return "The regular expression to use for removing parts of the relation " + "name, ignored if empty."; } /** * Returns the currently set regular expression to use on the relation name. * * @return the regular expression */ public String getRelationFind() { return m_RelationFind; } /** * Sets the regular expression to use on the relation name. * * @param value the regular expression */ public void setRelationFind(String value) { m_RelationFind = value; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String relationReplaceTipText() { return "The string to replace all matches of the regular expression with."; } /** * Returns the currently set replacement string to use on the relation name. * * @return the replacement string */ public String getRelationReplace() { return m_RelationReplace; } /** * Sets the replacement string to use on the relation name. * * @param value the regular expression */ public void setRelationReplace(String value) { m_RelationReplace = value; } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ @Override public String toString() { String result = "ExplicitTestsetResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ": <null Instances>"; } else { result += ": " + Utils.backQuoteChars(m_Instances.relationName()); } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/InstanceQuery.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * InstanceQuery.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.File; import java.sql.ResultSet; import java.sql.ResultSetMetaData; import java.sql.Time; import java.sql.Timestamp; import java.util.ArrayList; import java.util.Date; import java.util.Enumeration; import java.util.Hashtable; import java.util.Vector; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.SparseInstance; import weka.core.Utils; /** * Convert the results of a database query into instances. The jdbc driver and * database to be used default to "jdbc.idbDriver" and * "jdbc:idb=experiments.prp". These may be changed by creating a java * properties file called DatabaseUtils.props in user.home or the current * directory. eg: * <p> * * <code><pre> * jdbcDriver=jdbc.idbDriver * jdbcURL=jdbc:idb=experiments.prp * </pre></code> * <p> * * Command line use just outputs the instances to System.out. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -Q &lt;query&gt; * SQL query to execute. * </pre> * * <pre> * -S * Return sparse rather than normal instances. * </pre> * * <pre> * -U &lt;username&gt; * The username to use for connecting. * </pre> * * <pre> * -P &lt;password&gt; * The password to use for connecting. * </pre> * * <pre> * -D * Enables debug output. * </pre> * * <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class InstanceQuery extends DatabaseUtils implements OptionHandler, InstanceQueryAdapter { /** for serialization */ static final long serialVersionUID = 718158370917782584L; /** Determines whether sparse data is created */ protected boolean m_CreateSparseData = false; /** Query to execute */ protected String m_Query = "SELECT * from ?"; /** the custom props file to use instead of default one. */ protected File m_CustomPropsFile = null; /** * Sets up the database drivers * * @throws Exception if an error occurs */ public InstanceQuery() throws Exception { super(); } /** * Returns an enumeration describing the available options * <p> * * @return an enumeration of all options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option("\tSQL query to execute.", "Q", 1, "-Q <query>")); result.addElement(new Option( "\tReturn sparse rather than normal instances.", "S", 0, "-S")); result.addElement(new Option("\tThe username to use for connecting.", "U", 1, "-U <username>")); result.addElement(new Option("\tThe password to use for connecting.", "P", 1, "-P <password>")); result.add(new Option( "\tThe custom properties file to use instead of default ones,\n" + "\tcontaining the database parameters.\n" + "\t(default: none)", "custom-props", 1, "-custom-props <file>")); result.addElement(new Option("\tEnables debug output.", "D", 0, "-D")); return result.elements(); } /** * Parses a given list of options. * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -Q &lt;query&gt; * SQL query to execute. * </pre> * * <pre> * -S * Return sparse rather than normal instances. * </pre> * * <pre> * -U &lt;username&gt; * The username to use for connecting. * </pre> * * <pre> * -P &lt;password&gt; * The password to use for connecting. * </pre> * * <pre> * -D * Enables debug output. * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; setSparseData(Utils.getFlag('S', options)); tmpStr = Utils.getOption('Q', options); if (tmpStr.length() != 0) { setQuery(tmpStr); } tmpStr = Utils.getOption('U', options); if (tmpStr.length() != 0) { setUsername(tmpStr); } tmpStr = Utils.getOption('P', options); if (tmpStr.length() != 0) { setPassword(tmpStr); } tmpStr = Utils.getOption("custom-props", options); if (tmpStr.length() == 0) { setCustomPropsFile(null); } else { setCustomPropsFile(new File(tmpStr)); } setDebug(Utils.getFlag('D', options)); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String queryTipText() { return "The SQL query to execute against the database."; } /** * Set the query to execute against the database * * @param q the query to execute */ public void setQuery(String q) { m_Query = q; } /** * Get the query to execute against the database * * @return the query */ public String getQuery() { return m_Query; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String sparseDataTipText() { return "Encode data as sparse instances."; } /** * Sets whether data should be encoded as sparse instances * * @param s true if data should be encoded as a set of sparse instances */ public void setSparseData(boolean s) { m_CreateSparseData = s; } /** * Gets whether data is to be returned as a set of sparse instances * * @return true if data is to be encoded as sparse instances */ @Override public boolean getSparseData() { return m_CreateSparseData; } /** * Sets the custom properties file to use. * * @param value the custom props file to load database parameters from, use * null or directory to disable custom properties. * @see #initialize(File) */ public void setCustomPropsFile(File value) { m_CustomPropsFile = value; initialize(m_CustomPropsFile); } /** * Returns the custom properties file in use, if any. * * @return the custom props file, null if none used */ public File getCustomPropsFile() { return m_CustomPropsFile; } /** * The tip text for this property. * * @return the tip text */ public String customPropsFileTipText() { return "The custom properties that the user can use to override the default ones."; } /** * Gets the current settings of InstanceQuery * * @return an array of strings suitable for passing to setOptions() */ @Override public String[] getOptions() { Vector<String> options = new Vector<String>(); options.add("-Q"); options.add(getQuery()); if (getSparseData()) { options.add("-S"); } if (!getUsername().equals("")) { options.add("-U"); options.add(getUsername()); } if (!getPassword().equals("")) { options.add("-P"); options.add(getPassword()); } if ((m_CustomPropsFile != null) && !m_CustomPropsFile.isDirectory()) { options.add("-custom-props"); options.add(m_CustomPropsFile.toString()); } if (getDebug()) { options.add("-D"); } return options.toArray(new String[options.size()]); } /** * Makes a database query using the query set through the -Q option to convert * a table into a set of instances * * @return the instances contained in the result of the query * @throws Exception if an error occurs */ public Instances retrieveInstances() throws Exception { return retrieveInstances(m_Query); } public static Instances retrieveInstances(InstanceQueryAdapter adapter, ResultSet rs) throws Exception { if (adapter.getDebug()) { System.err.println("Getting metadata..."); } ResultSetMetaData md = rs.getMetaData(); if (adapter.getDebug()) { System.err.println("Completed getting metadata..."); } // Determine structure of the instances int numAttributes = md.getColumnCount(); int[] attributeTypes = new int[numAttributes]; @SuppressWarnings("unchecked") Hashtable<String, Double>[] nominalIndexes = new Hashtable[numAttributes]; @SuppressWarnings("unchecked") ArrayList<String>[] nominalStrings = new ArrayList[numAttributes]; for (int i = 1; i <= numAttributes; i++) { /* * switch (md.getColumnType(i)) { case Types.CHAR: case Types.VARCHAR: * case Types.LONGVARCHAR: case Types.BINARY: case Types.VARBINARY: case * Types.LONGVARBINARY: */ switch (adapter.translateDBColumnType(md.getColumnTypeName(i))) { case STRING: // System.err.println("String --> nominal"); attributeTypes[i - 1] = Attribute.NOMINAL; nominalIndexes[i - 1] = new Hashtable<String, Double>(); nominalStrings[i - 1] = new ArrayList<String>(); break; case TEXT: // System.err.println("Text --> string"); attributeTypes[i - 1] = Attribute.STRING; nominalIndexes[i - 1] = new Hashtable<String, Double>(); nominalStrings[i - 1] = new ArrayList<String>(); break; case BOOL: // System.err.println("boolean --> nominal"); attributeTypes[i - 1] = Attribute.NOMINAL; nominalIndexes[i - 1] = new Hashtable<String, Double>(); nominalIndexes[i - 1].put("false", new Double(0)); nominalIndexes[i - 1].put("true", new Double(1)); nominalStrings[i - 1] = new ArrayList<String>(); nominalStrings[i - 1].add("false"); nominalStrings[i - 1].add("true"); break; case DOUBLE: // System.err.println("BigDecimal --> numeric"); attributeTypes[i - 1] = Attribute.NUMERIC; break; case BYTE: // System.err.println("byte --> numeric"); attributeTypes[i - 1] = Attribute.NUMERIC; break; case SHORT: // System.err.println("short --> numeric"); attributeTypes[i - 1] = Attribute.NUMERIC; break; case INTEGER: // System.err.println("int --> numeric"); attributeTypes[i - 1] = Attribute.NUMERIC; break; case LONG: // System.err.println("long --> numeric"); attributeTypes[i - 1] = Attribute.NUMERIC; break; case FLOAT: // System.err.println("float --> numeric"); attributeTypes[i - 1] = Attribute.NUMERIC; break; case DATE: attributeTypes[i - 1] = Attribute.DATE; break; case TIME: attributeTypes[i - 1] = Attribute.DATE; break; case TIMESTAMP: attributeTypes[i - 1] = Attribute.DATE; break; default: // System.err.println("Unknown column type"); attributeTypes[i - 1] = Attribute.STRING; } } // For sqlite // cache column names because the last while(rs.next()) { iteration for // the tuples below will close the md object: Vector<String> columnNames = new Vector<String>(); for (int i = 0; i < numAttributes; i++) { columnNames.add(md.getColumnLabel(i + 1)); } // Step through the tuples if (adapter.getDebug()) { System.err.println("Creating instances..."); } ArrayList<Instance> instances = new ArrayList<Instance>(); int rowCount = 0; while (rs.next()) { if (rowCount % 100 == 0) { if (adapter.getDebug()) { System.err.print("read " + rowCount + " instances \r"); System.err.flush(); } } double[] vals = new double[numAttributes]; for (int i = 1; i <= numAttributes; i++) { /* * switch (md.getColumnType(i)) { case Types.CHAR: case Types.VARCHAR: * case Types.LONGVARCHAR: case Types.BINARY: case Types.VARBINARY: case * Types.LONGVARBINARY: */ switch (adapter.translateDBColumnType(md.getColumnTypeName(i))) { case STRING: String str = rs.getString(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { Double index = nominalIndexes[i - 1].get(str); if (index == null) { index = new Double(nominalStrings[i - 1].size()); nominalIndexes[i - 1].put(str, index); nominalStrings[i - 1].add(str); } vals[i - 1] = index.doubleValue(); } break; case TEXT: String txt = rs.getString(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { Double index = nominalIndexes[i - 1].get(txt); if (index == null) { // Need to add one because first value in // string attribute is dummy value. index = new Double(nominalStrings[i - 1].size()) + 1; nominalIndexes[i - 1].put(txt, index); nominalStrings[i - 1].add(txt); } vals[i - 1] = index.doubleValue(); } break; case BOOL: boolean boo = rs.getBoolean(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { vals[i - 1] = (boo ? 1.0 : 0.0); } break; case DOUBLE: // BigDecimal bd = rs.getBigDecimal(i, 4); double dd = rs.getDouble(i); // Use the column precision instead of 4? if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { // newInst.setValue(i - 1, bd.doubleValue()); vals[i - 1] = dd; } break; case BYTE: byte by = rs.getByte(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { vals[i - 1] = by; } break; case SHORT: short sh = rs.getShort(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { vals[i - 1] = sh; } break; case INTEGER: int in = rs.getInt(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { vals[i - 1] = in; } break; case LONG: long lo = rs.getLong(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { vals[i - 1] = lo; } break; case FLOAT: float fl = rs.getFloat(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { vals[i - 1] = fl; } break; case DATE: Date date = rs.getDate(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { // TODO: Do a value check here. vals[i - 1] = date.getTime(); } break; case TIME: Time time = rs.getTime(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { // TODO: Do a value check here. vals[i - 1] = time.getTime(); } break; case TIMESTAMP: Timestamp ts = rs.getTimestamp(i); if (rs.wasNull()) { vals[i - 1] = Utils.missingValue(); } else { vals[i - 1] = ts.getTime(); } break; default: vals[i - 1] = Utils.missingValue(); } } Instance newInst; if (adapter.getSparseData()) { newInst = new SparseInstance(1.0, vals); } else { newInst = new DenseInstance(1.0, vals); } instances.add(newInst); rowCount++; } // disconnectFromDatabase(); (perhaps other queries might be made) // Create the header and add the instances to the dataset if (adapter.getDebug()) { System.err.println("Creating header..."); } ArrayList<Attribute> attribInfo = new ArrayList<Attribute>(); for (int i = 0; i < numAttributes; i++) { /* Fix for databases that uppercase column names */ // String attribName = attributeCaseFix(md.getColumnName(i + 1)); String attribName = adapter.attributeCaseFix(columnNames.get(i)); switch (attributeTypes[i]) { case Attribute.NOMINAL: attribInfo.add(new Attribute(attribName, nominalStrings[i])); break; case Attribute.NUMERIC: attribInfo.add(new Attribute(attribName)); break; case Attribute.STRING: Attribute att = new Attribute(attribName, (ArrayList<String>) null); attribInfo.add(att); for (int n = 0; n < nominalStrings[i].size(); n++) { att.addStringValue(nominalStrings[i].get(n)); } break; case Attribute.DATE: attribInfo.add(new Attribute(attribName, (String) null)); break; default: throw new Exception("Unknown attribute type"); } } Instances result = new Instances("QueryResult", attribInfo, instances.size()); for (int i = 0; i < instances.size(); i++) { result.add(instances.get(i)); } return result; } /** * Makes a database query to convert a table into a set of instances * * @param query the query to convert to instances * @return the instances contained in the result of the query, NULL if the SQL * query doesn't return a ResultSet, e.g., DELETE/INSERT/UPDATE * @throws Exception if an error occurs */ public Instances retrieveInstances(String query) throws Exception { if (m_Debug) { System.err.println("Executing query: " + query); } connectToDatabase(); if (execute(query) == false) { if (m_PreparedStatement.getUpdateCount() == -1) { throw new Exception("Query didn't produce results"); } else { if (m_Debug) { System.err.println(m_PreparedStatement.getUpdateCount() + " rows affected."); } close(); return null; } } ResultSet rs = getResultSet(); if (m_Debug) { System.err.println("Getting metadata..."); } Instances result = retrieveInstances(this, rs); close(rs); return result; } /** * Test the class from the command line. The instance query should be * specified with -Q sql_query * * @param args contains options for the instance query */ public static void main(String args[]) { try { InstanceQuery iq = new InstanceQuery(); String query = Utils.getOption('Q', args); if (query.length() == 0) { iq.setQuery("select * from Experiment_index"); } else { iq.setQuery(query); } iq.setOptions(args); try { Utils.checkForRemainingOptions(args); } catch (Exception e) { System.err.println("Options for weka.experiment.InstanceQuery:\n"); Enumeration<Option> en = iq.listOptions(); while (en.hasMoreElements()) { Option o = en.nextElement(); System.err.println(o.synopsis() + "\n" + o.description()); } System.exit(1); } Instances aha = iq.retrieveInstances(); iq.disconnectFromDatabase(); // query returned no result -> exit if (aha == null) { return; } // The dataset may be large, so to make things easier we'll // output an instance at a time (rather than having to convert // the entire dataset to one large string) System.out.println(new Instances(aha, 0)); for (int i = 0; i < aha.numInstances(); i++) { System.out.println(aha.instance(i)); } } catch (Exception e) { e.printStackTrace(); System.err.println(e.getMessage()); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/InstanceQueryAdapter.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * InstanceQueryAdapter.java * Copyright (C) 2011-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; /** * An interface implemented by InstanceQuery and any user class that is * to be passed as the first argument to * InstanceQuery.retrieveInstances(InstanceQueryAdapter, ResultSet). * * @author Wes Munsil (wes_munsil@cytoanalytics.com) * @version $Revision$ */ public interface InstanceQueryAdapter { /** * returns key column headings in their original case. Used for * those databases that create uppercase column names. * * @param columnName the column to retrieve the original case for * @return the original case */ public String attributeCaseFix(String columnName); /** * Gets whether there should be printed some debugging output to stderr or not. * * @return true if output should be printed */ public boolean getDebug(); /** * Gets whether data is to be returned as a set of sparse instances * @return true if data is to be encoded as sparse instances */ public boolean getSparseData(); /** * translates the column data type string to an integer value that indicates * which data type / get()-Method to use in order to retrieve values from the * database (see DatabaseUtils.Properties, InstanceQuery()). Blanks in the type * are replaced with underscores "_", since Java property names can't contain blanks. * * @param type the column type as retrieved with * java.sql.MetaData.getColumnTypeName(int) * @return an integer value that indicates * which data type / get()-Method to use in order to * retrieve values from the */ public int translateDBColumnType(String type); }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/InstancesResultListener.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * InstancesResultListener.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileOutputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Hashtable; import weka.core.Attribute; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Outputs the received results in arff format to a * Writer. All results must be received before the instances can be written out. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -O &lt;file name&gt; * The filename where output will be stored. Use - for stdout. * (default temp file) * </pre> * * <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class InstancesResultListener extends CSVResultListener { /** for serialization */ static final long serialVersionUID = -2203808461809311178L; /** Stores the instances created so far, before assigning to a header */ protected transient ArrayList<Instance> m_Instances; /** Stores the attribute types for each column */ protected transient int[] m_AttributeTypes; /** For lookup of indices given a string value for each nominal attribute */ protected transient Hashtable<String, Double>[] m_NominalIndexes; /** Contains strings seen so far for each nominal attribute */ protected transient ArrayList<String>[] m_NominalStrings; /** * Sets temporary file. */ public InstancesResultListener() { File resultsFile; try { resultsFile = File.createTempFile("weka_experiment", ".arff"); resultsFile.deleteOnExit(); } catch (Exception e) { System.err.println("Cannot create temp file, writing to standard out."); resultsFile = new File("-"); } setOutputFile(resultsFile); setOutputFileName(""); } /** * Returns a string describing this result listener * * @return a description of the result listener suitable for displaying in the * explorer/experimenter gui */ @Override public String globalInfo() { return "Outputs the received results in arff format to " + "a Writer. All results must be received before the instances can be " + "written out."; } /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @exception Exception if an error occurs during preprocessing. */ @SuppressWarnings("unchecked") @Override public void preProcess(ResultProducer rp) throws Exception { m_RP = rp; if ((m_OutputFile == null) || (m_OutputFile.getName().equals("-"))) { m_Out = new PrintWriter(System.out, true); } else { m_Out = new PrintWriter(new BufferedOutputStream(new FileOutputStream( m_OutputFile)), true); } Object[] keyTypes = m_RP.getKeyTypes(); Object[] resultTypes = m_RP.getResultTypes(); m_AttributeTypes = new int[keyTypes.length + resultTypes.length]; m_NominalIndexes = new Hashtable[m_AttributeTypes.length]; m_NominalStrings = new ArrayList[m_AttributeTypes.length]; m_Instances = new ArrayList<Instance>(); for (int i = 0; i < m_AttributeTypes.length; i++) { Object attribute = null; if (i < keyTypes.length) { attribute = keyTypes[i]; } else { attribute = resultTypes[i - keyTypes.length]; } if (attribute instanceof String) { m_AttributeTypes[i] = Attribute.NOMINAL; m_NominalIndexes[i] = new Hashtable<String, Double>(); m_NominalStrings[i] = new ArrayList<String>(); } else if (attribute instanceof Double) { m_AttributeTypes[i] = Attribute.NUMERIC; } else { throw new Exception("Unknown attribute type in column " + (i + 1)); } } } /** * Perform any postprocessing. When this method is called, it indicates that * no more results will be sent that need to be grouped together in any way. * * @param rp the ResultProducer that generated the results * @exception Exception if an error occurs */ @Override public void postProcess(ResultProducer rp) throws Exception { if (m_RP != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } String[] keyNames = m_RP.getKeyNames(); String[] resultNames = m_RP.getResultNames(); ArrayList<Attribute> attribInfo = new ArrayList<Attribute>(); for (int i = 0; i < m_AttributeTypes.length; i++) { String attribName = "Unknown"; if (i < keyNames.length) { attribName = "Key_" + keyNames[i]; } else { attribName = resultNames[i - keyNames.length]; } switch (m_AttributeTypes[i]) { case Attribute.NOMINAL: if (m_NominalStrings[i].size() > 0) { attribInfo.add(new Attribute(attribName, m_NominalStrings[i])); } else { attribInfo.add(new Attribute(attribName, (ArrayList<String>) null)); } break; case Attribute.NUMERIC: attribInfo.add(new Attribute(attribName)); break; case Attribute.STRING: attribInfo.add(new Attribute(attribName, (ArrayList<String>) null)); break; default: throw new Exception("Unknown attribute type"); } } Instances result = new Instances("InstanceResultListener", attribInfo, m_Instances.size()); for (int i = 0; i < m_Instances.size(); i++) { result.add(m_Instances.get(i)); } m_Out.println(new Instances(result, 0)); for (int i = 0; i < result.numInstances(); i++) { m_Out.println(result.instance(i)); } if (!(m_OutputFile == null) && !(m_OutputFile.getName().equals("-"))) { m_Out.close(); } } /** * Collects each instance and adjusts the header information. * * @param rp the ResultProducer that generated the result * @param key The key for the results. * @param result The actual results. * @exception Exception if the result could not be accepted. */ @Override public void acceptResult(ResultProducer rp, Object[] key, Object[] result) throws Exception { if (m_RP != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } Instance newInst = new DenseInstance(m_AttributeTypes.length); for (int i = 0; i < m_AttributeTypes.length; i++) { Object val = null; if (i < key.length) { val = key[i]; } else { val = result[i - key.length]; } if (val == null) { newInst.setValue(i, Utils.missingValue()); } else { switch (m_AttributeTypes[i]) { case Attribute.NOMINAL: String str = (String) val; Double index = m_NominalIndexes[i].get(str); if (index == null) { index = new Double(m_NominalStrings[i].size()); m_NominalIndexes[i].put(str, index); m_NominalStrings[i].add(str); } newInst.setValue(i, index.doubleValue()); break; case Attribute.NUMERIC: double dou = ((Double) val).doubleValue(); newInst.setValue(i, dou); break; default: newInst.setValue(i, Utils.missingValue()); } } } m_Instances.add(newInst); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // InstancesResultListener
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/LearningRateResultProducer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * LearningRateResultProducer.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.core.AdditionalMeasureProducer; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Tells a sub-ResultProducer to reproduce the current * run for varying sized subsamples of the dataset. Normally used with an * AveragingResultProducer and CrossValidationResultProducer combo to generate * learning curve results. For non-numeric result fields, the first value is * used. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -X &lt;num steps&gt; * The number of steps in the learning rate curve. * (default 10) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer * </pre> * * <pre> * Options specific to result producer weka.experiment.AveragingResultProducer: * </pre> * * <pre> * -F &lt;field name&gt; * The name of the field to average over. * (default "Fold") * </pre> * * <pre> * -X &lt;num results&gt; * The number of results expected per average. * (default 10) * </pre> * * <pre> * -S * Calculate standard deviations. * (default only averages) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer * </pre> * * <pre> * Options specific to result producer weka.experiment.CrossValidationResultProducer: * </pre> * * <pre> * -X &lt;number of folds&gt; * The number of folds to use for the cross-validation. * (default 10) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the result producer. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class LearningRateResultProducer implements ResultListener, ResultProducer, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = -3841159673490861331L; /** The dataset of interest */ protected Instances m_Instances; /** The ResultListener to send results to */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The ResultProducer used to generate results */ protected ResultProducer m_ResultProducer = new AveragingResultProducer(); /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_AdditionalMeasures = null; /** * The minimum number of instances to use. If this is zero, the first step * will contain m_StepSize instances */ protected int m_LowerSize = 0; /** * The maximum number of instances to use. -1 indicates no maximum (other than * the total number of instances) */ protected int m_UpperSize = -1; /** The number of instances to add at each step */ protected int m_StepSize = 10; /** The current dataset size during stepping */ protected int m_CurrentSize = 0; /** The name of the key field containing the learning rate step number */ public static String STEP_FIELD_NAME = "Total_instances"; /** * Returns a string describing this result producer * * @return a description of the result producer suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Tells a sub-ResultProducer to reproduce the current run for " + "varying sized subsamples of the dataset. Normally used with " + "an AveragingResultProducer and CrossValidationResultProducer " + "combo to generate learning curve results. For non-numeric " + "result fields, the first value is used."; } /** * Determines if there are any constraints (imposed by the destination) on the * result columns to be produced by resultProducers. Null should be returned * if there are NO constraints, otherwise a list of column names should be * returned as an array of Strings. * * @param rp the ResultProducer to which the constraints will apply * @return an array of column names to which resutltProducer's results will be * restricted. * @throws Exception if constraints can't be determined */ @Override public String[] determineColumnConstraints(ResultProducer rp) throws Exception { return null; } /** * Gets the keys for a specified run number. Different run numbers correspond * to different randomizations of the data. Keys produced should be sent to * the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ @Override public void doRunKeys(int run) throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } if (m_Instances == null) { throw new Exception("No Instances set"); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); m_ResultProducer.setInstances(m_Instances); // For each subsample size if (m_LowerSize == 0) { m_CurrentSize = m_StepSize; } else { m_CurrentSize = m_LowerSize; } while (m_CurrentSize <= m_Instances.numInstances() && ((m_UpperSize == -1) || (m_CurrentSize <= m_UpperSize))) { m_ResultProducer.doRunKeys(run); m_CurrentSize += m_StepSize; } } /** * Gets the results for a specified run number. Different run numbers * correspond to different randomizations of the data. Results produced should * be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ @Override public void doRun(int run) throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } if (m_Instances == null) { throw new Exception("No Instances set"); } // Randomize on a copy of the original dataset Instances runInstances = new Instances(m_Instances); runInstances.randomize(new Random(run)); /* * if (runInstances.classAttribute().isNominal() && * (m_Instances.numInstances() / m_StepSize >= 1)) { // * runInstances.stratify(m_Instances.numInstances() / m_StepSize); } */ // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); // For each subsample size if (m_LowerSize == 0) { m_CurrentSize = m_StepSize; } else { m_CurrentSize = m_LowerSize; } while (m_CurrentSize <= m_Instances.numInstances() && ((m_UpperSize == -1) || (m_CurrentSize <= m_UpperSize))) { m_ResultProducer.setInstances(new Instances(runInstances, 0, m_CurrentSize)); m_ResultProducer.doRun(run); m_CurrentSize += m_StepSize; } } /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess(ResultProducer rp) throws Exception { if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * Prepare to generate results. The ResultProducer should call * preProcess(this) on the ResultListener it is to send results to. * * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess() throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); m_ResultProducer.preProcess(); } /** * When this method is called, it indicates that no more results will be sent * that need to be grouped together in any way. * * @param rp the ResultProducer that generated the results * @throws Exception if an error occurs */ @Override public void postProcess(ResultProducer rp) throws Exception { m_ResultListener.postProcess(this); } /** * When this method is called, it indicates that no more requests to generate * results for the current experiment will be sent. The ResultProducer should * call preProcess(this) on the ResultListener it is to send results to. * * @throws Exception if an error occurs */ @Override public void postProcess() throws Exception { m_ResultProducer.postProcess(); } /** * Accepts results from a ResultProducer. * * @param rp the ResultProducer that generated the results * @param key an array of Objects (Strings or Doubles) that uniquely identify * a result for a given ResultProducer with given compatibilityState * @param result the results stored in an array. The objects stored in the * array may be Strings, Doubles, or null (for the missing value). * @throws Exception if the result could not be accepted. */ @Override public void acceptResult(ResultProducer rp, Object[] key, Object[] result) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } // Add in current step as key field Object[] newKey = new Object[key.length + 1]; System.arraycopy(key, 0, newKey, 0, key.length); newKey[key.length] = new String("" + m_CurrentSize); // Pass on to result listener m_ResultListener.acceptResult(this, newKey, result); } /** * Determines whether the results for a specified key must be generated. * * @param rp the ResultProducer wanting to generate the results * @param key an array of Objects (Strings or Doubles) that uniquely identify * a result for a given ResultProducer with given compatibilityState * @return true if the result should be generated * @throws Exception if it could not be determined if the result is needed. */ @Override public boolean isResultRequired(ResultProducer rp, Object[] key) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } // Add in current step as key field Object[] newKey = new Object[key.length + 1]; System.arraycopy(key, 0, newKey, 0, key.length); newKey[key.length] = new String("" + m_CurrentSize); // Pass on request to result listener return m_ResultListener.isResultRequired(this, newKey); } /** * Gets the names of each of the columns produced for a single run. * * @return an array containing the name of each column * @throws Exception if key names cannot be generated */ @Override public String[] getKeyNames() throws Exception { String[] keyNames = m_ResultProducer.getKeyNames(); String[] newKeyNames = new String[keyNames.length + 1]; System.arraycopy(keyNames, 0, newKeyNames, 0, keyNames.length); // Think of a better name for this key field newKeyNames[keyNames.length] = STEP_FIELD_NAME; return newKeyNames; } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. * @throws Exception if the key types could not be determined (perhaps because * of a problem from a nested sub-resultproducer) */ @Override public Object[] getKeyTypes() throws Exception { Object[] keyTypes = m_ResultProducer.getKeyTypes(); Object[] newKeyTypes = new Object[keyTypes.length + 1]; System.arraycopy(keyTypes, 0, newKeyTypes, 0, keyTypes.length); newKeyTypes[keyTypes.length] = ""; return newKeyTypes; } /** * Gets the names of each of the columns produced for a single run. A new * result field is added for the number of results used to produce each * average. If only averages are being produced the names are not altered, if * standard deviations are produced then "Dev_" and "Avg_" are prepended to * each result deviation and average field respectively. * * @return an array containing the name of each column * @throws Exception if the result names could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ @Override public String[] getResultNames() throws Exception { return m_ResultProducer.getResultNames(); } /** * Gets the data types of each of the columns produced for a single run. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. * @throws Exception if the result types could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ @Override public Object[] getResultTypes() throws Exception { return m_ResultProducer.getResultTypes(); } /** * Gets a description of the internal settings of the result producer, * sufficient for distinguishing a ResultProducer instance from another with * different settings (ignoring those settings set through this interface). * For example, a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should be * compatible. Typically if a ResultProducer is an OptionHandler, this string * will represent the command line arguments required to set the * ResultProducer to that state. * * @return the description of the ResultProducer state, or null if no state is * defined */ @Override public String getCompatibilityState() { String result = " "; // + "-F " + Utils.quote(getKeyFieldName()) // + " -X " + getStepSize() + " "; if (m_ResultProducer == null) { result += "<null ResultProducer>"; } else { result += "-W " + m_ResultProducer.getClass().getName(); result += " -- " + m_ResultProducer.getCompatibilityState(); } return result.trim(); } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(2); newVector.addElement(new Option( "\tThe number of steps in the learning rate curve.\n" + "\t(default 10)", "X", 1, "-X <num steps>")); newVector.addElement(new Option( "\tThe full class name of a ResultProducer.\n" + "\teg: weka.experiment.CrossValidationResultProducer", "W", 1, "-W <class name>")); if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to result producer " + m_ResultProducer.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_ResultProducer) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -X &lt;num steps&gt; * The number of steps in the learning rate curve. * (default 10) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer * </pre> * * <pre> * Options specific to result producer weka.experiment.AveragingResultProducer: * </pre> * * <pre> * -F &lt;field name&gt; * The name of the field to average over. * (default "Fold") * </pre> * * <pre> * -X &lt;num results&gt; * The number of results expected per average. * (default 10) * </pre> * * <pre> * -S * Calculate standard deviations. * (default only averages) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a ResultProducer. * eg: weka.experiment.CrossValidationResultProducer * </pre> * * <pre> * Options specific to result producer weka.experiment.CrossValidationResultProducer: * </pre> * * <pre> * -X &lt;number of folds&gt; * The number of folds to use for the cross-validation. * (default 10) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the result producer. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String stepSize = Utils.getOption('S', options); if (stepSize.length() != 0) { setStepSize(Integer.parseInt(stepSize)); } else { setStepSize(10); } String lowerSize = Utils.getOption('L', options); if (lowerSize.length() != 0) { setLowerSize(Integer.parseInt(lowerSize)); } else { setLowerSize(0); } String upperSize = Utils.getOption('U', options); if (upperSize.length() != 0) { setUpperSize(Integer.parseInt(upperSize)); } else { setUpperSize(-1); } String rpName = Utils.getOption('W', options); if (rpName.length() == 0) { throw new Exception("A ResultProducer must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // RP. setResultProducer((ResultProducer) Utils.forName(ResultProducer.class, rpName, null)); if (getResultProducer() instanceof OptionHandler) { ((OptionHandler) getResultProducer()).setOptions(Utils .partitionOptions(options)); } } /** * Gets the current settings of the result producer. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { String[] seOptions = new String[0]; if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { seOptions = ((OptionHandler) m_ResultProducer).getOptions(); } String[] options = new String[seOptions.length + 9]; int current = 0; options[current++] = "-S"; options[current++] = "" + getStepSize(); options[current++] = "-L"; options[current++] = "" + getLowerSize(); options[current++] = "-U"; options[current++] = "" + getUpperSize(); if (getResultProducer() != null) { options[current++] = "-W"; options[current++] = getResultProducer().getClass().getName(); } options[current++] = "--"; System.arraycopy(seOptions, 0, options, current, seOptions.length); current += seOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set a list of method names for additional measures to look for in * SplitEvaluators. This could contain many measures (of which only a subset * may be produceable by the current resultProducer) if an experiment is the * type that iterates over a set of properties. * * @param additionalMeasures an array of measure names, null if none */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; if (m_ResultProducer != null) { System.err.println("LearningRateResultProducer: setting additional " + "measures for " + "ResultProducer"); m_ResultProducer.setAdditionalMeasures(m_AdditionalMeasures); } } /** * Returns an enumeration of any additional measure names that might be in the * result producer * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> newVector = new Vector<String>(); if (m_ResultProducer instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_ResultProducer) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); newVector.add(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_ResultProducer instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer) m_ResultProducer) .getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("LearningRateResultProducer: " + "Can't return value for : " + additionalMeasureName + ". " + m_ResultProducer.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ @Override public void setInstances(Instances instances) { m_Instances = instances; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String lowerSizeTipText() { return "Set the minmum number of instances in a dataset. Setting zero " + "here will actually use <stepSize> number of instances at the first " + "step (since it makes no sense to use zero instances :-))"; } /** * Get the value of LowerSize. * * @return Value of LowerSize. */ public int getLowerSize() { return m_LowerSize; } /** * Set the value of LowerSize. * * @param newLowerSize Value to assign to LowerSize. */ public void setLowerSize(int newLowerSize) { m_LowerSize = newLowerSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String upperSizeTipText() { return "Set the maximum number of instances in a dataset. Setting -1 " + "sets no upper limit (other than the total number of instances " + "in the full dataset)"; } /** * Get the value of UpperSize. * * @return Value of UpperSize. */ public int getUpperSize() { return m_UpperSize; } /** * Set the value of UpperSize. * * @param newUpperSize Value to assign to UpperSize. */ public void setUpperSize(int newUpperSize) { m_UpperSize = newUpperSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String stepSizeTipText() { return "Set the number of instances to add at each step."; } /** * Get the value of StepSize. * * @return Value of StepSize. */ public int getStepSize() { return m_StepSize; } /** * Set the value of StepSize. * * @param newStepSize Value to assign to StepSize. */ public void setStepSize(int newStepSize) { m_StepSize = newStepSize; } /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ @Override public void setResultListener(ResultListener listener) { m_ResultListener = listener; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String resultProducerTipText() { return "Set the resultProducer for which learning rate results should be " + "generated."; } /** * Get the ResultProducer. * * @return the ResultProducer. */ public ResultProducer getResultProducer() { return m_ResultProducer; } /** * Set the ResultProducer. * * @param newResultProducer new ResultProducer to use. */ public void setResultProducer(ResultProducer newResultProducer) { m_ResultProducer = newResultProducer; m_ResultProducer.setResultListener(this); } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ @Override public String toString() { String result = "LearningRateResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ": <null Instances>"; } else { result += ": " + Utils.backQuoteChars(m_Instances.relationName()); } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // LearningRateResultProducer
