index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/engine/EngineProvider.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.engine; /** * The {@code EngineProvider} instance manufactures an {@link Engine} instance, which is available * in the system. * * <p>At initialization time, the {@link java.util.ServiceLoader} will search for {@code * EngineProvider} implementations available in the class path. * * <p>{@link Engine} is designed as a collection of singletons. {@link Engine#getInstance()} will * return the default Engine, which is the first one found in the classpath. Many of the standard * APIs will rely on this default Engine instance such as when creating a {@link * ai.djl.ndarray.NDManager} or {@link ai.djl.Model}. However, you can directly get a specific * Engine instance (e.g. {@code MxEngine}) by calling {@link Engine#getEngine(String)}. */ public interface EngineProvider { /** * Returns the name of the {@link Engine}. * * @return the name of {@link Engine} */ String getEngineName(); /** * Returns the rank of the {@link Engine}. * * @return the rank of {@link Engine} */ int getEngineRank(); /** * Returns the instance of the {@link Engine} class EngineProvider should bind to. * * @return the instance of {@link Engine} */ Engine getEngine(); }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/engine/StandardCapabilities.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.engine; /** Constant definitions for the standard capability. */ public final class StandardCapabilities { public static final String CUDA = "CUDA"; public static final String CUDNN = "CUDNN"; public static final String MKL = "MKL"; public static final String MKLDNN = "MKLDNN"; public static final String OPENMP = "OPENMP"; private StandardCapabilities() {} }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/engine/package-info.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains classes responsible for loading a deep learning engine. * * <p>Deep Java Library (DJL) is a higher level API that is used alongside implementations built on * other deep learning engines. By using only the higher level abstractions defined in the core DJL * API, it makes it easy to switch between underlying engines. * * <p>Each deep learning engine is implemented as a {@link java.util.ServiceLoader} and supplies an * implementation of the {@link ai.djl.engine.Engine} interface. * * @see ai.djl.engine.Engine * @see ai.djl.engine.EngineProvider */ package ai.djl.engine;
0
java-sources/ai/djl/api/0.34.0/ai/djl/engine
java-sources/ai/djl/api/0.34.0/ai/djl/engine/rpc/RpcClient.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.engine.rpc; import ai.djl.inference.streaming.ChunkedBytesSupplier; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.ndarray.BytesSupplier; import ai.djl.util.Utils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.Reader; import java.net.HttpURLConnection; import java.net.MalformedURLException; import java.net.URL; import java.nio.charset.StandardCharsets; import java.util.Arrays; import java.util.HashSet; import java.util.List; import java.util.Locale; import java.util.Map; import java.util.Objects; import java.util.Set; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ConcurrentHashMap; /** A client used to connect to remote model server. */ public final class RpcClient { private static final Logger logger = LoggerFactory.getLogger(RpcClient.class); private static final Set<String> RESERVED_KEYS = new HashSet<>( Arrays.asList( "engine", "translatorfactory", "translator", "model_name", "artifact_id", "application", "task", "djl_rpc_uri", "method", "api_key", "content-type")); private URL url; private String method; private Map<CaseInsensitiveKey, String> headers; private RpcClient(URL url, String method, Map<CaseInsensitiveKey, String> headers) { this.url = url; this.method = method; this.headers = headers; } /** * Returns a new {@code Client} instance from criteria arguments. * * @param arguments the criteria arguments. * @return a new {@code Client} instance * @throws MalformedURLException if url is invalid */ public static RpcClient getClient(Map<String, ?> arguments) throws MalformedURLException { String url = arguments.get("djl_rpc_uri").toString(); String method = getOrDefault(arguments, "method", "POST"); String apiKey = getOrDefault(arguments, "api_key", null); String contentType = getOrDefault(arguments, "content-type", "application/json"); Map<CaseInsensitiveKey, String> httpHeaders = new ConcurrentHashMap<>(); for (Map.Entry<String, ?> entry : arguments.entrySet()) { String key = entry.getKey(); String value = entry.getValue().toString().trim(); if (RESERVED_KEYS.contains(key.toLowerCase(Locale.ROOT))) { continue; } httpHeaders.put(new CaseInsensitiveKey(key), value); } httpHeaders.put(new CaseInsensitiveKey("Content-Type"), contentType); if (url.startsWith("https://generativelanguage.googleapis.com")) { if (apiKey == null) { apiKey = Utils.getenv("GEMINI_API_KEY"); if (apiKey == null) { apiKey = Utils.getenv("GOOGLE_API_KEY"); } } if (apiKey != null) { if (url.endsWith("/openai/chat/completions")) { httpHeaders.put(new CaseInsensitiveKey("Authorization"), "Bearer " + apiKey); } else { httpHeaders.put(new CaseInsensitiveKey("x-goog-api-key"), apiKey); } } } else if (url.startsWith("https://api.anthropic.com")) { if (apiKey == null) { apiKey = Utils.getEnvOrSystemProperty("ANTHROPIC_API_KEY"); } if (apiKey != null) { httpHeaders.put(new CaseInsensitiveKey("x-api-key"), apiKey); } } if (apiKey == null) { apiKey = Utils.getEnvOrSystemProperty("GENAI_API_KEY"); } if (apiKey != null) { httpHeaders.put(new CaseInsensitiveKey("Authorization"), "Bearer " + apiKey); } return new RpcClient(new URL(url), method, httpHeaders); } /** * Sends request to remote server. * * @param input the input * @return the output * @throws IOException if connection failed */ public Output send(Input input) throws IOException { if (Utils.isOfflineMode()) { throw new IOException("Offline mode is enabled."); } HttpURLConnection conn = (HttpURLConnection) url.openConnection(); boolean isStream = false; try { conn.setRequestMethod(method); if ("POST".equals(method) || "PUT".equals(method)) { conn.setDoOutput(true); } Map<String, String> prop = input.getProperties(); Map<CaseInsensitiveKey, String> reqHeaders = new ConcurrentHashMap<>(headers); for (Map.Entry<String, String> entry : prop.entrySet()) { reqHeaders.put(new CaseInsensitiveKey(entry.getKey()), entry.getValue()); } for (Map.Entry<CaseInsensitiveKey, String> header : reqHeaders.entrySet()) { conn.addRequestProperty(header.getKey().key, header.getValue()); } conn.connect(); BytesSupplier content = input.getData(); if (content != null) { try (OutputStream os = conn.getOutputStream()) { os.write(content.getAsBytes()); } } int code = conn.getResponseCode(); Output out = new Output(code, conn.getResponseMessage()); Map<String, List<String>> respHeaders = conn.getHeaderFields(); for (Map.Entry<String, List<String>> entry : respHeaders.entrySet()) { String key = entry.getKey(); String value = entry.getValue().get(0); if (key != null && value != null) { value = value.toLowerCase(Locale.ROOT); if ("content-type".equalsIgnoreCase(key) && (value.startsWith("text/event-stream") || value.startsWith("application/jsonlines"))) { isStream = true; } out.addProperty(key, value); } } if (code == 200) { if (isStream) { ChunkedBytesSupplier cbs = new ChunkedBytesSupplier(); out.add(cbs); CompletableFuture.supplyAsync(() -> handleStream(conn, cbs)); } else { try (InputStream is = conn.getInputStream()) { out.add(Utils.toByteArray(is)); } } } else { try (InputStream is = conn.getErrorStream()) { if (is != null) { String error = Utils.toString(is); out.add(error); logger.warn("Failed to invoke model server: {}", error); } else { logger.warn("Failed to invoke model server, code: {}", code); } } } return out; } finally { if (!isStream) { conn.disconnect(); } } } private static String getOrDefault(Map<String, ?> arguments, String key, String def) { for (Map.Entry<String, ?> entry : arguments.entrySet()) { if (entry.getKey().equalsIgnoreCase(key)) { return entry.getValue().toString(); } } return def; } private static Void handleStream(HttpURLConnection conn, ChunkedBytesSupplier cbs) { BytesSupplier pendingChunk = null; try (Reader r = new InputStreamReader(conn.getInputStream(), StandardCharsets.UTF_8); BufferedReader reader = new BufferedReader(r)) { String line; StringBuilder sb = new StringBuilder(); while ((line = reader.readLine()) != null) { if (line.startsWith("data: ")) { if (sb.length() > 0) { sb.append('\n'); } sb.append(line.substring(6)); } else if (line.startsWith("event: ")) { // ignore continue; } else if (!line.isEmpty()) { // jsonlines if (pendingChunk != null) { cbs.appendContent(pendingChunk, false); } pendingChunk = BytesSupplier.wrap(line); } else if (sb.length() > 0) { if (pendingChunk != null) { cbs.appendContent(pendingChunk, false); } pendingChunk = BytesSupplier.wrap(sb.toString()); sb.setLength(0); } } } catch (IOException e) { logger.warn("Failed run inference.", e); cbs.appendContent(BytesSupplier.wrap("connection abort exceptionally"), false); } finally { if (pendingChunk == null) { pendingChunk = BytesSupplier.wrap(new byte[0]); } cbs.appendContent(pendingChunk, true); conn.disconnect(); } return null; } static final class CaseInsensitiveKey { String key; public CaseInsensitiveKey(String key) { this.key = key; } /** {@inheritDoc} */ @Override public boolean equals(Object o) { if (this == o) { return true; } if (!(o instanceof CaseInsensitiveKey)) { return false; } CaseInsensitiveKey header = (CaseInsensitiveKey) o; return key.equalsIgnoreCase(header.key); } /** {@inheritDoc} */ @Override public int hashCode() { return Objects.hashCode(key.toLowerCase(Locale.ROOT)); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/engine