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/OutputZipper.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * OutputZipper.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.DataOutputStream; import java.io.File; import java.io.FileOutputStream; import java.util.zip.GZIPOutputStream; import java.util.zip.ZipEntry; import java.util.zip.ZipOutputStream; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * OutputZipper writes output to either gzipped files or to a * multi entry zip file. If the destination file is a directory * each output string will be written to an individually named * gzip file. If the destination file is a file, then each * output string is appended as a named entry to the zip file until * finished() is called to close the file. * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision$ */ public class OutputZipper implements RevisionHandler { File m_destination; DataOutputStream m_zipOut = null; ZipOutputStream m_zs = null; /** * Constructor. * * @param destination a destination file or directory * @throws Exception if something goes wrong. */ public OutputZipper(File destination) throws Exception { m_destination = destination; // if a directory is specified then use gzip format, otherwise // use zip if (!m_destination.isDirectory()) { m_zs = new ZipOutputStream(new FileOutputStream(m_destination)); m_zipOut = new DataOutputStream(m_zs); } } /** * Saves a string to either an individual gzipped file or as * an entry in a zip file. * * @param outString the output string to save * @param name the name of the file/entry to save it to * @throws Exception if something goes wrong */ public void zipit(String outString, String name) throws Exception { File saveFile; ZipEntry ze; if (m_zipOut == null) { saveFile = new File(m_destination, name+".gz"); DataOutputStream dout = new DataOutputStream(new GZIPOutputStream( new FileOutputStream(saveFile))); dout.writeBytes(outString); dout.close(); } else { ze = new ZipEntry(name); m_zs.putNextEntry(ze); m_zipOut.writeBytes(outString); m_zs.closeEntry(); } } /** * Closes the zip file. * * @throws Exception if something goes wrong */ public void finished() throws Exception { if (m_zipOut != null) { m_zipOut.close(); } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for testing this class */ public static void main(String [] args) { try { File testF = new File(new File(System.getProperty("user.dir")), "testOut.zip"); OutputZipper oz = new OutputZipper(testF); /* OutputZipper oz = new OutputZipper( new File(System.getProperty("user.dir"))); */ oz.zipit("Here is some test text to be zipped","testzip"); oz.zipit("Here is a second entry to be zipped","testzip2"); oz.finished(); } catch (Exception ex) { ex.printStackTrace(); System.err.println(ex.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/PairedCorrectedTTester.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * PairedCorrectedTTester.java * Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.BufferedReader; import java.io.FileReader; import java.util.ArrayList; import java.util.Enumeration; import weka.core.Attribute; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.core.TechnicalInformationHandler; import weka.core.Utils; /** * Behaves the same as PairedTTester, only it uses the corrected resampled * t-test statistic. * <p/> * * For more information see: * <p/> * * <!-- technical-plaintext-start --> Claude Nadeau, Yoshua Bengio (2001). * Inference for the Generalization Error. Machine Learning.. <!-- * technical-plaintext-end --> * * <p/> * * <!-- technical-bibtex-start --> BibTeX: * * <pre> * &#64;article{Nadeau2001, * author = {Claude Nadeau and Yoshua Bengio}, * journal = {Machine Learning}, * title = {Inference for the Generalization Error}, * year = {2001}, * PDF = {http://www.iro.umontreal.ca/\~lisa/bib/pub_subject/comparative/pointeurs/nadeau_MLJ1597.pdf} * } * </pre> * <p/> * <!-- technical-bibtex-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -D &lt;index,index2-index4,...&gt; * Specify list of columns that specify a unique * dataset. * First and last are valid indexes. (default none) * </pre> * * <pre> * -R &lt;index&gt; * Set the index of the column containing the run number * </pre> * * <pre> * -F &lt;index&gt; * Set the index of the column containing the fold number * </pre> * * <pre> * -G &lt;index1,index2-index4,...&gt; * Specify list of columns that specify a unique * 'result generator' (eg: classifier name and options). * First and last are valid indexes. (default none) * </pre> * * <pre> * -S &lt;significance level&gt; * Set the significance level for comparisons (default 0.05) * </pre> * * <pre> * -V * Show standard deviations * </pre> * * <pre> * -L * Produce table comparisons in Latex table format * </pre> * * <pre> * -csv * Produce table comparisons in CSV table format * </pre> * * <pre> * -html * Produce table comparisons in HTML table format * </pre> * * <pre> * -significance * Produce table comparisons with only the significance values * </pre> * * <pre> * -gnuplot * Produce table comparisons output suitable for GNUPlot * </pre> * * <!-- options-end --> * * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision$ */ public class PairedCorrectedTTester extends PairedTTester implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -3105268939845653323L; /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Claude Nadeau and Yoshua Bengio"); result.setValue(Field.YEAR, "2001"); result.setValue(Field.TITLE, "Inference for the Generalization Error"); result.setValue(Field.JOURNAL, "Machine Learning"); result .setValue( Field.PDF, "http://www.iro.umontreal.ca/~lisa/bib/pub_subject/comparative/pointeurs/nadeau_MLJ1597.pdf"); return result; } /** * Computes a paired t-test comparison for a specified dataset between two * resultsets. * * @param datasetSpecifier the dataset specifier * @param resultset1Index the index of the first resultset * @param resultset2Index the index of the second resultset * @param comparisonColumn the column containing values to compare * @return the results of the paired comparison * @throws Exception if an error occurs */ @Override public PairedStats calculateStatistics(Instance datasetSpecifier, int resultset1Index, int resultset2Index, int comparisonColumn) throws Exception { if (m_Instances.attribute(comparisonColumn).type() != Attribute.NUMERIC) { throw new Exception("Comparison column " + (comparisonColumn + 1) + " (" + m_Instances.attribute(comparisonColumn).name() + ") is not numeric"); } if (!m_ResultsetsValid) { prepareData(); } Resultset resultset1 = (Resultset) m_Resultsets.get(resultset1Index); Resultset resultset2 = (Resultset) m_Resultsets.get(resultset2Index); ArrayList<Instance> dataset1 = resultset1.dataset(datasetSpecifier); ArrayList<Instance> dataset2 = resultset2.dataset(datasetSpecifier); String datasetName = templateString(datasetSpecifier); if (dataset1 == null) { throw new Exception("No results for dataset=" + datasetName + " for resultset=" + resultset1.templateString()); } else if (dataset2 == null) { throw new Exception("No results for dataset=" + datasetName + " for resultset=" + resultset2.templateString()); } else if (dataset1.size() != dataset2.size()) { throw new Exception("Results for dataset=" + datasetName + " differ in size for resultset=" + resultset1.templateString() + " and resultset=" + resultset2.templateString()); } // calculate the test/train ratio double testTrainRatio = 0.0; int trainSizeIndex = -1; int testSizeIndex = -1; // find the columns with the train/test sizes for (int i = 0; i < m_Instances.numAttributes(); i++) { if (m_Instances.attribute(i).name().toLowerCase() .equals("number_of_training_instances")) { trainSizeIndex = i; } else if (m_Instances.attribute(i).name().toLowerCase() .equals("number_of_testing_instances")) { testSizeIndex = i; } } if (trainSizeIndex >= 0 && testSizeIndex >= 0) { double totalTrainSize = 0.0; double totalTestSize = 0.0; for (int k = 0; k < dataset1.size(); k++) { Instance current = dataset1.get(k); totalTrainSize += current.value(trainSizeIndex); totalTestSize += current.value(testSizeIndex); } testTrainRatio = totalTestSize / totalTrainSize; } PairedStats pairedStats = new PairedStatsCorrected(m_SignificanceLevel, testTrainRatio); for (int k = 0; k < dataset1.size(); k++) { Instance current1 = dataset1.get(k); Instance current2 = dataset2.get(k); if (current1.isMissing(comparisonColumn)) { System.err.println("Instance has missing value in comparison " + "column!\n" + current1); continue; } if (current2.isMissing(comparisonColumn)) { System.err.println("Instance has missing value in comparison " + "column!\n" + current2); continue; } if (current1.value(m_RunColumn) != current2.value(m_RunColumn)) { System.err.println("Run numbers do not match!\n" + current1 + current2); } if (m_FoldColumn != -1) { if (current1.value(m_FoldColumn) != current2.value(m_FoldColumn)) { System.err.println("Fold numbers do not match!\n" + current1 + current2); } } double value1 = current1.value(comparisonColumn); double value2 = current2.value(comparisonColumn); pairedStats.add(value1, value2); } pairedStats.calculateDerived(); return pairedStats; } /** * Test the class from the command line. * * @param args contains options for the instance ttests */ public static void main(String args[]) { try { PairedCorrectedTTester tt = new PairedCorrectedTTester(); String datasetName = Utils.getOption('t', args); String compareColStr = Utils.getOption('c', args); String baseColStr = Utils.getOption('b', args); boolean summaryOnly = Utils.getFlag('s', args); boolean rankingOnly = Utils.getFlag('r', args); try { if ((datasetName.length() == 0) || (compareColStr.length() == 0)) { throw new Exception("-t and -c options are required"); } tt.setOptions(args); Utils.checkForRemainingOptions(args); } catch (Exception ex) { String result = ""; Enumeration<Option> enu = tt.listOptions(); while (enu.hasMoreElements()) { Option option = enu.nextElement(); result += option.synopsis() + '\n' + option.description() + '\n'; } throw new Exception("Usage:\n\n" + "-t <file>\n" + "\tSet the dataset containing data to evaluate\n" + "-b <index>\n" + "\tSet the resultset to base comparisons against (optional)\n" + "-c <index>\n" + "\tSet the column to perform a comparison on\n" + "-s\n" + "\tSummarize wins over all resultset pairs\n\n" + "-r\n" + "\tGenerate a resultset ranking\n\n" + result); } Instances data = new Instances(new BufferedReader(new FileReader( datasetName))); tt.setInstances(data); // tt.prepareData(); int compareCol = Integer.parseInt(compareColStr) - 1; System.out.println(tt.header(compareCol)); if (rankingOnly) { System.out.println(tt.multiResultsetRanking(compareCol)); } else if (summaryOnly) { System.out.println(tt.multiResultsetSummary(compareCol)); } else { System.out.println(tt.resultsetKey()); if (baseColStr.length() == 0) { for (int i = 0; i < tt.getNumResultsets(); i++) { System.out.println(tt.multiResultsetFull(i, compareCol)); } } else { int baseCol = Integer.parseInt(baseColStr) - 1; System.out.println(tt.multiResultsetFull(baseCol, compareCol)); } } } catch (Exception e) { e.printStackTrace(); System.err.println(e.getMessage()); } } /** * returns the name of the tester * * @return the display name */ @Override public String getDisplayName() { return "Paired T-Tester (corrected)"; } /** * returns a string that is displayed as tooltip on the "perform test" button * in the experimenter * * @return the string for the tool tip */ @Override public String getToolTipText() { return "Performs test using corrected resampled t-test statistic (Nadeau and Bengio)"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/PairedStats.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * PairedStats.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Statistics; import weka.core.Utils; /** * A class for storing stats on a paired comparison (t-test and correlation) * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class PairedStats implements RevisionHandler { /** The stats associated with the data in column 1 */ public Stats xStats; /** The stats associated with the data in column 2 */ public Stats yStats; /** The stats associated with the paired differences */ public Stats differencesStats; /** The probability of obtaining the observed differences */ public double differencesProbability; /** The correlation coefficient */ public double correlation; /** The sum of the products */ public double xySum; /** The number of data points seen */ public double count; /** * A significance indicator: * 0 if the differences are not significant * > 0 if x significantly greater than y * < 0 if x significantly less than y */ public int differencesSignificance; /** The significance level for comparisons */ public double sigLevel; /** The degrees of freedom (if set programmatically) */ protected int m_degreesOfFreedom = 0; /** * Creates a new PairedStats object with the supplied significance level. * * @param sig the significance level for comparisons */ public PairedStats(double sig) { xStats = new Stats(); yStats = new Stats(); differencesStats = new Stats(); sigLevel = sig; } /** * Sets the degrees of freedom (if calibration is required). */ public void setDegreesOfFreedom(int d) { if (d <= 0) { throw new IllegalArgumentException("PairedStats: degrees of freedom must be >= 1"); } m_degreesOfFreedom = d; } /** * Gets the degrees of freedom. */ public int getDegreesOfFreedom() { return m_degreesOfFreedom; } /** * Add an observed pair of values. * * @param value1 the value from column 1 * @param value2 the value from column 2 */ public void add(double value1, double value2) { xStats.add(value1); yStats.add(value2); differencesStats.add(value1 - value2); xySum += value1 * value2; count ++; } /** * Removes an observed pair of values. * * @param value1 the value from column 1 * @param value2 the value from column 2 */ public void subtract(double value1, double value2) { xStats.subtract(value1); yStats.subtract(value2); differencesStats.subtract(value1 - value2); xySum -= value1 * value2; count --; } /** * Adds an array of observed pair of values. * * @param value1 the array containing values from column 1 * @param value2 the array containing values from column 2 */ public void add(double value1[], double value2[]) { if ((value1 == null) || (value2 == null)) { throw new NullPointerException(); } if (value1.length != value2.length) { throw new IllegalArgumentException("Arrays must be of the same length"); } for (int i = 0; i < value1.length; i++) { add(value1[i], value2[i]); } } /** * Removes an array of observed pair of values. * * @param value1 the array containing values from column 1 * @param value2 the array containing values from column 2 */ public void subtract(double value1[], double value2[]) { if ((value1 == null) || (value2 == null)) { throw new NullPointerException(); } if (value1.length != value2.length) { throw new IllegalArgumentException("Arrays must be of the same length"); } for (int i = 0; i < value1.length; i++) { subtract(value1[i], value2[i]); } } /** * Calculates the derived statistics (significance etc). */ public void calculateDerived() { xStats.calculateDerived(); yStats.calculateDerived(); differencesStats.calculateDerived(); correlation = Double.NaN; if (!Double.isNaN(xStats.stdDev) && !Double.isNaN(yStats.stdDev) && (xStats.stdDev > 0) && (yStats.stdDev > 0) && (count > 1)) { correlation = (xySum - xStats.sum * yStats.sum / count) / ((count - 1) * xStats.stdDev * yStats.stdDev); } if (differencesStats.stdDev > 0) { double tval = differencesStats.mean * Math.sqrt(count) / differencesStats.stdDev; if (m_degreesOfFreedom >= 1) { differencesProbability = Statistics.FProbability(tval * tval, 1, m_degreesOfFreedom); } else { if (count > 1) { differencesProbability = Statistics.FProbability(tval * tval, 1, (int) count - 1); } else { differencesProbability = 1; } } } else { if (differencesStats.sumSq == 0) { differencesProbability = 1.0; } else { differencesProbability = 0.0; } } differencesSignificance = 0; if (differencesProbability <= sigLevel) { if (xStats.mean > yStats.mean) { differencesSignificance = 1; } else { differencesSignificance = -1; } } } /** * Returns statistics on the paired comparison. * * @return the t-test statistics as a string */ public String toString() { return "Analysis for " + Utils.doubleToString(count, 0) + " points:\n" + " " + " Column 1" + " Column 2" + " Difference\n" + "Minimums " + Utils.doubleToString(xStats.min, 17, 4) + Utils.doubleToString(yStats.min, 17, 4) + Utils.doubleToString(differencesStats.min, 17, 4) + '\n' + "Maximums " + Utils.doubleToString(xStats.max, 17, 4) + Utils.doubleToString(yStats.max, 17, 4) + Utils.doubleToString(differencesStats.max, 17, 4) + '\n' + "Sums " + Utils.doubleToString(xStats.sum, 17, 4) + Utils.doubleToString(yStats.sum, 17, 4) + Utils.doubleToString(differencesStats.sum, 17, 4) + '\n' + "SumSquares " + Utils.doubleToString(xStats.sumSq, 17, 4) + Utils.doubleToString(yStats.sumSq, 17, 4) + Utils.doubleToString(differencesStats.sumSq, 17, 4) + '\n' + "Means " + Utils.doubleToString(xStats.mean, 17, 4) + Utils.doubleToString(yStats.mean, 17, 4) + Utils.doubleToString(differencesStats.mean, 17, 4) + '\n' + "SDs " + Utils.doubleToString(xStats.stdDev, 17, 4) + Utils.doubleToString(yStats.stdDev, 17, 4) + Utils.doubleToString(differencesStats.stdDev, 17, 4) + '\n' + "Prob(differences) " + Utils.doubleToString(differencesProbability, 4) + " (sigflag " + differencesSignificance + ")\n" + "Correlation " + Utils.doubleToString(correlation,4) + "\n"; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Tests the paired stats object from the command line. * reads line from stdin, expecting two values per line. * * @param args ignored. */ public static void main(String [] args) { try { PairedStats ps = new PairedStats(0.05); java.io.LineNumberReader r = new java.io.LineNumberReader( new java.io.InputStreamReader(System.in)); String line; while ((line = r.readLine()) != null) { line = line.trim(); if (line.equals("") || line.startsWith("@") || line.startsWith("%")) { continue; } java.util.StringTokenizer s = new java.util.StringTokenizer(line, " ,\t\n\r\f"); int count = 0; double v1 = 0, v2 = 0; while (s.hasMoreTokens()) { double val = (new Double(s.nextToken())).doubleValue(); if (count == 0) { v1 = val; } else if (count == 1) { v2 = val; } else { System.err.println("MSG: Too many values in line \"" + line + "\", skipped."); break; } count++; } if (count == 2) { ps.add(v1, v2); } } ps.calculateDerived(); System.err.println(ps); } catch (Exception ex) { ex.printStackTrace(); System.err.println(ex.getMessage()); } } } // PairedStats
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/PairedStatsCorrected.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * PairedStatsCorrected.java * Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.RevisionUtils; import weka.core.Statistics; import weka.core.Utils; /** * A class for storing stats on a paired comparison. This version is * based on the corrected resampled t-test statistic, which uses the * ratio of the number of test examples/the number of training examples.<p> * * For more information see:<p> * * Claude Nadeau and Yoshua Bengio, "Inference for the Generalization Error," * Machine Learning, 2001. * * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision$ */ public class PairedStatsCorrected extends PairedStats { /** The ratio used to correct the significance test */ protected double m_testTrainRatio; /** * Creates a new PairedStatsCorrected object with the supplied * significance level and train/test ratio. * * @param sig the significance level for comparisons * @param testTrainRatio the number test examples/training examples */ public PairedStatsCorrected(double sig, double testTrainRatio) { super(sig); m_testTrainRatio = testTrainRatio; } /** * Calculates the derived statistics (significance etc). */ public void calculateDerived() { xStats.calculateDerived(); yStats.calculateDerived(); differencesStats.calculateDerived(); correlation = Double.NaN; if (!Double.isNaN(xStats.stdDev) && !Double.isNaN(yStats.stdDev) && (xStats.stdDev > 0) && (yStats.stdDev > 0) && (count > 1)) { correlation = (xySum - xStats.sum * yStats.sum / count) / ((count - 1) * xStats.stdDev * yStats.stdDev); } if (differencesStats.stdDev > 0) { double tval = differencesStats.mean / Math.sqrt((1 / count + m_testTrainRatio) * differencesStats.stdDev * differencesStats.stdDev); if (count > 1) { differencesProbability = Statistics.FProbability(tval * tval, 1, (int) count - 1); } else differencesProbability = 1; } else { if (differencesStats.sumSq == 0) { differencesProbability = 1.0; } else { differencesProbability = 0.0; } } differencesSignificance = 0; if (differencesProbability <= sigLevel) { if (xStats.mean > yStats.mean) { differencesSignificance = 1; } else { differencesSignificance = -1; } } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Tests the paired stats object from the command line. * reads line from stdin, expecting two values per line. * * @param args ignored. */ public static void main(String [] args) { try { PairedStatsCorrected ps = new PairedStatsCorrected(0.05, 1.0 / 9.0); java.io.LineNumberReader r = new java.io.LineNumberReader( new java.io.InputStreamReader(System.in)); String line; while ((line = r.readLine()) != null) { line = line.trim(); if (line.equals("") || line.startsWith("@") || line.startsWith("%")) { continue; } java.util.StringTokenizer s = new java.util.StringTokenizer(line, " ,\t\n\r\f"); int count = 0; double v1 = 0, v2 = 0; while (s.hasMoreTokens()) { double val = (new Double(s.nextToken())).doubleValue(); if (count == 0) { v1 = val; } else if (count == 1) { v2 = val; } else { System.err.println("MSG: Too many values in line \"" + line + "\", skipped."); break; } count++; } if (count == 2) { ps.add(v1, v2); } } ps.calculateDerived(); System.err.println(ps); } catch (Exception ex) { ex.printStackTrace(); System.err.println(ex.getMessage()); } }}
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/PairedTTester.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * PairedTTester.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.BufferedReader; import java.io.FileReader; import java.io.Serializable; import java.text.SimpleDateFormat; import java.util.ArrayList; import java.util.Collections; import java.util.Date; import java.util.Enumeration; import java.util.Vector; import weka.core.Attribute; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.Range; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * Calculates T-Test statistics on data stored in a set of instances. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -D &lt;index,index2-index4,...&gt; * Specify list of columns that specify a unique * dataset. * First and last are valid indexes. (default none) * </pre> * * <pre> * -R &lt;index&gt; * Set the index of the column containing the run number * </pre> * * <pre> * -F &lt;index&gt; * Set the index of the column containing the fold number * </pre> * * <pre> * -G &lt;index1,index2-index4,...&gt; * Specify list of columns that specify a unique * 'result generator' (eg: classifier name and options). * First and last are valid indexes. (default none) * </pre> * * <pre> * -S &lt;significance level&gt; * Set the significance level for comparisons (default 0.05) * </pre> * * <pre> * -V * Show standard deviations * </pre> * * <pre> * -L * Produce table comparisons in Latex table format * </pre> * * <pre> * -csv * Produce table comparisons in CSV table format * </pre> * * <pre> * -html * Produce table comparisons in HTML table format * </pre> * * <pre> * -significance * Produce table comparisons with only the significance values * </pre> * * <pre> * -gnuplot * Produce table comparisons output suitable for GNUPlot * </pre> * * <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class PairedTTester implements OptionHandler, Tester, RevisionHandler { /** for serialization */ static final long serialVersionUID = 8370014624008728610L; /** The set of instances we will analyse */ protected Instances m_Instances; /** The index of the column containing the run number */ protected int m_RunColumn = 0; /** The option setting for the run number column (-1 means last) */ protected int m_RunColumnSet = -1; /** The option setting for the fold number column (-1 means none) */ protected int m_FoldColumn = -1; /** The column to sort on (-1 means default sorting) */ protected int m_SortColumn = -1; /** The sorting of the datasets (according to the sort column) */ protected int[] m_SortOrder = null; /** The sorting of the columns (test base is always first) */ protected int[] m_ColOrder = null; /** The significance level for comparisons */ protected double m_SignificanceLevel = 0.05; /** * The range of columns that specify a unique "dataset" (eg: scheme plus * configuration) */ protected Range m_DatasetKeyColumnsRange = new Range(); /** An array containing the indexes of just the selected columns */ protected int[] m_DatasetKeyColumns; /** The list of dataset specifiers */ protected DatasetSpecifiers m_DatasetSpecifiers = new DatasetSpecifiers(); /** * The range of columns that specify a unique result set (eg: scheme plus * configuration) */ protected Range m_ResultsetKeyColumnsRange = new Range(); /** An array containing the indexes of just the selected columns */ protected int[] m_ResultsetKeyColumns; /** An array containing the indexes of the datasets to display */ protected int[] m_DisplayedResultsets = null; /** Stores a vector for each resultset holding all instances in each set */ protected ArrayList<Resultset> m_Resultsets = new ArrayList<Resultset>(); /** Indicates whether the instances have been partitioned */ protected boolean m_ResultsetsValid; /** Indicates whether standard deviations should be displayed */ protected boolean m_ShowStdDevs = false; /** the instance of the class to produce the output. */ protected ResultMatrix m_ResultMatrix = new ResultMatrixPlainText(); /** A list of unique "dataset" specifiers that have been observed */ protected class DatasetSpecifiers implements RevisionHandler, Serializable { /** for serialization. */ private static final long serialVersionUID = -9020938059902723401L; /** the specifiers that have been observed */ ArrayList<Instance> m_Specifiers = new ArrayList<Instance>(); /** * Removes all specifiers. */ protected void removeAllSpecifiers() { this.m_Specifiers.clear(); } /** * Add an instance to the list of specifiers (if necessary) * * @param inst the instance to add */ protected void add(final Instance inst) { for (int i = 0; i < this.m_Specifiers.size(); i++) { Instance specifier = this.m_Specifiers.get(i); boolean found = true; for (int m_DatasetKeyColumn : PairedTTester.this.m_DatasetKeyColumns) { if (inst.value(m_DatasetKeyColumn) != specifier.value(m_DatasetKeyColumn)) { found = false; } } if (found) { return; } } this.m_Specifiers.add(inst); } /** * Get the template at the given position. * * @param i the index * @return the template */ protected Instance specifier(final int i) { return this.m_Specifiers.get(i); } /** * Gets the number of specifiers. * * @return the current number of specifiers */ protected int numSpecifiers() { return this.m_Specifiers.size(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } /** Utility class to store the instances pertaining to a dataset */ protected class Dataset implements RevisionHandler, Serializable { /** for serialization. */ private static final long serialVersionUID = -2801397601839433282L; /** the template */ Instance m_Template; /** the dataset */ ArrayList<Instance> m_Dataset; /** * Constructor * * @param template the template */ public Dataset(final Instance template) { this.m_Template = template; this.m_Dataset = new ArrayList<Instance>(); this.add(template); } /** * Returns true if the two instances match on those attributes that have * been designated key columns (eg: scheme name and scheme options) * * @param first the first instance * @return true if first and second match on the currently set key columns */ protected boolean matchesTemplate(final Instance first) { for (int m_DatasetKeyColumn : PairedTTester.this.m_DatasetKeyColumns) { if (first.value(m_DatasetKeyColumn) != this.m_Template.value(m_DatasetKeyColumn)) { return false; } } return true; } /** * Adds the given instance to the dataset * * @param inst the instance to add */ protected void add(final Instance inst) { this.m_Dataset.add(inst); } /** * Returns a vector containing the instances in the dataset * * @return the current contents */ protected ArrayList<Instance> contents() { return this.m_Dataset; } /** * Sorts the instances in the dataset by the run number. * * @param runColumn a value of type 'int' * @throws InterruptedException */ public void sort(final int runColumn) throws InterruptedException { double[] runNums = new double[this.m_Dataset.size()]; for (int j = 0; j < runNums.length; j++) { runNums[j] = this.m_Dataset.get(j).value(runColumn); } int[] index = Utils.stableSort(runNums); ArrayList<Instance> newDataset = new ArrayList<Instance>(runNums.length); for (int element : index) { newDataset.add(this.m_Dataset.get(element)); } this.m_Dataset = newDataset; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } /** Utility class to store the instances in a resultset */ protected class Resultset implements RevisionHandler, Serializable { /** for serialization. */ private static final long serialVersionUID = 1543786683821339978L; /** the template */ Instance m_Template; /** the dataset */ ArrayList<Dataset> m_Datasets; /** * Constructir * * @param template the template */ public Resultset(final Instance template) { this.m_Template = template; this.m_Datasets = new ArrayList<Dataset>(); this.add(template); } /** * Returns true if the two instances match on those attributes that have * been designated key columns (eg: scheme name and scheme options) * * @param first the first instance * @return true if first and second match on the currently set key columns */ protected boolean matchesTemplate(final Instance first) { for (int m_ResultsetKeyColumn : PairedTTester.this.m_ResultsetKeyColumns) { if (first.value(m_ResultsetKeyColumn) != this.m_Template.value(m_ResultsetKeyColumn)) { return false; } } return true; } /** * Returns a string descriptive of the resultset key column values for this * resultset * * @return a value of type 'String' */ protected String templateString() { String result = ""; String tempResult = ""; for (int m_ResultsetKeyColumn : PairedTTester.this.m_ResultsetKeyColumns) { tempResult = this.m_Template.toString(m_ResultsetKeyColumn) + ' '; // compact the string tempResult = Utils.removeSubstring(tempResult, "weka.classifiers."); tempResult = Utils.removeSubstring(tempResult, "weka.filters."); tempResult = Utils.removeSubstring(tempResult, "weka.attributeSelection."); result += tempResult; } return result.trim(); } /** * Returns a vector containing all instances belonging to one dataset. * * @param inst a template instance * @return a value of type 'FastVector' */ public ArrayList<Instance> dataset(final Instance inst) { for (int i = 0; i < this.m_Datasets.size(); i++) { if (this.m_Datasets.get(i).matchesTemplate(inst)) { return this.m_Datasets.get(i).contents(); } } return null; } /** * Adds an instance to this resultset * * @param newInst a value of type 'Instance' */ public void add(final Instance newInst) { for (int i = 0; i < this.m_Datasets.size(); i++) { if (this.m_Datasets.get(i).matchesTemplate(newInst)) { this.m_Datasets.get(i).add(newInst); return; } } Dataset newDataset = new Dataset(newInst); this.m_Datasets.add(newDataset); } /** * Sorts the instances in each dataset by the run number. * * @param runColumn a value of type 'int' * @throws InterruptedException */ public void sort(final int runColumn) throws InterruptedException { for (int i = 0; i < this.m_Datasets.size(); i++) { this.m_Datasets.get(i).sort(runColumn); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // Resultset /** * Returns a string descriptive of the key column values for the "datasets * * @param template the template * @return a value of type 'String' */ protected String templateString(final Instance template) { String result = ""; for (int m_DatasetKeyColumn : this.m_DatasetKeyColumns) { result += template.toString(m_DatasetKeyColumn) + ' '; } if (result.startsWith("weka.classifiers.")) { result = result.substring("weka.classifiers.".length()); } return result.trim(); } /** * Sets the matrix to use to produce the output. * * @param matrix the instance to use to produce the output * @see ResultMatrix */ @Override public void setResultMatrix(final ResultMatrix matrix) { this.m_ResultMatrix = matrix; } /** * Gets the instance that produces the output. * * @return the instance to produce the output */ @Override public ResultMatrix getResultMatrix() { return this.m_ResultMatrix; } /** * Set whether standard deviations are displayed or not. * * @param s true if standard deviations are to be displayed */ @Override public void setShowStdDevs(final boolean s) { this.m_ShowStdDevs = s; } /** * Returns true if standard deviations have been requested. * * @return true if standard deviations are to be displayed. */ @Override public boolean getShowStdDevs() { return this.m_ShowStdDevs; } /** * Separates the instances into resultsets and by dataset/run. * * @throws Exception if the TTest parameters have not been set. */ protected void prepareData() throws Exception { if (this.m_Instances == null) { throw new Exception("No instances have been set"); } if (this.m_RunColumnSet == -1) { this.m_RunColumn = this.m_Instances.numAttributes() - 1; } else { this.m_RunColumn = this.m_RunColumnSet; } if (this.m_ResultsetKeyColumnsRange == null) { throw new Exception("No result specifier columns have been set"); } this.m_ResultsetKeyColumnsRange.setUpper(this.m_Instances.numAttributes() - 1); this.m_ResultsetKeyColumns = this.m_ResultsetKeyColumnsRange.getSelection(); if (this.m_DatasetKeyColumnsRange == null) { throw new Exception("No dataset specifier columns have been set"); } this.m_DatasetKeyColumnsRange.setUpper(this.m_Instances.numAttributes() - 1); this.m_DatasetKeyColumns = this.m_DatasetKeyColumnsRange.getSelection(); // Split the data up into result sets this.m_Resultsets.clear(); this.m_DatasetSpecifiers.removeAllSpecifiers(); for (int i = 0; i < this.m_Instances.numInstances(); i++) { Instance current = this.m_Instances.instance(i); if (current.isMissing(this.m_RunColumn)) { throw new Exception("Instance has missing value in run " + "column!\n" + current); } for (int m_ResultsetKeyColumn : this.m_ResultsetKeyColumns) { if (current.isMissing(m_ResultsetKeyColumn)) { throw new Exception("Instance has missing value in resultset key " + "column " + (m_ResultsetKeyColumn + 1) + "!\n" + current); } } for (int m_DatasetKeyColumn : this.m_DatasetKeyColumns) { if (current.isMissing(m_DatasetKeyColumn)) { throw new Exception("Instance has missing value in dataset key " + "column " + (m_DatasetKeyColumn + 1) + "!\n" + current); } } boolean found = false; for (int j = 0; j < this.m_Resultsets.size(); j++) { Resultset resultset = this.m_Resultsets.get(j); if (resultset.matchesTemplate(current)) { resultset.add(current); found = true; break; } } if (!found) { Resultset resultset = new Resultset(current); this.m_Resultsets.add(resultset); } this.m_DatasetSpecifiers.add(current); } // Tell each resultset to sort on the run column for (int j = 0; j < this.m_Resultsets.size(); j++) { Resultset resultset = this.m_Resultsets.get(j); if (this.m_FoldColumn >= 0) { // sort on folds first in case they are out of order resultset.sort(this.m_FoldColumn); } resultset.sort(this.m_RunColumn); } this.m_ResultsetsValid = true; } /** * Gets the number of datasets in the resultsets * * @return the number of datasets in the resultsets */ @Override public int getNumDatasets() { if (!this.m_ResultsetsValid) { try { this.prepareData(); } catch (Exception ex) { ex.printStackTrace(); return 0; } } return this.m_DatasetSpecifiers.numSpecifiers(); } /** * Gets the number of resultsets in the data. * * @return the number of resultsets in the data */ @Override public int getNumResultsets() { if (!this.m_ResultsetsValid) { try { this.prepareData(); } catch (Exception ex) { ex.printStackTrace(); return 0; } } return this.m_Resultsets.size(); } /** * Gets a string descriptive of the specified resultset. * * @param index the index of the resultset * @return a descriptive string for the resultset */ @Override public String getResultsetName(final int index) { if (!this.m_ResultsetsValid) { try { this.prepareData(); } catch (Exception ex) { ex.printStackTrace(); return null; } } return this.m_Resultsets.get(index).templateString(); } /** * Checks whether the resultset with the given index shall be displayed. * * @param index the index of the resultset to check whether it shall be * displayed * @return whether the specified resultset is displayed */ @Override public boolean displayResultset(final int index) { boolean result; int i; result = true; if (this.m_DisplayedResultsets != null) { result = false; for (i = 0; i < this.m_DisplayedResultsets.length; i++) { if (this.m_DisplayedResultsets[i] == index) { result = true; break; } } } return result; } /** * Computes a paired t-test comparison for a specified dataset between two * resultsets. * * @param datasetSpecifier the dataset specifier * @param resultset1Index the index of the first resultset * @param resultset2Index the index of the second resultset * @param comparisonColumn the column containing values to compare * @return the results of the paired comparison * @throws Exception if an error occurs */ @Override public PairedStats calculateStatistics(final Instance datasetSpecifier, final int resultset1Index, final int resultset2Index, final int comparisonColumn) throws Exception { if (this.m_Instances.attribute(comparisonColumn).type() != Attribute.NUMERIC) { throw new Exception("Comparison column " + (comparisonColumn + 1) + " (" + this.m_Instances.attribute(comparisonColumn).name() + ") is not numeric"); } if (!this.m_ResultsetsValid) { this.prepareData(); } Resultset resultset1 = this.m_Resultsets.get(resultset1Index); Resultset resultset2 = this.m_Resultsets.get(resultset2Index); ArrayList<Instance> dataset1 = resultset1.dataset(datasetSpecifier); ArrayList<Instance> dataset2 = resultset2.dataset(datasetSpecifier); String datasetName = this.templateString(datasetSpecifier); if (dataset1 == null) { throw new Exception("No results for dataset=" + datasetName + " for resultset=" + resultset1.templateString()); } else if (dataset2 == null) { throw new Exception("No results for dataset=" + datasetName + " for resultset=" + resultset2.templateString()); } else if (dataset1.size() != dataset2.size()) { throw new Exception("Results for dataset=" + datasetName + " differ in size for resultset=" + resultset1.templateString() + " and resultset=" + resultset2.templateString()); } PairedStats pairedStats = new PairedStats(this.m_SignificanceLevel); for (int k = 0; k < dataset1.size(); k++) { Instance current1 = dataset1.get(k); Instance current2 = dataset2.get(k); if (current1.isMissing(comparisonColumn)) { System.err.println("Instance has missing value in comparison " + "column!\n" + current1); continue; } if (current2.isMissing(comparisonColumn)) { System.err.println("Instance has missing value in comparison " + "column!\n" + current2); continue; } if (current1.value(this.m_RunColumn) != current2.value(this.m_RunColumn)) { System.err.println("Run numbers do not match!\n" + current1 + current2); } if (this.m_FoldColumn != -1) { if (current1.value(this.m_FoldColumn) != current2.value(this.m_FoldColumn)) { System.err.println("Fold numbers do not match!\n" + current1 + current2); } } double value1 = current1.value(comparisonColumn); double value2 = current2.value(comparisonColumn); pairedStats.add(value1, value2); } pairedStats.calculateDerived(); // System.err.println("Differences stats:\n" + // pairedStats.differencesStats); return pairedStats; } /** * Creates a key that maps resultset numbers to their descriptions. * * @return a value of type 'String' */ @Override public String resultsetKey() { if (!this.m_ResultsetsValid) { try { this.prepareData(); } catch (Exception ex) { ex.printStackTrace(); return ex.getMessage(); } } String result = ""; for (int j = 0; j < this.getNumResultsets(); j++) { result += "(" + (j + 1) + ") " + this.getResultsetName(j) + '\n'; } return result + '\n'; } /** * Creates a "header" string describing the current resultsets. * * @param comparisonColumn a value of type 'int' * @return a value of type 'String' */ @Override public String header(final int comparisonColumn) { if (!this.m_ResultsetsValid) { try { this.prepareData(); } catch (Exception ex) { ex.printStackTrace(); return ex.getMessage(); } } this.initResultMatrix(); this.m_ResultMatrix.addHeader("Tester", this.getClass().getName() + " " + Utils.joinOptions(this.getOptions())); this.m_ResultMatrix.addHeader("Analysing", this.m_Instances.attribute(comparisonColumn).name()); this.m_ResultMatrix.addHeader("Datasets", Integer.toString(this.getNumDatasets())); this.m_ResultMatrix.addHeader("Resultsets", Integer.toString(this.getNumResultsets())); this.m_ResultMatrix.addHeader("Confidence", this.getSignificanceLevel() + " (two tailed)"); this.m_ResultMatrix.addHeader("Sorted by", this.getSortColumnName()); this.m_ResultMatrix.addHeader("Date", (new SimpleDateFormat()).format(new Date())); return this.m_ResultMatrix.toStringHeader() + "\n"; } /** * Carries out a comparison between all resultsets, counting the number of * datsets where one resultset outperforms the other. * * @param comparisonColumn the index of the comparison column * @param nonSigWin for storing the non-significant wins * @return a 2d array where element [i][j] is the number of times resultset j * performed significantly better than resultset i. * @throws Exception if an error occurs */ @Override public int[][] multiResultsetWins(final int comparisonColumn, final int[][] nonSigWin) throws Exception { int numResultsets = this.getNumResultsets(); int[][] win = new int[numResultsets][numResultsets]; // int [][] nonSigWin = new int [numResultsets][numResultsets]; for (int i = 0; i < numResultsets; i++) { for (int j = i + 1; j < numResultsets; j++) { System.err.print("Comparing (" + (i + 1) + ") with (" + (j + 1) + ")\r"); System.err.flush(); for (int k = 0; k < this.getNumDatasets(); k++) { try { PairedStats pairedStats = this.calculateStatistics(this.m_DatasetSpecifiers.specifier(k), i, j, comparisonColumn); if (pairedStats.differencesSignificance < 0) { win[i][j]++; } else if (pairedStats.differencesSignificance > 0) { win[j][i]++; } if (pairedStats.differencesStats.mean < 0) { nonSigWin[i][j]++; } else if (pairedStats.differencesStats.mean > 0) { nonSigWin[j][i]++; } } catch (Exception ex) { // ex.printStackTrace(); System.err.println(ex.getMessage()); } } } } return win; } /** * clears the content and fills the column and row names according to the * given sorting */ protected void initResultMatrix() { this.m_ResultMatrix.setSize(this.getNumResultsets(), this.getNumDatasets()); this.m_ResultMatrix.setShowStdDev(this.m_ShowStdDevs); for (int i = 0; i < this.getNumDatasets(); i++) { this.m_ResultMatrix.setRowName(i, this.templateString(this.m_DatasetSpecifiers.specifier(i))); } for (int j = 0; j < this.getNumResultsets(); j++) { this.m_ResultMatrix.setColName(j, this.getResultsetName(j)); this.m_ResultMatrix.setColHidden(j, !this.displayResultset(j)); } } /** * Carries out a comparison between all resultsets, counting the number of * datsets where one resultset outperforms the other. The results are * summarized in a table. * * @param comparisonColumn the index of the comparison column * @return the results in a string * @throws Exception if an error occurs */ @Override public String multiResultsetSummary(final int comparisonColumn) throws Exception { int[][] nonSigWin = new int[this.getNumResultsets()][this.getNumResultsets()]; int[][] win = this.multiResultsetWins(comparisonColumn, nonSigWin); this.initResultMatrix(); this.m_ResultMatrix.setSummary(nonSigWin, win); return this.m_ResultMatrix.toStringSummary(); } /** * returns a ranking of the resultsets * * @param comparisonColumn the column to compare with * @return the ranking * @throws Exception if something goes wrong */ @Override public String multiResultsetRanking(final int comparisonColumn) throws Exception { int[][] nonSigWin = new int[this.getNumResultsets()][this.getNumResultsets()]; int[][] win = this.multiResultsetWins(comparisonColumn, nonSigWin); this.initResultMatrix(); this.m_ResultMatrix.setRanking(win); return this.m_ResultMatrix.toStringRanking(); } /** * Creates a comparison table where a base resultset is compared to the other * resultsets. Results are presented for every dataset. * * @param baseResultset the index of the base resultset * @param comparisonColumn the index of the column to compare over * @return the comparison table string * @throws Exception if an error occurs */ @Override public String multiResultsetFull(final int baseResultset, final int comparisonColumn) throws Exception { int maxWidthMean = 2; int maxWidthStdDev = 2; double[] sortValues = new double[this.getNumDatasets()]; // determine max field width for (int i = 0; i < this.getNumDatasets(); i++) { sortValues[i] = Double.POSITIVE_INFINITY; // sorts skipped cols to end for (int j = 0; j < this.getNumResultsets(); j++) { if (!this.displayResultset(j)) { continue; } try { PairedStats pairedStats = this.calculateStatistics(this.m_DatasetSpecifiers.specifier(i), baseResultset, j, comparisonColumn); if (!Double.isInfinite(pairedStats.yStats.mean) && !Double.isNaN(pairedStats.yStats.mean)) { double width = ((Math.log(Math.abs(pairedStats.yStats.mean)) / Math.log(10)) + 1); if (width > maxWidthMean) { maxWidthMean = (int) width; } } if (j == baseResultset) { if (this.getSortColumn() != -1) { sortValues[i] = this.calculateStatistics(this.m_DatasetSpecifiers.specifier(i), baseResultset, j, this.getSortColumn()).xStats.mean; } else { sortValues[i] = i; } } if (this.m_ShowStdDevs && !Double.isInfinite(pairedStats.yStats.stdDev) && !Double.isNaN(pairedStats.yStats.stdDev)) { double width = ((Math.log(Math.abs(pairedStats.yStats.stdDev)) / Math.log(10)) + 1); if (width > maxWidthStdDev) { maxWidthStdDev = (int) width; } } } catch (Exception ex) { // ex.printStackTrace(); System.err.println(ex); } } } // sort rows according to sort column this.m_SortOrder = Utils.sort(sortValues); // determine column order this.m_ColOrder = new int[this.getNumResultsets()]; this.m_ColOrder[0] = baseResultset; int index = 1; for (int i = 0; i < this.getNumResultsets(); i++) { if (i == baseResultset) { continue; } this.m_ColOrder[index] = i; index++; } // setup matrix this.initResultMatrix(); this.m_ResultMatrix.setRowOrder(this.m_SortOrder); this.m_ResultMatrix.setColOrder(this.m_ColOrder); this.m_ResultMatrix.setMeanWidth(maxWidthMean); this.m_ResultMatrix.setStdDevWidth(maxWidthStdDev); this.m_ResultMatrix.setSignificanceWidth(1); // make sure that test base is displayed, even though it might not be // selected for (int i = 0; i < this.m_ResultMatrix.getColCount(); i++) { if ((i == baseResultset) && (this.m_ResultMatrix.getColHidden(i))) { this.m_ResultMatrix.setColHidden(i, false); System.err.println("Note: test base was hidden - set visible!"); } } // the data for (int i = 0; i < this.getNumDatasets(); i++) { this.m_ResultMatrix.setRowName(i, this.templateString(this.m_DatasetSpecifiers.specifier(i))); for (int j = 0; j < this.getNumResultsets(); j++) { try { // calc stats PairedStats pairedStats = this.calculateStatistics(this.m_DatasetSpecifiers.specifier(i), baseResultset, j, comparisonColumn); // count this.m_ResultMatrix.setCount(i, pairedStats.count); // mean this.m_ResultMatrix.setMean(j, i, pairedStats.yStats.mean); // std dev this.m_ResultMatrix.setStdDev(j, i, pairedStats.yStats.stdDev); // significance if (pairedStats.differencesSignificance < 0) { this.m_ResultMatrix.setSignificance(j, i, ResultMatrix.SIGNIFICANCE_WIN); } else if (pairedStats.differencesSignificance > 0) { this.m_ResultMatrix.setSignificance(j, i, ResultMatrix.SIGNIFICANCE_LOSS); } else { this.m_ResultMatrix.setSignificance(j, i, ResultMatrix.SIGNIFICANCE_TIE); } } catch (Exception e) { // e.printStackTrace(); System.err.println(e); } } } // generate output StringBuffer result = new StringBuffer(1000); try { result.append(this.m_ResultMatrix.toStringMatrix()); } catch (Exception e) { e.printStackTrace(); } // append a key so that we can tell the difference between long // scheme+option names if (this.m_ResultMatrix.getEnumerateColNames()) { result.append("\n\n" + this.m_ResultMatrix.toStringKey()); } return result.toString(); } /** * Lists options understood by this object. * * @return an enumeration of Options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(); newVector.addElement(new Option("\tSpecify list of columns that specify a unique\n" + "\tdataset.\n" + "\tFirst and last are valid indexes. (default none)", "D", 1, "-D <index,index2-index4,...>")); newVector.addElement(new Option("\tSet the index of the column containing the run number", "R", 1, "-R <index>")); newVector.addElement(new Option("\tSet the index of the column containing the fold number", "F", 1, "-F <index>")); newVector.addElement( new Option("\tSpecify list of columns that specify a unique\n" + "\t'result generator' (eg: classifier name and options).\n" + "\tFirst and last are valid indexes. (default none)", "G", 1, "-G <index1,index2-index4,...>")); newVector.addElement(new Option("\tSet the significance level for comparisons (default 0.05)", "S", 1, "-S <significance level>")); newVector.addElement(new Option("\tSet the result matrix (classname plus parameters).\n\t(default: weka.experiment.ResultMatrixPlainText)", "result-matrix", 1, "-result-matrix <result-matrix-class>")); newVector.addElement(new Option("\tShow standard deviations", "V", 0, "-V")); newVector.addElement(new Option("\tProduce table comparisons in Latex table format", "L", 0, "-L")); newVector.addElement(new Option("\tProduce table comparisons in CSV table format", "csv", 0, "-csv")); newVector.addElement(new Option("\tProduce table comparisons in HTML table format", "html", 0, "-html")); newVector.addElement(new Option("\tProduce table comparisons with only the significance values", "significance", 0, "-significance")); newVector.addElement(new Option("\tProduce table comparisons output suitable for GNUPlot", "gnuplot", 0, "-gnuplot")); newVector.addElement(new Option("", "", 0, "\nOptions specific to result matrix " + this.getResultMatrix().getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) this.getResultMatrix()).listOptions())); return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -D &lt;index,index2-index4,...&gt; * Specify list of columns that specify a unique * dataset. * First and last are valid indexes. (default none) * </pre> * * <pre> * -R &lt;index&gt; * Set the index of the column containing the run number * </pre> * * <pre> * -F &lt;index&gt; * Set the index of the column containing the fold number * </pre> * * <pre> * -G &lt;index1,index2-index4,...&gt; * Specify list of columns that specify a unique * 'result generator' (eg: classifier name and options). * First and last are valid indexes. (default none) * </pre> * * <pre> * -S &lt;significance level&gt; * Set the significance level for comparisons (default 0.05) * </pre> * * <pre> * -V * Show standard deviations * </pre> * * <pre> * -L * Produce table comparisons in Latex table format * </pre> * * <pre> * -csv * Produce table comparisons in CSV table format * </pre> * * <pre> * -html * Produce table comparisons in HTML table format * </pre> * * <pre> * -significance * Produce table comparisons with only the significance values * </pre> * * <pre> * -gnuplot * Produce table comparisons output suitable for GNUPlot * </pre> * * <!-- options-end --> * * @param options an array containing options to set. * @throws Exception if invalid options are given */ @Override public void setOptions(final String[] options) throws Exception { this.setShowStdDevs(Utils.getFlag('V', options)); String outputOption = Utils.getOption("result-matrix", options); if (outputOption.length() != 0) { String[] resultMatrixSpec = Utils.splitOptions(outputOption); if (resultMatrixSpec.length == 0) { throw new Exception("Invalid ResultMatrix specification string"); } String resultMatrixName = resultMatrixSpec[0]; resultMatrixSpec[0] = ""; ResultMatrix resultMatrix = (ResultMatrix) Utils.forName(Class.forName("weka.experiment.ResultMatrix"), resultMatrixName, resultMatrixSpec); this.setResultMatrix(resultMatrix); } else if (Utils.getFlag('L', options)) { this.setResultMatrix(new ResultMatrixLatex()); } else if (Utils.getFlag("csv", options)) { this.setResultMatrix(new ResultMatrixCSV()); } else if (Utils.getFlag("html", options)) { this.setResultMatrix(new ResultMatrixHTML()); } else if (Utils.getFlag("significance", options)) { this.setResultMatrix(new ResultMatrixSignificance()); } else if (Utils.getFlag("gnuplot", options)) { this.setResultMatrix(new ResultMatrixGnuPlot()); } String datasetList = Utils.getOption('D', options); Range datasetRange = new Range(); if (datasetList.length() != 0) { datasetRange.setRanges(datasetList); } this.setDatasetKeyColumns(datasetRange); String indexStr = Utils.getOption('R', options); if (indexStr.length() != 0) { if (indexStr.equals("first")) { this.setRunColumn(0); } else if (indexStr.equals("last")) { this.setRunColumn(-1); } else { this.setRunColumn(Integer.parseInt(indexStr) - 1); } } else { this.setRunColumn(-1); } String foldStr = Utils.getOption('F', options); if (foldStr.length() != 0) { this.setFoldColumn(Integer.parseInt(foldStr) - 1); } else { this.setFoldColumn(-1); } String sigStr = Utils.getOption('S', options); if (sigStr.length() != 0) { this.setSignificanceLevel((new Double(sigStr)).doubleValue()); } else { this.setSignificanceLevel(0.05); } String resultsetList = Utils.getOption('G', options); Range generatorRange = new Range(); if (resultsetList.length() != 0) { generatorRange.setRanges(resultsetList); } this.setResultsetKeyColumns(generatorRange); } /** * Gets current settings of the PairedTTester. * * @return an array of strings containing current options. */ @Override public String[] getOptions() { Vector<String> options = new Vector<String>(); ; if (!this.getResultsetKeyColumns().getRanges().equals("")) { options.add("-G"); options.add(this.getResultsetKeyColumns().getRanges()); } if (!this.getDatasetKeyColumns().getRanges().equals("")) { options.add("-D"); options.add(this.getDatasetKeyColumns().getRanges()); } options.add("-R"); options.add("" + (this.getRunColumn() + 1)); options.add("-S"); options.add("" + this.getSignificanceLevel()); if (this.getShowStdDevs()) { options.add("-V"); } options.add("-result-matrix"); String spec = this.getResultMatrix().getClass().getName(); if (this.getResultMatrix() instanceof OptionHandler) { spec += " " + Utils.joinOptions(((OptionHandler) this.getResultMatrix()).getOptions()); } options.add(spec.trim()); return options.toArray(new String[options.size()]); } /** * Get the value of ResultsetKeyColumns. * * @return Value of ResultsetKeyColumns. */ @Override public Range getResultsetKeyColumns() { return this.m_ResultsetKeyColumnsRange; } /** * Set the value of ResultsetKeyColumns. * * @param newResultsetKeyColumns Value to assign to ResultsetKeyColumns. */ @Override public void setResultsetKeyColumns(final Range newResultsetKeyColumns) { this.m_ResultsetKeyColumnsRange = newResultsetKeyColumns; this.m_ResultsetsValid = false; } /** * Gets the indices of the the datasets that are displayed (if * <code>null</code> then all are displayed). The base is always displayed. * * @return the indices of the datasets to display */ @Override public int[] getDisplayedResultsets() { return this.m_DisplayedResultsets; } /** * Sets the indicies of the datasets to display (<code>null</code> means all). * The base is always displayed. * * @param cols the indices of the datasets to display */ @Override public void setDisplayedResultsets(final int[] cols) { this.m_DisplayedResultsets = cols; } /** * Get the value of SignificanceLevel. * * @return Value of SignificanceLevel. */ @Override public double getSignificanceLevel() { return this.m_SignificanceLevel; } /** * Set the value of SignificanceLevel. * * @param newSignificanceLevel Value to assign to SignificanceLevel. */ @Override public void setSignificanceLevel(final double newSignificanceLevel) { this.m_SignificanceLevel = newSignificanceLevel; } /** * Get the value of DatasetKeyColumns. * * @return Value of DatasetKeyColumns. */ @Override public Range getDatasetKeyColumns() { return this.m_DatasetKeyColumnsRange; } /** * Set the value of DatasetKeyColumns. * * @param newDatasetKeyColumns Value to assign to DatasetKeyColumns. */ @Override public void setDatasetKeyColumns(final Range newDatasetKeyColumns) { this.m_DatasetKeyColumnsRange = newDatasetKeyColumns; this.m_ResultsetsValid = false; } /** * Get the value of RunColumn. * * @return Value of RunColumn. */ @Override public int getRunColumn() { return this.m_RunColumnSet; } /** * Set the value of RunColumn. * * @param newRunColumn Value to assign to RunColumn. */ @Override public void setRunColumn(final int newRunColumn) { this.m_RunColumnSet = newRunColumn; this.m_ResultsetsValid = false; } /** * Get the value of FoldColumn. * * @return Value of FoldColumn. */ @Override public int getFoldColumn() { return this.m_FoldColumn; } /** * Set the value of FoldColumn. * * @param newFoldColumn Value to assign to FoldColumn. */ @Override public void setFoldColumn(final int newFoldColumn) { this.m_FoldColumn = newFoldColumn; this.m_ResultsetsValid = false; } /** * Returns the name of the column to sort on. * * @return the name of the column to sort on. */ @Override public String getSortColumnName() { if (this.getSortColumn() == -1) { return "-"; } else { return this.m_Instances.attribute(this.getSortColumn()).name(); } } /** * Returns the column to sort on, -1 means the default sorting. * * @return the column to sort on. */ @Override public int getSortColumn() { return this.m_SortColumn; } /** * Set the column to sort on, -1 means the default sorting. * * @param newSortColumn the new sort column. */ @Override public void setSortColumn(final int newSortColumn) { if (newSortColumn >= -1) { this.m_SortColumn = newSortColumn; } } /** * Get the value of Instances. * * @return Value of Instances. */ @Override public Instances getInstances() { return this.m_Instances; } /** * Set the value of Instances. * * @param newInstances Value to assign to Instances. */ @Override public void setInstances(final Instances newInstances) { this.m_Instances = newInstances; this.m_ResultsetsValid = false; } /** * retrieves all the settings from the given Tester * * @param tester the Tester to get the settings from */ @Override public void assign(final Tester tester) { this.setInstances(tester.getInstances()); this.setResultMatrix(tester.getResultMatrix()); this.setShowStdDevs(tester.getShowStdDevs()); this.setResultsetKeyColumns(tester.getResultsetKeyColumns()); this.setDisplayedResultsets(tester.getDisplayedResultsets()); this.setSignificanceLevel(tester.getSignificanceLevel()); this.setDatasetKeyColumns(tester.getDatasetKeyColumns()); this.setRunColumn(tester.getRunColumn()); this.setFoldColumn(tester.getFoldColumn()); this.setSortColumn(tester.getSortColumn()); } /** * returns a string that is displayed as tooltip on the "perform test" button * in the experimenter * * @return the tool tip */ @Override public String getToolTipText() { return "Performs test using t-test statistic"; } /** * returns the name of the tester * * @return the display name */ @Override public String getDisplayName() { return "Paired T-Tester"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Test the class from the command line. * * @param args contains options for the instance ttests */ public static void main(final String args[]) { try { PairedTTester tt = new PairedTTester(); String datasetName = Utils.getOption('t', args); String compareColStr = Utils.getOption('c', args); String baseColStr = Utils.getOption('b', args); boolean summaryOnly = Utils.getFlag('s', args); boolean rankingOnly = Utils.getFlag('r', args); boolean noHeader = Utils.getFlag('n', args); try { if ((datasetName.length() == 0) || (compareColStr.length() == 0)) { throw new Exception("-t and -c options are required"); } tt.setOptions(args); Utils.checkForRemainingOptions(args); } catch (Exception ex) { String result = ""; Enumeration<Option> enu = tt.listOptions(); while (enu.hasMoreElements()) { Option option = enu.nextElement(); result += option.synopsis() + '\n' + option.description() + '\n'; } throw new Exception(ex.getMessage() + "\n\nUsage:\n\n" + "-t <file>\n" + "\tSet the dataset containing data to evaluate\n" + "-b <index>\n" + "\tSet the resultset to base comparisons against (optional)\n" + "-c <index>\n" + "\tSet the column to perform a comparison on\n" + "-s\n" + "\tSummarize wins over all resultset pairs\n" + "-r\n" + "\tGenerate a resultset ranking\n" + "-n\n" + "\tDo not output header info\n" + result); } Instances data = new Instances(new BufferedReader(new FileReader(datasetName))); tt.setInstances(data); // tt.prepareData(); int compareCol = Integer.parseInt(compareColStr) - 1; if (!noHeader) { System.out.println(tt.header(compareCol)); } if (rankingOnly) { System.out.println(tt.multiResultsetRanking(compareCol)); } else if (summaryOnly) { System.out.println(tt.multiResultsetSummary(compareCol)); } else { // System.out.println(tt.resultsetKey()); if (baseColStr.length() == 0) { for (int i = 0; i < tt.getNumResultsets(); i++) { if (!tt.displayResultset(i)) { continue; } System.out.println(tt.multiResultsetFull(i, compareCol)); } } else { int baseCol = Integer.parseInt(baseColStr) - 1; System.out.println(tt.multiResultsetFull(baseCol, compareCol)); } } } catch (Exception e) { System.err.println(e.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/PropertyNode.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * PropertyNode.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.beans.IntrospectionException; import java.beans.PropertyDescriptor; import java.io.IOException; import java.io.Serializable; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * Stores information on a property of an object: the class of the object with * the property; the property descriptor, and the current value. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class PropertyNode implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -8718165742572631384L; /** The current property value */ public Object value; /** The class of the object with this property */ public Class<?> parentClass; /** Other info about the property */ public PropertyDescriptor property; /** * Creates a mostly empty property. * * @param pValue a property value. */ public PropertyNode(Object pValue) { this(pValue, null, null); } /** * Creates a fully specified property node. * * @param pValue the current property value. * @param prop the PropertyDescriptor. * @param pClass the Class of the object with this property. */ public PropertyNode(Object pValue, PropertyDescriptor prop, Class<?> pClass) { value = pValue; property = prop; parentClass = pClass; } /** * Returns a string description of this property. * * @return a value of type 'String' */ @Override public String toString() { if (property == null) { return "Available properties"; } return property.getDisplayName(); } /* * Handle serialization ourselves since PropertyDescriptor isn't serializable */ private void writeObject(java.io.ObjectOutputStream out) throws IOException { try { out.writeObject(value); } catch (Exception ex) { throw new IOException("Can't serialize object: " + ex.getMessage()); } out.writeObject(parentClass); out.writeObject(property.getDisplayName()); out.writeObject(property.getReadMethod().getName()); out.writeObject(property.getWriteMethod().getName()); } private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException { value = in.readObject(); parentClass = (Class<?>) in.readObject(); String name = (String) in.readObject(); String getter = (String) in.readObject(); String setter = (String) in.readObject(); /* * System.err.println("Loading property descriptor:\n" + "\tparentClass: " + * parentClass.getName() + "\tname: " + name + "\tgetter: " + getter + * "\tsetter: " + setter); */ try { property = new PropertyDescriptor(name, parentClass, getter, setter); } catch (IntrospectionException ex) { throw new ClassNotFoundException("Couldn't create property descriptor: " + parentClass.getName() + "::" + name); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // PropertyNode
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/RandomSplitResultProducer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RandomSplitResultProducer.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.File; import java.util.Calendar; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.TimeZone; import java.util.Vector; import weka.core.AdditionalMeasureProducer; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Generates a single train/test split and calls the * appropriate SplitEvaluator to generate some results. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -P &lt;percent&gt; * The percentage of instances to use for training. * (default 66) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * -R * Set when data is not to be randomized and the data sets' size. * Is not to be determined via probabilistic rounding. * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the split evaluator. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class RandomSplitResultProducer implements ResultProducer, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = 1403798165056795073L; /** The dataset of interest */ protected Instances m_Instances; /** The ResultListener to send results to */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The percentage of instances to use for training */ protected double m_TrainPercent = 66; /** Whether dataset is to be randomized */ protected boolean m_randomize = true; /** The SplitEvaluator used to generate results */ protected SplitEvaluator m_SplitEvaluator = new ClassifierSplitEvaluator(); /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_AdditionalMeasures = null; /** Save raw output of split evaluators --- for debugging purposes */ protected boolean m_debugOutput = false; /** The output zipper to use for saving raw splitEvaluator output */ protected OutputZipper m_ZipDest = null; /** The destination output file/directory for raw output */ protected File m_OutputFile = new File(new File( System.getProperty("user.dir")), "splitEvalutorOut.zip"); /** The name of the key field containing the dataset name */ public static String DATASET_FIELD_NAME = "Dataset"; /** The name of the key field containing the run number */ public static String RUN_FIELD_NAME = "Run"; /** The name of the result field containing the timestamp */ public static String TIMESTAMP_FIELD_NAME = "Date_time"; /** * Returns a string describing this result producer * * @return a description of the result producer suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Generates a single train/test split and calls the appropriate " + "SplitEvaluator to generate some results."; } /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ @Override public void setInstances(Instances instances) { m_Instances = instances; } /** * Set a list of method names for additional measures to look for in * SplitEvaluators. This could contain many measures (of which only a subset * may be produceable by the current SplitEvaluator) if an experiment is the * type that iterates over a set of properties. * * @param additionalMeasures an array of measure names, null if none */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; if (m_SplitEvaluator != null) { System.err.println("RandomSplitResultProducer: setting additional " + "measures for " + "split evaluator"); m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); } } /** * Returns an enumeration of any additional measure names that might be in the * SplitEvaluator * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> newVector = new Vector<String>(); if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_SplitEvaluator) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); newVector.add(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer) m_SplitEvaluator) .getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("RandomSplitResultProducer: " + "Can't return value for : " + additionalMeasureName + ". " + m_SplitEvaluator.