java-sources/ai/djl/api/0.34.0/ai/djl/engine/rpc/RpcEngine.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.engine.rpc; import ai.djl.Device; import ai.djl.Model; import ai.djl.engine.Engine; import ai.djl.ndarray.NDManager; import ai.djl.util.passthrough.PassthroughNDManager; /** The {@code RpcEngine} is a client side implementation for remote model server. */ public class RpcEngine extends Engine { public static final String ENGINE_NAME = "RPC"; static final int RANK = 15; private Engine alternativeEngine; private boolean initialized; static Engine newInstance() { return new RpcEngine(); } /** {@inheritDoc} */ @Override public Engine getAlternativeEngine() { if (!initialized && !Boolean.getBoolean("ai.djl.java.disable_alternative")) { Engine engine = Engine.getInstance(); if (engine.getRank() < getRank()) { // alternativeEngine should not have the same rank as OnnxRuntime alternativeEngine = engine; } initialized = true; } return alternativeEngine; } /** {@inheritDoc} */ @Override public String getEngineName() { return ENGINE_NAME; } /** {@inheritDoc} */ @Override public int getRank() { return RANK; } /** {@inheritDoc} */ @Override public String getVersion() { return Engine.class.getPackage().getSpecificationVersion(); } /** {@inheritDoc} */ @Override public boolean hasCapability(String capability) { return false; } /** {@inheritDoc} */ @Override public Model newModel(String name, Device device) { return new RpcModel(name); } /** {@inheritDoc} */ @Override public NDManager newBaseManager() { return newBaseManager(null); } /** {@inheritDoc} */ @Override public NDManager newBaseManager(Device device) { return PassthroughNDManager.INSTANCE; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/engine
java-sources/ai/djl/api/0.34.0/ai/djl/engine/rpc/RpcEngineProvider.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.engine.rpc; import ai.djl.engine.Engine; import ai.djl.engine.EngineProvider; /** {@code RpcEngineProvider} is the client side implementation for remote model server. */ public class RpcEngineProvider implements EngineProvider { /** {@inheritDoc} */ @Override public String getEngineName() { return RpcEngine.ENGINE_NAME; } /** {@inheritDoc} */ @Override public int getEngineRank() { return RpcEngine.RANK; } /** {@inheritDoc} */ @Override public Engine getEngine() { return InstanceHolder.INSTANCE; } private static class InstanceHolder { static final Engine INSTANCE = RpcEngine.newInstance(); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/engine
java-sources/ai/djl/api/0.34.0/ai/djl/engine/rpc/RpcModel.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.engine.rpc; import ai.djl.BaseModel; import ai.djl.MalformedModelException; import ai.djl.Model; import ai.djl.ndarray.types.DataType; import ai.djl.util.passthrough.PassthroughNDManager; import java.io.IOException; import java.nio.file.Path; import java.util.Map; /** {@code RpcModel} is an implementation for the {@link Model} deployed on remote model server. */ public class RpcModel extends BaseModel { /** * Constructs a new Model on a given device. * * @param name the model name */ RpcModel(String name) { super(name); manager = PassthroughNDManager.INSTANCE; dataType = DataType.FLOAT32; } /** {@inheritDoc} */ @Override public void load(Path modelPath, String prefix, Map<String, ?> options) throws IOException, MalformedModelException { setModelDir(modelPath); wasLoaded = true; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/engine
java-sources/ai/djl/api/0.34.0/ai/djl/engine/rpc/RpcTranslator.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.engine.rpc; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.ndarray.NDList; import ai.djl.translate.NoBatchifyTranslator; import ai.djl.translate.TranslateException; import ai.djl.translate.TranslatorContext; import java.io.IOException; /** The {@link ai.djl.translate.Translator} for model deploy on remote model server. */ public class RpcTranslator<I, O> implements NoBatchifyTranslator<I, O> { private RpcClient client; private TypeConverter<I, O> converter; /** * Constructs a {@code RpcTranslator} instance. * * @param client a {@link RpcClient} connects to remote model server * @param converter a {@link TypeConverter} to convert data type */ protected RpcTranslator(RpcClient client, TypeConverter<I, O> converter) { this.client = client; this.converter = converter; } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, I input) throws IOException { Input in = converter.toInput(input); Output output = client.send(in); ctx.setAttachment("output", output); return new NDList(); } /** {@inheritDoc} */ @Override public O processOutput(TranslatorContext ctx, NDList list) throws TranslateException { Output output = (Output) ctx.getAttachment("output"); return converter.fromOutput(output); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/engine
java-sources/ai/djl/api/0.34.0/ai/djl/engine/rpc/RpcTranslatorFactory.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.engine.rpc; import ai.djl.Model; import ai.djl.inference.streaming.ChunkedBytesSupplier; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.ndarray.BytesSupplier; import ai.djl.translate.TranslateException; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import ai.djl.util.JsonUtils; import ai.djl.util.Pair; import java.io.IOException; import java.lang.reflect.Method; import java.lang.reflect.Type; import java.nio.charset.StandardCharsets; import java.util.Collections; import java.util.Iterator; import java.util.Map; import java.util.Set; import java.util.concurrent.TimeUnit; /** A {@link TranslatorFactory} that creates an {@link RpcTranslator}. */ public class RpcTranslatorFactory implements TranslatorFactory { private TypeConverter<?, ?> converter; private Set<Pair<Type, Type>> supportedTypes; /** Constructs a {@code RpcTranslatorFactory} instance. */ public RpcTranslatorFactory() { supportedTypes = Collections.emptySet(); } /** * Constructs a {@code RpcTranslatorFactory} instance. * * @param converter the {@code TypeConverter} */ public RpcTranslatorFactory(TypeConverter<?, ?> converter) { this.converter = converter; supportedTypes = Collections.singleton(converter.getSupportedType()); } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <I, O> Translator<I, O> newInstance( Class<I> input, Class<O> output, Model model, Map<String, ?> arguments) throws TranslateException { try { if (!isSupported(input, output)) { throw new IllegalArgumentException("Unsupported input/output types."); } RpcClient client = RpcClient.getClient(arguments); if (converter != null) { return new RpcTranslator<>(client, (TypeConverter<I, O>) converter); } return new RpcTranslator<>(client, new DefaultTypeConverter<>(input, output)); } catch (IOException e) { throw new TranslateException(e); } } /** {@inheritDoc} */ @Override public Set<Pair<Type, Type>> getSupportedTypes() { return supportedTypes; } /** {@inheritDoc} */ @Override public boolean isSupported(Class<?> input, Class<?> output) { if (converter == null) { return true; } return TranslatorFactory.super.isSupported(input, output); } private static final class DefaultTypeConverter<I, O> implements TypeConverter<I, O> { private Class<I> input; private Class<O> output; private Method fromJson; private Method fromJsonStream; DefaultTypeConverter(Class<I> input, Class<O> output) { this.input = input; this.output = output; try { fromJsonStream = output.getDeclaredMethod("fromJson", Iterator.class); } catch (ReflectiveOperationException e) { // ignore } try { fromJson = output.getDeclaredMethod("fromJson", String.class); } catch (ReflectiveOperationException e) { // ignore } } /** {@inheritDoc} */ @Override public Pair<Type, Type> getSupportedType() { return new Pair<>(input, output); } /** {@inheritDoc} */ @Override public Input toInput(I in) { if (in instanceof Input) { return (Input) in; } Input converted = new Input(); if (in instanceof String) { converted.add((String) in); } else if (in instanceof byte[]) { converted.add((byte[]) in); } else { converted.add(BytesSupplier.wrapAsJson(in)); } return converted; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public O fromOutput(Output out) throws TranslateException { if (output == Output.class) { return (O) out; } int code = out.getCode(); BytesSupplier data = out.getData(); if (code != 200) { String error; if (data == null) { error = out.getMessage(); } else { error = out.getMessage() + " " + data.getAsString(); } throw new TranslateException(error); } if (output == String.class) { return (O) data.getAsString(); } try { if (data instanceof ChunkedBytesSupplier && fromJsonStream != null) { Iterator<String> it = new ChunkIterator((ChunkedBytesSupplier) data); return (O) fromJsonStream.invoke(null, it); } else if (fromJson != null) { return (O) fromJson.invoke(null, data.getAsString()); } } catch (ReflectiveOperationException e) { throw new TranslateException("Failed convert from json", e); } return JsonUtils.GSON.fromJson(data.getAsString(), output); } } private static final class ChunkIterator implements Iterator<String> { private ChunkedBytesSupplier cbs; private boolean error; ChunkIterator(ChunkedBytesSupplier cbs) { this.cbs = cbs; } @Override public boolean hasNext() { if (error) { return false; } return cbs.hasNext(); } @Override public String next() { try { return new String(cbs.nextChunk(20, TimeUnit.SECONDS), StandardCharsets.UTF_8); } catch (InterruptedException e) { error = true; return null; } } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/engine
java-sources/ai/djl/api/0.34.0/ai/djl/engine/rpc/TypeConverter.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.engine.rpc; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.translate.TranslateException; import ai.djl.util.Pair; import java.lang.reflect.Type; /** * A {code TypeConverter} interface defines how data type is converted to Input/Output. * * @param <I> the target input type * @param <O> the target output type */ public interface TypeConverter<I, O> { /** * Returns the supported type. * * @return the supported type */ Pair<Type, Type> getSupportedType(); /** * Convert the data type to {@link Input}. * * @param in the input data * @return the converted data */ Input toInput(I in); /** * Convert the {@link Output} to target data type. * * @param out the output data * @return the converted data */ O fromOutput(Output out) throws TranslateException; }
0
java-sources/ai/djl/api/0.34.0/ai/djl/engine
java-sources/ai/djl/api/0.34.0/ai/djl/engine/rpc/package-info.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains classes to interface with the underlying RPC engine. */ package ai.djl.engine.rpc;