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ @Override public void setResultListener(ResultListener listener) { m_ResultListener = listener; } /** * Gets a Double representing the current date and time. eg: 1:46pm on * 20/5/1999 -> 19990520.1346 * * @return a value of type Double */ public static Double getTimestamp() { Calendar now = Calendar.getInstance(TimeZone.getTimeZone("UTC")); double timestamp = now.get(Calendar.YEAR) * 10000 + (now.get(Calendar.MONTH) + 1) * 100 + now.get(Calendar.DAY_OF_MONTH) + now.get(Calendar.HOUR_OF_DAY) / 100.0 + now.get(Calendar.MINUTE) / 10000.0; return new Double(timestamp); } /** * Prepare to generate results. * * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess() throws Exception { if (m_SplitEvaluator == null) { throw new Exception("No SplitEvalutor set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * Perform any postprocessing. When this method is called, it indicates that * no more requests to generate results for the current experiment will be * sent. * * @throws Exception if an error occurs */ @Override public void postProcess() throws Exception { m_ResultListener.postProcess(this); if (m_debugOutput) { if (m_ZipDest != null) { m_ZipDest.finished(); m_ZipDest = null; } } } /** * Gets the keys for a specified run number. Different run numbers correspond * to different randomizations of the data. Keys produced should be sent to * the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ @Override public void doRunKeys(int run) throws Exception { if (m_Instances == null) { throw new Exception("No Instances set"); } // Add in some fields to the key like run number, dataset name Object[] seKey = m_SplitEvaluator.getKey(); Object[] key = new Object[seKey.length + 2]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; System.arraycopy(seKey, 0, key, 2, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { try { m_ResultListener.acceptResult(this, key, null); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } /** * Gets the results for a specified run number. Different run numbers * correspond to different randomizations of the data. Results produced should * be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ @Override public void doRun(int run) throws Exception { if (getRawOutput()) { if (m_ZipDest == null) { m_ZipDest = new OutputZipper(m_OutputFile); } } if (m_Instances == null) { throw new Exception("No Instances set"); } // Add in some fields to the key like run number, dataset name Object[] seKey = m_SplitEvaluator.getKey(); Object[] key = new Object[seKey.length + 2]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; System.arraycopy(seKey, 0, key, 2, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { // Randomize on a copy of the original dataset Instances runInstances = new Instances(m_Instances); Instances train; Instances test; if (!m_randomize) { // Don't do any randomization int trainSize = Utils.round(runInstances.numInstances() * m_TrainPercent / 100); int testSize = runInstances.numInstances() - trainSize; train = new Instances(runInstances, 0, trainSize); test = new Instances(runInstances, trainSize, testSize); } else { Random rand = new Random(run); runInstances.randomize(rand); // Nominal class if (runInstances.classAttribute().isNominal()) { // create the subset for each classs int numClasses = runInstances.numClasses(); Instances[] subsets = new Instances[numClasses + 1]; for (int i = 0; i < numClasses + 1; i++) { subsets[i] = new Instances(runInstances, 10); } // divide instances into subsets Enumeration<Instance> e = runInstances.enumerateInstances(); while (e.hasMoreElements()) { Instance inst = e.nextElement(); if (inst.classIsMissing()) { subsets[numClasses].add(inst); } else { subsets[(int) inst.classValue()].add(inst); } } // Compactify them for (int i = 0; i < numClasses + 1; i++) { subsets[i].compactify(); } // merge into train and test sets train = new Instances(runInstances, runInstances.numInstances()); test = new Instances(runInstances, runInstances.numInstances()); for (int i = 0; i < numClasses + 1; i++) { int trainSize = Utils.probRound(subsets[i].numInstances() * m_TrainPercent / 100, rand); for (int j = 0; j < trainSize; j++) { train.add(subsets[i].instance(j)); } for (int j = trainSize; j < subsets[i].numInstances(); j++) { test.add(subsets[i].instance(j)); } // free memory subsets[i] = null; } train.compactify(); test.compactify(); // randomize the final sets train.randomize(rand); test.randomize(rand); } else { // Numeric target int trainSize = Utils.probRound(runInstances.numInstances() * m_TrainPercent / 100, rand); int testSize = runInstances.numInstances() - trainSize; train = new Instances(runInstances, 0, trainSize); test = new Instances(runInstances, trainSize, testSize); } } try { Object[] seResults = m_SplitEvaluator.getResult(train, test); Object[] results = new Object[seResults.length + 1]; results[0] = getTimestamp(); System.arraycopy(seResults, 0, results, 1, seResults.length); if (m_debugOutput) { String resultName = ("" + run + "." + Utils.backQuoteChars(runInstances.relationName()) + "." + m_SplitEvaluator .toString()).replace(' ', '_'); resultName = Utils.removeSubstring(resultName, "weka.classifiers."); resultName = Utils.removeSubstring(resultName, "weka.filters."); resultName = Utils.removeSubstring(resultName, "weka.attributeSelection."); m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName); } m_ResultListener.acceptResult(this, key, results); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } /** * Gets the names of each of the columns produced for a single run. This * method should really be static. * * @return an array containing the name of each column */ @Override public String[] getKeyNames() { String[] keyNames = m_SplitEvaluator.getKeyNames(); // Add in the names of our extra key fields String[] newKeyNames = new String[keyNames.length + 2]; newKeyNames[0] = DATASET_FIELD_NAME; newKeyNames[1] = RUN_FIELD_NAME; System.arraycopy(keyNames, 0, newKeyNames, 2, keyNames.length); return newKeyNames; } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. */ @Override public Object[] getKeyTypes() { Object[] keyTypes = m_SplitEvaluator.getKeyTypes(); // Add in the types of our extra fields Object[] newKeyTypes = new String[keyTypes.length + 2]; newKeyTypes[0] = new String(); newKeyTypes[1] = new String(); System.arraycopy(keyTypes, 0, newKeyTypes, 2, keyTypes.length); return newKeyTypes; } /** * Gets the names of each of the columns produced for a single run. This * method should really be static. * * @return an array containing the name of each column */ @Override public String[] getResultNames() { String[] resultNames = m_SplitEvaluator.getResultNames(); // Add in the names of our extra Result fields String[] newResultNames = new String[resultNames.length + 1]; newResultNames[0] = TIMESTAMP_FIELD_NAME; System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length); return newResultNames; } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. */ @Override public Object[] getResultTypes() { Object[] resultTypes = m_SplitEvaluator.getResultTypes(); // Add in the types of our extra Result fields Object[] newResultTypes = new Object[resultTypes.length + 1]; newResultTypes[0] = new Double(0); System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length); return newResultTypes; } /** * Gets a description of the internal settings of the result producer, * sufficient for distinguishing a ResultProducer instance from another with * different settings (ignoring those settings set through this interface). * For example, a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should be * compatible. Typically if a ResultProducer is an OptionHandler, this string * will represent the command line arguments required to set the * ResultProducer to that state. * * @return the description of the ResultProducer state, or null if no state is * defined */ @Override public String getCompatibilityState() { String result = "-P " + m_TrainPercent; if (!getRandomizeData()) { result += " -R"; } if (m_SplitEvaluator == null) { result += " <null SplitEvaluator>"; } else { result += " -W " + m_SplitEvaluator.getClass().getName(); } return result + " --"; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String outputFileTipText() { return "Set the destination for saving raw output. If the rawOutput " + "option is selected, then output from the splitEvaluator for " + "individual train-test splits is saved. If the destination is a " + "directory, " + "then each output is saved to an individual gzip file; if the " + "destination is a file, then each output is saved as an entry " + "in a zip file."; } /** * Get the value of OutputFile. * * @return Value of OutputFile. */ public File getOutputFile() { return m_OutputFile; } /** * Set the value of OutputFile. * * @param newOutputFile Value to assign to OutputFile. */ public void setOutputFile(File newOutputFile) { m_OutputFile = newOutputFile; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String randomizeDataTipText() { return "Do not randomize dataset and do not perform probabilistic rounding " + "if false"; } /** * Get if dataset is to be randomized * * @return true if dataset is to be randomized */ public boolean getRandomizeData() { return m_randomize; } /** * Set to true if dataset is to be randomized * * @param d true if dataset is to be randomized */ public void setRandomizeData(boolean d) { m_randomize = d; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String rawOutputTipText() { return "Save raw output (useful for debugging). If set, then output is " + "sent to the destination specified by outputFile"; } /** * Get if raw split evaluator output is to be saved * * @return true if raw split evalutor output is to be saved */ public boolean getRawOutput() { return m_debugOutput; } /** * Set to true if raw split evaluator output is to be saved * * @param d true if output is to be saved */ public void setRawOutput(boolean d) { m_debugOutput = d; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String trainPercentTipText() { return "Set the percentage of data to use for training."; } /** * Get the value of TrainPercent. * * @return Value of TrainPercent. */ public double getTrainPercent() { return m_TrainPercent; } /** * Set the value of TrainPercent. * * @param newTrainPercent Value to assign to TrainPercent. */ public void setTrainPercent(double newTrainPercent) { m_TrainPercent = newTrainPercent; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String splitEvaluatorTipText() { return "The evaluator to apply to the test data. " + "This may be a classifier, regression scheme etc."; } /** * Get the SplitEvaluator. * * @return the SplitEvaluator. */ public SplitEvaluator getSplitEvaluator() { return m_SplitEvaluator; } /** * Set the SplitEvaluator. * * @param newSplitEvaluator new SplitEvaluator to use. */ public void setSplitEvaluator(SplitEvaluator newSplitEvaluator) { m_SplitEvaluator = newSplitEvaluator; m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(5); newVector .addElement(new Option( "\tThe percentage of instances to use for training.\n" + "\t(default 66)", "P", 1, "-P <percent>")); newVector.addElement(new Option("Save raw split evaluator output.", "D", 0, "-D")); newVector.addElement(new Option( "\tThe filename where raw output will be stored.\n" + "\tIf a directory name is specified then then individual\n" + "\toutputs will be gzipped, otherwise all output will be\n" + "\tzipped to the named file. Use in conjuction with -D." + "\t(default splitEvalutorOut.zip)", "O", 1, "-O <file/directory name/path>")); newVector.addElement(new Option( "\tThe full class name of a SplitEvaluator.\n" + "\teg: weka.experiment.ClassifierSplitEvaluator", "W", 1, "-W <class name>")); newVector .addElement(new Option( "\tSet when data is not to be randomized and the data sets' size.\n" + "\tIs not to be determined via probabilistic rounding.", "R", 0, "-R")); if ((m_SplitEvaluator != null) && (m_SplitEvaluator instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to split evaluator " + m_SplitEvaluator.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_SplitEvaluator) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -P &lt;percent&gt; * The percentage of instances to use for training. * (default 66) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * -R * Set when data is not to be randomized and the data sets' size. * Is not to be determined via probabilistic rounding. * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the split evaluator. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { setRawOutput(Utils.getFlag('D', options)); setRandomizeData(!Utils.getFlag('R', options)); String fName = Utils.getOption('O', options); if (fName.length() != 0) { setOutputFile(new File(fName)); } String trainPct = Utils.getOption('P', options); if (trainPct.length() != 0) { setTrainPercent((new Double(trainPct)).doubleValue()); } else { setTrainPercent(66); } String seName = Utils.getOption('W', options); if (seName.length() == 0) { throw new Exception("A SplitEvaluator must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // SE. setSplitEvaluator((SplitEvaluator) Utils.forName(SplitEvaluator.class, seName, null)); if (getSplitEvaluator() instanceof OptionHandler) { ((OptionHandler) getSplitEvaluator()).setOptions(Utils .partitionOptions(options)); } } /** * Gets the current settings of the result producer. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { String[] seOptions = new String[0]; if ((m_SplitEvaluator != null) && (m_SplitEvaluator instanceof OptionHandler)) { seOptions = ((OptionHandler) m_SplitEvaluator).getOptions(); } String[] options = new String[seOptions.length + 9]; int current = 0; options[current++] = "-P"; options[current++] = "" + getTrainPercent(); if (getRawOutput()) { options[current++] = "-D"; } if (!getRandomizeData()) { options[current++] = "-R"; } options[current++] = "-O"; options[current++] = getOutputFile().getName(); if (getSplitEvaluator() != null) { options[current++] = "-W"; options[current++] = getSplitEvaluator().getClass().getName(); } options[current++] = "--"; System.arraycopy(seOptions, 0, options, current, seOptions.length); current += seOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ @Override public String toString() { String result = "RandomSplitResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ": <null Instances>"; } else { result += ": " + Utils.backQuoteChars(m_Instances.relationName()); } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } } // RandomSplitResultProducer
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/RegressionSplitEvaluator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RegressionSplitEvaluator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.ByteArrayOutputStream; import java.io.ObjectOutputStream; import java.io.ObjectStreamClass; import java.io.Serializable; import java.lang.management.ManagementFactory; import java.lang.management.ThreadMXBean; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Enumeration; import java.util.List; import java.util.Vector; import weka.classifiers.AbstractClassifier; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.evaluation.AbstractEvaluationMetric; import weka.classifiers.rules.ZeroR; import weka.core.AdditionalMeasureProducer; import weka.core.Attribute; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Summarizable; import weka.core.Utils; /** * <!-- globalinfo-start --> A SplitEvaluator that produces results for a * classification scheme on a numeric class attribute. * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -no-size * Skips the determination of sizes (train/test/classifier) * (default: sizes are determined) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All options after -- will be passed to the classifier. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class RegressionSplitEvaluator implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = -328181640503349202L; /** The template classifier */ protected Classifier m_Template = new ZeroR(); /** The classifier used for evaluation */ protected Classifier m_Classifier; /** Holds the most recently used Evaluation object */ protected Evaluation m_Evaluation; /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_AdditionalMeasures = null; /** * Array of booleans corresponding to the measures in m_AdditionalMeasures * indicating which of the AdditionalMeasures the current classifier can * produce */ protected boolean[] m_doesProduce = null; /** Holds the statistics for the most recent application of the classifier */ protected String m_result = null; /** The classifier options (if any) */ protected String m_ClassifierOptions = ""; /** The classifier version */ protected String m_ClassifierVersion = ""; /** whether to skip determination of sizes (train/test/classifier). */ private boolean m_NoSizeDetermination; /** The length of a key */ private static final int KEY_SIZE = 3; /** The length of a result */ private static final int RESULT_SIZE = 27; protected final List<AbstractEvaluationMetric> m_pluginMetrics = new ArrayList<AbstractEvaluationMetric>(); protected int m_numPluginStatistics = 0; /** * No args constructor. */ public RegressionSplitEvaluator() { updateOptions(); List<AbstractEvaluationMetric> pluginMetrics = AbstractEvaluationMetric .getPluginMetrics(); if (pluginMetrics != null) { for (AbstractEvaluationMetric m : pluginMetrics) { if (m.appliesToNumericClass()) { m_pluginMetrics.add(m); m_numPluginStatistics += m.getStatisticNames().size(); } } } } /** * Returns a string describing this split evaluator * * @return a description of the split evaluator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "A SplitEvaluator that produces results for a classification " + "scheme on a numeric class attribute."; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(2); newVector.addElement(new Option( "\tSkips the determination of sizes (train/test/classifier)\n" + "\t(default: sizes are determined)", "no-size", 0, "-no-size")); newVector .addElement(new Option("\tThe full class name of the classifier.\n" + "\teg: weka.classifiers.bayes.NaiveBayes", "W", 1, "-W <class name>")); if ((m_Template != null) && (m_Template instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to classifier " + m_Template.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_Template) .listOptions())); } return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -no-size * Skips the determination of sizes (train/test/classifier) * (default: sizes are determined) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * All option after -- will be passed to the classifier. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { m_NoSizeDetermination = Utils.getFlag("no-size", options); String cName = Utils.getOption('W', options); if (cName.length() == 0) { throw new Exception("A classifier must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // Classifier. setClassifier(AbstractClassifier.forName(cName, null)); if (getClassifier() instanceof OptionHandler) { ((OptionHandler) getClassifier()).setOptions(Utils .partitionOptions(options)); updateOptions(); } } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector<String> result; String[] classifierOptions; result = new Vector<String>(); classifierOptions = new String[0]; if ((m_Template != null) && (m_Template instanceof OptionHandler)) { classifierOptions = ((OptionHandler) m_Template).getOptions(); } if (getNoSizeDetermination()) { result.add("-no-size"); } if (getClassifier() != null) { result.add("-W"); result.add(getClassifier().getClass().getName()); } result.add("--"); result.addAll(Arrays.asList(classifierOptions)); return result.toArray(new String[result.size()]); } /** * Set a list of method names for additional measures to look for in * Classifiers. This could contain many measures (of which only a subset may * be produceable by the current Classifier) if an experiment is the type that * iterates over a set of properties. * * @param additionalMeasures an array of method names. */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; // determine which (if any) of the additional measures this classifier // can produce if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) { m_doesProduce = new boolean[m_AdditionalMeasures.length]; if (m_Template instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_Template) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); for (int j = 0; j < m_AdditionalMeasures.length; j++) { if (mname.compareToIgnoreCase(m_AdditionalMeasures[j]) == 0) { m_doesProduce[j] = true; } } } } } else { m_doesProduce = null; } } /** * Returns an enumeration of any additional measure names that might be in the * classifier * * @return an enumeration of the measure names */ @Override public Enumeration<String> enumerateMeasures() { Vector<String> newVector = new Vector<String>(); if (m_Template instanceof AdditionalMeasureProducer) { Enumeration<String> en = ((AdditionalMeasureProducer) m_Template) .enumerateMeasures(); while (en.hasMoreElements()) { String mname = en.nextElement(); newVector.add(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_Template instanceof AdditionalMeasureProducer) { if (m_Classifier == null) { throw new IllegalArgumentException("ClassifierSplitEvaluator: " + "Can't return result for measure, " + "classifier has not been built yet."); } return ((AdditionalMeasureProducer) m_Classifier) .getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("ClassifierSplitEvaluator: " + "Can't return value for : " + additionalMeasureName + ". " + m_Template.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Gets the data types of each of the key columns produced for a single run. * The number of key fields must be constant for a given SplitEvaluator. * * @return an array containing objects of the type of each key column. The * objects should be Strings, or Doubles. */ @Override public Object[] getKeyTypes() { Object[] keyTypes = new Object[KEY_SIZE]; keyTypes[0] = ""; keyTypes[1] = ""; keyTypes[2] = ""; return keyTypes; } /** * Gets the names of each of the key columns produced for a single run. The * number of key fields must be constant for a given SplitEvaluator. * * @return an array containing the name of each key column */ @Override public String[] getKeyNames() { String[] keyNames = new String[KEY_SIZE]; keyNames[0] = "Scheme"; keyNames[1] = "Scheme_options"; keyNames[2] = "Scheme_version_ID"; return keyNames; } /** * Gets the key describing the current SplitEvaluator. For example This may * contain the name of the classifier used for classifier predictive * evaluation. The number of key fields must be constant for a given * SplitEvaluator. * * @return an array of objects containing the key. */ @Override public Object[] getKey() { Object[] key = new Object[KEY_SIZE]; key[0] = m_Template.getClass().getName(); key[1] = m_ClassifierOptions; key[2] = m_ClassifierVersion; return key; } /** * Gets the data types of each of the result columns produced for a single * run. The number of result fields must be constant for a given * SplitEvaluator. * * @return an array containing objects of the type of each result column. The * objects should be Strings, or Doubles. */ @Override public Object[] getResultTypes() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; Object[] resultTypes = new Object[RESULT_SIZE + addm + m_numPluginStatistics]; Double doub = new Double(0); int current = 0; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Timing stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // sizes resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Prediction interval statistics resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = ""; // add any additional measures for (int i = 0; i < addm; i++) { resultTypes[current++] = doub; } // plugin metrics for (int i = 0; i < m_numPluginStatistics; i++) { resultTypes[current++] = doub; } if (current != RESULT_SIZE + addm + m_numPluginStatistics) { throw new Error("ResultTypes didn't fit RESULT_SIZE"); } return resultTypes; } /** * Gets the names of each of the result columns produced for a single run. The * number of result fields must be constant for a given SplitEvaluator. * * @return an array containing the name of each result column */ @Override public String[] getResultNames() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; String[] resultNames = new String[RESULT_SIZE + addm + m_numPluginStatistics]; int current = 0; resultNames[current++] = "Number_of_training_instances"; resultNames[current++] = "Number_of_testing_instances"; // Sensitive stats - certainty of predictions resultNames[current++] = "Mean_absolute_error"; resultNames[current++] = "Root_mean_squared_error"; resultNames[current++] = "Relative_absolute_error"; resultNames[current++] = "Root_relative_squared_error"; resultNames[current++] = "Correlation_coefficient"; resultNames[current++] = "Number_unclassified"; resultNames[current++] = "Percent_unclassified"; // SF stats resultNames[current++] = "SF_prior_entropy"; resultNames[current++] = "SF_scheme_entropy"; resultNames[current++] = "SF_entropy_gain"; resultNames[current++] = "SF_mean_prior_entropy"; resultNames[current++] = "SF_mean_scheme_entropy"; resultNames[current++] = "SF_mean_entropy_gain"; // Timing stats resultNames[current++] = "Elapsed_Time_training"; resultNames[current++] = "Elapsed_Time_testing"; resultNames[current++] = "UserCPU_Time_training"; resultNames[current++] = "UserCPU_Time_testing"; resultNames[current++] = "UserCPU_Time_millis_training"; resultNames[current++] = "UserCPU_Time_millis_testing"; // sizes resultNames[current++] = "Serialized_Model_Size"; resultNames[current++] = "Serialized_Train_Set_Size"; resultNames[current++] = "Serialized_Test_Set_Size"; // Prediction interval statistics resultNames[current++] = "Coverage_of_Test_Cases_By_Regions"; resultNames[current++] = "Size_of_Predicted_Regions"; // Classifier defined extras resultNames[current++] = "Summary"; // add any additional measures for (int i = 0; i < addm; i++) { resultNames[current++] = m_AdditionalMeasures[i]; } for (AbstractEvaluationMetric m : m_pluginMetrics) { List<String> statNames = m.getStatisticNames(); for (String s : statNames) { resultNames[current++] = s; } } if (current != RESULT_SIZE + addm + m_numPluginStatistics) { throw new Error("ResultNames didn't fit RESULT_SIZE"); } return resultNames; } /** * Gets the results for the supplied train and test datasets. Now performs a * deep copy of the classifier before it is built and evaluated (just in case * the classifier is not initialized properly in buildClassifier()). * * @param train the training Instances. * @param test the testing Instances. * @return the results stored in an array. The objects stored in the array may * be Strings, Doubles, or null (for the missing value). * @throws Exception if a problem occurs while getting the results */ @Override public Object[] getResult(Instances train, Instances test) throws Exception { if (train.classAttribute().type() != Attribute.NUMERIC) { throw new Exception("Class attribute is not numeric!"); } if (m_Template == null) { throw new Exception("No classifier has been specified"); } ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); if (canMeasureCPUTime && !thMonitor.isThreadCpuTimeEnabled()) { thMonitor.setThreadCpuTimeEnabled(true); } int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; Object[] result = new Object[RESULT_SIZE + addm + m_numPluginStatistics]; long thID = Thread.currentThread().getId(); long CPUStartTime = -1, trainCPUTimeElapsed = -1, testCPUTimeElapsed = -1, trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; Evaluation eval = new Evaluation(train); m_Classifier = AbstractClassifier.makeCopy(m_Template); trainTimeStart = System.currentTimeMillis(); if (canMeasureCPUTime) { CPUStartTime = thMonitor.getThreadUserTime(thID); } m_Classifier.buildClassifier(train); if (canMeasureCPUTime) { trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; } trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; testTimeStart = System.currentTimeMillis(); if (canMeasureCPUTime) { CPUStartTime = thMonitor.getThreadUserTime(thID); } eval.evaluateModel(m_Classifier, test); if (canMeasureCPUTime) { testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; } testTimeElapsed = System.currentTimeMillis() - testTimeStart; thMonitor = null; m_result = eval.toSummaryString(); // The results stored are all per instance -- can be multiplied by the // number of instances to get absolute numbers int current = 0; result[current++] = new Double(train.numInstances()); result[current++] = new Double(eval.numInstances()); result[current++] = new Double(eval.meanAbsoluteError()); result[current++] = new Double(eval.rootMeanSquaredError()); result[current++] = new Double(eval.relativeAbsoluteError()); result[current++] = new Double(eval.rootRelativeSquaredError()); result[current++] = new Double(eval.correlationCoefficient()); result[current++] = new Double(eval.unclassified()); result[current++] = new Double(eval.pctUnclassified()); result[current++] = new Double(eval.SFPriorEntropy()); result[current++] = new Double(eval.SFSchemeEntropy()); result[current++] = new Double(eval.SFEntropyGain()); result[current++] = new Double(eval.SFMeanPriorEntropy()); result[current++] = new Double(eval.SFMeanSchemeEntropy()); result[current++] = new Double(eval.SFMeanEntropyGain()); // Timing stats result[current++] = new Double(trainTimeElapsed / 1000.0); result[current++] = new Double(testTimeElapsed / 1000.0); if (canMeasureCPUTime) { result[current++] = new Double((trainCPUTimeElapsed / 1000000.0) / 1000.0); result[current++] = new Double((testCPUTimeElapsed / 1000000.0) / 1000.0); result[current++] = new Double(trainCPUTimeElapsed / 1000000.0); result[current++] = new Double(testCPUTimeElapsed / 1000000.0); } else { result[current++] = new Double(Utils.missingValue()); result[current++] = new Double(Utils.missingValue()); result[current++] = new Double(Utils.missingValue()); result[current++] = new Double(Utils.missingValue()); } // sizes if (m_NoSizeDetermination) { result[current++] = -1.0; result[current++] = -1.0; result[current++] = -1.0; } else { ByteArrayOutputStream bastream = new ByteArrayOutputStream(); ObjectOutputStream oostream = new ObjectOutputStream(bastream); oostream.writeObject(m_Classifier); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(train); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(test); result[current++] = new Double(bastream.size()); } // Prediction interval statistics result[current++] = new Double(eval.coverageOfTestCasesByPredictedRegions()); result[current++] = new Double(eval.sizeOfPredictedRegions()); if (m_Classifier instanceof Summarizable) { result[current++] = ((Summarizable) m_Classifier).toSummaryString(); } else { result[current++] = null; } for (int i = 0; i < addm; i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer) m_Classifier) .getMeasure(m_AdditionalMeasures[i]); if (!Utils.isMissingValue(dv)) { Double value = new Double(dv); result[current++] = value; } else { result[current++] = null; } } catch (Exception ex) { System.err.println(ex); } } else { result[current++] = null; } } // get the actual metrics from the evaluation object List<AbstractEvaluationMetric> metrics = eval.getPluginMetrics(); if (metrics != null) { for (AbstractEvaluationMetric m : metrics) { if (m.appliesToNumericClass()) { List<String> statNames = m.getStatisticNames(); for (String s : statNames) { result[current++] = new Double(m.getStatistic(s)); } } } } if (current != RESULT_SIZE + addm + m_numPluginStatistics) { throw new Error("Results didn't fit RESULT_SIZE"); } m_Evaluation = eval; return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String classifierTipText() { return "The classifier to use."; } /** * Get the value of Classifier. * * @return Value of Classifier. */ public Classifier getClassifier() { return m_Template; } /** * Sets the classifier. * * @param newClassifier the new classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Template = newClassifier; updateOptions(); System.err.println("RegressionSplitEvaluator: In set classifier"); } /** * Returns whether the size determination (train/test/classifer) is skipped. * * @return true if size determination skipped */ public boolean getNoSizeDetermination() { return m_NoSizeDetermination; } /** * Sets whether the size determination (train/test/classifer) is skipped. * * @param value true if to determine sizes */ public void setNoSizeDetermination(boolean value) { m_NoSizeDetermination = value; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String noSizeDeterminationTipText() { return "If enabled, the size determination for train/test/classifier is skipped."; } /** * Updates the options that the current classifier is using. */ protected void updateOptions() { if (m_Template instanceof OptionHandler) { m_ClassifierOptions = Utils.joinOptions(((OptionHandler) m_Template) .getOptions()); } else { m_ClassifierOptions = ""; } if (m_Template instanceof Serializable) { ObjectStreamClass obs = ObjectStreamClass.lookup(m_Template.getClass()); m_ClassifierVersion = "" + obs.getSerialVersionUID(); } else { m_ClassifierVersion = ""; } } /** * Set the Classifier to use, given it's class name. A new classifier will be * instantiated. * * @param newClassifierName the Classifier class name. * @throws Exception if the class name is invalid. */ public void setClassifierName(String newClassifierName) throws Exception { try { setClassifier((Classifier) Class.forName(newClassifierName).newInstance()); } catch (Exception ex) { throw new Exception("Can't find Classifier with class name: " + newClassifierName); } } /** * Gets the raw output from the classifier * * @return the raw output from the classifier */ @Override public String getRawResultOutput() { StringBuffer result = new StringBuffer(); if (m_Classifier == null) { return "<null> classifier"; } result.append(toString()); result.append("Classifier model: \n" + m_Classifier.toString() + '\n'); // append the performance statistics if (m_result != null) { result.append(m_result); if (m_doesProduce != null) { for (int i = 0; i < m_doesProduce.length; i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer) m_Classifier) .getMeasure(m_AdditionalMeasures[i]); if (!Utils.isMissingValue(dv)) { Double value = new Double(dv); result.append(m_AdditionalMeasures[i] + " : " + value + '\n'); } else { result.append(m_AdditionalMeasures[i] + " : " + '?' + '\n'); } } catch (Exception ex) { System.err.println(ex); } } } } } return result.toString(); } /** * Returns a text description of the split evaluator. * * @return a text description of the split evaluator. */ @Override public String toString() { String result = "RegressionSplitEvaluator: "; if (m_Template == null) { return result + "<null> classifier"; } return result + m_Template.getClass().getName() + " " + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/RemoteEngine.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RemoteEngine.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.net.InetAddress; import java.net.URL; import java.net.URLClassLoader; import java.rmi.Naming; import java.rmi.RMISecurityManager; import java.rmi.RemoteException; import java.rmi.server.UnicastRemoteObject; import java.util.Enumeration; import java.util.Hashtable; import weka.core.Queue; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * A general purpose server for executing Task objects sent via RMI. * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision$ */ public class RemoteEngine extends UnicastRemoteObject implements Compute, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -1021538162895448259L; /** The name of the host that this engine is started on */ private String m_HostName = "local"; /** A queue of waiting tasks */ private final Queue m_TaskQueue = new Queue(); /** A queue of corresponding ID's for tasks */ private final Queue m_TaskIdQueue = new Queue(); /** A hashtable of experiment status */ private final Hashtable<String, TaskStatusInfo> m_TaskStatus = new Hashtable<String, TaskStatusInfo>(); /** Is there a task running */ private boolean m_TaskRunning = false; /** Clean up interval (in ms) */ protected static long CLEANUPTIMEOUT = 3600000; /** * Constructor * * @param hostName name of the host * @exception RemoteException if something goes wrong */ public RemoteEngine(String hostName) throws RemoteException { super(); m_HostName = hostName; /* * launch a clean-up thread. Will purge any failed or finished tasks still * in the TaskStatus hashtable after an hour */ Thread cleanUpThread; cleanUpThread = new Thread() { @Override public void run() { while (true) { try { // sleep for a while Thread.sleep(CLEANUPTIMEOUT); } catch (InterruptedException ie) { } if (m_TaskStatus.size() > 0) { purge(); } else { System.err.println("RemoteEngine : purge - no tasks to check."); } } } }; cleanUpThread.setPriority(Thread.MIN_PRIORITY); cleanUpThread.setDaemon(true); cleanUpThread.start(); } /** * Takes a task object and queues it for execution * * @param t the Task object to execute * @return an identifier for the Task that can be used when querying Task * status */ @Override public synchronized Object executeTask(Task t) throws RemoteException { String taskId = "" + System.currentTimeMillis() + ":"; taskId += t.hashCode(); addTaskToQueue(t, taskId); return taskId; // return t.execute(); } /** * Returns status information on a particular task * * @param taskId the ID of the task to check * @return a <code>TaskStatusInfo</code> encapsulating task status info * @exception Exception if an error occurs */ @Override public Object checkStatus(Object taskId) throws Exception { TaskStatusInfo inf = m_TaskStatus.get(taskId); if (inf == null) { throw new Exception("RemoteEngine (" + m_HostName + ") : Task not found."); } TaskStatusInfo result = new TaskStatusInfo(); result.setExecutionStatus(inf.getExecutionStatus()); result.setStatusMessage(inf.getStatusMessage()); result.setTaskResult(inf.getTaskResult()); if (inf.getExecutionStatus() == TaskStatusInfo.FINISHED || inf.getExecutionStatus() == TaskStatusInfo.FAILED) { System.err.println("Finished/failed Task id : " + taskId + " checked by client. Removing."); inf.setTaskResult(null); inf = null; m_TaskStatus.remove(taskId); } inf = null; return result; } /** * Adds a new task to the queue. * * @param t a <code>Task</code> value to be added * @param taskId the id of the task to be added */ private synchronized void addTaskToQueue(Task t, String taskId) { TaskStatusInfo newTask = t.getTaskStatus(); if (newTask == null) { newTask = new TaskStatusInfo(); } m_TaskQueue.push(t); m_TaskIdQueue.push(taskId); newTask.setStatusMessage("RemoteEngine (" + m_HostName + ") : task " + taskId + " queued at postion: " + m_TaskQueue.size()); // add task status to HashTable m_TaskStatus.put(taskId, newTask); System.err.println("Task id : " + taskId + " Queued."); if (m_TaskRunning == false) { startTask(); } } /** * Checks to see if there are any waiting tasks, and if no task is currently * running starts a waiting task. */ private void startTask() { if (m_TaskRunning == false && m_TaskQueue.size() > 0) { Thread activeTaskThread; activeTaskThread = new Thread() { @Override public void run() { m_TaskRunning = true; Task currentTask = (Task) m_TaskQueue.pop(); String taskId = (String) m_TaskIdQueue.pop(); TaskStatusInfo tsi = m_TaskStatus.get(taskId); tsi.setExecutionStatus(TaskStatusInfo.PROCESSING); tsi.setStatusMessage("RemoteEngine (" + m_HostName + ") : task " + taskId + " running..."); try { System.err.println("Launching task id : " + taskId + "..."); currentTask.execute(); TaskStatusInfo runStatus = currentTask.getTaskStatus(); tsi.setExecutionStatus(runStatus.getExecutionStatus()); tsi.setStatusMessage("RemoteExperiment (" + m_HostName + ") " + runStatus.getStatusMessage()); tsi.setTaskResult(runStatus.getTaskResult()); } catch (Error er) { // Object initialization can raise Error, which are not subclass of // Exception tsi.setExecutionStatus(TaskStatusInfo.FAILED); if (er.getCause() instanceof java.security.AccessControlException) { tsi.setStatusMessage("RemoteEngine (" + m_HostName + ") : security error, check remote policy file."); System.err.println("Task id " + taskId + " Failed! Check remote policy file"); } else { tsi.setStatusMessage("RemoteEngine (" + m_HostName + ") : unknown initialization error."); System.err.println("Task id " + taskId + " Unknown initialization error"); er.printStackTrace(); System.err.println("Detailed message " + er.getMessage()); System.err.println("Detailed cause: " + er.getCause().toString()); } } catch (Exception ex) { tsi.setExecutionStatus(TaskStatusInfo.FAILED); tsi.setStatusMessage("RemoteEngine (" + m_HostName + ") : " + ex.getMessage()); System.err.println("Task id " + taskId + " Failed, " + ex.getMessage()); } finally { if (m_TaskStatus.size() == 0) { purgeClasses(); } m_TaskRunning = false; // start any waiting tasks startTask(); } } }; activeTaskThread.setPriority(Thread.MIN_PRIORITY); activeTaskThread.start(); } } /** * Attempts to purge class types from the virtual machine. May take some time * as it relies on garbage collection */ private void purgeClasses() { try { // see if we can purge classes ClassLoader prevCl = Thread.currentThread().getContextClassLoader(); ClassLoader urlCl = URLClassLoader.newInstance(new URL[] { new URL( "file:.") }, prevCl); Thread.currentThread().setContextClassLoader(urlCl); } catch (Exception ex) { ex.printStackTrace(); } } /** * Checks the hash table for failed/finished tasks. Any that have been around * for an @seeCLEANUPTIMEOUT or more are removed. Clients are expected to * check on the status of their remote tasks. Checking on the status of a * finished/failed task will remove it from the hash table, therefore any * failed/finished tasks left lying around for more than an hour suggest that * their client has died.. * */ private void purge() { Enumeration<String> keys = m_TaskStatus.keys(); long currentTime = System.currentTimeMillis(); System.err.println("RemoteEngine purge. Current time : " + currentTime); while (keys.hasMoreElements()) { String taskId = keys.nextElement(); System.err.print("Examining task id : " + taskId + "... "); String timeString = taskId.substring(0, taskId.indexOf(':')); long ts = Long.valueOf(timeString).longValue(); if (currentTime - ts > CLEANUPTIMEOUT) { TaskStatusInfo tsi = m_TaskStatus.get(taskId); if ((tsi != null) && (tsi.getExecutionStatus() == TaskStatusInfo.FINISHED || tsi .getExecutionStatus() == TaskStatusInfo.FAILED)) { System.err.println("\nTask id : " + taskId + " has gone stale. Removing."); m_TaskStatus.remove(taskId); tsi.setTaskResult(null); tsi = null; } } else { System.err.println("ok."); } } if (m_TaskStatus.size() == 0) { purgeClasses(); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method. Gets address of the local host, creates a remote engine object * and binds it in the RMI registry. If there is no RMI registry, then it * tries to create one with default port 1099. * * @param args */ public static void main(String[] args) { // make sure that all packages are loaded and available to // the remote engines weka.gui.GenericObjectEditor.determineClasses(); if (System.getSecurityManager() == null) { System.setSecurityManager(new RMISecurityManager()); } int port = 1099; InetAddress localhost = null; try { localhost = InetAddress.getLocalHost(); System.err.println("Host name : " + localhost.getHostName()); } catch (Exception ex) { ex.printStackTrace(); } String name; if (localhost != null) { name = localhost.getHostName(); } else { name = "localhost"; } // get optional port try { String portOption = Utils.getOption("p", args); if (!portOption.equals("")) { port = Integer.parseInt(portOption); } } catch (Exception ex) { System.err.println("Usage : -p <port>"); } if (port != 1099) { name = name + ":" + port; } name = "//" + name + "/RemoteEngine"; try { Compute engine = new RemoteEngine(name); try { Naming.rebind(name, engine); System.out.println("RemoteEngine bound in RMI registry"); } catch (RemoteException ex) { // try to bootstrap a new registry System.err.println("Attempting to start RMI registry on port " + port + "..."); java.rmi.registry.LocateRegistry.createRegistry(port); Naming.bind(name, engine); System.out.println("RemoteEngine bound in RMI registry"); } } catch (Exception e) { System.err.println("RemoteEngine exception: " + e.getMessage()); e.printStackTrace(); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/RemoteExperiment.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RemoteExperiment.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.rmi.Naming; import java.util.ArrayList; import java.util.Enumeration; import javax.swing.DefaultListModel; import weka.core.Option; import weka.core.OptionHandler; import weka.core.Queue; import weka.core.RevisionUtils; import weka.core.SerializedObject; import weka.core.Utils; import weka.core.xml.KOML; import weka.core.xml.XMLOptions; import weka.experiment.xml.XMLExperiment; /** * Holds all the necessary configuration information for a distributed * experiment. This object is able to be serialized for storage on disk. * <p> * * This class is experimental at present. Has been tested using * CSVResultListener (sending results to standard out) and * DatabaseResultListener (InstantDB + RmiJdbc bridge). * <p> * * Getting started: * <p> * * Start InstantDB (with the RMI bridge) on some machine. If using java2 then * specify -Djava.security.policy=db.policy to the virtual machine. Where * db.policy is as follows: <br> * * <pre> * grant { * permission java.security.AllPermission; * }; * </pre> * <p> * * Start RemoteEngine servers on x machines as per the instructons in the * README_Experiment_Gui file. There must be a DatabaseUtils.props in either the * HOME or current directory of each machine, listing all necessary jdbc * drivers. * <p> * * The machine where a RemoteExperiment is started must also have a copy of * DatabaseUtils.props listing the URL to the machine where the database server * is running (RmiJdbc + InstantDB). * <p> * * Here is an example of starting a RemoteExperiment: * <p> * * <pre> * * java -Djava.rmi.server.codebase=file:/path to weka classes/ \ * weka.experiment.RemoteExperiment -L 1 -U 10 \ * -T /home/ml/datasets/UCI/iris.arff \ * -D "weka.experiment.DatabaseResultListener" \ * -P "weka.experiment.RandomSplitResultProducer" \ * -h rosebud.cs.waikato.ac.nz -h blackbird.cs.waikato.ac.nz -r -- \ * -W weka.experiment.ClassifierSplitEvaluator -- \ * -W weka.classifiers.bayes.NaiveBayes * * </pre> * <p> * The "codebase" property tells rmi where to serve up weka classes from. This * can either be a file url (as long as a shared file system is being used that * is accessable by the remoteEngine servers), or http url (which of course * supposes that a web server is running and you have put your weka classes * somewhere that is web accessable). If using a file url the trailing "/" is * *most* important unless the weka classes are in a jar file. * <p> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -L &lt;num&gt; * The lower run number to start the experiment from. * (default 1) * </pre> * * <pre> * -U &lt;num&gt; * The upper run number to end the experiment at (inclusive). * (default 10) * </pre> * * <pre> * -T &lt;arff file&gt; * The dataset to run the experiment on. * (required, may be specified multiple times) * </pre> * * <pre> * -P &lt;class name&gt; * The full class name of a ResultProducer (required). * eg: weka.experiment.RandomSplitResultProducer * </pre> * * <pre> * -D &lt;class name&gt; * The full class name of a ResultListener (required). * eg: weka.experiment.CSVResultListener * </pre> * * <pre> * -N &lt;string&gt; * A string containing any notes about the experiment. * (default none) * </pre> * * <pre> * Options specific to result producer weka.experiment.RandomSplitResultProducer: * </pre> * * <pre> * -P &lt;percent&gt; * The percentage of instances to use for training. * (default 66) * </pre> * * <pre> * -D * Save raw split evaluator output. * </pre> * * <pre> * -O &lt;file/directory name/path&gt; * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip) * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator * </pre> * * <pre> * -R * Set when data is not to be randomized and the data sets' size. * Is not to be determined via probabilistic rounding. * </pre> * * <pre> * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: * </pre> * * <pre> * -W &lt;class name&gt; * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes * </pre> * * <pre> * -C &lt;index&gt; * The index of the class for which IR statistics * are to be output. (default 1) * </pre> * * <pre> * -I &lt;index&gt; * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0). * </pre> * * <pre> * -P * Add target and prediction columns to the result * for each fold. * </pre> * * <pre> * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> * * <pre> * -D * If set, classifier is run in debug mode and * may output additional info to the console * </pre> * * <!-- options-end --> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision$ */ public class RemoteExperiment extends Experiment { /** for serialization */ static final long serialVersionUID = -7357668825635314937L; /** The list of objects listening for remote experiment events */ private final ArrayList<RemoteExperimentListener> m_listeners = new ArrayList<RemoteExperimentListener>(); /** Holds the names of machines with remoteEngine servers running */ protected DefaultListModel m_remoteHosts = new DefaultListModel(); /** The queue of available hosts */ private Queue m_remoteHostsQueue = new Queue(); /** The status of each of the remote hosts */ private int[] m_remoteHostsStatus; /** The number of times tasks have failed on each remote host */ private int[] m_remoteHostFailureCounts; /** status of the remote host: available */ protected static final int AVAILABLE = 0; /** status of the remote host: in use */ protected static final int IN_USE = 1; /** status of the remote host: connection failed */ protected static final int CONNECTION_FAILED = 2; /** status of the remote host: some other failure */ protected static final int SOME_OTHER_FAILURE = 3; // protected static final int TO_BE_RUN=0; // protected static final int PROCESSING=1; // protected static final int FAILED=2; // protected static final int FINISHED=3; /** * allow at most 3 failures on a host before it is removed from the list of * usable hosts */ protected static final int MAX_FAILURES = 3; /** * Set to true if MAX_FAILURES exceeded on all hosts or connections fail on * all hosts or user aborts experiment (via gui) */ private boolean m_experimentAborted = false; /** The number of hosts removed due to exceeding max failures */ private int m_removedHosts; /** The count of failed sub-experiments */ private int m_failedCount; /** The count of successfully completed sub-experiments */ private int m_finishedCount; /** * The base experiment to split up into sub experiments for remote execution */ private Experiment m_baseExperiment = null; /** The sub experiments */ protected Experiment[] m_subExperiments; /** The queue of sub experiments waiting to be processed */ private Queue m_subExpQueue = new Queue(); /** The status of each of the sub-experiments */ protected int[] m_subExpComplete; /** If true, then sub experiments are created on the basis of data sets. */ protected boolean m_splitByDataSet = true; /** If true, then sub experiments are created on the basis of properties */ protected boolean m_splitByProperty = false; /** * Returns true if sub experiments are to be created on the basis of data * set. * * @return a <code>boolean</code> value indicating whether sub experiments are * to be created on the basis of data set (true) or run number * (false). */ public boolean getSplitByDataSet() { return m_splitByDataSet; } /** * Set whether sub experiments are to be created on the basis of data set. * * @param sd true if sub experiments are to be created on the basis of data * set. Otherwise sub experiments are created on the basis of run * number. */ public void setSplitByDataSet(boolean sd) { m_splitByDataSet = sd; if (sd) { m_splitByProperty = false; // Cannot split based on both dataset and property } } /** * Returns true if sub experiments are to be created on the basis of property. * * @return a <code>boolean</code> value indicating whether sub experiments are * to be created on the basis of data set (true) or run number * (false). */ public boolean getSplitByProperty() { return m_splitByProperty; } /** * Set whether sub experiments are to be created on the basis of property. * * @param sd true if sub experiments are to be created on the basis of data * set. Otherwise sub experiments are created on the basis of run * number. */ public void setSplitByProperty(boolean sd) { m_splitByProperty = sd; if (sd) { m_splitByDataSet = false; // Cannot split based on both dataset and property } } /** * Construct a new RemoteExperiment using an empty Experiment as base * Experiment * * @throws Exception if the base experiment is null */ public RemoteExperiment() throws Exception { this(new Experiment()); } /** * Construct a new RemoteExperiment using a base Experiment * * @param base the base experiment to use * @throws Exception if the base experiment is null */ public RemoteExperiment(Experiment base) throws Exception { setBaseExperiment(base); } /** * Add an object to the list of those interested in recieving update * information from the RemoteExperiment * * @param r a listener */ public void addRemoteExperimentListener(RemoteExperimentListener r) { m_listeners.add(r); } /** * Get the base experiment used by this remote experiment * * @return the base experiment */ public Experiment getBaseExperiment() { return m_baseExperiment; } /** * Set the base experiment. A sub experiment will be created for each run in * the base experiment. * * @param base the base experiment to use. * @throws Exception if supplied base experiment is null */ public void setBaseExperiment(Experiment base) throws Exception { if (base == null) { throw new Exception("Base experiment is null!"); } m_baseExperiment = base; setRunLower(m_baseExperiment.getRunLower()); setRunUpper(m_baseExperiment.getRunUpper()); setResultListener(m_baseExperiment.getResultListener()); setResultProducer(m_baseExperiment.getResultProducer()); setDatasets(m_baseExperiment.getDatasets()); setUsePropertyIterator(m_baseExperiment.getUsePropertyIterator()); setPropertyPath(m_baseExperiment.getPropertyPath()); setPropertyArray(m_baseExperiment.getPropertyArray()); setNotes(m_baseExperiment.getNotes()); m_ClassFirst = m_baseExperiment.m_ClassFirst; m_AdvanceDataSetFirst = m_baseExperiment.m_AdvanceDataSetFirst; } /** * Set the user notes. * * @param newNotes New user notes. */ @Override public void setNotes(String newNotes) { super.setNotes(newNotes); m_baseExperiment.setNotes(newNotes); } /** * Set the lower run number for the experiment. * * @param newRunLower the lower run number for the experiment. */ @Override public void setRunLower(int newRunLower) { super.setRunLower(newRunLower); m_baseExperiment.setRunLower(newRunLower); } /** * Set the upper run number for the experiment. * * @param newRunUpper the upper run number for the experiment. */ @Override public void setRunUpper(int newRunUpper) { super.setRunUpper(newRunUpper); m_baseExperiment.setRunUpper(newRunUpper); } /** * Sets the result listener where results will be sent. * * @param newResultListener the result listener where results will be sent. */ @Override public void setResultListener(ResultListener newResultListener) { super.setResultListener(newResultListener); m_baseExperiment.setResultListener(newResultListener); } /** * Set the result producer used for the current experiment. * * @param newResultProducer result producer to use for the current experiment. */ @Override public void setResultProducer(ResultProducer newResultProducer) { super.setResultProducer(newResultProducer); m_baseExperiment.setResultProducer(newResultProducer); } /** * Set the datasets to use in the experiment * * @param ds the list of datasets to use */ @Override public void setDatasets(DefaultListModel ds) { super.setDatasets(ds); m_baseExperiment.setDatasets(ds); } /** * Sets whether the custom property iterator should be used. * * @param newUsePropertyIterator true if so */ @Override public void setUsePropertyIterator(boolean newUsePropertyIterator) { super.setUsePropertyIterator(newUsePropertyIterator); m_baseExperiment.setUsePropertyIterator(newUsePropertyIterator); } /** * Sets the path of properties taken to get to the custom property to iterate * over. * * @param newPropertyPath an array of PropertyNodes */ @Override public void setPropertyPath(PropertyNode[] newPropertyPath) { super.setPropertyPath(newPropertyPath); m_baseExperiment.setPropertyPath(newPropertyPath); } /** * Sets the array of values to set the custom property to. * * @param newPropArray a value of type Object which should be an array of the * appropriate values. */ @Override public void setPropertyArray(Object newPropArray) { super.setPropertyArray(newPropArray); m_baseExperiment.setPropertyArray(newPropArray); } /** * Prepares a remote experiment for running, creates sub experiments * * @throws Exception if an error occurs */ @Override public void initialize() throws Exception { if (m_baseExperiment == null) { throw new Exception("No base experiment specified!"); } m_experimentAborted = false; m_finishedCount = 0; m_failedCount = 0; m_RunNumber = getRunLower(); m_DatasetNumber = 0; m_PropertyNumber = 0; m_CurrentProperty = -1; m_CurrentInstances = null; m_Finished = false; if (m_remoteHosts.size() == 0) { throw new Exception("No hosts specified!"); } // initialize all remote hosts to available m_remoteHostsStatus = new int[m_remoteHosts.size()]; m_remoteHostFailureCounts = new int[m_remoteHosts.size()]; m_remoteHostsQueue = new Queue(); // prime the hosts queue for (int i = 0; i < m_remoteHosts.size(); i++) { m_remoteHostsQueue.push(new Integer(i)); } // set up sub experiments m_subExpQueue = new Queue(); int numExps; if (getSplitByDataSet()) { numExps = m_baseExperiment.getDatasets().size(); } else if (getSplitByProperty()) { numExps = m_baseExperiment.getPropertyArrayLength(); } else { numExps = getRunUpper() - getRunLower() + 1; } m_subExperiments = new Experiment[numExps]; m_subExpComplete = new int[numExps]; // create copy of base experiment SerializedObject so = new SerializedObject(m_baseExperiment); if (getSplitByDataSet()) { for (int i = 0; i < m_baseExperiment.getDatasets().size(); i++) { m_subExperiments[i] = (Experiment) so.getObject(); // one for each data set DefaultListModel temp = new DefaultListModel(); temp.addElement(m_baseExperiment.getDatasets().get(i)); m_subExperiments[i].setDatasets(temp); m_subExpQueue.push(new Integer(i)); } } else if (getSplitByProperty()) { for (int i = 0; i < m_baseExperiment.getPropertyArrayLength(); i++) { m_subExperiments[i] = (Experiment) so.getObject(); Object[] a = new Object[1]; a[0] = m_baseExperiment.getPropertyArrayValue(i); m_subExperiments[i].setPropertyArray(a); m_subExpQueue.push(new Integer(i)); } } else { for (int i = getRunLower(); i <= getRunUpper(); i++) { m_subExperiments[i - getRunLower()] = (Experiment) so.getObject(); // one run for each sub experiment m_subExperiments[i - getRunLower()].setRunLower(i); m_subExperiments[i - getRunLower()].setRunUpper(i); m_subExpQueue.push(new Integer(i - getRunLower())); } } } /** * Inform all listeners of progress * * @param status true if this is a status type of message * @param log true if this is a log type of message * @param finished true if the remote experiment has finished * @param message the message. */ private synchronized void notifyListeners(boolean status, boolean log, boolean finished, String message) { if (m_listeners.size() > 0) { for (int i = 0; i < m_listeners.size(); i++) { RemoteExperimentListener r = (m_listeners.get(i)); r.remoteExperimentStatus(new RemoteExperimentEvent(status, log, finished, message)); } } else { System.err.println(message); } } /** * Set the abort flag */ public void abortExperiment() { m_experimentAborted = true; } /** * Increment the number of successfully completed sub experiments */ protected synchronized void incrementFinished() { m_finishedCount++; } /** * Increment the overall number of failures and the number of failures for a * particular host * * @param hostNum the index of the host to increment failure count */ protected synchronized void incrementFailed(int hostNum) { m_failedCount++; m_remoteHostFailureCounts[hostNum]++; } /** * Push an experiment back on the queue of waiting experiments * * @param expNum the index of the experiment to push onto the queue */ protected synchronized void waitingExperiment(int expNum) { m_subExpQueue.push(new Integer(expNum)); } /** * Check to see if we have failed to connect to all hosts * * @return true if failed to connect to all hosts */ private boolean checkForAllFailedHosts() { boolean allbad = true; for (int m_remoteHostsStatu : m_remoteHostsStatus) { if (m_remoteHostsStatu != CONNECTION_FAILED) { allbad = false; break; } } if (allbad) { abortExperiment(); notifyListeners(false, true, true, "Experiment aborted! All connections " + "to remote hosts failed."); } return allbad; } /** * Returns some post experiment information. * * @return a String containing some post experiment info */ private String postExperimentInfo() { StringBuffer text = new StringBuffer(); text.append(m_finishedCount + (m_splitByDataSet ? " data sets" : " runs") + " completed successfully. " + m_failedCount + " failures during running.\n"); System.err.print(text.toString()); return text.toString(); } /** * Pushes a host back onto the queue of available hosts and attempts to launch * a waiting experiment (if any). * * @param hostNum the index of the host to push back onto the queue of * available hosts */ protected synchronized void availableHost(int hostNum) { if (hostNum >= 0) { if (m_remoteHostFailureCounts[hostNum] < MAX_FAILURES) { m_remoteHostsQueue.push(new Integer(hostNum)); } else { notifyListeners(false, true, false, "Max failures exceeded for host " + ((String) m_remoteHosts.elementAt(hostNum)) + ". Removed from host list."); m_removedHosts++; } } // check for all sub exp complete or all hosts failed or failed count // exceeded if (m_failedCount == (MAX_FAILURES * m_remoteHosts.size())) { abortExperiment(); notifyListeners(false, true, true, "Experiment aborted! Max failures " + "exceeded on all remote hosts."); return; } if ((getSplitByDataSet() && (m_baseExperiment.getDatasets().size() == m_finishedCount)) || (getSplitByProperty() && (m_baseExperiment.getPropertyArrayLength() == m_finishedCount)) || (!getSplitByDataSet() && !getSplitByProperty() && (getRunUpper() - getRunLower() + 1) == m_finishedCount)) { notifyListeners(false, true, false, "Experiment completed successfully."); notifyListeners(false, true, true, postExperimentInfo()); return; } if (checkForAllFailedHosts()) { return; } if (m_experimentAborted && (m_remoteHostsQueue.size() + m_removedHosts) == m_remoteHosts.size()) { notifyListeners(false, true, true, "Experiment aborted. All remote tasks " + "finished."); } if (!m_subExpQueue.empty() && !m_experimentAborted) { if (!m_remoteHostsQueue.empty()) { int availHost, waitingExp; try { availHost = ((Integer) m_remoteHostsQueue.pop()).intValue(); waitingExp = ((Integer) m_subExpQueue.pop()).intValue(); launchNext(waitingExp, availHost); } catch (Exception ex) { ex.printStackTrace(); } } } } /** * Launch a sub experiment on a remote host * * @param wexp the index of the sub experiment to launch * @param ah the index of the available host to launch on */ public void launchNext(final int wexp, final int ah) { Thread subExpThread; subExpThread = new Thread() { @Override public void run() { m_remoteHostsStatus[ah] = IN_USE; m_subExpComplete[wexp] = TaskStatusInfo.PROCESSING; RemoteExperimentSubTask expSubTsk = new RemoteExperimentSubTask(); expSubTsk.setExperiment(m_subExperiments[wexp]); String subTaskType = null; if (getSplitByDataSet()) { subTaskType = "dataset: " + ((File) m_subExperiments[wexp].getDatasets().elementAt(0)) .getName(); } else if (getSplitByProperty()) { subTaskType = "property: " + m_subExperiments[wexp].getPropertyArrayValue(0).getClass().getName() + " :" + m_subExperiments[wexp].getPropertyArrayValue(0); } else { subTaskType = "run: " + m_subExperiments[wexp].getRunLower(); } try { String name = "//" + ((String) m_remoteHosts.elementAt(ah)) + "/RemoteEngine"; Compute comp = (Compute) Naming.lookup(name); // assess the status of the sub-exp notifyListeners(false, true, false, "Starting " + subTaskType + " on host " + ((String) m_remoteHosts.elementAt(ah))); Object subTaskId = comp.executeTask(expSubTsk); boolean finished = false; TaskStatusInfo is = null; while (!finished) { try { Thread.sleep(2000); TaskStatusInfo cs = (TaskStatusInfo) comp.checkStatus(subTaskId); if (cs.getExecutionStatus() == TaskStatusInfo.FINISHED) { // push host back onto queue and try launching any waiting // sub-experiments notifyListeners(false, true, false, cs.getStatusMessage()); m_remoteHostsStatus[ah] = AVAILABLE; incrementFinished(); availableHost(ah); finished = true; } else if (cs.getExecutionStatus() == TaskStatusInfo.FAILED) { // a non connection related error---possibly host doesn't have // access to data sets or security policy is not set up // correctly or classifier(s) failed for some reason notifyListeners(false, true, false, cs.getStatusMessage()); m_remoteHostsStatus[ah] = SOME_OTHER_FAILURE; m_subExpComplete[wexp] = TaskStatusInfo.FAILED; notifyListeners(false, true, false, subTaskType + " " + cs.getStatusMessage() + ". Scheduling for execution on another host."); incrementFailed(ah); // push experiment back onto queue waitingExperiment(wexp); // push host back onto queue and try launching any waiting // sub-experiments. Host is pushed back on the queue as the // failure may be temporary---eg. with InstantDB using the // RMI bridge, two or more threads may try to create the // experiment index or results table simultaneously; all but // one will throw an exception. These hosts are still usable // however. availableHost(ah); finished = true; } else { if (is == null) { is = cs; notifyListeners(false, true, false, cs.getStatusMessage()); } else { if (cs.getStatusMessage().compareTo(is.getStatusMessage()) != 0) { notifyListeners(false, true, false, cs.getStatusMessage()); } is = cs; } } } catch (InterruptedException ie) { } } } catch (Exception ce) { m_remoteHostsStatus[ah] = CONNECTION_FAILED; m_subExpComplete[wexp] = TaskStatusInfo.TO_BE_RUN; System.err.println(ce); ce.printStackTrace(); notifyListeners(false, true, false, "Connection to " + ((String) m_remoteHosts.elementAt(ah)) + " failed. Scheduling " + subTaskType + " for execution on another host."); checkForAllFailedHosts(); waitingExperiment(wexp); } finally { if (isInterrupted()) { System.err.println("Sub exp Interupted!"); } } } }; subExpThread.setPriority(Thread.MIN_PRIORITY); subExpThread.start(); } /** * Overides the one in Experiment * * @throws Exception never throws an exception */ @Override public void nextIteration() throws Exception { } /** * overides the one in Experiment */ @Override public void advanceCounters() { } /** * overides the one in Experiment */ @Override public void postProcess() { } /** * Add a host name to the list of remote hosts * * @param hostname the host name to add to the list */ public void addRemoteHost(String hostname) { m_remoteHosts.addElement(hostname); } /** * Get the list of remote host names * * @return the list of remote host names */ public DefaultListModel getRemoteHosts() { return m_remoteHosts; } /** * Set the list of remote host names * * @param list the list of remote host names */ public void setRemoteHosts(DefaultListModel list) { m_remoteHosts = list; } /** * Overides toString in Experiment * * @return a description of this remote experiment */ @Override public String toString() { String result = m_baseExperiment.toString(); result += "\nRemote Hosts:\n"; for (int i = 0; i < m_remoteHosts.size(); i++) { result += ((String) m_remoteHosts.elementAt(i)) + '\n'; } return result; } /** * Overides runExperiment in Experiment */ @Override public void runExperiment() { int totalHosts = m_remoteHostsQueue.size(); // Try to launch sub experiments on all available hosts for (int i = 0; i < totalHosts; i++) { availableHost(-1); } } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Configures/Runs the Experiment from the command line. * * @param args command line arguments to the Experiment. */ public static void main(String[] args) { try { weka.core.WekaPackageManager.loadPackages(false, true, false); RemoteExperiment exp = null; // get options from XML? String xmlOption = Utils.getOption("xml", args); if (!xmlOption.equals("")) { args = new XMLOptions(xmlOption).toArray(); } Experiment base = null; String expFile = Utils.getOption('l', args); String saveFile = Utils.getOption('s', args); boolean runExp = Utils.getFlag('r', args); ArrayList<String> remoteHosts = new ArrayList<String>(); String runHost = " "; while (runHost.length() != 0) { runHost = Utils.getOption('h', args); if (runHost.length() != 0) { remoteHosts.add(runHost); } } if (expFile.length() == 0) { base = new Experiment(); try { base.setOptions(args); Utils.checkForRemainingOptions(args); } catch (Exception ex) { ex.printStackTrace(); String result = "Usage:\n\n" + "-l <exp file>\n" + "\tLoad experiment from file (default use cli options)\n" + "-s <exp file>\n" + "\tSave experiment to file after setting other options\n" + "\t(default don't save)\n" + "-h <remote host name>\n" + "\tHost to run experiment on (may be specified more than once\n" + "\tfor multiple remote hosts)\n" + "-r \n" + "\tRun experiment on (default don't run)\n" + "-xml <filename | xml-string>\n" + "\tget options from XML-Data instead from parameters\n" + "\n"; Enumeration<Option> enm = ((OptionHandler) base).listOptions(); while (enm.hasMoreElements()) { Option option = enm.nextElement(); result += option.synopsis() + "\n"; result += option.description() + "\n"; } throw new Exception(result + "\n" + ex.getMessage()); } } else { Object tmp; // KOML? if ((KOML.isPresent()) && (expFile.toLowerCase().endsWith(KOML.FILE_EXTENSION))) { tmp = KOML.read(expFile); } else // XML? if (expFile.toLowerCase().endsWith(".xml")) { XMLExperiment xml = new XMLExperiment(); tmp = xml.read(expFile); } // binary else { FileInputStream fi = new FileInputStream(expFile); ObjectInputStream oi = new ObjectInputStream(new BufferedInputStream( fi)); tmp = oi.readObject(); oi.close(); } if (tmp instanceof RemoteExperiment) { exp = (RemoteExperiment) tmp; } else { base = (Experiment) tmp; } } if (base != null) { exp = new RemoteExperiment(base); } for (int i = 0; i < remoteHosts.size(); i++) { exp.addRemoteHost(remoteHosts.get(i)); } System.err.println("Experiment:\n" + exp.toString()); if (saveFile.length() != 0) { // KOML? if ((KOML.isPresent()) && (saveFile.toLowerCase().endsWith(KOML.FILE_EXTENSION))) { KOML.write(saveFile, exp); } else // XML? if (saveFile.toLowerCase().endsWith(".xml")) { XMLExperiment xml = new XMLExperiment(); xml.write(saveFile, exp); } // binary else { FileOutputStream fo = new FileOutputStream(saveFile); ObjectOutputStream oo = new ObjectOutputStream( new BufferedOutputStream(fo)); oo.writeObject(exp); oo.close(); } } if (runExp) { System.err.println("Initializing..."); exp.initialize(); System.err.println("Iterating..."); exp.runExperiment(); System.err.println("Postprocessing..."); exp.postProcess(); } } catch (Exception ex) { ex.printStackTrace(); System.err.println(ex.getMessage()); } } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/RemoteExperimentEvent.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RemoteExperimentEvent.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.Serializable; /** * Class encapsulating information on progress of a remote experiment * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision$ */ public class RemoteExperimentEvent implements Serializable { /** for serialization */ private static final long serialVersionUID = 7000867987391866451L; /** A status type message */ public boolean m_statusMessage; /** A log type message */ public boolean m_logMessage; /** The message */ public String m_messageString; /** True if a remote experiment has finished */ public boolean m_experimentFinished; /** * Constructor * @param status true for status type messages * @param log true for log type messages * @param finished true if experiment has finished * @param message the message */ public RemoteExperimentEvent(boolean status, boolean log, boolean finished, String message) { m_statusMessage = status; m_logMessage = log; m_experimentFinished = finished; m_messageString = message; } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/RemoteExperimentListener.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RemoteExperimentListener.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; /** * Interface for classes that want to listen for updates on RemoteExperiment * progress * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision$ */ public interface RemoteExperimentListener { /** * Called when progress has been made in a remote experiment * @param e the event encapsulating what happened */ void remoteExperimentStatus(RemoteExperimentEvent e); }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/RemoteExperimentSubTask.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RemoteExperimentSubTask.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.File; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.SerializedObject; /** * Class to encapsulate an experiment as a task that can be executed on a remote * host. * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision$ */ public class RemoteExperimentSubTask implements Task, RevisionHandler { /** ID added to avoid warning */ private static final long serialVersionUID = -1674092706571603720L; /* Info on the task */ private TaskStatusInfo m_result = new TaskStatusInfo(); /* The (sub) experiment to execute */ private Experiment m_experiment; private SerializedObject m_serializedExp; public RemoteExperimentSubTask() { m_result.setStatusMessage("Not running."); m_result.setExecutionStatus(TaskStatusInfo.TO_BE_RUN); } /** * Set the experiment for this sub task * * @param task the experiment */ public void setExperiment(Experiment task) { // m_experiment = task; try { m_serializedExp = new SerializedObject(task); } catch (Exception e) { e.printStackTrace(); } } /** * Get the experiment for this sub task * * @return this sub task's experiment */ public Experiment getExperiment() { if (m_experiment != null) { return m_experiment; } else { m_experiment = (Experiment) m_serializedExp.getObject(); return m_experiment; } } /** * Run the experiment */ @Override public void execute() { m_experiment = (Experiment) m_serializedExp.getObject(); // FastVector result = new FastVector(); m_result = new TaskStatusInfo(); m_result.setStatusMessage("Running..."); String goodResult = "(sub)experiment completed successfully"; String subTaskType; if (m_experiment.getRunLower() != m_experiment.getRunUpper()) { subTaskType = "(dataset " + ((File) m_experiment.getDatasets().elementAt(0)).getName(); } else { subTaskType = "(exp run # " + m_experiment.getRunLower(); } try { System.err.println("Initializing " + subTaskType + ")..."); m_experiment.initialize(); System.err.println("Iterating " + subTaskType + ")..."); // Do not invoke runExperiment(): every exception will be lost while (m_experiment.hasMoreIterations()) { m_experiment.nextIteration(); } System.err.println("Postprocessing " + subTaskType + ")..."); m_experiment.postProcess(); } catch (Exception ex) { ex.printStackTrace(); String badResult = "(sub)experiment " + subTaskType + ") failed : " + ex.toString(); m_result.setExecutionStatus(TaskStatusInfo.FAILED); // m_result.addElement(new Integer(RemoteExperiment.FAILED)); // m_result.addElement(badResult); m_result.setStatusMessage(badResult); m_result.setTaskResult("Failed"); // return m_result; return; } // m_result.addElement(new Integer(RemoteExperiment.FINISHED)); // m_result.addElement(goodResult); m_result.setExecutionStatus(TaskStatusInfo.FINISHED); m_result.setStatusMessage(goodResult + " " + subTaskType + ")."); m_result.setTaskResult("No errors"); // return m_result; } @Override public TaskStatusInfo getTaskStatus() { return m_result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ResultListener.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ResultListener.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.Serializable; /** * Interface for objects able to listen for results obtained * by a ResultProducer * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public interface ResultListener extends Serializable { /** * Determines if there are any constraints (imposed by the * destination) on additional result columns to be produced by * resultProducers. Null should be returned if there are NO * constraints, otherwise a list of column names should be * returned as an array of Strings. * @param rp the ResultProducer to which the constraints will apply * @return an array of column names to which resutltProducer's * additional results will be restricted. * @exception Exception if an error occurs */ String [] determineColumnConstraints(ResultProducer rp) throws Exception; /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @exception Exception if an error occurs during preprocessing. */ void preProcess(ResultProducer rp) throws Exception; /** * Perform any postprocessing. When this method is called, it indicates * that no more results will be sent that need to be grouped together * in any way. * * @param rp the ResultProducer that generated the results * @exception Exception if an error occurs */ void postProcess(ResultProducer rp) throws Exception; /** * Accepts results from a ResultProducer. * * @param rp the ResultProducer that generated the results * @param key an array of Objects (Strings or Doubles) that uniquely * identify a result for a given ResultProducer with given compatibilityState * @param result the results stored in an array. The objects stored in * the array may be Strings, Doubles, or null (for the missing value). * @exception Exception if the result could not be accepted. */ void acceptResult(ResultProducer rp, Object [] key, Object [] result) throws Exception; /** * Determines whether the results for a specified key must be * generated. * * @param rp the ResultProducer wanting to generate the results * @param key an array of Objects (Strings or Doubles) that uniquely * identify a result for a given ResultProducer with given compatibilityState * @return true if the result should be generated * @exception Exception if it could not be determined if the result * is needed. */ boolean isResultRequired(ResultProducer rp, Object [] key) throws Exception; }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ResultMatrix.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ResultMatrix.