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/inference/Predictor.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.inference; import ai.djl.Device; import ai.djl.Model; import ai.djl.inference.streaming.StreamingBlock; import ai.djl.inference.streaming.StreamingTranslator; import ai.djl.inference.streaming.StreamingTranslator.StreamOutput; import ai.djl.metric.Dimension; import ai.djl.metric.Metrics; import ai.djl.metric.Unit; import ai.djl.ndarray.LazyNDArray; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.nn.Block; import ai.djl.training.ParameterStore; import ai.djl.translate.Batchifier; import ai.djl.translate.TranslateException; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorContext; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; /** * The {@code Predictor} interface provides a session for model inference. * * <p>You can use a {@code Predictor}, with a specified {@link Translator}, to perform inference on * a {@link Model}. The following is example code that uses {@code Predictor}: * * <pre> * Model model = Model.load(modelDir, modelName); * * // User must implement Translator interface, read {@link Translator} for detail. * Translator&lt;String, String&gt; translator = new MyTranslator(); * * try (Predictor&lt;String, String&gt; predictor = model.newPredictor(translator)) { * String result = predictor.predict("What's up"); * } * </pre> * * <p>See the tutorials on: * * <ul> * <li><a * href="https://docs.djl.ai/master/docs/demos/jupyter/tutorial/03_image_classification_with_your_model.html">Inference * with a custom trained model</a> * <li><a * href="https://docs.djl.ai/master/docs/demos/jupyter/object_detection_with_model_zoo.html">Inference * with a model zoo model</a> * <li><a href="https://docs.djl.ai/master/docs/demos/jupyter/load_mxnet_model.html">Inference * with an MXNet model</a> * </ul> * * @param <I> the input type * @param <O> the output type * @see Model * @see Translator * @see <a href="https://docs.djl.ai/master/docs/development/memory_management.html">The guide on * memory management</a> * @see <a * href="https://github.com/deepjavalibrary/djl/blob/master/examples/docs/multithread_inference.md">The * guide on running multi-threaded inference</a> * @see <a * href="https://docs.djl.ai/master/docs/development/inference_performance_optimization.html">The * guide on inference performance optimization</a> */ public class Predictor<I, O> implements AutoCloseable { private static final Logger logger = LoggerFactory.getLogger(Predictor.class); protected Translator<I, O> translator; protected long timestamp; protected boolean prepared; protected Model model; protected NDManager manager; protected Metrics metrics; protected Block block; protected ParameterStore parameterStore; protected Dimension dimension; /** * Creates a new instance of {@code BasePredictor} with the given {@link Model} and {@link * Translator}. * * @param model the model on which the predictions are based * @param translator the translator to be used * @param device the device for prediction * @param copy whether to copy the parameters to the parameter store. If the device changes, it * will copy regardless */ public Predictor(Model model, Translator<I, O> translator, Device device, boolean copy) { if (!device.equals(model.getNDManager().getDevice())) { // Always copy during device changes copy = true; } this.model = model; this.manager = model.getNDManager().newSubManager(device); this.manager.setName("predictor"); this.translator = translator; block = model.getBlock(); parameterStore = new ParameterStore(manager, copy); dimension = new Dimension("Model", model.getProperty("metric_dimension", "model")); } /** * Predicts an item for inference. * * @param input the input * @return the output object defined by the user * @throws TranslateException if an error occurs during prediction */ public O predict(I input) throws TranslateException { return batchPredict(Collections.singletonList(input)).get(0); } /** * Predicts an item for inference. * * @param ctx the context for the {@code Predictor}. * @param ndList the input {@code NDList} * @return the output {@code NDList} * @throws TranslateException if an error occurs during prediction */ protected NDList predictInternal(TranslatorContext ctx, NDList ndList) throws TranslateException { logger.trace("Predictor input data: {}", ndList); if (ndList.isEmpty()) { return new NDList(); } return block.forward(parameterStore, ndList, false); } /** * Predicts a batch for inference. * * @param inputs a list of inputs * @return a list of output objects defined by the user * @throws TranslateException if an error occurs during prediction */ @SuppressWarnings({"PMD.AvoidRethrowingException", "PMD.IdenticalCatchBranches"}) public List<O> batchPredict(List<I> inputs) throws TranslateException { try (PredictorContext context = new PredictorContext(model, manager, metrics)) { if (!prepared) { translator.prepare(context); prepared = true; } if (translator.getBatchifier() == null) { List<O> ret = new ArrayList<>(inputs.size()); for (I input : inputs) { timestamp = System.nanoTime(); long begin = timestamp; NDList ndList = translator.processInput(context, input); preprocessEnd(ndList, 1); NDList result = predictInternal(context, ndList); predictEnd(result, 1); ret.add(translator.processOutput(context, result)); postProcessEnd(begin, 1); } return ret; } int batchSize = inputs.size(); timestamp = System.nanoTime(); long begin = timestamp; NDList ndList = translator.batchProcessInput(context, inputs); preprocessEnd(ndList, batchSize); NDList result = predictInternal(context, ndList); predictEnd(result, batchSize); List<O> ret = translator.batchProcessOutput(context, result); postProcessEnd(begin, batchSize); return ret; } catch (TranslateException e) { throw e; } catch (Exception e) { throw new TranslateException(e); } } /** * Predicts an item for inference. * * @param input the input * @return the output object defined by the user * @throws TranslateException if an error occurs during prediction */ @SuppressWarnings({"PMD.AvoidRethrowingException", "PMD.IdenticalCatchBranches"}) public StreamOutput<O> streamingPredict(I input) throws TranslateException { String streamingSupported = streamingSupportError(); if (streamingSupported != null) { throw new IllegalStateException(streamingSupported); } StreamingBlock streamingBlock = (StreamingBlock) block; StreamingTranslator<I, O> streamingTranslator = (StreamingTranslator<I, O>) translator; try { PredictorContext context = new PredictorContext(model, manager, metrics); if (!prepared) { translator.prepare(context); prepared = true; } Batchifier batchifier = translator.getBatchifier(); if (batchifier == null) { NDList ndList = translator.processInput(context, input); return streamingTranslator.processStreamOutput( context, streamingBlock .forwardStream(parameterStore, ndList, false) .onClose(context::close)); } // For the batched case, need to create singleton batch and unbatchify singleton NDList inputBatch = processInputs(context, Collections.singletonList(input)); return streamingTranslator.processStreamOutput( context, streamingBlock .forwardStream(parameterStore, inputBatch, false) .map( result -> { NDList[] unbatched = translator.getBatchifier().unbatchify(result); if (unbatched.length != 1) { throw new IllegalStateException( "Unexpected number of outputs from model"); } return unbatched[0]; }) .onClose(context::close)); } catch (TranslateException e) { throw e; } catch (Exception e) { throw new TranslateException(e); } } /** * Returns true if streaming is supported by the predictor, block, and translator. * * @return true if streaming is supported by the predictor, block, and translator */ public boolean supportsStreaming() { return streamingSupportError() == null; } private String streamingSupportError() { if (!(block instanceof StreamingBlock)) { return "streamingPredict() can only be called with a StreamingBlock"; } if (!(translator instanceof StreamingTranslator)) { return "streamingPredict() can only be called with a StreamingTranslator"; } return null; } /** * Attaches a Metrics param to use for benchmark. * * @param metrics the Metrics class */ public void setMetrics(Metrics metrics) { this.metrics = metrics; } private void waitToRead(NDList list) { for (NDArray array : list) { if (array instanceof LazyNDArray) { ((LazyNDArray) array).waitToRead(); } } } @SuppressWarnings("PMD.SignatureDeclareThrowsException") private NDList processInputs(TranslatorContext ctx, List<I> inputs) throws Exception { int batchSize = inputs.size(); NDList[] preprocessed = new NDList[batchSize]; for (int i = 0; i < batchSize; ++i) { preprocessed[i] = translator.processInput(ctx, inputs.get(i)); } return translator.getBatchifier().batchify(preprocessed); } private void preprocessEnd(NDList list, int batchSize) { if (metrics != null) { waitToRead(list); long tmp = System.nanoTime(); long duration = (tmp - timestamp) / 1000 / batchSize; timestamp = tmp; metrics.addMetric("Preprocess", duration, Unit.MICROSECONDS, dimension); } } private void predictEnd(NDList list, int batchSize) { if (metrics != null) { waitToRead(list); long tmp = System.nanoTime(); long duration = (tmp - timestamp) / 1000 / batchSize; timestamp = tmp; metrics.addMetric("Inference", duration, Unit.MICROSECONDS, dimension); } } private void postProcessEnd(long begin, int batchSize) { if (metrics != null) { long tmp = System.nanoTime(); long duration = (tmp - timestamp) / 1000 / batchSize; timestamp = tmp; metrics.addMetric("Postprocess", duration, Unit.MICROSECONDS, dimension); long prediction = (tmp - begin) / 1000; metrics.addMetric("Prediction", prediction, Unit.MICROSECONDS, dimension); } } /** {@inheritDoc} */ @Override public void close() { manager.close(); } /** {@inheritDoc} */ @SuppressWarnings("deprecation") @Override protected void finalize() throws Throwable { if (manager.isOpen()) { if (logger.isDebugEnabled()) { logger.warn("Predictor for {} was not closed explicitly.", model.getName()); } close(); } super.finalize(); } /** An implementation of {@link TranslatorContext}. */ public static final class PredictorContext implements TranslatorContext { private Model model; private NDManager predictorManager; private Metrics metrics; private NDManager ctxManager; private Map<String, Object> attachments; /** Constructs a new {@code PredictorContext} instance. */ public PredictorContext(Model model, NDManager predictorManager, Metrics metrics) { this.model = model; this.predictorManager = predictorManager; this.metrics = metrics; ctxManager = predictorManager.newSubManager(); ctxManager.setName("predictor ctx"); attachments = new ConcurrentHashMap<>(); } /** {@inheritDoc} */ @Override public Model getModel() { return model; } /** {@inheritDoc} */ @Override public NDManager getNDManager() { return ctxManager; } /** {@inheritDoc} */ @Override public NDManager getPredictorManager() { return predictorManager; } /** {@inheritDoc} */ @Override public Block getBlock() { return model.getBlock(); } /** {@inheritDoc} */ @Override public Metrics getMetrics() { return metrics; } /** {@inheritDoc} */ @Override public void close() { ctxManager.close(); } /** {@inheritDoc} */ @Override public Object getAttachment(String key) { return attachments.get(key); } /** {@inheritDoc} */ @Override public void setAttachment(String key, Object value) { attachments.put(key, value); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/inference/package-info.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains classes to implement inference tasks. * * @see ai.djl.inference.Predictor */ package ai.djl.inference;