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.Serializable; import java.util.Enumeration; import java.util.Vector; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.Utils; /** * This matrix is a container for the datasets and classifier setups and their * statistics. Derived classes output the data in different formats. Derived * classes need to implement the following methods: * <ul> * <li><code>toStringMatrix()</code></li> * <li><code>toStringKey()</code></li> * <li><code>toStringHeader()</code></li> * <li><code>toStringSummary()</code></li> * <li><code>toStringRanking()</code></li> * </ul> * * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ * @see #toStringMatrix() * @see #toStringKey() * @see #toStringHeader() * @see #toStringSummary() * @see #toStringRanking() */ public abstract class ResultMatrix implements Serializable, RevisionHandler, OptionHandler { /** for serialization. */ private static final long serialVersionUID = 4487179306428209739L; /** tie. */ public final static int SIGNIFICANCE_TIE = 0; /** win. */ public final static int SIGNIFICANCE_WIN = 1; /** loss. */ public final static int SIGNIFICANCE_LOSS = 2; /** tie string. */ public String TIE_STRING = " "; /** win string. */ public String WIN_STRING = "v"; /** loss string. */ public String LOSS_STRING = "*"; /** the left parentheses for enumerating cols/rows. */ public String LEFT_PARENTHESES = "("; /** the right parentheses for enumerating cols/rows. */ public String RIGHT_PARENTHESES = ")"; /** the column names. */ protected String[] m_ColNames = null; /** the row names. */ protected String[] m_RowNames = null; /** whether a column is hidden. */ protected boolean[] m_ColHidden = null; /** whether a row is hidden. */ protected boolean[] m_RowHidden = null; /** the significance. */ protected int[][] m_Significance = null; /** the values. */ protected double[][] m_Mean = null; /** the standard deviation. */ protected double[][] m_StdDev = null; /** the counts for the different datasets. */ protected double[] m_Counts = null; /** the standard mean precision. */ protected int m_MeanPrec; /** the standard std. deviation preicision. */ protected int m_StdDevPrec; /** whether std. deviations are printed as well. */ protected boolean m_ShowStdDev; /** whether the average for each column should be printed. */ protected boolean m_ShowAverage; /** whether the names or numbers are output as column declarations. */ protected boolean m_PrintColNames; /** whether the names or numbers are output as row declarations. */ protected boolean m_PrintRowNames; /** * whether a "(x)" is printed before each column name with "x" as the index. */ protected boolean m_EnumerateColNames; /** whether a "(x)" is printed before each row name with "x" as the index. */ protected boolean m_EnumerateRowNames; /** the size of the names of the columns. */ protected int m_ColNameWidth; /** the size of the names of the rows. */ protected int m_RowNameWidth; /** the size of the mean columns. */ protected int m_MeanWidth; /** the size of the std dev columns. */ protected int m_StdDevWidth; /** the size of the significance columns. */ protected int m_SignificanceWidth; /** the size of the counts. */ protected int m_CountWidth; /** contains the keys for the header. */ protected Vector<String> m_HeaderKeys = null; /** contains the values for the header. */ protected Vector<String> m_HeaderValues = null; /** the non-significant wins. */ protected int[][] m_NonSigWins = null; /** the significant wins. */ protected int[][] m_Wins = null; /** the wins in ranking. */ protected int[] m_RankingWins = null; /** the losses in ranking. */ protected int[] m_RankingLosses = null; /** the difference between wins and losses. */ protected int[] m_RankingDiff = null; /** the ordering of the rows. */ protected int[] m_RowOrder = null; /** the ordering of the columns. */ protected int[] m_ColOrder = null; /** whether to remove the filter name from the dataaset name. */ protected boolean m_RemoveFilterName = false; /** * initializes the matrix as 1x1 matrix. */ public ResultMatrix() { this(1, 1); } /** * initializes the matrix with the given dimensions. * * @param cols the number of columns * @param rows the number of rows */ public ResultMatrix(int cols, int rows) { setSize(cols, rows); clear(); } /** * initializes the matrix with the values from the given matrix. * * @param matrix the matrix to get the values from */ public ResultMatrix(ResultMatrix matrix) { assign(matrix); } /** * Returns a string describing the matrix. * * @return a description suitable for displaying in the experimenter gui */ public abstract String globalInfo(); /** * Returns an enumeration of all the available options.. * * @return an enumeration of all available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result; result = new Vector<Option>(); result.addElement(new Option( "\tThe number of decimals after the decimal point for the mean.\n" + "\t(default: " + getDefaultMeanPrec() + ")", "mean-prec", 1, "-mean-prec <int>")); result.addElement(new Option( "\tThe number of decimals after the decimal point for the mean.\n" + "\t(default: " + getDefaultStdDevPrec() + ")", "stddev-prec", 1, "-stddev-prec <int>")); result.addElement(new Option( "\tThe maximum width for the column names (0 = optimal).\n" + "\t(default: " + getDefaultColNameWidth() + ")", "col-name-width", 1, "-col-name-width <int>")); result.addElement(new Option( "\tThe maximum width for the row names (0 = optimal).\n" + "\t(default: " + getDefaultRowNameWidth() + ")", "row-name-width", 1, "-row-name-width <int>")); result.addElement(new Option("\tThe width of the mean (0 = optimal).\n" + "\t(default: " + getDefaultMeanWidth() + ")", "mean-width", 1, "-mean-width <int>")); result.addElement(new Option( "\tThe width of the standard deviation (0 = optimal).\n" + "\t(default: " + getDefaultStdDevWidth() + ")", "stddev-width", 1, "-stddev-width <int>")); result.addElement(new Option( "\tThe width of the significance indicator (0 = optimal).\n" + "\t(default: " + getDefaultSignificanceWidth() + ")", "sig-width", 1, "-sig-width <int>")); result.addElement(new Option("\tThe width of the counts (0 = optimal).\n" + "\t(default: " + getDefaultCountWidth() + ")", "count-width", 1, "-count-width <int>")); result.addElement(new Option( "\tWhether to display the standard deviation column.\n" + "\t(default: no)", "show-stddev", 0, "-show-stddev")); result.addElement(new Option("\tWhether to show the row with averages.\n" + "\t(default: no)", "show-avg", 0, "-show-avg")); result.addElement(new Option( "\tWhether to remove the classname package prefixes from the\n" + "\tfilter names in datasets.\n" + "\t(default: no)", "remove-filter", 0, "-remove-filter")); result.addElement(new Option( "\tWhether to output column names or just numbers representing them.\n" + "\t(default: no)", "print-col-names", 0, "-print-col-names")); result.addElement(new Option( "\tWhether to output row names or just numbers representing them.\n" + "\t(default: no)", "print-row-names", 0, "-print-row-names")); result.addElement(new Option( "\tWhether to enumerate the column names (prefixing them with \n" + "\t'(x)', with 'x' being the index).\n" + "\t(default: no)", "enum-col-names", 0, "-enum-col-names")); result.addElement(new Option( "\tWhether to enumerate the row names (prefixing them with \n" + "\t'(x)', with 'x' being the index).\n" + "\t(default: no)", "enum-row-names", 0, "-enum-row-names")); return result.elements(); } /** * Sets the OptionHandler's options using the given list. All options will be * set (or reset) during this call (i.e. incremental setting of options is not * possible). * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption("mean-prec", options); if (tmpStr.length() > 0) { setMeanPrec(Integer.parseInt(tmpStr)); } else { setMeanPrec(getDefaultMeanPrec()); } tmpStr = Utils.getOption("stddev-prec", options); if (tmpStr.length() > 0) { setStdDevPrec(Integer.parseInt(tmpStr)); } else { setStdDevPrec(getDefaultStdDevPrec()); } tmpStr = Utils.getOption("col-name-width", options); if (tmpStr.length() > 0) { setColNameWidth(Integer.parseInt(tmpStr)); } else { setColNameWidth(getDefaultColNameWidth()); } tmpStr = Utils.getOption("row-name-width", options); if (tmpStr.length() > 0) { setRowNameWidth(Integer.parseInt(tmpStr)); } else { setRowNameWidth(getDefaultRowNameWidth()); } tmpStr = Utils.getOption("mean-width", options); if (tmpStr.length() > 0) { setMeanWidth(Integer.parseInt(tmpStr)); } else { setMeanWidth(getDefaultMeanWidth()); } tmpStr = Utils.getOption("stddev-width", options); if (tmpStr.length() > 0) { setStdDevWidth(Integer.parseInt(tmpStr)); } else { setStdDevWidth(getDefaultStdDevWidth()); } tmpStr = Utils.getOption("sig-width", options); if (tmpStr.length() > 0) { setSignificanceWidth(Integer.parseInt(tmpStr)); } else { setSignificanceWidth(getDefaultSignificanceWidth()); } tmpStr = Utils.getOption("count-width", options); if (tmpStr.length() > 0) { setStdDevPrec(Integer.parseInt(tmpStr)); } else { setStdDevPrec(getDefaultCountWidth()); } setShowStdDev(Utils.getFlag("show-stddev", options)); setShowAverage(Utils.getFlag("show-avg", options)); setRemoveFilterName(Utils.getFlag("remove-filter", options)); setEnumerateColNames(Utils.getFlag("enum-col-names", options)); setEnumerateRowNames(Utils.getFlag("enum-row-names", options)); setPrintColNames(Utils.getFlag("print-col-names", options)); setPrintRowNames(Utils.getFlag("print-row-names", options)); } /** * Gets the current option settings for the OptionHandler. * * @return the list of current option settings as an array of strings */ @Override public String[] getOptions() { Vector<String> result; result = new Vector<String>(); result.add("-mean-prec"); result.add("" + getMeanPrec()); result.add("-stddev-prec"); result.add("" + getStdDevPrec()); result.add("-col-name-width"); result.add("" + getColNameWidth()); result.add("-row-name-width"); result.add("" + getRowNameWidth()); result.add("-mean-width"); result.add("" + getMeanWidth()); result.add("-stddev-width"); result.add("" + getStdDevWidth()); result.add("-sig-width"); result.add("" + getSignificanceWidth()); result.add("-count-width"); result.add("" + getCountWidth()); if (getShowStdDev()) { result.add("-show-stddev"); } if (getShowAverage()) { result.add("-show-avg"); } if (getRemoveFilterName()) { result.add("-remove-filter"); } if (getPrintColNames()) { result.add("-print-col-names"); } if (getPrintRowNames()) { result.add("-print-row-names"); } if (getEnumerateColNames()) { result.add("-enum-col-names"); } if (getEnumerateRowNames()) { result.add("-enum-row-names"); } return result.toArray(new String[result.size()]); } /** * returns the name of the output format. * * @return the display name */ public abstract String getDisplayName(); /** * acquires the data from the given matrix. * * @param matrix the matrix to get the data from */ @SuppressWarnings("unchecked") public void assign(ResultMatrix matrix) { int i; int n; setSize(matrix.getColCount(), matrix.getRowCount()); // output parameters TIE_STRING = matrix.TIE_STRING; WIN_STRING = matrix.WIN_STRING; LOSS_STRING = matrix.LOSS_STRING; LEFT_PARENTHESES = matrix.LEFT_PARENTHESES; RIGHT_PARENTHESES = matrix.RIGHT_PARENTHESES; m_MeanPrec = matrix.m_MeanPrec; m_StdDevPrec = matrix.m_StdDevPrec; m_ShowStdDev = matrix.m_ShowStdDev; m_ShowAverage = matrix.m_ShowAverage; m_PrintColNames = matrix.m_PrintColNames; m_PrintRowNames = matrix.m_PrintRowNames; m_EnumerateColNames = matrix.m_EnumerateColNames; m_EnumerateRowNames = matrix.m_EnumerateRowNames; m_RowNameWidth = matrix.m_RowNameWidth; m_MeanWidth = matrix.m_MeanWidth; m_StdDevWidth = matrix.m_StdDevWidth; m_SignificanceWidth = matrix.m_SignificanceWidth; m_CountWidth = matrix.m_CountWidth; m_RemoveFilterName = matrix.m_RemoveFilterName; // header m_HeaderKeys = (Vector<String>) matrix.m_HeaderKeys.clone(); m_HeaderValues = (Vector<String>) matrix.m_HeaderValues.clone(); // matrix for (i = 0; i < matrix.m_Mean.length; i++) { for (n = 0; n < matrix.m_Mean[i].length; n++) { m_Mean[i][n] = matrix.m_Mean[i][n]; m_StdDev[i][n] = matrix.m_StdDev[i][n]; m_Significance[i][n] = matrix.m_Significance[i][n]; } } for (i = 0; i < matrix.m_ColNames.length; i++) { m_ColNames[i] = matrix.m_ColNames[i]; m_ColHidden[i] = matrix.m_ColHidden[i]; } for (i = 0; i < matrix.m_RowNames.length; i++) { m_RowNames[i] = matrix.m_RowNames[i]; m_RowHidden[i] = matrix.m_RowHidden[i]; } for (i = 0; i < matrix.m_Counts.length; i++) { m_Counts[i] = matrix.m_Counts[i]; } // summary if (matrix.m_NonSigWins != null) { m_NonSigWins = new int[matrix.m_NonSigWins.length][]; m_Wins = new int[matrix.m_NonSigWins.length][]; for (i = 0; i < matrix.m_NonSigWins.length; i++) { m_NonSigWins[i] = new int[matrix.m_NonSigWins[i].length]; m_Wins[i] = new int[matrix.m_NonSigWins[i].length]; for (n = 0; n < matrix.m_NonSigWins[i].length; n++) { m_NonSigWins[i][n] = matrix.m_NonSigWins[i][n]; m_Wins[i][n] = matrix.m_Wins[i][n]; } } } // ranking if (matrix.m_RankingWins != null) { m_RankingWins = new int[matrix.m_RankingWins.length]; m_RankingLosses = new int[matrix.m_RankingWins.length]; m_RankingDiff = new int[matrix.m_RankingWins.length]; for (i = 0; i < matrix.m_RankingWins.length; i++) { m_RankingWins[i] = matrix.m_RankingWins[i]; m_RankingLosses[i] = matrix.m_RankingLosses[i]; m_RankingDiff[i] = matrix.m_RankingDiff[i]; } } } /** * removes the stored data and the ordering, but retains the dimensions of the * matrix. */ public void clear() { m_MeanPrec = getDefaultMeanPrec(); m_StdDevPrec = getDefaultStdDevPrec(); m_ShowStdDev = getDefaultShowStdDev(); m_ShowAverage = getDefaultShowAverage(); m_RemoveFilterName = getDefaultRemoveFilterName(); m_PrintColNames = getDefaultPrintColNames(); m_PrintRowNames = getDefaultPrintRowNames(); m_EnumerateColNames = getDefaultEnumerateColNames(); m_EnumerateRowNames = getDefaultEnumerateRowNames(); m_RowNameWidth = getDefaultRowNameWidth(); m_ColNameWidth = getDefaultColNameWidth(); m_MeanWidth = getDefaultMeanWidth(); m_StdDevWidth = getDefaultStdDevWidth(); m_SignificanceWidth = getDefaultSignificanceWidth(); m_CountWidth = getDefaultCountWidth(); setSize(getColCount(), getRowCount()); } /** * clears the content of the matrix and sets the new size. * * @param cols the number of mean columns * @param rows the number of mean rows */ public void setSize(int cols, int rows) { int i; int n; m_ColNames = new String[cols]; m_RowNames = new String[rows]; m_Counts = new double[rows]; m_ColHidden = new boolean[cols]; m_RowHidden = new boolean[rows]; m_Mean = new double[rows][cols]; m_Significance = new int[rows][cols]; m_StdDev = new double[rows][cols]; m_ColOrder = null; m_RowOrder = null; // NaN means that there exists no value! -> toArray() for (i = 0; i < m_Mean.length; i++) { for (n = 0; n < m_Mean[i].length; n++) { m_Mean[i][n] = Double.NaN; } } for (i = 0; i < m_ColNames.length; i++) { m_ColNames[i] = "col" + i; } for (i = 0; i < m_RowNames.length; i++) { m_RowNames[i] = "row" + i; } clearHeader(); clearSummary(); clearRanking(); } /** * sets the precision for the means. * * @param prec the number of decimals */ public void setMeanPrec(int prec) { if (prec >= 0) { m_MeanPrec = prec; } } /** * returns the current precision for the means. * * @return the number of decimals */ public int getMeanPrec() { return m_MeanPrec; } /** * returns the default precision for the means. * * @return the number of decimals */ public int getDefaultMeanPrec() { return 2; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String meanPrecTipText() { return "The number of decimals after the decimal point for the mean."; } /** * sets the precision for the standard deviation. * * @param prec the number of decimals */ public void setStdDevPrec(int prec) { if (prec >= 0) { m_StdDevPrec = prec; } } /** * returns the current standard deviation precision. * * @return the number of decimals */ public int getStdDevPrec() { return m_StdDevPrec; } /** * returns the default standard deviation precision. * * @return the number of decimals */ public int getDefaultStdDevPrec() { return 2; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String stdDevPrecTipText() { return "The number of decimals after the decimal point for the standard deviation."; } /** * sets the width for the column names (0 = optimal). * * @param width the width */ public void setColNameWidth(int width) { if (width >= 0) { m_ColNameWidth = width; } } /** * returns the current width for the column names. * * @return the width */ public int getColNameWidth() { return m_ColNameWidth; } /** * returns the default width for the column names. * * @return the width */ public int getDefaultColNameWidth() { return 0; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String colNameWidthTipText() { return "The maximum width of the column names (0 = optimal)."; } /** * sets the width for the row names (0 = optimal). * * @param width the width */ public void setRowNameWidth(int width) { if (width >= 0) { m_RowNameWidth = width; } } /** * returns the current width for the row names. * * @return the width */ public int getRowNameWidth() { return m_RowNameWidth; } /** * returns the default width for the row names. * * @return the width */ public int getDefaultRowNameWidth() { return 0; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String rowNameWidthTipText() { return "The maximum width for the row names (0 = optimal)."; } /** * sets the width for the mean (0 = optimal). * * @param width the width */ public void setMeanWidth(int width) { if (width >= 0) { m_MeanWidth = width; } } /** * returns the current width for the mean. * * @return the width */ public int getMeanWidth() { return m_MeanWidth; } /** * returns the default width for the mean. * * @return the width */ public int getDefaultMeanWidth() { return 0; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String meanWidthTipText() { return "The width of the mean (0 = optimal)."; } /** * sets the width for the std dev (0 = optimal). * * @param width the width */ public void setStdDevWidth(int width) { if (width >= 0) { m_StdDevWidth = width; } } /** * returns the current width for the std dev. * * @return the width */ public int getStdDevWidth() { return m_StdDevWidth; } /** * returns the default width for the std dev. * * @return the width */ public int getDefaultStdDevWidth() { return 0; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String stdDevWidthTipText() { return "The width of the standard deviation (0 = optimal)."; } /** * sets the width for the significance (0 = optimal). * * @param width the width */ public void setSignificanceWidth(int width) { if (width >= 0) { m_SignificanceWidth = width; } } /** * returns the current width for the significance. * * @return the width */ public int getSignificanceWidth() { return m_SignificanceWidth; } /** * returns the default width for the significance. * * @return the width */ public int getDefaultSignificanceWidth() { return 0; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String significanceWidthTipText() { return "The width of the significance indicator (0 = optimal)."; } /** * sets the width for the counts (0 = optimal). * * @param width the width */ public void setCountWidth(int width) { if (width >= 0) { m_CountWidth = width; } } /** * returns the current width for the counts. * * @return the width */ public int getCountWidth() { return m_CountWidth; } /** * returns the default width for the counts. * * @return the width */ public int getDefaultCountWidth() { return 0; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String countWidthTipText() { return "The width of the counts (0 = optimal)."; } /** * sets whether to display the std deviations or not. * * @param show if true then the std deviations are displayed */ public void setShowStdDev(boolean show) { m_ShowStdDev = show; } /** * returns whether std deviations are displayed or not. * * @return true if the std deviations are displayed */ public boolean getShowStdDev() { return m_ShowStdDev; } /** * returns the default of whether std deviations are displayed or not. * * @return true if the std deviations are displayed */ public boolean getDefaultShowStdDev() { return false; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String showStdDevTipText() { return "Whether to display the standard deviation column."; } /** * sets whether to display the average per column or not. * * @param show if true then the average is displayed */ public void setShowAverage(boolean show) { m_ShowAverage = show; } /** * returns whether average per column is displayed or not. * * @return true if the average is displayed */ public boolean getShowAverage() { return m_ShowAverage; } /** * returns the default of whether average per column is displayed or not. * * @return true if the average is displayed */ public boolean getDefaultShowAverage() { return false; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String showAverageTipText() { return "Whether to show the row with averages."; } /** * sets whether to remove the filter classname from the dataset name. * * @param remove if true then the filter classnames are shortened */ public void setRemoveFilterName(boolean remove) { m_RemoveFilterName = remove; } /** * returns whether the filter classname is removed from the dataset name. * * @return true if the filter classnames are shortened */ public boolean getRemoveFilterName() { return m_RemoveFilterName; } /** * returns the default of whether the filter classname is removed from the * dataset name. * * @return true if the filter classnames are shortened */ public boolean getDefaultRemoveFilterName() { return false; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String removeFilterNameTipText() { return "Whether to remove the classname package prefixes from the filter names in datasets."; } /** * sets whether the column names or numbers instead are printed. deactivating * automatically sets m_EnumerateColNames to TRUE. * * @param print if true then the names are printed instead of numbers * @see #setEnumerateColNames(boolean) */ public void setPrintColNames(boolean print) { m_PrintColNames = print; if (!print) { setEnumerateColNames(true); } } /** * returns whether column names or numbers instead are printed. * * @return true if names instead of numbers are printed */ public boolean getPrintColNames() { return m_PrintColNames; } /** * returns the default of whether column names or numbers instead are printed. * * @return true if names instead of numbers are printed */ public boolean getDefaultPrintColNames() { return true; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String printColNamesTipText() { return "Whether to output column names or just numbers representing them."; } /** * sets whether the row names or numbers instead are printed deactivating * automatically sets m_EnumerateColNames to TRUE. * * @param print if true then names instead of numbers are printed * @see #setEnumerateRowNames(boolean) */ public void setPrintRowNames(boolean print) { m_PrintRowNames = print; if (!print) { setEnumerateRowNames(true); } } /** * returns whether row names or numbers instead are printed. * * @return true if names instead of numbers are printed */ public boolean getPrintRowNames() { return m_PrintRowNames; } /** * returns the default of whether row names or numbers instead are printed. * * @return true if names instead of numbers are printed */ public boolean getDefaultPrintRowNames() { return true; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String printRowNamesTipText() { return "Whether to output row names or just numbers representing them."; } /** * sets whether the column names are prefixed with "(x)" where "x" is the * index. * * @param enumerate if true then the names are prefixed */ public void setEnumerateColNames(boolean enumerate) { m_EnumerateColNames = enumerate; } /** * returns whether column names are prefixed with the index. * * @return true if the names are prefixed */ public boolean getEnumerateColNames() { return m_EnumerateColNames; } /** * returns the default of whether column names are prefixed with the index. * * @return true if the names are prefixed */ public boolean getDefaultEnumerateColNames() { return true; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String enumerateColNamesTipText() { return "Whether to enumerate the column names (prefixing them with '(x)', with 'x' being the index)."; } /** * sets whether to the row names are prefixed with the index. * * @param enumerate if true then the names will be prefixed */ public void setEnumerateRowNames(boolean enumerate) { m_EnumerateRowNames = enumerate; } /** * returns whether row names or prefixed with the index. * * @return true if the names are prefixed */ public boolean getEnumerateRowNames() { return m_EnumerateRowNames; } /** * returns theh default of whether row names are prefixed with the index. * * @return true if the names are prefixed */ public boolean getDefaultEnumerateRowNames() { return false; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * experimenter gui */ public String enumerateRowNamesTipText() { return "Whether to enumerate the row names (prefixing them with '(x)', with 'x' being the index)."; } /** * returns the number of columns. * * @return the number of columns */ public int getColCount() { return m_ColNames.length; } /** * returns the number of visible columns. * * @return the number of columns */ public int getVisibleColCount() { int cols; int i; cols = 0; for (i = 0; i < getColCount(); i++) { if (!getColHidden(i)) { cols++; } } return cols; } /** * returns the number of rows. * * @return the number of rows */ public int getRowCount() { return m_RowNames.length; } /** * returns the number of visible rows. * * @return the number of rows */ public int getVisibleRowCount() { int rows; int i; rows = 0; for (i = 0; i < getRowCount(); i++) { if (!getRowHidden(i)) { rows++; } } return rows; } /** * sets the name of the column (if the index is valid). * * @param index the index of the column * @param name the name of the column */ public void setColName(int index, String name) { if ((index >= 0) && (index < getColCount())) { m_ColNames[index] = name; } } /** * returns the name of the row, if the index is valid, otherwise null. if * getPrintColNames() is FALSE then an empty string is returned or if * getEnumerateColNames() is TRUE then the 1-based index surrounded by * parentheses. * * @param index the index of the column * @return the name of the column * @see #setPrintColNames(boolean) * @see #getPrintColNames() * @see #setEnumerateColNames(boolean) * @see #getEnumerateColNames() */ public String getColName(int index) { String result; result = null; if ((index >= 0) && (index < getColCount())) { if (getPrintColNames()) { result = m_ColNames[index]; } else { result = ""; } if (getEnumerateColNames()) { result = LEFT_PARENTHESES + Integer.toString(index + 1) + RIGHT_PARENTHESES + " " + result; result = result.trim(); } } return result; } /** * sets the name of the row (if the index is valid). * * @param index the index of the row * @param name the name of the row */ public void setRowName(int index, String name) { if ((index >= 0) && (index < getRowCount())) { m_RowNames[index] = name; } } /** * returns the name of the row, if the index is valid, otherwise null. if * getPrintRowNames() is FALSE then an empty string is returned or if * getEnumerateRowNames() is TRUE then the 1-based index surrounded by * parentheses. * * @param index the index of the row * @return the name of the row * @see #setPrintRowNames(boolean) * @see #getPrintRowNames() * @see #setEnumerateRowNames(boolean) * @see #getEnumerateRowNames() */ public String getRowName(int index) { String result; result = null; if ((index >= 0) && (index < getRowCount())) { if (getPrintRowNames()) { result = m_RowNames[index]; } else { result = ""; } if (getEnumerateRowNames()) { result = LEFT_PARENTHESES + Integer.toString(index + 1) + RIGHT_PARENTHESES + " " + result; result = result.trim(); } } return result; } /** * sets the hidden status of the column (if the index is valid). * * @param index the index of the column * @param hidden the hidden status of the column */ public void setColHidden(int index, boolean hidden) { if ((index >= 0) && (index < getColCount())) { m_ColHidden[index] = hidden; } } /** * returns the hidden status of the column, if the index is valid, otherwise * false. * * @param index the index of the column * @return true if hidden */ public boolean getColHidden(int index) { if ((index >= 0) && (index < getColCount())) { return m_ColHidden[index]; } else { return false; } } /** * sets the hidden status of the row (if the index is valid). * * @param index the index of the row * @param hidden the hidden status of the row */ public void setRowHidden(int index, boolean hidden) { if ((index >= 0) && (index < getRowCount())) { m_RowHidden[index] = hidden; } } /** * returns the hidden status of the row, if the index is valid, otherwise * false. * * @param index the index of the row * @return true if hidden */ public boolean getRowHidden(int index) { if ((index >= 0) && (index < getRowCount())) { return m_RowHidden[index]; } else { return false; } } /** * sets the count for the row (if the index is valid). * * @param index the index of the row * @param count the count for the row */ public void setCount(int index, double count) { if ((index >= 0) && (index < getRowCount())) { m_Counts[index] = count; } } /** * returns the count for the row. if the index is invalid then 0. * * @param index the index of the row * @return the count for the row */ public double getCount(int index) { if ((index >= 0) && (index < getRowCount())) { return m_Counts[index]; } else { return 0; } } /** * sets the mean at the given position (if the position is valid). * * @param col the column of the mean * @param row the row of the mean * @param value the value of the mean */ public void setMean(int col, int row, double value) { if ((col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount())) { m_Mean[row][col] = value; } } /** * returns the mean at the given position, if the position is valid, otherwise * 0. * * @param col the column index * @param row the row index * @return the mean */ public double getMean(int col, int row) { if ((col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount())) { return m_Mean[row][col]; } else { return 0; } } /** * returns the average of the mean at the given position, if the position is * valid, otherwise 0. * * @param col the column index * @return the average */ public double getAverage(int col) { int i; double avg; int count; if ((col >= 0) && (col < getColCount())) { avg = 0; count = 0; for (i = 0; i < getRowCount(); i++) { if (!Double.isNaN(getMean(col, i))) { avg += getMean(col, i); count++; } } return avg / count; } else { return 0; } } /** * sets the std deviation at the given position (if the position is valid). * * @param col the column of the std. deviation * @param row the row of the std deviation * @param value the value of the std deviation */ public void setStdDev(int col, int row, double value) { if ((col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount())) { m_StdDev[row][col] = value; } } /** * returns the std deviation at the given position, if the position is valid, * otherwise 0. * * @param col the column index * @param row the row index * @return the std deviation */ public double getStdDev(int col, int row) { if ((col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount())) { return m_StdDev[row][col]; } else { return 0; } } /** * sets the significance at the given position (if the position is valid). * * @param col the column of the significance * @param row the row of the significance * @param value the value of the significance */ public void setSignificance(int col, int row, int value) { if ((col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount())) { m_Significance[row][col] = value; } } /** * returns the significance at the given position, if the position is valid, * otherwise SIGNIFICANCE_ATIE. * * @param col the column index * @param row the row index * @return the indicator */ public int getSignificance(int col, int row) { if ((col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount())) { return m_Significance[row][col]; } else { return SIGNIFICANCE_TIE; } } /** * counts the occurrences of the given significance type in the given column. * * @param col the columnn to gather the information from * @param type the significance type, WIN/TIE/LOSS * @return the count */ public int getSignificanceCount(int col, int type) { int result; int i; result = 0; if ((col >= 0) && (col < getColCount())) { for (i = 0; i < getRowCount(); i++) { if (getRowHidden(i)) { continue; } // no value? if (Double.isNaN(getMean(col, i))) { continue; } if (getSignificance(col, i) == type) { result++; } } } return result; } /** * sets the ordering of the rows, null means default. * * @param order the new order of the rows */ public void setRowOrder(int[] order) { int i; // default order? if (order == null) { m_RowOrder = null; } else { if (order.length == getRowCount()) { m_RowOrder = new int[order.length]; for (i = 0; i < order.length; i++) { m_RowOrder[i] = order[i]; } } else { System.err.println("setRowOrder: length does not match (" + order.length + " <> " + getRowCount() + ") - ignored!"); } } } /** * returns the current order of the rows, null means the default order. * * @return the current order of the rows */ public int[] getRowOrder() { return m_RowOrder; } /** * returns the displayed index of the given row, depending on the order of * rows, returns -1 if index out of bounds. * * @param index the row to get the displayed index for * @return the real index of the row */ public int getDisplayRow(int index) { if ((index >= 0) && (index < getRowCount())) { if (getRowOrder() == null) { return index; } else { return getRowOrder()[index]; } } else { return -1; } } /** * sets the ordering of the columns, null means default. * * @param order the new order of the columns */ public void setColOrder(int[] order) { int i; // default order? if (order == null) { m_ColOrder = null; } else { if (order.length == getColCount()) { m_ColOrder = new int[order.length]; for (i = 0; i < order.length; i++) { m_ColOrder[i] = order[i]; } } else { System.err.println("setColOrder: length does not match (" + order.length + " <> " + getColCount() + ") - ignored!"); } } } /** * returns the current order of the columns, null means the default order. * * @return the current order of the columns */ public int[] getColOrder() { return m_ColOrder; } /** * returns the displayed index of the given col, depending on the order of * columns, returns -1 if index out of bounds. * * @param index the column to get the displayed index for * @return the real index of the column */ public int getDisplayCol(int index) { if ((index >= 0) && (index < getColCount())) { if (getColOrder() == null) { return index; } else { return getColOrder()[index]; } } else { return -1; } } /** * returns the given number as string rounded to the given number of decimals. * additional necessary 0's are added. * * @param d the number to format * @param prec the number of decimals after the point * @return the formatted number */ protected String doubleToString(double d, int prec) { String result; int currentPrec; int i; result = Utils.doubleToString(d, prec); if (prec <= 0 || Double.isInfinite(d) || Double.isNaN(d)) { return result; } // decimal point? if (result.indexOf(".") == -1) { result += "."; } // precision so far? currentPrec = result.length() - result.indexOf(".") - 1; for (i = currentPrec; i < prec; i++) { result += "0"; } return result; } /** * trims the given string down to the given length if longer, otherwise leaves * it unchanged. a length of "0" leaves the string always unchanged. * * @param s the string to trim (if too long) * @param length the max. length (0 means infinity) * @return the trimmed string */ protected String trimString(String s, int length) { if ((length > 0) && (s.length() > length)) { return s.substring(0, length); } else { return s; } } /** * pads the given string on the right until it reaches the given length, if * longer cuts it down. if length is 0 then nothing is done. * * @param s the string to pad * @param length the max. length of the string * @return the padded string */ protected String padString(String s, int length) { return padString(s, length, false); } /** * pads the given string until it reaches the given length, if longer cuts it * down. if length is 0 then nothing is done. * * @param s the string to pad * @param length the max. length of the string * @param left whether to pad left or right * @return the padded string */ protected String padString(String s, int length, boolean left) { String result; int i; result = s; // pad with blanks for (i = s.length(); i < length; i++) { if (left) { result = " " + result; } else { result = result + " "; } } // too long? if ((length > 0) && (result.length() > length)) { result = result.substring(0, length); } return result; } /** * returns the length of the longest cell in the given column. * * @param data the data to base the calculation on * @param col the column to check * @return the maximum length */ protected int getColSize(String[][] data, int col) { return getColSize(data, col, false, false); } /** * returns the length of the longest cell in the given column. * * @param data the data to base the calculation on * @param col the column to check * @param skipFirst whether to skip the first row * @param skipLast whether to skip the last row * @return the maximum length */ protected int getColSize(String[][] data, int col, boolean skipFirst, boolean skipLast) { int result; int i; result = 0; if ((col >= 0) && (col < data[0].length)) { for (i = 0; i < data.length; i++) { // skip first? if ((i == 0) && (skipFirst)) { continue; } // skip last? if ((i == data.length - 1) && (skipLast)) { continue; } if (data[i][col].length() > result) { result = data[i][col].length(); } } } return result; } /** * removes the filter classname from the given string if it should be removed, * otherwise leaves the string alone. * * @param s the string to process * @return the processed string * @see #getRemoveFilterName() */ protected String removeFilterName(String s) { if (getRemoveFilterName()) { return s.replaceAll("-weka\\.filters\\..*", "") .replaceAll("-unsupervised\\..*", "") .replaceAll("-supervised\\..