0
java-sources/ai/djl/api/0.34.0/ai/djl/inference
java-sources/ai/djl/api/0.34.0/ai/djl/inference/streaming/ChunkedBytesSupplier.java
/* * Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.inference.streaming; import ai.djl.ndarray.BytesSupplier; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.nio.ByteBuffer; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicBoolean; /** A {link BytesSupplier} that supports chunked reading. */ public class ChunkedBytesSupplier implements BytesSupplier { private LinkedBlockingQueue<BytesSupplier> queue; private AtomicBoolean completed; /** Constructs a new {code ChunkedBytesSupplier} instance. */ public ChunkedBytesSupplier() { queue = new LinkedBlockingQueue<>(); completed = new AtomicBoolean(); } /** * Appends content to the {@code BytesSupplier}. * * @param data bytes to append * @param lastChunk true if this is the last chunk */ public void appendContent(byte[] data, boolean lastChunk) { appendContent(BytesSupplier.wrap(data), lastChunk); } /** * Appends content to the {@code BytesSupplier}. * * @param bytesSupplier BytesSupplier to append * @param lastChunk true if this is the last chunk */ public void appendContent(BytesSupplier bytesSupplier, boolean lastChunk) { if (lastChunk) { completed.set(true); } queue.offer(bytesSupplier); } /** * Returns {@code true} if has more chunk. * * @return {@code true} if has more chunk */ public boolean hasNext() { return !completed.get() || !queue.isEmpty(); } /** * Returns the next chunk. * * @param timeout the maximum time to wait * @param unit the time unit of the timeout argument * @return the next chunk * @throws InterruptedException if the thread is interrupted */ public BytesSupplier next(long timeout, TimeUnit unit) throws InterruptedException { BytesSupplier data = queue.poll(timeout, unit); if (data == null) { throw new IllegalStateException("Read chunk timeout."); } return data; } /** * Returns the next chunk. * * @param timeout the maximum time to wait * @param unit the time unit of the timeout argument * @return the next chunk * @throws InterruptedException if the thread is interrupted */ public byte[] nextChunk(long timeout, TimeUnit unit) throws InterruptedException { return next(timeout, unit).getAsBytes(); } /** * Retrieves and removes the head of chunk or returns {@code null} if data is not available. * * @return the head of chunk or returns {@code null} if data is not available */ public BytesSupplier poll() { return queue.poll(); } /** * Retrieves and removes the head of chunk or returns {@code null} if data is not available. * * @return the head of chunk or returns {@code null} if data is not available */ public byte[] pollChunk() { BytesSupplier data = poll(); return data == null ? null : data.getAsBytes(); } /** {@inheritDoc} */ @Override public byte[] getAsBytes() { try (ByteArrayOutputStream bos = new ByteArrayOutputStream()) { while (hasNext()) { bos.write(nextChunk(1, TimeUnit.MINUTES)); } return bos.toByteArray(); } catch (IOException | InterruptedException e) { throw new AssertionError("Failed to read BytesSupplier", e); } } /** {@inheritDoc} */ @Override public ByteBuffer toByteBuffer() { return ByteBuffer.wrap(getAsBytes()); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/inference
java-sources/ai/djl/api/0.34.0/ai/djl/inference/streaming/IteratorBytesSupplier.java
/* * Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.inference.streaming; import ai.djl.ndarray.BytesSupplier; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.nio.ByteBuffer; import java.util.Iterator; /** * An {@link IteratorBytesSupplier} is a streaming {@link BytesSupplier} suitable for synchronous * usage. */ public class IteratorBytesSupplier implements BytesSupplier, Iterator<byte[]> { private Iterator<BytesSupplier> sources; /** * Constructs an {@link IteratorBytesSupplier}. * * @param sources the source suppliers */ public IteratorBytesSupplier(Iterator<BytesSupplier> sources) { this.sources = sources; } /** {@inheritDoc} */ @Override public boolean hasNext() { return sources.hasNext(); } /** {@inheritDoc} */ @Override public byte[] next() { return sources.next().getAsBytes(); } /** {@inheritDoc} */ @Override public ByteBuffer toByteBuffer() { return ByteBuffer.wrap(getAsBytes()); } /** {@inheritDoc} */ @Override public byte[] getAsBytes() { try (ByteArrayOutputStream bos = new ByteArrayOutputStream()) { while (hasNext()) { bos.write(next()); } return bos.toByteArray(); } catch (IOException e) { throw new AssertionError("Failed to read BytesSupplier", e); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/inference
java-sources/ai/djl/api/0.34.0/ai/djl/inference/streaming/PublisherBytesSupplier.java
/* * Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.inference.streaming; import ai.djl.ndarray.BytesSupplier; import java.nio.ByteBuffer; import java.util.concurrent.CompletableFuture; import java.util.concurrent.CountDownLatch; import java.util.concurrent.TimeUnit; import java.util.function.Consumer; /** * An {@link PublisherBytesSupplier} is a streaming {@link BytesSupplier} suitable for reactive * asynchronous usage. */ public class PublisherBytesSupplier implements BytesSupplier { private Consumer<byte[]> subscriber; private CountDownLatch latch; private CompletableFuture<Void> future; /** Constructs a {@link PublisherBytesSupplier}. */ public PublisherBytesSupplier() { latch = new CountDownLatch(1); future = new CompletableFuture<>(); } /** * Appends content to the {@code BytesSupplier}. * * @param data bytes to append * @param lastChunk true if this is the last chunk */ public void appendContent(byte[] data, boolean lastChunk) { if (subscriber == null) { try { if (!latch.await(2, TimeUnit.MINUTES)) { throw new IllegalStateException("Wait for subscriber timeout."); } if (subscriber == null) { // workaround Spotbugs throw new IllegalStateException("subscriber is not set."); } } catch (InterruptedException e) { throw new IllegalStateException("Append content interrupted.", e); } } subscriber.accept(data); if (lastChunk) { subscriber.accept(null); future.complete(null); } } /** * Adds the subscriber to the {@link BytesSupplier} to get notified about additional data. * * @param subscriber a consumer function that will receive bytes when new daata is added and * null when completed * @return a {@code CompletableFuture} object */ public CompletableFuture<Void> subscribe(Consumer<byte[]> subscriber) { if (this.subscriber != null) { throw new IllegalStateException( "The PublisherBytesSupplier only allows a single Subscriber"); } this.subscriber = subscriber; latch.countDown(); return future; } /** {@inheritDoc} */ @Override public ByteBuffer toByteBuffer() { throw new UnsupportedOperationException("Not supported."); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/inference
java-sources/ai/djl/api/0.34.0/ai/djl/inference/streaming/StreamingBlock.java
/* * Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.inference.streaming; import ai.djl.ndarray.NDList; import ai.djl.nn.Block; import ai.djl.training.ParameterStore; import ai.djl.util.PairList; import java.util.Iterator; import java.util.Spliterator; import java.util.Spliterators; import java.util.stream.Stream; import java.util.stream.StreamSupport; /** * A {@link Block} possessing the additional streaming forward capabilities used by {@link * ai.djl.inference.Predictor#streamingPredict(Object)}. */ public interface StreamingBlock extends Block { /** * Applies the operating function of the block once, but returns the result in chunks. This * method should only be called on blocks that are initialized. * * @param parameterStore the parameter store * @param inputs the input NDList * @param training true for a training forward pass (turn on dropout and layerNorm) * @return the output of the forward pass */ default Stream<NDList> forwardStream( ParameterStore parameterStore, NDList inputs, boolean training) { return forwardStream(parameterStore, inputs, training, null); } /** * Applies the operating function of the block once, but returns the result in chunks. This * method should only be called on blocks that are initialized. * * @param parameterStore the parameter store * @param inputs the input NDList * @param training true for a training forward pass (turn on dropout and layerNorm) * @param params optional parameters * @return the output of the forward pass */ default Stream<NDList> forwardStream( ParameterStore parameterStore, NDList inputs, boolean training, PairList<String, Object> params) { Iterator<NDList> itr = forwardStreamIter(parameterStore, inputs, training, params); Spliterator<NDList> spitr = Spliterators.spliteratorUnknownSize(itr, Spliterator.NONNULL); return StreamSupport.stream(spitr, false); } /** * Applies the operating function of the block once, but returns the result in chunks. This * method should only be called on blocks that are initialized. * * @param parameterStore the parameter store * @param inputs the input NDList * @param training true for a training forward pass (turn on dropout and layerNorm) * @param params optional parameters * @return the output of the forward pass */ Iterator<NDList> forwardStreamIter( ParameterStore parameterStore, NDList inputs, boolean training, PairList<String, Object> params); }
0
java-sources/ai/djl/api/0.34.0/ai/djl/inference
java-sources/ai/djl/api/0.34.0/ai/djl/inference/streaming/StreamingTranslator.java
/* * Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.inference.streaming; import ai.djl.ndarray.NDList; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorContext; import java.util.stream.Stream; /** * An expansion of the {@link Translator} with postProcessing for the {@link StreamingBlock} (used * by {@link ai.djl.inference.Predictor#streamingPredict(Object)}. * * @param <I> the input type * @param <O> the output type */ public interface StreamingTranslator<I, O> extends Translator<I, O> { /** * Processes the output NDList to the corresponding output object. * * @param ctx the toolkit used for post-processing * @param list the output NDList after inference, usually immutable in engines like * PyTorch. @see <a href="https://github.com/deepjavalibrary/djl/issues/1774">Issue 1774</a> * @return the output object of expected type * @throws Exception if an error occurs during processing output */ @SuppressWarnings("PMD.SignatureDeclareThrowsException") StreamOutput<O> processStreamOutput(TranslatorContext ctx, Stream<NDList> list) throws Exception; /** * Returns what kind of {@link StreamOutput} this {@link StreamingTranslator} supports. * * @return what kind of {@link StreamOutput} this {@link StreamingTranslator} supports */ Support getSupport(); /** * Returns whether the {@link StreamingTranslator} supports iterative output. * * @return whether the {@link StreamingTranslator} supports iterative output * @see StreamOutput#getIterativeOutput() */ default boolean supportsIterative() { return getSupport().iterative(); } /** * Returns whether the {@link StreamingTranslator} supports iterative output. * * @return whether the {@link StreamingTranslator} supports iterative output * @see StreamOutput#getAsyncOutput() */ default boolean supportsAsync() { return getSupport().async(); } /** * A {@link StreamOutput} represents a streamable output type (either iterative or * asynchronous). * * <p>There are two modes for the {@link StreamOutput}. When using it, you must choose one of * the modes and can only access it once. Any other usage including trying both modes or trying * one mode twice will result in an {@link IllegalStateException}. * * <p>The first mode is the iterative mode which can be used by calling {@link * #getIterativeOutput()}, it returns a result that has an internal iterate method. When calling * the iterating method, it will compute an additional part of the output. * * <p>The second mode is asynchronous mode. Here, you can produce a mutable output object by * calling {@link #getAsyncOutput()}. Then, calling {@link #computeAsyncOutput()} will * synchronously compute the results and deposit them into the prepared output. This method * works best with manual threading where the worker can return the template result to another * thread and then continue to compute it. * * @param <O> the output type */ abstract class StreamOutput<O> { private O output; private boolean computed; /** * Returns a template object to be used with the async output. * * <p>This should only be an empty data structure until {@link #computeAsyncOutput()} is * called. * * @return a template object to be used with the async output */ public final O getAsyncOutput() { if (output != null) { throw new IllegalStateException("The StreamOutput can only be gotten once"); } if (computed) { throw new IllegalStateException( "Attempted to getAsyncOutput, but has already called getIterativeOutput." + " Only one kind of output can be used."); } output = buildAsyncOutput(); return output; } /** * Performs the internal implementation of {@link #getAsyncOutput()}. * * @return the output for {@link #getAsyncOutput()}. */ protected abstract O buildAsyncOutput(); /** * Computes the actual value and stores it in the object returned earlier by {@link * #getAsyncOutput()}. */ public final void computeAsyncOutput() { if (output == null) { throw new IllegalStateException( "Before calling computeAsyncOutput, you must first getAsyncOutput"); } if (computed) { throw new IllegalStateException("Attempted to computeAsyncOutput multiple times."); } computed = true; computeAsyncOutputInternal(output); } /** * Performs the internal implementation of {@link #computeAsyncOutput()}. * * @param output the output object returned by the earlier call to {@link * #getAsyncOutput()}. */ protected abstract void computeAsyncOutputInternal(O output); /** * Returns an iterative streamable output. * * @return an iterative streamable output */ public final O getIterativeOutput() { if (output != null) { throw new IllegalStateException( "Can't call getIterativeOutput after already using getAsyncOutput."); } if (computed) { throw new IllegalStateException( "Attempted to getIterativeOutput multiple times. getIterativeOutput can" + " only be called once"); } return getIterativeOutputInternal(); } /** * Performs the internal implementation of {@link #getIterativeOutput()}. * * @return the output for {@link #getIterativeOutput()} */ public abstract O getIterativeOutputInternal(); } /** What types of {@link StreamOutput}s are supported by a {@link StreamingTranslator}. */ enum Support { /** Supports {@link #iterative()} but not {@link #async()}. */ ITERATIVE(true, false), /** Supports {@link #async()} but not {@link #iterative()}. */ ASYNC(false, true), /** Supports both {@link #iterative()} and {@link #async()}. */ BOTH(true, true); private boolean iterative; private boolean async; Support(boolean iterative, boolean async) { this.iterative = iterative; this.async = async; } /** * Returns whether the {@link StreamingTranslator} supports iterative output. * * @return whether the {@link StreamingTranslator} supports iterative output * @see StreamOutput#getIterativeOutput() */ public boolean iterative() { return iterative; } /** * Returns whether the {@link StreamingTranslator} supports iterative output. * * @return whether the {@link StreamingTranslator} supports iterative output * @see StreamOutput#getAsyncOutput() */ public boolean async() { return async; } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/inference
java-sources/ai/djl/api/0.34.0/ai/djl/inference/streaming/package-info.java
/* * Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains classes to implement streaming inference tasks. * * @see ai.djl.inference.Predictor */ package ai.djl.inference.streaming;
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/metric/Dimension.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.metric; import com.google.gson.annotations.SerializedName; /** A class represents a metric dimension. */ public class Dimension { @SerializedName("Name") private String name; @SerializedName("Value") private String value; /** Constructs a new {@code Dimension} instance. */ public Dimension() {} /** * Constructs a new {@code Dimension} instance. * * @param name the dimension name * @param value the dimension value */ public Dimension(String name, String value) { this.name = name; this.value = value; } /** * Returns the dimension name. * * @return the dimension name */ public String getName() { return name; } /** * Returns the dimension value. * * @return the dimension value */ public String getValue() { return value; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/metric/Metric.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.metric; import com.google.gson.annotations.SerializedName; import java.net.InetAddress; import java.net.UnknownHostException; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * A class representing a single recorded {@code Metric} value. * * @see Metrics */ public class Metric { private static final Pattern PATTERN = Pattern.compile( "\\s*([\\w\\s]+)\\.([\\w\\s]+):([0-9\\-,.e]+)(?>\\|#([^|]*))?(?>\\|(\\d+))?(?>\\|([cgh]))?"); private static final Dimension[] HOST = {new Dimension("Host", getLocalHostName())}; @SerializedName("MetricName") private String metricName; private transient MetricType metricType; @SerializedName("Value") private String value; @SerializedName("Unit") private String unit; @SerializedName("Dimensions") private Dimension[] dimensions; @SerializedName("Timestamp") private String timestamp; /** * Constructs a {@code Metric} instance with the specified {@code metricName} and <code> * value</code>. * * @param metricName the metric name * @param value the metric value */ public Metric(String metricName, Number value) { this(metricName, value, Unit.COUNT); } /** * Constructs a {@code Metric} instance with the specified {@code metricName}, <code>value * </code>, and {@code unit}. * * @param metricName the metric name * @param value the metric value * @param unit the metric unit * @param dimensions the metric dimensions */ public Metric(String metricName, Number value, Unit unit, Dimension... dimensions) { this(metricName, null, value, unit, dimensions); } /** * Constructs a {@code Metric} instance with the specified {@code metricName}, <code>value * </code>, and {@code unit}. * * @param metricName the metric name * @param metricType the {@link MetricType} * @param value the metric value * @param unit the metric unit * @param dimensions the metric dimensions */ public Metric( String metricName, MetricType metricType, Number value, Unit unit, Dimension... dimensions) { this(metricName, metricType, value.toString(), unit.getValue(), null, dimensions); } /** * Constructs a new {@code Metric} instance. * * @param metricName the metric name * @param metricType the {@link MetricType} * @param value the metric value * @param unit the metric unit * @param timestamp the metric timestamp * @param dimensions the metric dimensions */ private Metric( String metricName, MetricType metricType, String value, String unit, String timestamp, Dimension... dimensions) { this.metricName = metricName; this.metricType = metricType; this.unit = unit; this.value = value; this.timestamp = timestamp; this.dimensions = dimensions.length == 0 ? HOST : dimensions; } /** * Returns a copy of the metric with a new name. * * @param name the new metric name * @return a copy of the metric */ public Metric copyOf(String name) { return new Metric(name, metricType, value, unit, timestamp, dimensions); } /** * Returns the name of the {@code Metric}. * * @return the metric name */ public String getMetricName() { return metricName; } /** * Returns the type of the {@code Metric}. * * @return the metric type */ public MetricType getMetricType() { return metricType; } /** * Returns the int value of the {@code Metric}. * * @return the metric value in int */ public Double getValue() { return Double.valueOf(value); } /** * Returns the unit of the {@code Metric}. * * @return the metric unit */ public Unit getUnit() { return Unit.fromValue(unit); } /** * Returns the timestamp of the {@code Metric}. * * @return the metric timestamp */ public String getTimestamp() { return timestamp; } /** * Returns the metric dimensions. * * @return the metric dimensions */ public Dimension[] getDimensions() { return dimensions; } /** * Returns a {@code Metric} instance parsed from the log string. * * @param line the input string * @return a {@code Metric} object */ public static Metric parse(String line) { // DiskAvailable.Gigabytes:311|#Host:localhost|1650953744320|c Matcher matcher = PATTERN.matcher(line); if (!matcher.matches()) { return null; } String metricName = matcher.group(1); String unit = matcher.group(2); String value = matcher.group(3); String dimension = matcher.group(4); String timestamp = matcher.group(5); String type = matcher.group(6); MetricType metricType = type == null ? null : MetricType.of(type); Dimension[] dimensions; if (dimension != null) { String[] dims = dimension.split(","); dimensions = new Dimension[dims.length]; int index = 0; for (String dim : dims) { String[] pair = dim.split(":"); if (pair.length == 2) { dimensions[index++] = new Dimension(pair[0], pair[1]); } } } else { dimensions = HOST; } return new Metric(metricName, metricType, value, unit, timestamp, dimensions); } /** {@inheritDoc} */ @Override public String toString() { StringBuilder sb = new StringBuilder(128); sb.append(metricName).append('.').append(unit).append(':').append(value); if (dimensions != null) { boolean first = true; for (Dimension dimension : dimensions) { if (dimension == null) { continue; } if (first) { sb.append("|#"); first = false; } else { sb.append(','); } sb.append(dimension.getName()).append(':').append(dimension.getValue()); } } if (timestamp != null) { sb.append('|').append(timestamp); } if (metricType != null) { sb.append('|').append(metricType.getValue()); } return sb.toString(); } private static String getLocalHostName() { try { return InetAddress.getLocalHost().getHostName(); } catch (UnknownHostException e) { return "Unknown"; } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/metric/MetricType.java
/* * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.metric; /** An enum holds metric type constants. */ public enum MetricType { COUNTER("c"), GAUGE("g"), HISTOGRAM("h"); private final String value; MetricType(String value) { this.value = value; } /** * Returns the string value of the {@code MetricType}. * * @return the string value of the {@code MetricType} */ public String getValue() { return value; } /** * Returns {@code Unit} instance from an string value. * * @param value the String value of Unit * @return the {@code Unit} */ public static MetricType of(String value) { if ("c".equals(value)) { return COUNTER; } else if ("g".equals(value)) { return GAUGE; } else if ("h".equals(value)) { return HISTOGRAM; } throw new IllegalArgumentException("Invalid MetricType value: " + value); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/metric/Metrics.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.metric; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.List; import java.util.Map; import java.util.Set; import java.util.concurrent.ConcurrentHashMap; import java.util.function.BiConsumer; import java.util.stream.Collectors; /** * A collection of {@link Metric} objects organized by metric name. * * <p>{@code Metric} is a utility class that is used in the {@link ai.djl.training.Trainer} and * {@link ai.djl.inference.Predictor} to capture performance and other metrics during runtime. * * <p>It is built as a collection of individual {@link Metric} classes. As a container for * individual metrics classes, {@code Metrics} stores them as time series data so that * metric-vs-timeline analysis can be performed. It also provides convenient statistical methods for * getting aggregated information, such as mean and percentile. The metrics is used to store key * performance indicators (KPIs) during inference and training runs. These KPIs include various * latencies, CPU and GPU memory consumption, losses, etc. * * <p>For more details about using the metrics, see the <a * href="https://github.com/deepjavalibrary/djl/blob/master/docs/how_to_collect_metrics.md">metrics * tutorial</a>. */ public class Metrics { private Map<String, List<Metric>> metrics; private int limit; private BiConsumer<Metrics, String> onLimit; /** Constructs an empty {@code Metrics} instance. */ public Metrics() { metrics = new ConcurrentHashMap<>(); } /** * Sets the max size for each metric. * * @param limit the max size for each metric */ public void setLimit(int limit) { this.limit = limit; } /** * Sets the callback function when hit the limit. * * @param onLimit the callback function */ public void setOnLimit(BiConsumer<Metrics, String> onLimit) { this.onLimit = onLimit; } /** * Adds a {@link Metric} to the collection. * * @param metric the {@link Metric} to be added */ public void addMetric(Metric metric) { List<Metric> list = metrics.computeIfAbsent( metric.getMetricName(), v -> Collections.synchronizedList(new ArrayList<>())); if (limit > 0 && list.size() >= limit) { if (onLimit != null) { onLimit.accept(this, metric.getMetricName()); } list.clear(); } list.add(metric); } /** * Adds a {@code Metric} given the metric's {@code name} and {@code value}. * * @param name the metric name * @param value the metric value */ public void addMetric(String name, Number value) { addMetric(new Metric(name, value)); } /** * Adds a {@code Metric} given the metric's {@code name}, {@code value}, and {@code unit}. * * @param name the metric name * @param value the metric value * @param unit the metric unit * @param dimensions the metric dimensions */ public void addMetric(String name, Number value, Unit unit, Dimension... dimensions) { addMetric(new Metric(name, value, unit, dimensions)); } /** * Returns {@code true} if the metrics object has a metric with the given name. * * @param name the name to check for * @return {@code true} if the metrics object has a metric with the given name */ public boolean hasMetric(String name) { return metrics.containsKey(name); } /** * Returns all {@link Metric}s with the specified metric name. * * @param name the name of the metric * @return a list of {@link Metric} with the specified metric name */ public List<Metric> getMetric(String name) { List<Metric> list = metrics.get(name); if (list == null) { return Collections.emptyList(); } return list; } /** * Returns a set of {@link String} metric names. * * @return a set of {@link String} metric names */ public Set<String> getMetricNames() { return metrics.keySet(); } /** * Returns the latest {@link Metric} with the specified metric name. * * @param name the name of the metric * @return the {@link Metric} with the specified metric name * @throws IllegalArgumentException if the given name is not found */ public Metric latestMetric(String name) { List<Metric> list = metrics.get(name); if (list == null || list.isEmpty()) { throw new IllegalArgumentException("Could not find metric: " + name); } return list.get(list.size() - 1); } /** * Returns a percentile {@link Metric} object for the specified metric name. * * @param metricName the name of the metric * @param percentile the percentile * @return the {@link Metric} object at specified {@code percentile} */ public Metric percentile(String metricName, int percentile) { List<Metric> metric = metrics.get(metricName); if (metric == null || metrics.isEmpty()) { throw new IllegalArgumentException("Metric name not found: " + metricName); } List<Metric> list = new ArrayList<>(metric); list.sort(Comparator.comparingDouble(Metric::getValue)); int index = metric.size() * percentile / 100; Metric m = list.get(index); return m.copyOf(m.getMetricName() + "_p" + percentile); } /** * Returns the average value of the specified metric. * * @param metricName the name of the metric * @return the average value of the specified metric */ public double mean(String metricName) { List<Metric> metric = metrics.get(metricName); if (metric == null || metrics.isEmpty()) { throw new IllegalArgumentException("Metric name not found: " + metricName); } return metric.stream().collect(Collectors.averagingDouble(Metric::getValue)); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/metric/Unit.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.metric; import java.util.concurrent.ConcurrentHashMap; /** An interface holds metric unit constants. */ public enum Unit { MICROSECONDS("Microseconds"), MILLISECONDS("Milliseconds"), BYTES("Bytes"), KILOBYTES("Kilobytes"), MEGABYTES("Megabytes"), GIGABYTES("Gigabytes"), TERABYTES("Terabytes"), BITS("Bits"), KILOBITS("Kilobits"), MEGABITS("Megabits"), GIGABITS("Gigabits"), TERABITS("Terabits"), PERCENT("Percent"), COUNT("Count"), BYTES_PER_SECOND("Bytes/Second"), KILOBYTES_PER_SECOND("Kilobytes/Second"), MEGABYTES_PER_SECOND("Megabytes/Second"), GIGABYTES_PER_SECOND("Gigabytes/Second"), TERABYTES_PER_SECOND("Terabytes/Second"), BITS_PER_SECOND("Bits/Second"), KILOBITS_PER_SECOND("Kilobits/Second"), MEGABITS_PER_SECOND("Megabits/Second"), GIGABITS_PER_SECOND("Gigabits/Second"), TERABITS_PER_SECOND("Terabits/Second"), COUNT_PER_SECOND("Count/Second"), COUNT_PER_ITEM("Count/Item"), NONE("None"); private static final ConcurrentHashMap<String, Unit> MAP = new ConcurrentHashMap<>(); static { for (Unit unit : values()) { MAP.put(unit.value, unit); } } private final String value; Unit(String value) { this.value = value; } /** * Returns the string value of the {@code Unit}. * * @return the string value of the {@code Unit} */ public String getValue() { return value; } /** * Returns {@code Unit} instance from an string value. * * @param value the String value of Unit * @return the {@code Unit} */ public static Unit fromValue(String value) { Unit ret = MAP.get(value); if (ret == null) { throw new IllegalArgumentException("Invalid unit value: " + value); } return ret; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/metric/package-info.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains classes to collect metrics information. * * @see ai.djl.metric.Metric * @see ai.djl.metric.Metrics */ package ai.djl.metric;