*", ""); } else { return s; } } /** * returns a 2-dimensional array with the prepared data. includes the column * and row names. hidden cols/rows are already excluded. <br> * first row: column names<br> * last row: wins/ties/losses<br> * first col: row names<br> * * @return the generated array */ protected String[][] toArray() { int i; int n; int ii; int nn; int x; int y; String[][] result; String[][] tmpResult; int cols; int rows; boolean valueExists; // determine visible cols/rows rows = getVisibleRowCount(); if (getShowAverage()) { rows++; } cols = getVisibleColCount(); if (getShowStdDev()) { cols = cols * 3; // mean + stddev + sign. } else { cols = cols * 2; // mean + stddev } result = new String[rows + 2][cols + 1]; // col names result[0][0] = trimString("Dataset", getRowNameWidth()); x = 1; for (ii = 0; ii < getColCount(); ii++) { i = getDisplayCol(ii); if (getColHidden(i)) { continue; } result[0][x] = trimString(removeFilterName(getColName(i)), getColNameWidth()); x++; // std dev if (getShowStdDev()) { result[0][x] = ""; x++; } // sign. result[0][x] = ""; x++; } // row names y = 1; for (ii = 0; ii < getRowCount(); ii++) { i = getDisplayRow(ii); if (!getRowHidden(i)) { result[y][0] = trimString(removeFilterName(getRowName(i)), getRowNameWidth()); y++; } } // fill in mean/std dev y = 1; for (ii = 0; ii < getRowCount(); ii++) { i = getDisplayRow(ii); if (getRowHidden(i)) { continue; } x = 1; for (nn = 0; nn < getColCount(); nn++) { n = getDisplayCol(nn); if (getColHidden(n)) { continue; } // do we have a value in the matrix? valueExists = (!Double.isNaN(getMean(n, i))); // mean if (!valueExists) { result[y][x] = ""; } else { result[y][x] = doubleToString(getMean(n, i), getMeanPrec()); } x++; // stddev if (getShowStdDev()) { if (!valueExists) { result[y][x] = ""; } else if (Double.isInfinite(getStdDev(n, i))) { result[y][x] = "Inf"; } else { result[y][x] = doubleToString(getStdDev(n, i), getStdDevPrec()); } x++; } // significance if (!valueExists) { result[y][x] = ""; } else { switch (getSignificance(n, i)) { case SIGNIFICANCE_TIE: result[y][x] = TIE_STRING; break; case SIGNIFICANCE_WIN: result[y][x] = WIN_STRING; break; case SIGNIFICANCE_LOSS: result[y][x] = LOSS_STRING; break; } } x++; } y++; } // the average if (getShowAverage()) { y = result.length - 2; x = 0; result[y][0] = "Average"; x++; for (ii = 0; ii < getColCount(); ii++) { i = getDisplayCol(ii); if (getColHidden(i)) { continue; } // mean-average result[y][x] = doubleToString(getAverage(i), getMeanPrec()); x++; // std dev. if (getShowStdDev()) { result[y][x] = ""; x++; } // significance result[y][x] = ""; x++; } } // wins/ties/losses y = result.length - 1; x = 0; result[y][0] = LEFT_PARENTHESES + WIN_STRING + "/" + TIE_STRING + "/" + LOSS_STRING + RIGHT_PARENTHESES; x++; for (ii = 0; ii < getColCount(); ii++) { i = getDisplayCol(ii); if (getColHidden(i)) { continue; } // mean result[y][x] = ""; x++; // std dev. if (getShowStdDev()) { result[y][x] = ""; x++; } // significance result[y][x] = LEFT_PARENTHESES + getSignificanceCount(i, SIGNIFICANCE_WIN) + "/" + getSignificanceCount(i, SIGNIFICANCE_TIE) + "/" + getSignificanceCount(i, SIGNIFICANCE_LOSS) + RIGHT_PARENTHESES; x++; } // base column has no significance -> remove these columns tmpResult = new String[result.length][result[0].length - 1]; x = 0; for (i = 0; i < result[0].length; i++) { // significance if (((i == 3) && (getShowStdDev())) || ((i == 2) && (!getShowStdDev()))) { continue; } for (n = 0; n < result.length; n++) { tmpResult[n][x] = result[n][i]; } x++; } result = tmpResult; return result; } /** * returns true if the index (in the array produced by toArray(boolean)) is * the row name. * * @param index the row index * @return true if index represents a row name */ protected boolean isRowName(int index) { return (index == 0); } /** * returns true if the index (in the array produced by toArray(boolean)) * contains a mean. * * @param index the column index * @return true if mean column */ protected boolean isMean(int index) { index--; // dataset if (index == 0) { return true; // base column } else { index--; // base column if (index < 0) { return false; } if (getShowStdDev()) { return (index % 3 == 1); } else { return (index % 2 == 0); } } } /** * returns true if the row index (in the array produced by toArray(boolean)) * contains the average row. * * @param rowIndex the row index * @return true if average row */ protected boolean isAverage(int rowIndex) { if (getShowAverage()) { return (getVisibleRowCount() + 1 == rowIndex); } else { return false; } } /** * returns true if the index (in the array produced by toArray(boolean)) * contains a std deviation. * * @param index the column index * @return true if std dev column */ protected boolean isStdDev(int index) { index--; // dataset index--; // base column if (getShowStdDev()) { if (index == 0) { return true; // stddev of base column } else { index--; // stddev of base column if (index < 0) { return false; } return (index % 3 == 1); } } else { return false; } } /** * returns true if the index (in the array produced by toArray(boolean)) * contains a significance column. * * @param index the column index * @return true if significance column */ protected boolean isSignificance(int index) { index--; // dataset index--; // base column if (getShowStdDev()) { index--; // stddev of base column if (index < 0) { return false; } return (index % 3 == 2); } else { if (index < 0) { return false; } return (index % 2 == 1); } } /** * returns the matrix as a string. * * @return the matrix as string */ public abstract String toStringMatrix(); /** * returns the matrix as a string. * * @return the matrix as string * @see #toStringMatrix() */ @Override public String toString() { return toStringMatrix(); } /** * removes all the header information. */ public void clearHeader() { m_HeaderKeys = new Vector<String>(); m_HeaderValues = new Vector<String>(); } /** * adds the key-value pair to the header. * * @param key the name of the header value * @param value the value of the header value */ public void addHeader(String key, String value) { int pos; pos = m_HeaderKeys.indexOf(key); if (pos > -1) { m_HeaderValues.set(pos, value); } else { m_HeaderKeys.add(key); m_HeaderValues.add(value); } } /** * returns the value associated with the given key, null if if cannot be * found. * * @param key the key to retrieve the value for * @return the associated value */ public String getHeader(String key) { int pos; pos = m_HeaderKeys.indexOf(key); if (pos == 0) { return null; } else { return m_HeaderKeys.get(pos); } } /** * returns an enumeration of the header keys. * * @return all stored keys */ public Enumeration<String> headerKeys() { return m_HeaderKeys.elements(); } /** * returns the header of the matrix as a string. * * @return the header as string * @see #m_HeaderKeys * @see #m_HeaderValues */ public abstract String toStringHeader(); /** * returns returns a key for all the col names, for better readability if the * names got cut off. * * @return the key */ public abstract String toStringKey(); /** * clears the current summary data. */ public void clearSummary() { m_NonSigWins = null; m_Wins = null; } /** * sets the non-significant and significant wins of the resultsets. * * @param nonSigWins the non-significant wins * @param wins the significant wins */ public void setSummary(int[][] nonSigWins, int[][] wins) { int i; int n; m_NonSigWins = new int[nonSigWins.length][nonSigWins[0].length]; m_Wins = new int[wins.length][wins[0].length]; for (i = 0; i < m_NonSigWins.length; i++) { for (n = 0; n < m_NonSigWins[i].length; n++) { m_NonSigWins[i][n] = nonSigWins[i][n]; m_Wins[i][n] = wins[i][n]; } } } /** * returns the character representation of the given column. * * @param col the column index * @return the title of the column */ protected String getSummaryTitle(int col) { return "" + (char) ('a' + col % 26); } /** * returns the summary as string. * * @return the summary */ public abstract String toStringSummary(); /** * clears the currently stored ranking data. */ public void clearRanking() { m_RankingWins = null; m_RankingLosses = null; m_RankingDiff = null; } /** * sets the ranking data based on the wins. * * @param wins the wins */ public void setRanking(int[][] wins) { int i; int j; m_RankingWins = new int[wins.length]; m_RankingLosses = new int[wins.length]; m_RankingDiff = new int[wins.length]; for (i = 0; i < wins.length; i++) { for (j = 0; j < wins[i].length; j++) { m_RankingWins[j] += wins[i][j]; m_RankingDiff[j] += wins[i][j]; m_RankingLosses[i] += wins[i][j]; m_RankingDiff[i] -= wins[i][j]; } } } /** * returns the ranking in a string representation. * * @return the ranking */ public abstract String toStringRanking(); }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ResultMatrixCSV.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ResultMatrixCSV.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.RevisionUtils; import weka.core.Utils; /** <!-- globalinfo-start --> * Generates the matrix in CSV ('comma-separated values') format. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -mean-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -stddev-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -col-name-width &lt;int&gt; * The maximum width for the column names (0 = optimal). * (default: 0)</pre> * * <pre> -row-name-width &lt;int&gt; * The maximum width for the row names (0 = optimal). * (default: 0)</pre> * * <pre> -mean-width &lt;int&gt; * The width of the mean (0 = optimal). * (default: 0)</pre> * * <pre> -stddev-width &lt;int&gt; * The width of the standard deviation (0 = optimal). * (default: 0)</pre> * * <pre> -sig-width &lt;int&gt; * The width of the significance indicator (0 = optimal). * (default: 0)</pre> * * <pre> -count-width &lt;int&gt; * The width of the counts (0 = optimal). * (default: 0)</pre> * * <pre> -show-stddev * Whether to display the standard deviation column. * (default: no)</pre> * * <pre> -show-avg * Whether to show the row with averages. * (default: no)</pre> * * <pre> -remove-filter * Whether to remove the classname package prefixes from the * filter names in datasets. * (default: no)</pre> * * <pre> -print-col-names * Whether to output column names or just numbers representing them. * (default: no)</pre> * * <pre> -print-row-names * Whether to output row names or just numbers representing them. * (default: no)</pre> * * <pre> -enum-col-names * Whether to enumerate the column names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * * <pre> -enum-row-names * Whether to enumerate the row names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class ResultMatrixCSV extends ResultMatrix { /** for serialization. */ private static final long serialVersionUID = -171838863135042743L; /** * initializes the matrix as 1x1 matrix. */ public ResultMatrixCSV() { this(1, 1); } /** * initializes the matrix with the given dimensions. * * @param cols the number of columns * @param rows the number of rows */ public ResultMatrixCSV(int cols, int rows) { super(cols, rows); } /** * initializes the matrix with the values from the given matrix. * * @param matrix the matrix to get the values from */ public ResultMatrixCSV(ResultMatrix matrix) { super(matrix); } /** * Returns a string describing the matrix. * * @return a description suitable for * displaying in the experimenter gui */ public String globalInfo() { return "Generates the matrix in CSV ('comma-separated values') format."; } /** * returns the name of the output format. * * @return the display name */ public String getDisplayName() { return "CSV"; } /** * removes the stored data but retains the dimensions of the matrix. */ public void clear() { super.clear(); LEFT_PARENTHESES = "["; RIGHT_PARENTHESES = "]"; } /** * returns the default width for the row names. * * @return the width */ public int getDefaultRowNameWidth() { return 25; } /** * returns the default of whether column names or numbers instead are printed. * * @return true if names instead of numbers are printed */ public boolean getDefaultPrintColNames() { return false; } /** * returns the default of whether column names are prefixed with the index. * * @return true if the names are prefixed */ public boolean getDefaultEnumerateColNames() { return true; } /** * returns the header of the matrix as a string. * * @return the header * @see #m_HeaderKeys * @see #m_HeaderValues */ public String toStringHeader() { return new ResultMatrixPlainText(this).toStringHeader(); } /** * returns the matrix in CSV format. * * @return the matrix as string */ public String toStringMatrix() { StringBuffer result; String[][] cells; int i; int n; result = new StringBuffer(); cells = toArray(); for (i = 0; i < cells.length; i++) { for (n = 0; n < cells[i].length; n++) { if (n > 0) result.append(","); result.append(Utils.quote(cells[i][n])); } result.append("\n"); } return result.toString(); } /** * returns a key for all the col names, for better readability if * the names got cut off. * * @return the key */ public String toStringKey() { String result; int i; result = "Key,\n"; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) continue; result += LEFT_PARENTHESES + (i+1) + RIGHT_PARENTHESES + "," + Utils.quote(removeFilterName(m_ColNames[i])) + "\n"; } return result; } /** * returns the summary as string. * * @return the summary */ public String toStringSummary() { String result; String titles; int i; int j; String line; if (m_NonSigWins == null) return "-summary data not set-"; result = ""; titles = ""; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) continue; if (!titles.equals("")) titles += ","; titles += getSummaryTitle(i); } result += titles + ",'(No. of datasets where [col] >> [row])'\n"; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) continue; line = ""; for (j = 0; j < getColCount(); j++) { if (getColHidden(j)) continue; if (!line.equals("")) line += ","; if (j == i) line += "-"; else line += m_NonSigWins[i][j] + " (" + m_Wins[i][j] + ")"; } result += line + "," + getSummaryTitle(i) + " = " + removeFilterName(m_ColNames[i]) + '\n'; } return result; } /** * returns the ranking in a string representation. * * @return the ranking */ public String toStringRanking() { String result; int[] ranking; int i; int curr; if (m_RankingWins == null) return "-ranking data not set-"; result = ">-<,>,<,Resultset\n"; ranking = Utils.sort(m_RankingDiff); for (i = getColCount() - 1; i >= 0; i--) { curr = ranking[i]; if (getColHidden(curr)) continue; result += m_RankingDiff[curr] + "," + m_RankingWins[curr] + "," + m_RankingLosses[curr] + "," + removeFilterName(m_ColNames[curr]) + "\n"; } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * for testing only. * * @param args ignored */ public static void main(String[] args) { ResultMatrix matrix; int i; int n; matrix = new ResultMatrixCSV(3, 3); // set header matrix.addHeader("header1", "value1"); matrix.addHeader("header2", "value2"); matrix.addHeader("header2", "value3"); // set values for (i = 0; i < matrix.getRowCount(); i++) { for (n = 0; n < matrix.getColCount(); n++) { matrix.setMean(n, i, (i+1)*n); matrix.setStdDev(n, i, ((double) (i+1)*n) / 100); if (i == n) { if (i % 2 == 1) matrix.setSignificance(n, i, SIGNIFICANCE_WIN); else matrix.setSignificance(n, i, SIGNIFICANCE_LOSS); } } } System.out.println("\n\n--> " + matrix.getDisplayName()); System.out.println("\n1. complete\n"); System.out.println(matrix.toStringHeader() + "\n"); System.out.println(matrix.toStringMatrix() + "\n"); System.out.println(matrix.toStringKey()); System.out.println("\n2. complete with std deviations\n"); matrix.setShowStdDev(true); System.out.println(matrix.toStringMatrix()); System.out.println("\n3. cols numbered\n"); matrix.setPrintColNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n4. second col missing\n"); matrix.setColHidden(1, true); System.out.println(matrix.toStringMatrix()); System.out.println("\n5. last row missing, rows numbered too\n"); matrix.setRowHidden(2, true); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n6. mean prec to 3\n"); matrix.setMeanPrec(3); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ResultMatrixGnuPlot.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ResultMatrixGnuPlot.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.Version; /** <!-- globalinfo-start --> * Generates output for a data and script file for GnuPlot. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -mean-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -stddev-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -col-name-width &lt;int&gt; * The maximum width for the column names (0 = optimal). * (default: 50)</pre> * * <pre> -row-name-width &lt;int&gt; * The maximum width for the row names (0 = optimal). * (default: 50)</pre> * * <pre> -mean-width &lt;int&gt; * The width of the mean (0 = optimal). * (default: 0)</pre> * * <pre> -stddev-width &lt;int&gt; * The width of the standard deviation (0 = optimal). * (default: 0)</pre> * * <pre> -sig-width &lt;int&gt; * The width of the significance indicator (0 = optimal). * (default: 0)</pre> * * <pre> -count-width &lt;int&gt; * The width of the counts (0 = optimal). * (default: 0)</pre> * * <pre> -show-stddev * Whether to display the standard deviation column. * (default: no)</pre> * * <pre> -show-avg * Whether to show the row with averages. * (default: no)</pre> * * <pre> -remove-filter * Whether to remove the classname package prefixes from the * filter names in datasets. * (default: no)</pre> * * <pre> -print-col-names * Whether to output column names or just numbers representing them. * (default: no)</pre> * * <pre> -print-row-names * Whether to output row names or just numbers representing them. * (default: no)</pre> * * <pre> -enum-col-names * Whether to enumerate the column names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * * <pre> -enum-row-names * Whether to enumerate the row names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class ResultMatrixGnuPlot extends ResultMatrix { /** for serialization. */ private static final long serialVersionUID = -234648254944790097L; /** * initializes the matrix as 1x1 matrix. */ public ResultMatrixGnuPlot() { this(1, 1); } /** * initializes the matrix with the given dimensions. * * @param cols the number of columns * @param rows the number of rows */ public ResultMatrixGnuPlot(int cols, int rows) { super(cols, rows); } /** * initializes the matrix with the values from the given matrix. * * @param matrix the matrix to get the values from */ public ResultMatrixGnuPlot(ResultMatrix matrix) { super(matrix); } /** * Returns a string describing the matrix. * * @return a description suitable for * displaying in the experimenter gui */ public String globalInfo() { return "Generates output for a data and script file for GnuPlot."; } /** * returns the name of the output format. * * @return the display name */ public String getDisplayName() { return "GNUPlot"; } /** * removes the stored data but retains the dimensions of the matrix. */ public void clear() { super.clear(); LEFT_PARENTHESES = ""; RIGHT_PARENTHESES = ""; } /** * returns the default width for the row names. * * @return the width */ public int getDefaultRowNameWidth() { return 50; } /** * returns the default width for the column names. * * @return the width */ public int getDefaultColNameWidth() { return 50; } /** * returns the default of whether column names are prefixed with the index. * * @return true if the names are prefixed */ public boolean getDefaultEnumerateColNames() { return false; } /** * returns the default of whether row names are prefixed with the index. * * @return true if the names are prefixed */ public boolean getDefaultEnumerateRowNames() { return false; } /** * returns the header of the matrix as a string. * * @return the header * @see #m_HeaderKeys * @see #m_HeaderValues */ public String toStringHeader() { return new ResultMatrixPlainText(this).toStringHeader(); } /** * returns the matrix in CSV format. * * @return the matrix */ public String toStringMatrix() { StringBuffer result; String[][] cells; int i; int n; String line; String title; String generated; result = new StringBuffer(); cells = toArray(); // generation comment generated = "# generated by WEKA " + Version.VERSION + "\n"; // data result.append("\n"); result.append("##################\n"); result.append("# file: plot.dat #\n"); result.append("##################\n"); result.append(generated); result.append("# contains the data for the plot\n"); // key for x-axis result.append("\n"); result.append("# key for the x-axis\n"); for (i = 1; i < cells.length - 1; i++) result.append("# " + i + " - " + cells[i][0] + "\n"); // the data itself result.append("\n"); result.append("# data for the plot\n"); for (i = 1; i < cells.length - 1; i++) { result.append(Integer.toString(i)); for (n = 1; n < cells[i].length; n++) { if (isSignificance(n)) continue; result.append(" "); result.append(Utils.quote(cells[i][n])); } result.append("\n"); } result.append("#######\n"); result.append("# end #\n"); result.append("#######\n"); // script result.append("\n"); result.append("##################\n"); result.append("# file: plot.scr #\n"); result.append("##################\n"); result.append(generated); result.append("# script to plot the data\n"); result.append("\n"); result.append("# display it in a window:\n"); result.append("set terminal x11\n"); result.append("set output\n"); result.append("\n"); result.append("# to display all data rows:\n"); result.append("set xrange [0:" + ((cells.length - 2) + 1) + "]\n"); result.append("\n"); result.append("# axis labels, e.g.:\n"); result.append("#set xlabel \"Datasets\"\n"); result.append("#set ylabel \"Accuracy in %\"\n"); result.append("\n"); result.append("# the plot commands\n"); n = 1; i = 0; while (i < cells[0].length - 1) { i++; if (isSignificance(i)) continue; n++; // plot if (i == 1) line = "plot"; else line = "replot"; line += " \"plot.dat\""; // title title = "title \"" + cells[0][i] + "\""; // columns line += " using 1:" + n; if (getShowStdDev()) { n++; i++; // errorbars line += ":" + n; } // options line += " with"; if (getShowStdDev()) line += " yerrorbars"; else line += " lines"; line += " " + title; result.append(line + "\n"); } result.append("\n"); result.append("# generate ps:\n"); result.append("#set terminal postscript\n"); result.append("#set output \"plot.ps\"\n"); result.append("#replot\n"); result.append("\n"); result.append("# generate png:\n"); result.append("#set terminal png size 800,600\n"); result.append("#set output \"plot.png\"\n"); result.append("#replot\n"); result.append("\n"); result.append("# wait for user to hit <Return>\n"); result.append("pause -1\n"); result.append("#######\n"); result.append("# end #\n"); result.append("#######\n"); return result.toString(); } /** * returns returns a key for all the col names, for better readability if * the names got cut off. * * @return the key */ public String toStringKey() { return new ResultMatrixPlainText(this).toStringKey(); } /** * returns the summary as string. * * @return the summary */ public String toStringSummary() { return new ResultMatrixPlainText(this).toStringSummary(); } /** * returns the ranking in a string representation. * * @return the ranking */ public String toStringRanking() { return new ResultMatrixPlainText(this).toStringRanking(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * for testing only. * * @param args ignored */ public static void main(String[] args) { ResultMatrix matrix; int i; int n; matrix = new ResultMatrixGnuPlot(3, 3); // set header matrix.addHeader("header1", "value1"); matrix.addHeader("header2", "value2"); matrix.addHeader("header2", "value3"); // set values for (i = 0; i < matrix.getRowCount(); i++) { for (n = 0; n < matrix.getColCount(); n++) { matrix.setMean(n, i, (i+1)*n); matrix.setStdDev(n, i, ((double) (i+1)*n) / 100); if (i == n) { if (i % 2 == 1) matrix.setSignificance(n, i, SIGNIFICANCE_WIN); else matrix.setSignificance(n, i, SIGNIFICANCE_LOSS); } } } System.out.println("\n\n--> " + matrix.getDisplayName()); System.out.println("\n1. complete\n"); System.out.println(matrix.toStringHeader() + "\n"); System.out.println(matrix.toStringMatrix() + "\n"); System.out.println(matrix.toStringKey()); System.out.println("\n2. complete with std deviations\n"); matrix.setShowStdDev(true); System.out.println(matrix.toStringMatrix()); System.out.println("\n3. cols numbered\n"); matrix.setPrintColNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n4. second col missing\n"); matrix.setColHidden(1, true); System.out.println(matrix.toStringMatrix()); System.out.println("\n5. last row missing, rows numbered too\n"); matrix.setRowHidden(2, true); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n6. mean prec to 3\n"); matrix.setMeanPrec(3); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ResultMatrixHTML.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ResultMatrixHTML.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.RevisionUtils; import weka.core.Utils; /** <!-- globalinfo-start --> * Generates the matrix output as HTML. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -mean-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -stddev-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -col-name-width &lt;int&gt; * The maximum width for the column names (0 = optimal). * (default: 0)</pre> * * <pre> -row-name-width &lt;int&gt; * The maximum width for the row names (0 = optimal). * (default: 25)</pre> * * <pre> -mean-width &lt;int&gt; * The width of the mean (0 = optimal). * (default: 0)</pre> * * <pre> -stddev-width &lt;int&gt; * The width of the standard deviation (0 = optimal). * (default: 0)</pre> * * <pre> -sig-width &lt;int&gt; * The width of the significance indicator (0 = optimal). * (default: 0)</pre> * * <pre> -count-width &lt;int&gt; * The width of the counts (0 = optimal). * (default: 0)</pre> * * <pre> -show-stddev * Whether to display the standard deviation column. * (default: no)</pre> * * <pre> -show-avg * Whether to show the row with averages. * (default: no)</pre> * * <pre> -remove-filter * Whether to remove the classname package prefixes from the * filter names in datasets. * (default: no)</pre> * * <pre> -print-col-names * Whether to output column names or just numbers representing them. * (default: no)</pre> * * <pre> -print-row-names * Whether to output row names or just numbers representing them. * (default: no)</pre> * * <pre> -enum-col-names * Whether to enumerate the column names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * * <pre> -enum-row-names * Whether to enumerate the row names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class ResultMatrixHTML extends ResultMatrix { /** for serialization. */ private static final long serialVersionUID = 6672380422544799990L; /** * initializes the matrix as 1x1 matrix. */ public ResultMatrixHTML() { this(1, 1); } /** * initializes the matrix with the given dimensions. * * @param cols the number of columns * @param rows the number of rows */ public ResultMatrixHTML(int cols, int rows) { super(cols, rows); } /** * initializes the matrix with the values from the given matrix. * * @param matrix the matrix to get the values from */ public ResultMatrixHTML(ResultMatrix matrix) { super(matrix); } /** * Returns a string describing the matrix. * * @return a description suitable for * displaying in the experimenter gui */ public String globalInfo() { return "Generates the matrix output as HTML."; } /** * returns the name of the output format. * * @return the display name */ public String getDisplayName() { return "HTML"; } /** * returns the default width for the row names. * * @return the width */ public int getDefaultRowNameWidth() { return 25; } /** * returns the default of whether column names or numbers instead are printed. * * @return true if names instead of numbers are printed */ public boolean getDefaultPrintColNames() { return false; } /** * returns the default of whether column names are prefixed with the index. * * @return true if the names are prefixed */ public boolean getDefaultEnumerateColNames() { return true; } /** * returns the header of the matrix as a string. * * @return the header * @see #m_HeaderKeys * @see #m_HeaderValues */ public String toStringHeader() { return new ResultMatrixPlainText(this).toStringHeader(); } /** * returns the matrix in an HTML table. * * @return the matrix */ public String toStringMatrix() { StringBuffer result; String[][] cells; int i; int n; int cols; result = new StringBuffer(); cells = toArray(); result.append("<table border=\"1\" cellpadding=\"3\" cellspacing=\"0\">\n"); // headings result.append(" <tr>"); for (n = 0; n < cells[0].length; n++) { if (isRowName(n)) { result.append("<td><b>" + cells[0][n] + "</b></td>"); } else if (isMean(n)) { if (n == 1) cols = 1; else cols = 2; if (getShowStdDev()) cols++; result.append("<td align=\"center\" colspan=\"" + cols + "\">"); result.append("<b>" + cells[0][n] + "</b>"); result.append("</td>"); } } result.append("</tr>\n"); // data for (i = 1; i < cells.length; i++) { result.append(" <tr>"); for (n = 0; n < cells[i].length; n++) { if (isRowName(n)) result.append("<td>"); else if (isMean(n) || isStdDev(n)) result.append("<td align=\"right\">"); else if (isSignificance(n)) result.append("<td align=\"center\">"); else result.append("<td>"); // content if (cells[i][n].trim().equals("")) result.append("&nbsp;"); else if (isStdDev(n)) result.append("&plusmn;&nbsp;" + cells[i][n]); else result.append(cells[i][n]); result.append("</td>"); } result.append("</tr>\n"); } result.append("</table>\n"); return result.toString(); } /** * returns returns a key for all the col names, for better readability if * the names got cut off. * * @return the key */ public String toStringKey() { String result; int i; result = "<table border=\"1\" cellpadding=\"3\" cellspacing=\"0\">\n" + " <tr><td colspan=\"2\"><b>Key</b></td></tr>\n"; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) continue; result += " <tr>" + "<td><b>(" + (i+1) + ")</b></td>" + "<td>" + removeFilterName(m_ColNames[i]) + "</td>" + "</tr>\n"; } result += "</table>\n"; return result; } /** * returns the summary as string. * * @return the summary */ public String toStringSummary() { String result; String titles; int resultsetLength; int i; int j; String content; if (m_NonSigWins == null) return "-summary data not set-"; result = "<table border=\"1\" cellpadding=\"3\" cellspacing=\"0\">\n"; titles = " <tr>"; resultsetLength = 1 + Math.max((int)(Math.log(getColCount())/Math.log(10)), (int)(Math.log(getRowCount())/Math.log(10))); for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) continue; titles += "<td align=\"center\"><b>" + getSummaryTitle(i) + "</b></td>"; } result += titles + "<td><b>(No. of datasets where [col] &gt;&gt; [row])</b></td></tr>\n"; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) continue; result += " <tr>"; for (j = 0; j < getColCount(); j++) { if (getColHidden(j)) continue; if (j == i) content = Utils.padLeft("-", resultsetLength * 2 + 3); else content = Utils.padLeft("" + m_NonSigWins[i][j] + " (" + m_Wins[i][j] + ")", resultsetLength * 2 + 3); result += "<td>" + content.replaceAll(" ", "&nbsp;") + "</td>"; } result += "<td><b>" + getSummaryTitle(i) + "</b> = " + removeFilterName(m_ColNames[i]) + "</td></tr>\n"; } result += "</table>\n"; return result; } /** * returns the ranking in a string representation. * * @return the ranking */ public String toStringRanking() { String result; int[] ranking; int i; int curr; if (m_RankingWins == null) return "-ranking data not set-"; result = "<table border=\"1\" cellpadding=\"3\" cellspacing=\"0\">\n"; result += " <tr>" + "<td align=\"center\"><b>&gt;-&lt;</b></td>" + "<td align=\"center\"><b>&gt;</b></td>" + "<td align=\"center\"><b>&lt;</b></td>" + "<td><b>Resultset</b></td>" + "</tr>\n"; ranking = Utils.sort(m_RankingDiff); for (i = getColCount() - 1; i >= 0; i--) { curr = ranking[i]; if (getColHidden(curr)) continue; result += " <tr>" + "<td align=\"right\">" + m_RankingDiff[curr] + "</td>" + "<td align=\"right\">" + m_RankingWins[curr] + "</td>" + "<td align=\"right\">" + m_RankingLosses[curr] + "</td>" + "<td>" + removeFilterName(m_ColNames[curr]) + "</td>" + "<tr>\n"; } result += "</table>\n"; return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * for testing only. * * @param args ignored */ public static void main(String[] args) { ResultMatrix matrix; int i; int n; matrix = new ResultMatrixHTML(3, 3); // set header matrix.addHeader("header1", "value1"); matrix.addHeader("header2", "value2"); matrix.addHeader("header2", "value3"); // set values for (i = 0; i < matrix.getRowCount(); i++) { for (n = 0; n < matrix.getColCount(); n++) { matrix.setMean(n, i, (i+1)*n); matrix.setStdDev(n, i, ((double) (i+1)*n) / 100); if (i == n) { if (i % 2 == 1) matrix.setSignificance(n, i, SIGNIFICANCE_WIN); else matrix.setSignificance(n, i, SIGNIFICANCE_LOSS); } } } System.out.println("\n\n--> " + matrix.getDisplayName()); System.out.println("\n1. complete\n"); System.out.println(matrix.toStringHeader() + "\n"); System.out.println(matrix.toStringMatrix() + "\n"); System.out.println(matrix.toStringKey()); System.out.println("\n2. complete with std deviations\n"); matrix.setShowStdDev(true); System.out.println(matrix.toStringMatrix()); System.out.println("\n3. cols numbered\n"); matrix.setPrintColNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n4. second col missing\n"); matrix.setColHidden(1, true); System.out.println(matrix.toStringMatrix()); System.out.println("\n5. last row missing, rows numbered too\n"); matrix.setRowHidden(2, true); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n6. mean prec to 3\n"); matrix.setMeanPrec(3); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ResultMatrixLatex.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ResultMatrixLatex.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.RevisionUtils; import weka.core.Utils; /** <!-- globalinfo-start --> * Generates the matrix output in LaTeX-syntax. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -mean-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -stddev-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -col-name-width &lt;int&gt; * The maximum width for the column names (0 = optimal). * (default: 0)</pre> * * <pre> -row-name-width &lt;int&gt; * The maximum width for the row names (0 = optimal). * (default: 0)</pre> * * <pre> -mean-width &lt;int&gt; * The width of the mean (0 = optimal). * (default: 0)</pre> * * <pre> -stddev-width &lt;int&gt; * The width of the standard deviation (0 = optimal). * (default: 0)</pre> * * <pre> -sig-width &lt;int&gt; * The width of the significance indicator (0 = optimal). * (default: 0)</pre> * * <pre> -count-width &lt;int&gt; * The width of the counts (0 = optimal). * (default: 0)</pre> * * <pre> -show-stddev * Whether to display the standard deviation column. * (default: no)</pre> * * <pre> -show-avg * Whether to show the row with averages. * (default: no)</pre> * * <pre> -remove-filter * Whether to remove the classname package prefixes from the * filter names in datasets. * (default: no)</pre> * * <pre> -print-col-names * Whether to output column names or just numbers representing them. * (default: no)</pre> * * <pre> -print-row-names * Whether to output row names or just numbers representing them. * (default: no)</pre> * * <pre> -enum-col-names * Whether to enumerate the column names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * * <pre> -enum-row-names * Whether to enumerate the row names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class ResultMatrixLatex extends ResultMatrix { /** for serialization. */ private static final long serialVersionUID = 777690788447600978L; /** * initializes the matrix as 1x1 matrix. */ public ResultMatrixLatex() { this(1, 1); } /** * initializes the matrix with the given dimensions. * * @param cols the number of columns * @param rows the number of rows */ public ResultMatrixLatex(int cols, int rows) { super(cols, rows); } /** * initializes the matrix with the values from the given matrix. * * @param matrix the matrix to get the values from */ public ResultMatrixLatex(ResultMatrix matrix) { super(matrix); } /** * Returns a string describing the matrix. * * @return a description suitable for * displaying in the experimenter gui */ public String globalInfo() { return "Generates the matrix output in LaTeX-syntax."; } /** * returns the name of the output format. * * @return the display name */ public String getDisplayName() { return "LaTeX"; } /** * removes the stored data but retains the dimensions of the matrix. */ public void clear() { super.clear(); TIE_STRING = " "; WIN_STRING = "$\\circ$"; LOSS_STRING = "$\\bullet$"; } /** * returns the default of whether column names or numbers instead are printed. * * @return true if names instead of numbers are printed */ public boolean getDefaultPrintColNames() { return false; } /** * returns the default of whether column names are prefixed with the index. * * @return true if the names are prefixed */ public boolean getDefaultEnumerateColNames() { return true; } /** * returns the header of the matrix as a string. * * @return the header * @see #m_HeaderKeys * @see #m_HeaderValues */ public String toStringHeader() { return new ResultMatrixPlainText(this).toStringHeader(); } /** * returns the matrix as latex table. * * @return the matrix */ public String toStringMatrix() { StringBuffer result; String[][] cells; int i; int j; int n; int size; result = new StringBuffer(); cells = toArray(); result.append( "\\begin{table}[thb]\n\\caption{\\label{labelname}" + "Table Caption}\n"); if (!getShowStdDev()) result.append("\\footnotesize\n"); else result.append("\\scriptsize\n"); // output the column alignment characters // one for the dataset name and one for the comparison column if (!getShowStdDev()) { result.append( "{\\centering \\begin{tabular}{" + "l" // dataset + "" // separator + "r" // mean ); } else { // dataset, mean, std dev result.append( "{\\centering \\begin{tabular}{" + "l" // dataset + "" // separator + "r" // mean + "@{\\hspace{0cm}}" // separator + "c" // +/- + "@{\\hspace{0cm}}" // separator + "r" // stddev ); } for (j = 1; j < getColCount(); j++) { if (getColHidden(j)) continue; if (!getShowStdDev()) result.append( "r" // mean + "@{\\hspace{0.1cm}}" // separator + "c" // significance ); else result.append( "r" // mean + "@{\\hspace{0cm}}" // separator + "c" // +/- + "@{\\hspace{0cm}}" // separator + "r" // stddev + "@{\\hspace{0.1cm}}" // separator + "c" // significance ); } result.append("}\n\\\\\n\\hline\n"); if (!getShowStdDev()) result.append("Dataset & " + cells[0][1]); else result.append("Dataset & \\multicolumn{3}{c}{" + cells[0][1] + "}"); // now do the column names (numbers) for (j = 2; j < cells[0].length; j++) { if (!isMean(j)) continue; if (!getShowStdDev()) result.append("& " + cells[0][j] + " & "); else result.append("& \\multicolumn{4}{c}{" + cells[0][j] + "} "); } result.append("\\\\\n\\hline\n"); // change "_" to "-" in names for (i = 1; i < cells.length; i++) cells[i][0] = cells[i][0].replace('_', '-'); // pad numbers for (n = 1; n < cells[0].length; n++) { size = getColSize(cells, n); for (i = 1; i < cells.length; i++) cells[i][n] = padString(cells[i][n], size, true); } // output data (w/o wins/ties/losses) for (i = 1; i < cells.length - 1; i++) { if (isAverage(i)) result.append("\\hline\n"); for (n = 0; n < cells[0].length; n++) { if (n == 0) { result.append(padString(cells[i][n], getRowNameWidth())); } else { if (getShowStdDev()) { if (isMean(n - 1)) { if (!cells[i][n].trim().equals("")) result.append(" & $\\pm$ & "); else result.append(" & & "); } else result.append(" & "); } else { result.append(" & "); } result.append(cells[i][n]); } } result.append("\\\\\n"); } result.append("\\hline\n\\multicolumn{" + cells[0].length + "}{c}{$\\circ$, $\\bullet$" +" statistically significant improvement or degradation}" +"\\\\\n\\end{tabular} "); if (!getShowStdDev()) result.append("\\footnotesize "); else result.append("\\scriptsize "); result.append("\\par}\n\\end{table}" +"\n"); return result.toString(); } /** * returns returns a key for all the col names, for better readability if * the names got cut off. * * @return the key */ public String toStringKey() { String result; int i; result = "\\begin{table}[thb]\n\\caption{\\label{labelname}" + "Table Caption (Key)}\n"; result += "\\scriptsize\n"; result += "{\\centering\n"; result += "\\begin{tabular}{cl}\\\\\n"; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) continue; result += LEFT_PARENTHESES + (i+1) + RIGHT_PARENTHESES + " & " + removeFilterName(m_ColNames[i]).replace('_', '-') .replaceAll("\\\\", "\\\\textbackslash") + " \\\\\n"; } result += "\\end{tabular}\n"; result += "}\n"; result += "\\end{table}\n"; return result; } /** * returns the summary as string. * * @return the summary */ public String toStringSummary() { int resultsetLength; String result; String titles; int i; int j; if (m_NonSigWins == null) return "-summary data not set-"; resultsetLength = 1 + Math.max((int)(Math.log(getColCount())/Math.log(10)), (int)(Math.log(getRowCount())/Math.log(10))); result = ""; titles = ""; result += "{\\centering\n"; result += "\\begin{table}[thb]\n\\caption{\\label{labelname}" +"Table Caption}\n"; result += "\\footnotesize\n"; result += "\\begin{tabular}{l"; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) continue; titles += " &"; result += "c"; titles += ' ' + Utils.padLeft("" + getSummaryTitle(i), resultsetLength * 2 + 3); } result += "}\\\\\n\\hline\n"; result += titles + " \\\\\n\\hline\n"; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) continue; for (j = 0; j < getColCount(); j++) { if (getColHidden(j)) continue; if (j == 0) result += (char)((int)'a' + i % 26); if (j == i) result += " & - "; else result += "& " + m_NonSigWins[i][j] + " (" + m_Wins[i][j] + ") "; } result += "\\\\\n"; } result += "\\hline\n\\end{tabular} \\footnotesize \\par\n\\end{table}}"; return result; } /** * returns the ranking in a string representation. * * @return the ranking */ public String toStringRanking() { int biggest; int width; String result; int[] ranking; int i; int curr; if (m_RankingWins == null) return "-ranking data not set-"; biggest = Math.max(m_RankingWins[Utils.maxIndex(m_RankingWins)], m_RankingLosses[Utils.maxIndex(m_RankingLosses)]); width = Math.max(2 + (int)(Math.log(biggest) / Math.log(10)), ">-<".length()); result = "\\begin{table}[thb]\n\\caption{\\label{labelname}Table Caption" + "}\n\\footnotesize\n{\\centering \\begin{tabular}{rlll}\\\\\n\\hline\n"; result += "Resultset & Wins$-$ & Wins & Losses \\\\\n& Losses & & " + "\\\\\n\\hline\n"; ranking = Utils.sort(m_RankingDiff); for (i = getColCount() - 1; i >= 0; i--) { curr = ranking[i]; if (getColHidden(curr)) continue; result += "(" + (curr + 1) + ") & " + Utils.padLeft("" + m_RankingDiff[curr], width) + " & " + Utils.padLeft("" + m_RankingWins[curr], width) + " & " + Utils.padLeft("" + m_RankingLosses[curr], width) + "\\\\\n"; } result += "\\hline\n\\end{tabular} \\footnotesize \\par}\n\\end{table}"; return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * for testing only. * * @param args ignored */ public static void main(String[] args) { ResultMatrix matrix; int i; int n; matrix = new ResultMatrixLatex(3, 3); // set header matrix.addHeader("header1", "value1"); matrix.addHeader("header2", "value2"); matrix.addHeader("header2", "value3"); // set values for (i = 0; i < matrix.getRowCount(); i++) { for (n = 0; n < matrix.getColCount(); n++) { matrix.setMean(n, i, (i+1)*n); matrix.setStdDev(n, i, ((double) (i+1)*n) / 100); if (i == n) { if (i % 2 == 1) matrix.setSignificance(n, i, SIGNIFICANCE_WIN); else matrix.setSignificance(n, i, SIGNIFICANCE_LOSS); } } } System.out.println("\n\n--> " + matrix.getDisplayName()); System.out.println("\n1. complete\n"); System.out.println(matrix.toStringHeader() + "\n"); System.out.println(matrix.toStringMatrix() + "\n"); System.out.println(matrix.toStringKey()); System.out.println("\n2. complete with std deviations\n"); matrix.setShowStdDev(true); System.out.println(matrix.toStringMatrix()); System.out.println("\n3. cols numbered\n"); matrix.setPrintColNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n4. second col missing\n"); matrix.setColHidden(1, true); System.out.println(matrix.toStringMatrix()); System.out.println("\n5. last row missing, rows numbered too\n"); matrix.setRowHidden(2, true); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n6. mean prec to 3\n"); matrix.setMeanPrec(3); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ResultMatrixPlainText.