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/modality/Classifications.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.types.DataType; import ai.djl.translate.Ensembleable; import ai.djl.util.JsonSerializable; import ai.djl.util.JsonUtils; import com.google.gson.JsonElement; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.Iterator; import java.util.List; import java.util.stream.Collectors; /** * {@code Classifications} is the container that stores the classification results for * classification on a single input. */ public class Classifications implements JsonSerializable, Ensembleable<Classifications> { private static final long serialVersionUID = 1L; @SuppressWarnings("serial") protected List<String> classNames; @SuppressWarnings("serial") protected List<Double> probabilities; protected int topK; /** * Constructs a {@code Classifications} using a parallel list of classNames and probabilities. * * @param classNames the names of the classes * @param probabilities the probabilities for each class for the input */ public Classifications(List<String> classNames, List<Double> probabilities) { this.classNames = classNames; this.probabilities = probabilities; this.topK = 5; } /** * Constructs a {@code Classifications} using list of classNames parallel to an NDArray of * probabilities. * * @param classNames the names of the classes * @param probabilities the probabilities for each class for the input */ public Classifications(List<String> classNames, NDArray probabilities) { this(classNames, probabilities, 5); } /** * Constructs a {@code Classifications} using list of classNames parallel to an NDArray of * probabilities. * * @param classNames the names of the classes * @param probabilities the probabilities for each class for the input * @param topK the number of top classes to return */ public Classifications(List<String> classNames, NDArray probabilities, int topK) { this.classNames = classNames; if (probabilities.getDataType() == DataType.FLOAT32) { // Avoid converting float32 to float64 as this is not supported on MPS device this.probabilities = new ArrayList<>(); for (float prob : probabilities.toFloatArray()) { this.probabilities.add((double) prob); } } else { NDArray array = probabilities.toType(DataType.FLOAT64, false); this.probabilities = Arrays.stream(array.toDoubleArray()).boxed().collect(Collectors.toList()); array.close(); } this.topK = topK; } /** * Returns the classes that were classified into. * * @return the classes that were classified into */ public List<String> getClassNames() { return classNames; } /** * Returns the list of probabilities for each class (matching the order of the class names). * * @return the list of probabilities for each class (matching the order of the class names) */ public List<Double> getProbabilities() { return probabilities; } /** * Set the topK number of classes to be displayed. * * @param topK the number of top classes to return */ public final void setTopK(int topK) { this.topK = topK; } /** * Returns a classification item for each potential class for the input. * * @param <T> the type of classification item for the task * @return the list of classification items */ public <T extends Classification> List<T> items() { List<T> list = new ArrayList<>(classNames.size()); for (int i = 0; i < classNames.size(); i++) { list.add(item(i)); } return list; } /** * Returns the item at a given index based on the order used to construct the {@link * Classifications}. * * @param index the index of the item to return * @param <T> the type of classification item for the task * @return the item at the given index, equivalent to {@code classifications.items().get(index)} */ @SuppressWarnings("unchecked") public <T extends Classification> T item(int index) { return (T) new Classification(classNames.get(index), probabilities.get(index)); } /** * Returns a list of the top classes. * * @param <T> the type of the classification item for the task * @return the list of classification items for the best classes in order of best to worst */ public <T extends Classification> List<T> topK() { return topK(topK); } /** * Returns a list of the top {@code k} best classes. * * @param k the number of classes to return * @param <T> the type of the classification item for the task * @return the list of classification items for the best classes in order of best to worst */ public <T extends Classification> List<T> topK(int k) { List<T> items = items(); items.sort(Comparator.comparingDouble(Classification::getProbability).reversed()); int count = Math.min(items.size(), k); return items.subList(0, count); } /** * Returns the most likely class for the classification. * * @param <T> the type of the classification item for the task * @return the classification item */ public <T extends Classification> T best() { return item(probabilities.indexOf(Collections.max(probabilities))); } /** * Returns the result for a particular class name. * * @param className the class name to get results for * @param <T> the type of the classification item for the task * @return the (first if multiple) classification item */ public <T extends Classification> T get(String className) { int size = classNames.size(); for (int i = 0; i < size; i++) { if (classNames.get(i).equals(className)) { return item(i); } } return null; } /** {@inheritDoc} */ @Override public JsonElement serialize() { return JsonUtils.GSON.toJsonTree(topK()); } /** {@inheritDoc} */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("[\n"); List<Classification> list = topK(); int index = 0; for (Classification item : list) { sb.append('\t').append(item); if (++index < list.size()) { sb.append(','); } sb.append('\n'); } sb.append("]\n"); return sb.toString(); } /** {@inheritDoc} */ @Override public Classifications ensembleWith(Iterator<Classifications> it) { int size = probabilities.size(); List<Double> newProbabilities = new ArrayList<>(size); newProbabilities.addAll(probabilities); int count = 1; while (it.hasNext()) { ++count; Classifications c = it.next(); for (int i = 0; i < size; ++i) { newProbabilities.set(i, newProbabilities.get(i) + c.probabilities.get(i)); } if (!c.classNames.equals(classNames)) { throw new IllegalArgumentException( "Found a classNames mismatch during ensembling. All input Classifications" + " should have the same classNames, but some were different"); } } final int total = count; newProbabilities.replaceAll(p -> p / total); return new Classifications(classNames, newProbabilities); } /** * A {@code Classification} stores the classification result for a single class on a single * input. */ public static class Classification { private String className; private double probability; /** * Constructs a single class result for a classification. * * @param className the class name of the result * @param probability the probability of the result */ public Classification(String className, double probability) { this.className = className; this.probability = probability; } /** * Returns the class name. * * @return the class name */ public String getClassName() { return className; } /** * Returns the probability. * * <p>Probability explains how accurately the classifier identified the target class. * * @return the probability */ public double getProbability() { return probability; } /** {@inheritDoc} */ @Override public String toString() { StringBuilder sb = new StringBuilder(100); sb.append("{\"className\": \"").append(className).append("\", \"probability\": "); if (probability < 0.00001) { sb.append(String.format("%.1e", probability)); } else { probability = (int) (probability * 100000) / 100000f; sb.append(String.format("%.5f", probability)); } sb.append('}'); return sb.toString(); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/modality/Input.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality; import ai.djl.ndarray.BytesSupplier; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.util.Pair; import ai.djl.util.PairList; import java.io.ByteArrayOutputStream; import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.IOException; import java.io.InputStream; import java.nio.ByteBuffer; import java.nio.charset.StandardCharsets; import java.util.Map; import java.util.Map.Entry; import java.util.TreeMap; /** A class stores the generic input data for inference. */ public class Input { private static final long serialVersionUID = 1L; protected Map<String, String> properties; protected PairList<String, BytesSupplier> content; private boolean cancelled; /** Constructs a new {@code Input} instance. */ public Input() { properties = new TreeMap<>(String.CASE_INSENSITIVE_ORDER); content = new PairList<>(); } /** * Returns {@code true} if the input is cancelled. * * @return {@code true} if the input is cancelled. */ public boolean isCancelled() { return cancelled; } /** * Sets the cancelled status. * * @param cancelled the cancelled status */ public void setCancelled(boolean cancelled) { this.cancelled = cancelled; } /** * Returns the properties of the input. * * @return the properties of the input */ public Map<String, String> getProperties() { return properties; } /** * Sets the properties of the input. * * @param properties the properties of the input */ public void setProperties(Map<String, String> properties) { this.properties = properties; } /** * Adds a property to the input. * * @param key key with which the specified value is to be added * @param value value to be added with the specified key */ public void addProperty(String key, String value) { properties.put(key, value); } /** * Returns the value to which the specified key is mapped. * * @param key the key whose associated value is to be returned * @param defaultValue the default mapping of the key * @return the value to which the specified key is mapped */ public String getProperty(String key, String defaultValue) { return properties.getOrDefault(key, defaultValue); } /** * Returns the content of the input. * * <p>A {@code Input} may contains multiple data. * * @return the content of the input */ public PairList<String, BytesSupplier> getContent() { return content; } /** * Returns the content of the input as {@link ByteBuffer}s. * * <p>A {@code Input} may contains multiple data. * * @return the content of the input as {@link ByteBuffer}s. */ public PairList<String, ByteBuffer> getContentAsBuffers() { PairList<String, ByteBuffer> result = new PairList<>(content.size()); for (Pair<String, BytesSupplier> c : content) { result.add(c.getKey(), c.getValue().toByteBuffer()); } return result; } /** * Sets the content of the input. * * @param content the content of the input */ public void setContent(PairList<String, BytesSupplier> content) { this.content = content; } /** * Appends an item at the end of the input. * * @param data data to be added */ public void add(byte[] data) { add(BytesSupplier.wrap(data)); } /** * Appends an item at the end of the input. * * @param data data to be added */ public void add(String data) { add(BytesSupplier.wrap(data.getBytes(StandardCharsets.UTF_8))); } /** * Appends an item at the end of the input. * * @param data data to be added */ public void add(BytesSupplier data) { add(null, data); } /** * Adds a key/value pair to the input content. * * @param key key with which the specified data is to be added * @param data data to be added with the specified key */ public void add(String key, byte[] data) { add(key, BytesSupplier.wrap(data)); } /** * Adds a key/value pair to the input content. * * @param key key with which the specified data is to be added * @param data data to be added with the specified key */ public void add(String key, String data) { add(key, BytesSupplier.wrap(data)); } /** * Adds a key/value pair to the input content. * * @param key key with which the specified data is to be added * @param data data to be added with the specified key */ public void add(String key, BytesSupplier