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ResultMatrixPlainText.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.RevisionUtils; import weka.core.Utils; /** * <!-- globalinfo-start --> Generates the output as plain text (for fixed width * fonts). * <p/> * <!-- globalinfo-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -mean-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2) * </pre> * * <pre> * -stddev-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2) * </pre> * * <pre> * -col-name-width &lt;int&gt; * The maximum width for the column names (0 = optimal). * (default: 0) * </pre> * * <pre> * -row-name-width &lt;int&gt; * The maximum width for the row names (0 = optimal). * (default: 25) * </pre> * * <pre> * -mean-width &lt;int&gt; * The width of the mean (0 = optimal). * (default: 0) * </pre> * * <pre> * -stddev-width &lt;int&gt; * The width of the standard deviation (0 = optimal). * (default: 0) * </pre> * * <pre> * -sig-width &lt;int&gt; * The width of the significance indicator (0 = optimal). * (default: 0) * </pre> * * <pre> * -count-width &lt;int&gt; * The width of the counts (0 = optimal). * (default: 5) * </pre> * * <pre> * -show-stddev * Whether to display the standard deviation column. * (default: no) * </pre> * * <pre> * -show-avg * Whether to show the row with averages. * (default: no) * </pre> * * <pre> * -remove-filter * Whether to remove the classname package prefixes from the * filter names in datasets. * (default: no) * </pre> * * <pre> * -print-col-names * Whether to output column names or just numbers representing them. * (default: no) * </pre> * * <pre> * -print-row-names * Whether to output row names or just numbers representing them. * (default: no) * </pre> * * <pre> * -enum-col-names * Whether to enumerate the column names (prefixing them with * '(x)', with 'x' being the index). * (default: no) * </pre> * * <pre> * -enum-row-names * Whether to enumerate the row names (prefixing them with * '(x)', with 'x' being the index). * (default: no) * </pre> * * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class ResultMatrixPlainText extends ResultMatrix { /** for serialization. */ private static final long serialVersionUID = 1502934525382357937L; /** * initializes the matrix as 1x1 matrix. */ public ResultMatrixPlainText() { this(1, 1); } /** * initializes the matrix with the given dimensions. * * @param cols the number of columns * @param rows the number of rows */ public ResultMatrixPlainText(int cols, int rows) { super(cols, rows); } /** * initializes the matrix with the values from the given matrix. * * @param matrix the matrix to get the values from */ public ResultMatrixPlainText(ResultMatrix matrix) { super(matrix); } /** * Returns a string describing the matrix. * * @return a description suitable for displaying in the experimenter gui */ @Override public String globalInfo() { return "Generates the output as plain text (for fixed width fonts)."; } /** * returns the name of the output format. * * @return the display name */ @Override public String getDisplayName() { return "Plain Text"; } /** * returns the default width for the row names. * * @return the width */ @Override public int getDefaultRowNameWidth() { return 25; } /** * returns the default width for the counts. * * @return the width */ @Override public int getDefaultCountWidth() { return 5; } /** * returns the header of the matrix as a string. * * @return the header * @see #m_HeaderKeys * @see #m_HeaderValues */ @Override public String toStringHeader() { int i; int size; String[][] data; String result; result = ""; // fill in data data = new String[m_HeaderKeys.size()][2]; for (i = 0; i < m_HeaderKeys.size(); i++) { data[i][0] = m_HeaderKeys.get(i).toString() + ":"; data[i][1] = m_HeaderValues.get(i).toString(); } // pad size = getColSize(data, 0); for (i = 0; i < data.length; i++) { data[i][0] = padString(data[i][0], size); } // build result for (i = 0; i < data.length; i++) { result += data[i][0] + " " + data[i][1] + "\n"; } return result; } /** * returns the matrix as plain text. * * @return the matrix */ @Override public String toStringMatrix() { StringBuffer result; String[][] cells; int i; int j; int n; int k; int size; String line; int indexBase; StringBuffer head; StringBuffer body; StringBuffer foot; int[] startMeans; int[] startSigs; int maxLength; result = new StringBuffer(); head = new StringBuffer(); body = new StringBuffer(); foot = new StringBuffer(); cells = toArray(); startMeans = new int[getColCount()]; startSigs = new int[getColCount() - 1]; maxLength = 0; // pad numbers for (n = 1; n < cells[0].length; n++) { size = getColSize(cells, n, true, true); for (i = 1; i < cells.length - 1; i++) { cells[i][n] = padString(cells[i][n], size, true); } } // index of base column in array indexBase = 1; if (getShowStdDev()) { indexBase++; } if (getShowStdDev()) { } // output data (without "(v/ /*)") j = 0; k = 0; for (i = 1; i < cells.length - 1; i++) { if (isAverage(i)) { body.append(padString("", maxLength).replaceAll(".", "-") + "\n"); } line = ""; for (n = 0; n < cells[0].length; n++) { // record starts if (i == 1) { if (isMean(n)) { startMeans[j] = line.length(); j++; } if (isSignificance(n)) { startSigs[k] = line.length(); k++; } } if (n == 0) { line += padString(cells[i][n], getRowNameWidth()); if (!isAverage(i)) { line += padString( "(" + Utils.doubleToString(getCount(getDisplayRow(i - 1)), 0) + ")", getCountWidth(), true); } else { line += padString("", getCountWidth(), true); } } else { // additional space before means if (isMean(n)) { line += " "; } // print cell if (getShowStdDev()) { if (isMean(n - 1)) { if (!cells[i][n].trim().equals("")) { line += "(" + cells[i][n] + ")"; } else { line += " " + cells[i][n] + " "; } } else { line += " " + cells[i][n]; } } else { line += " " + cells[i][n]; } } // add separator after base column if (n == indexBase) { line += " |"; } } // record overall length if (i == 1) { maxLength = line.length(); } body.append(line + "\n"); } // column names line = padString(cells[0][0], startMeans[0]); i = -1; for (n = 1; n < cells[0].length; n++) { if (isMean(n)) { i++; if (i == 0) { line = padString(line, startMeans[i] - getCountWidth()); } else if (i == 1) { line = padString(line, startMeans[i] - " |".length()); } else if (i > 1) { line = padString(line, startMeans[i]); } if (i == 1) { line += " |"; } line += " " + cells[0][n]; } } line = padString(line, maxLength); head.append(line + "\n"); head.append(line.replaceAll(".", "-") + "\n"); body.append(line.replaceAll(".", "-") + "\n"); // output wins/losses/ties if (getColCount() > 1) { line = padString(cells[cells.length - 1][0], startMeans[1] - 2, true) + " |"; i = 0; for (n = 1; n < cells[cells.length - 1].length; n++) { if (isSignificance(n)) { line = padString(line, startSigs[i] + 1 - cells[cells.length - 1][n].length()); line += " " + cells[cells.length - 1][n]; i++; } } line = padString(line, maxLength); } else { line = padString(cells[cells.length - 1][0], line.length() - 2) + " |"; } foot.append(line + "\n"); // assemble output result.append(head.toString()); result.append(body.toString()); result.append(foot.toString()); return result.toString(); } /** * returns returns a key for all the col names, for better readability if the * names got cut off. * * @return the key */ @Override public String toStringKey() { String result; int i; result = "Key:\n"; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) { continue; } result += LEFT_PARENTHESES + (i + 1) + RIGHT_PARENTHESES + " " + removeFilterName(m_ColNames[i]) + "\n"; } return result; } /** * returns the summary as string. * * @return the summary */ @Override public String toStringSummary() { String result; String titles; int resultsetLength; int i; int j; if (m_NonSigWins == null) { return "-summary data not set-"; } result = ""; titles = ""; resultsetLength = 1 + Math.max( (int) (Math.log(getColCount()) / Math.log(10)), (int) (Math.log(getRowCount()) / Math.log(10))); for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) { continue; } titles += " " + Utils.padLeft("" + getSummaryTitle(i), resultsetLength * 2 + 3); } result += titles + " (No. of datasets where [col] >> [row])\n"; for (i = 0; i < getColCount(); i++) { if (getColHidden(i)) { continue; } for (j = 0; j < getColCount(); j++) { if (getColHidden(j)) { continue; } result += " "; if (j == i) { result += Utils.padLeft("-", resultsetLength * 2 + 3); } else { result += Utils.padLeft("" + m_NonSigWins[i][j] + " (" + m_Wins[i][j] + ")", resultsetLength * 2 + 3); } } result += " | " + getSummaryTitle(i) + " = " + getColName(i) + '\n'; } return result; } /** * returns the ranking in a string representation. * * @return the ranking */ @Override public String toStringRanking() { int biggest; int width; String result; int[] ranking; int i; int curr; if (m_RankingWins == null) { return "-ranking data not set-"; } biggest = Math.max(m_RankingWins[Utils.maxIndex(m_RankingWins)], m_RankingLosses[Utils.maxIndex(m_RankingLosses)]); width = Math.max(2 + (int) (Math.log(biggest) / Math.log(10)), ">-<".length()); result = Utils.padLeft(">-<", width) + ' ' + Utils.padLeft(">", width) + ' ' + Utils.padLeft("<", width) + " Resultset\n"; ranking = Utils.sort(m_RankingDiff); for (i = getColCount() - 1; i >= 0; i--) { curr = ranking[i]; if (getColHidden(curr)) { continue; } result += Utils.padLeft("" + m_RankingDiff[curr], width) + ' ' + Utils.padLeft("" + m_RankingWins[curr], width) + ' ' + Utils.padLeft("" + m_RankingLosses[curr], width) + ' ' + removeFilterName(m_ColNames[curr]) + '\n'; } return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * for testing only. * * @param args ignored */ public static void main(String[] args) { ResultMatrix matrix; int i; int n; matrix = new ResultMatrixPlainText(3, 3); // set header matrix.addHeader("header1", "value1"); matrix.addHeader("header2", "value2"); matrix.addHeader("header2", "value3"); // set values for (i = 0; i < matrix.getRowCount(); i++) { for (n = 0; n < matrix.getColCount(); n++) { matrix.setMean(n, i, (i + 1) * n); matrix.setStdDev(n, i, ((double) (i + 1) * n) / 100); if (i == n) { if (i % 2 == 1) { matrix.setSignificance(n, i, SIGNIFICANCE_WIN); } else { matrix.setSignificance(n, i, SIGNIFICANCE_LOSS); } } } } System.out.println("\n\n--> " + matrix.getDisplayName()); System.out.println("\n1. complete\n"); System.out.println(matrix.toStringHeader() + "\n"); System.out.println(matrix.toStringMatrix() + "\n"); System.out.println(matrix.toStringKey()); System.out.println("\n2. complete with std deviations\n"); matrix.setShowStdDev(true); System.out.println(matrix.toStringMatrix()); System.out.println("\n3. cols numbered\n"); matrix.setPrintColNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n4. second col missing\n"); matrix.setColHidden(1, true); System.out.println(matrix.toStringMatrix()); System.out.println("\n5. last row missing, rows numbered too\n"); matrix.setRowHidden(2, true); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n6. mean prec to 3\n"); matrix.setMeanPrec(3); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ResultMatrixSignificance.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ResultMatrixSignificance.java * Copyright (C) 2005-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.RevisionUtils; /** <!-- globalinfo-start --> * Only outputs the significance indicators. Can be used for spotting patterns. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -mean-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -stddev-prec &lt;int&gt; * The number of decimals after the decimal point for the mean. * (default: 2)</pre> * * <pre> -col-name-width &lt;int&gt; * The maximum width for the column names (0 = optimal). * (default: 0)</pre> * * <pre> -row-name-width &lt;int&gt; * The maximum width for the row names (0 = optimal). * (default: 40)</pre> * * <pre> -mean-width &lt;int&gt; * The width of the mean (0 = optimal). * (default: 0)</pre> * * <pre> -stddev-width &lt;int&gt; * The width of the standard deviation (0 = optimal). * (default: 0)</pre> * * <pre> -sig-width &lt;int&gt; * The width of the significance indicator (0 = optimal). * (default: 0)</pre> * * <pre> -count-width &lt;int&gt; * The width of the counts (0 = optimal). * (default: 0)</pre> * * <pre> -show-stddev * Whether to display the standard deviation column. * (default: no)</pre> * * <pre> -show-avg * Whether to show the row with averages. * (default: no)</pre> * * <pre> -remove-filter * Whether to remove the classname package prefixes from the * filter names in datasets. * (default: no)</pre> * * <pre> -print-col-names * Whether to output column names or just numbers representing them. * (default: no)</pre> * * <pre> -print-row-names * Whether to output row names or just numbers representing them. * (default: no)</pre> * * <pre> -enum-col-names * Whether to enumerate the column names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * * <pre> -enum-row-names * Whether to enumerate the row names (prefixing them with * '(x)', with 'x' being the index). * (default: no)</pre> * <!-- options-end --> * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision$ */ public class ResultMatrixSignificance extends ResultMatrix { /** for serialization. */ private static final long serialVersionUID = -1280545644109764206L; /** * initializes the matrix as 1x1 matrix. */ public ResultMatrixSignificance() { this(1, 1); } /** * initializes the matrix with the given dimensions. * * @param cols the number of columns * @param rows the number of rows */ public ResultMatrixSignificance(int cols, int rows) { super(cols, rows); } /** * initializes the matrix with the values from the given matrix. * * @param matrix the matrix to get the values from */ public ResultMatrixSignificance(ResultMatrix matrix) { super(matrix); } /** * Returns a string describing the matrix. * * @return a description suitable for * displaying in the experimenter gui */ public String globalInfo() { return "Only outputs the significance indicators. Can be used for spotting patterns."; } /** * returns the name of the output format. * * @return the display name */ public String getDisplayName() { return "Significance only"; } /** * returns the default of whether column names or numbers instead are printed. * * @return true if names instead of numbers are printed */ public boolean getDefaultPrintColNames() { return false; } /** * returns the default width for the row names. * * @return the width */ public int getDefaultRowNameWidth() { return 40; } /** * returns the default of whether std deviations are displayed or not. * * @return true if the std deviations are displayed */ public boolean getDefaultShowStdDev() { return false; } /** * sets whether to display the std deviations or not - always false! * * @param show ignored */ public void setShowStdDev(boolean show) { // ignore } /** * returns the matrix as plain text. * * @return the matrix */ public String toStringMatrix() { StringBuffer result; String[][] cells; int i; int n; int nameWidth; String line; String colStr; int rows; result = new StringBuffer(); cells = toArray(); // pad names nameWidth = getColSize(cells, 0); for (i = 0; i < cells.length - 1; i++) cells[i][0] = padString(cells[i][0], nameWidth); // determine number of displayed rows rows = cells.length - 1; if (getShowAverage()) rows--; for (i = 0; i < rows; i++) { line = ""; colStr = ""; for (n = 0; n < cells[i].length; n++) { // the header of the column if (isMean(n) || isRowName(n)) colStr = cells[0][n]; if ( (n > 1) && (!isSignificance(n)) ) continue; // padding between cols if (n > 0) line += " "; // padding for "(" below dataset line if ( (i > 0) && (n > 1) ) line += " "; if (i == 0) { line += colStr; } else { if (n == 0) { line += cells[i][n]; } else if (n == 1) { line += colStr.replaceAll(".", " "); // base column has no significance! } else { line += cells[i][n]; // add blanks dep. on length of # line += colStr.replaceAll(".", " ").substring(2); } } } result.append(line + "\n"); // separator line if (i == 0) result.append(line.replaceAll(".", "-") + "\n"); } return result.toString(); } /** * returns the header of the matrix as a string. * * @return the header * @see #m_HeaderKeys * @see #m_HeaderValues */ public String toStringHeader() { return new ResultMatrixPlainText(this).toStringHeader(); } /** * returns returns a key for all the col names, for better readability if * the names got cut off. * * @return the key */ public String toStringKey() { return new ResultMatrixPlainText(this).toStringKey(); } /** * returns the summary as string. * * @return the summary */ public String toStringSummary() { return new ResultMatrixPlainText(this).toStringSummary(); } /** * returns the ranking in a string representation. * * @return the ranking */ public String toStringRanking() { return new ResultMatrixPlainText(this).toStringRanking(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * for testing only. * * @param args ignored */ public static void main(String[] args) { ResultMatrix matrix; int i; int n; matrix = new ResultMatrixSignificance(3, 3); // set header matrix.addHeader("header1", "value1"); matrix.addHeader("header2", "value2"); matrix.addHeader("header2", "value3"); // set values for (i = 0; i < matrix.getRowCount(); i++) { for (n = 0; n < matrix.getColCount(); n++) { matrix.setMean(n, i, (i+1)*n); matrix.setStdDev(n, i, ((double) (i+1)*n) / 100); if (i == n) { if (i % 2 == 1) matrix.setSignificance(n, i, SIGNIFICANCE_WIN); else matrix.setSignificance(n, i, SIGNIFICANCE_LOSS); } } } System.out.println("\n\n--> " + matrix.getDisplayName()); System.out.println("\n1. complete\n"); System.out.println(matrix.toStringHeader() + "\n"); System.out.println(matrix.toStringMatrix() + "\n"); System.out.println(matrix.toStringKey()); System.out.println("\n2. complete with std deviations\n"); matrix.setShowStdDev(true); System.out.println(matrix.toStringMatrix()); System.out.println("\n3. cols numbered\n"); matrix.setPrintColNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n4. second col missing\n"); matrix.setColHidden(1, true); System.out.println(matrix.toStringMatrix()); System.out.println("\n5. last row missing, rows numbered too\n"); matrix.setRowHidden(2, true); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); System.out.println("\n6. mean prec to 3\n"); matrix.setMeanPrec(3); matrix.setPrintRowNames(false); System.out.println(matrix.toStringMatrix()); } }
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/ResultProducer.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * ResultProducer.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.Serializable; import weka.core.Instances; /** * This interface defines the methods required for an object * that produces results for different randomizations of a dataset. <p> * * Possible implementations of ResultProducer: <br> * <ul> * <li>Random test/train splits * <li>CrossValidation splits * <li>LearningCurve splits (multiple results per run?) * <li>Averaging results of other result producers * </ul> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public interface ResultProducer extends Serializable { /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ void setInstances(Instances instances); /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ void setResultListener(ResultListener listener); /** * Sets a list of method names for additional measures to look for * in SplitEvaluators. * @param additionalMeasures a list of method names */ void setAdditionalMeasures(String [] additionalMeasures); /** * Prepare to generate results. The ResultProducer should call * preProcess(this) on the ResultListener it is to send results to. * * @exception Exception if an error occurs during preprocessing. */ void preProcess() throws Exception; /** * Perform any postprocessing. When this method is called, it indicates * that no more requests to generate results for the current experiment * will be sent. The ResultProducer should call * preProcess(this) on the ResultListener it is to send results to. * * @exception Exception if an error occurs */ void postProcess() throws Exception; /** * Gets the results for a specified run number. Different run * numbers correspond to different randomizations of the data. Results * produced should be sent to the current ResultListener, but only * if the ResultListener says the result is required (it may already * have that result). A single run may produce multiple results. * * @param run the run number to generate results for. * @exception Exception if a problem occurs while getting the results */ void doRun(int run) throws Exception; /** * Gets the keys for a specified run number. Different run * numbers correspond to different randomizations of the data. Keys * produced should be sent to the current ResultListener * * @param run the run number to get keys for. * @exception Exception if a problem occurs while getting the keys */ void doRunKeys(int run) throws Exception; /** * Gets the names of each of the key columns produced for a single run. * The names should not contain spaces (use '_' instead for easy * translation.) * * @return an array containing the name of each key column * @exception Exception if the key names could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ String [] getKeyNames() throws Exception; /** * Gets the data types of each of the key columns produced for a single run. * * @return an array containing objects of the type of each key column. The * objects should be Strings, or Doubles. * @exception Exception if the key types could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ Object [] getKeyTypes() throws Exception; /** * Gets the names of each of the result columns produced for a single run. * The names should not contain spaces (use '_' instead for easy * translation.) * * @return an array containing the name of each result column * @exception Exception if the result names could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ String [] getResultNames() throws Exception; /** * Gets the data types of each of the result columns produced for a * single run. * * @return an array containing objects of the type of each result column. * The objects should be Strings, or Doubles. * @exception Exception if the result types could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ Object [] getResultTypes() throws Exception; /** * Gets a description of the internal settings of the result * producer, sufficient for distinguishing a ResultProducer * instance from another with different settings (ignoring * those settings set through this interface). For example, * a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should * be compatible. Typically if a ResultProducer is an OptionHandler, * this string will represent those command line arguments required * to set the ResultProducer to that state. * * @return the description of the ResultProducer state, or null * if no state is defined */ String getCompatibilityState(); } // ResultProducer
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/SplitEvaluator.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * SplitEvaluator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.Serializable; import weka.core.Instances; /** * Interface to objects able to generate a fixed set of results for * a particular split of a dataset. The set of results should contain * fields related to any settings of the SplitEvaluator (not including * the dataset name. For example, one field for the classifier used to * get the results, another for the classifier options, etc). <p> * * Possible implementations of SplitEvaluator: <br> * <ul> * <li>StdClassification results * <li>StdRegression results * </ul> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public interface SplitEvaluator extends Serializable { /** * Sets a list of method names for additional measures to look for * in SplitEvaluators. * @param additionalMeasures a list of method names */ void setAdditionalMeasures(String [] additionalMeasures); /** * Gets the names of each of the key columns produced for a single run. * The names should not contain spaces (use '_' instead for easy * translation.) The number of key fields must be constant for a given * SplitEvaluator. * * @return an array containing the name of each key column */ String [] getKeyNames(); /** * Gets the data types of each of the key columns produced for a single run. * The number of key fields must be constant * for a given SplitEvaluator. * * @return an array containing objects of the type of each key column. The * objects should be Strings, or Doubles. */ Object [] getKeyTypes(); /** * Gets the names of each of the result columns produced for a single run. * The names should not contain spaces (use '_' instead for easy * translation.) The number of result fields must be constant * for a given SplitEvaluator. * * @return an array containing the name of each result column */ String [] getResultNames(); /** * Gets the data types of each of the result columns produced for a * single run. The number of result fields must be constant * for a given SplitEvaluator. * * @return an array containing objects of the type of each result column. * The objects should be Strings, or Doubles. */ Object [] getResultTypes(); /** * Gets the key describing the current SplitEvaluator. For example * This may contain the name of the classifier used for classifier * predictive evaluation. The number of key fields must be constant * for a given SplitEvaluator. * * @return a value of type 'Object' */ Object [] getKey(); /** * Gets the results for the supplied train and test datasets. * * @param train the training Instances. * @param test the testing Instances. * @return the results stored in an array. The objects stored in * the array may be Strings, Doubles, or null (for the missing value). * @exception Exception if a problem occurs while getting the results */ Object [] getResult(Instances train, Instances test) throws Exception; /** * Returns the raw output for the most recent call to getResult. Useful * for debugging splitEvaluators. * * @return the raw output corresponding to the most recent call * to getResut */ String getRawResultOutput(); } // SplitEvaluator
0
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka
java-sources/ai/libs/thirdparty/interruptible-weka/0.1.6/weka/experiment/Stats.java
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Stats.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import java.io.Serializable; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * A class to store simple statistics.<p> * * Upon initialization the variables take the following values:<p> * <code> * {@link #count} = {@link #sum} = {@link #sumSq} = 0 <br /> * {@link #mean} = {@link #stdDev} = {@link #min} = {@link #max} = Double.NaN * </code><p> * This is called the initial state. <p> * * For signaling that a Stats object has been provided with values that hint * that something is either wrong with the data used or the algorithm used there * is also the invalid state where the variables take the following values: <p> * <code> * {@link #count} = {@link #sum} = {@link #sumSq} = {@link #mean} = * {@link #stdDev} = {@link #min} = {@link #max} = Double.NaN * <code><p> * Once a Stats object goes into the invalid state it can't change its state * anymore. <p> * * A Stats object assumes that only values are subtracted (by using the * {@link #subtract(double)} or {@link #subtract(double, double)} methods) * that have previously been added (by using the {@link #add(double)} or * {@link #add(double, double)} methods) and the weights must be the same * too.<br /> * Otherwise the Stats object's fields' values are implementation defined.<p> * * If the implementation detects a problem then the Stats object goes into the * invalid state.<p> * * The fields {@link #count}, {@link #sum}, {@link #sumSq}, {@link #min} and * {@link #max} are always updated whereas the field {@link #mean} and * {@link #stdDev} are only guaranteed to be updated after a call to * {@link #calculateDerived()}.<p> * * For the fields {@link #min} and {@link #max} the following rules apply:<p> * <code> * min(values_added \ values_subtracted) >= {@link #min} >= min(values_added)<br> * max(values_added \ values_subtracted) <= {@link #max} <= max(values_added) * </code><p> * Where \ is the set difference.<p> * * For the field {@link #stdDev} the following rules apply:<p> * <ol> * <li>If count <= 1 then * {@link #stdDev}=Double.NaN.</li> * <li>Otherwise {@link #stdDev} >= 0 and it should take on the value by best * effort of the implementation.</li> * </ol> * * For the methods {@link #add(double)}, {@link #add(double, double)}, * {@link #subtract(double)} and {@link #subtract(double, double)} the following * rules apply:<p> * * <ol> * <li>if weight < 0 then {@link #subtract(double, double)} is used instead of * {@link #add(double, double)} with weight = -weight and vice versa.</li> * <li>if weight = +-inf or weight = NaN then the Stats object goes into the * invalid state.</li> * <li>if value = +-inf or value = NaN then the Stats object goes into the * invalid state.</li> * <li>if weight = 0 then the value gets ignored.</li> * <li>Otherwise the fields get updated by the implementation's best effort.</li> * </ol> * * For {@link #count} the following rules apply<p> * * <ol> * <li>If {@link #count} goes below zero then all fields are set to * <code>Double.NaN</code> except the {@link #count} field which gets tracked * normally.</li> * <li>If {@link #count} = 0 then the Stats object goes into the initial state. * </li> * <li>If {@link #count} > 0 for the first time, then the Stats object goes into * initial state and gets updated with the corresponding value and weight. * </li> * </ol> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision$ */ public class Stats implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -8610544539090024102L; /** The number of values seen */ public double count = 0; /** The sum of values seen */ public double sum = 0; /** The sum of values squared seen */ public double sumSq = 0; /** The std deviation of values at the last calculateDerived() call */ public double stdDev = Double.NaN; /** The mean of values, or Double.NaN if no values seen */ public double mean = Double.NaN; /** The minimum value seen, or Double.NaN if no values seen */ public double min = Double.NaN; /** The maximum value seen, or Double.NaN if no values seen */ public double max = Double.NaN; /** an important factor to calculate the standard deviation incrementally */ private double stdDevFactor = 0; private void reset() { count = 0; sum = 0; sumSq = 0; stdDev = Double.NaN; mean = Double.NaN; min = Double.NaN; max = Double.NaN; stdDevFactor = 0; } private void negativeCount() { sum = Double.NaN; sumSq = Double.NaN; stdDev = Double.NaN; mean = Double.NaN; min = Double.NaN; max = Double.NaN; } private void goInvalid() { count = Double.NaN; negativeCount(); } private boolean isInvalid() { return Double.isNaN(count); } /** * Adds a value to the observed values<p> * * It's equivalent to <code>add(value, 1)</code><p> * * @param value the observed value */ public void add(double value) { add(value, 1); } /** * Adds a weighted value to the observed values * * @param value the observed value * @param weight the weight of the observed value */ public void add(double value, double weight) { // treat as subtract if (weight < 0) { subtract(value, -weight); return; } // don't leave invalid state if (isInvalid()) return; // go invalid if (Double.isInfinite(weight) || Double.isNaN(weight) || Double.isInfinite(value) || Double.isNaN(value)) { goInvalid(); return; } // ignore if (weight == 0) return; double newCount = count + weight; if (count < 0 && (newCount > 0 || Utils.eq(newCount, 0))) { reset(); return; } count = newCount; if (count < 0) { return; } double weightedValue = value*weight; sum += weightedValue; sumSq += value * weightedValue; if (Double.isNaN(mean)) { // For the first value the mean can suffer from loss of precision // so we treat it separately and make sure the calculation stays accurate mean = value; stdDevFactor = 0; } else { double delta = weight*(value - mean); mean += delta/count; stdDevFactor += delta*(value - mean); } if (Double.isNaN(min)) { min = max = value; } else if (value < min) { min = value; } else if (value > max) { max = value; } } /** * Removes a value to the observed values (no checking is done * that the value being removed was actually added).<p> * * It's equivalent to <code>subtract(value, 1)</code><p> * * @param value the observed value */ public void subtract(double value) { subtract(value, 1); } /** * Subtracts a weighted value from the observed values * * @param value the observed value * @param weight the weight of the observed value */ public void subtract(double value, double weight) { // treat as add if (weight < 0) { add(value, -weight); return; } // don't leave invalid state if (isInvalid()) return; // go invalid if (Double.isInfinite(weight) || Double.isNaN(weight) || Double.isInfinite(value) || Double.isNaN(value)) { goInvalid(); return; } // ignore if (weight == 0) return; count -= weight; if (Utils.eq(count, 0)) { reset(); return; } else if (count < 0) { negativeCount(); return; } double weightedValue = value*weight; sum -= weightedValue; sumSq -= value * weightedValue; double delta = weight*(value - mean); mean -= delta/count; stdDevFactor -= delta*(value - mean); } /** * Tells the object to calculate any statistics that don't have their * values automatically updated during add. Currently updates the standard deviation. */ public void calculateDerived() { if (count <= 1) { stdDev = Double.NaN; return; } stdDev = stdDevFactor/(count - 1); if (stdDev < 0) { stdDev = 0; return; } stdDev = Math.sqrt(stdDev); } /** * Returns a string summarising the stats so far. * * @return the summary string */ public String toString() { return "Count " + Utils.doubleToString(count, 8) + '\n' + "Min " + Utils.doubleToString(min, 8) + '\n' + "Max " + Utils.doubleToString(max, 8) + '\n' + "Sum " + Utils.doubleToString(sum, 8) + '\n' + "SumSq " + Utils.doubleToString(sumSq, 8) + '\n' + "Mean " + Utils.doubleToString(mean, 8) + '\n' + "StdDev " + Utils.doubleToString(stdDev, 8) + '\n'; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Tests the paired stats object from the command line. * reads line from stdin, expecting two values per line. * * @param args ignored. */ public static void main(String [] args) { try { Stats ps = new Stats(); java.io.LineNumberReader r = new java.io.LineNumberReader( new java.io.InputStreamReader(System.in)); String line; while ((line = r.readLine()) != null) { line = line.trim(); if (line.equals("") || line.startsWith("@") || line.startsWith("%")) { continue; } java.util.StringTokenizer s = new java.util.StringTokenizer(line, " ,\t\n\r\f"); int count = 0; double v1 = 0; while (s.hasMoreTokens()) { double val = (new Double(s.nextToken())).doubleValue(); if (count == 0) { v1 = val; } else { System.err.println("MSG: Too many values in line \"" + line + "\", skipped."); break; } count++; } if (count == 1) { ps.add(v1); } } ps.calculateDerived(); System.err.println(ps); } catch (Exception ex) { ex.printStackTrace(); System.err.println(ex.getMessage()); } } } // Stats