data) { content.add(key, data); } /** * Inserts the specified element at the specified position in the input. * * @param index the index at which the specified element is to be inserted * @param key key with which the specified data is to be added * @param data data to be added with the specified key */ public void add(int index, String key, BytesSupplier data) { content.add(index, key, data); } /** * Returns the default data item. * * @return the default data item */ public BytesSupplier getData() { if (content.isEmpty()) { return null; } BytesSupplier data = get("data"); if (data == null) { return get(0); } return data; } /** * Returns the default data as {@code NDList}. * * @param manager {@link NDManager} used to create this {@code NDArray} * @return the default data as {@code NDList} */ public NDList getDataAsNDList(NDManager manager) { if (content.isEmpty()) { return null; // NOPMD } int index = content.indexOf("data"); if (index < 0) { index = 0; } return getAsNDList(manager, index); } /** * Returns the element for the first key found in the {@code Input}. * * @param key the key of the element to get * @return the element for the first key found in the {@code Input} */ public BytesSupplier get(String key) { return content.get(key); } /** * Returns the element at the specified position in the {@code Input}. * * @param index the index of the element to return * @return the element at the specified position in the {@code Input} */ public BytesSupplier get(int index) { return content.valueAt(index); } /** * Returns the value as {@code byte[]} for the first key found in the {@code Input}. * * @param key the key of the element to get * @return the value as {@code byte[]} for the first key found in the {@code Input} */ public byte[] getAsBytes(String key) { BytesSupplier data = content.get(key); if (data == null) { return null; // NOPMD } return data.getAsBytes(); } /** * Returns the value as {@code byte[]} at the specified position in the {@code Input}. * * @param index the index of the element to return * @return the value as {@code byte[]} at the specified position in the {@code Input} */ public byte[] getAsBytes(int index) { return content.valueAt(index).getAsBytes(); } /** * Returns the value as {@code byte[]} for the first key found in the {@code Input}. * * @param key the key of the element to get * @return the value as {@code byte[]} for the first key found in the {@code Input} */ public String getAsString(String key) { BytesSupplier data = content.get(key); if (data == null) { return null; } return data.getAsString(); } /** * Returns the value as {@code byte[]} at the specified position in the {@code Input}. * * @param index the index of the element to return * @return the value as {@code byte[]} at the specified position in the {@code Input} */ public String getAsString(int index) { return content.valueAt(index).getAsString(); } /** * Returns the value as {@code NDArray} for the first key found in the {@code Input}. * * @param manager {@link NDManager} used to create this {@code NDArray} * @param key the key of the element to get * @return the value as {@code NDArray} for the first key found in the {@code Input} */ public NDArray getAsNDArray(NDManager manager, String key) { int index = content.indexOf(key); if (index < 0) { return null; } return getAsNDArray(manager, index); } /** * Returns the value as {@code NDArray} at the specified position in the {@code Input}. * * @param manager {@link NDManager} used to create this {@code NDArray} * @param index the index of the element to return * @return the value as {@code NDArray} at the specified position in the {@code Input} */ public NDArray getAsNDArray(NDManager manager, int index) { BytesSupplier data = content.valueAt(index); if (data instanceof NDArray) { return (NDArray) data; } return NDArray.decode(manager, data.getAsBytes()); } /** * Returns the value as {@code NDList} for the first key found in the {@code Input}. * * @param manager {@link NDManager} used to create this {@code NDArray} * @param key the key of the element to get * @return the value as {@code NDList} for the first key found in the {@code Input} */ public NDList getAsNDList(NDManager manager, String key) { int index = content.indexOf(key); if (index < 0) { return null; // NOPMD } return getAsNDList(manager, index); } /** * Returns the value as {@code NDList} at the specified position in the {@code Input}. * * @param manager {@link NDManager} used to create this {@code NDArray} * @param index the index of the element to return * @return the value as {@code NDList} at the specified position in the {@code Input} */ public NDList getAsNDList(NDManager manager, int index) { BytesSupplier data = content.valueAt(index); if (data instanceof NDList) { return (NDList) data; } else if (data instanceof NDArray) { return new NDList((NDArray) data); } return NDList.decode(manager, data.getAsBytes()); } /** * Encodes all data in the input to a binary form. * * @return the binary encoding * @throws IOException if it fails to encode part of the data */ public byte[] encode() throws IOException { try (ByteArrayOutputStream baos = new ByteArrayOutputStream()) { DataOutputStream os = new DataOutputStream(baos); os.writeLong(serialVersionUID); encodeInputBase(os); return baos.toByteArray(); } } protected void encodeInputBase(DataOutputStream os) throws IOException { os.writeInt(properties.size()); for (Entry<String, String> property : properties.entrySet()) { os.writeUTF(property.getKey()); os.writeUTF(property.getValue()); } os.writeInt(content.size()); for (Pair<String, BytesSupplier> c : content) { if (c.getKey() != null) { os.writeBoolean(true); os.writeUTF(c.getKey()); } else { os.writeBoolean(false); } byte[] cVal = c.getValue().getAsBytes(); os.writeInt(cVal.length); os.write(cVal); } } /** * Decodes the input from {@link #encode()}. * * @param is the data to decode from * @return the decoded input * @throws IOException if it fails to decode part of the input */ public static Input decode(InputStream is) throws IOException { try (DataInputStream dis = new DataInputStream(is)) { if (serialVersionUID != dis.readLong()) { throw new IllegalArgumentException("Invalid Input version"); } Input input = new Input(); decodeInputBase(dis, input); return input; } } protected static void decodeInputBase(DataInputStream dis, Input input) throws IOException { int numProperties = dis.readInt(); for (int i = 0; i < numProperties; i++) { String key = dis.readUTF(); String val = dis.readUTF(); input.addProperty(key, val); } int numContent = dis.readInt(); for (int i = 0; i < numContent; i++) { boolean hasKey = dis.readBoolean(); String key = null; if (hasKey) { key = dis.readUTF(); } int contentLength = dis.readInt(); byte[] contents = new byte[contentLength]; int contentRead = 0; while (contentRead < contentLength) { int newRead = dis.read(contents, contentRead, contentLength); if (newRead < 0) { throw new IOException("Failed to read Input or Output content"); } contentRead += newRead; } input.add(key, contents); } } /** * Checks for deep equality with another input. * * @param o the other input. * @return whether they and all properties, content, and data are equal */ public boolean deepEquals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } Input input = (Input) o; return properties.equals(input.properties) && getContentAsBuffers().equals(input.getContentAsBuffers()); } /** {@inheritDoc} * */ @Override public String toString() { StringBuilder sb = new StringBuilder(1000); sb.append("Input:\n"); for (Entry<String, String> property : properties.entrySet()) { sb.append("Property ") .append(property.getKey()) .append(": ") .append(property.getValue()) .append('\n'); } for (Pair<String, BytesSupplier> c : content) { sb.append("Content ") .append(c.getKey()) .append(": ") .append(c.getValue().toString()) .append('\n'); } sb.append('\n'); return sb.toString(); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/modality/Output.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality; import java.io.ByteArrayOutputStream; import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.IOException; import java.io.InputStream; import java.util.Objects; /** A class stores the generic inference results. */ public class Output extends Input { private static final long serialVersionUID = 1L; private int code; private String message; /** Constructs a {@code Output} instance. */ public Output() { this(200, "OK"); } /** * Constructs a {@code Output} with specified {@code requestId}, {@code code} and {@code * message}. * * @param code the status code of the output * @param message the status message of the output */ public Output(int code, String message) { this.code = code; this.message = message; } /** * Returns the status code of the output. * * @return the status code of the output */ public int getCode() { return code; } /** * Sets the status code of the output. * * @param code the status code of the output */ public void setCode(int code) { this.code = code; } /** * Returns the status code of the output. * * @return the status code of the output */ public String getMessage() { return message; } /** * Sets the status message of the output. * * @param message the status message of the output */ public void setMessage(String message) { this.message = message; } /** * Encodes all data in the output to a binary form. * * @return the binary encoding * @throws IOException if it fails to encode part of the data */ @Override public byte[] encode() throws IOException { try (ByteArrayOutputStream baos = new ByteArrayOutputStream()) { DataOutputStream os = new DataOutputStream(baos); os.writeLong(serialVersionUID); encodeInputBase(os); os.writeInt(code); os.writeUTF(message); return baos.toByteArray(); } } /** * Decodes the output from {@link #encode()}. * * @param is the data to decode from * @return the decoded output * @throws IOException if it fails to decode part of the output */ public static Output decode(InputStream is) throws IOException { try (DataInputStream dis = new DataInputStream(is)) { if (serialVersionUID != dis.readLong()) { throw new IllegalArgumentException("Invalid Input version"); } Output output = new Output(); decodeInputBase(dis, output); output.code = dis.readInt(); output.message = dis.readUTF(); return output; } } /** * Checks for deep equality with another output. * * @param o the other output. * @return whether they and all properties, content, and data are equal */ @Override public boolean deepEquals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } if (!super.deepEquals(o)) { return false; } Output output = (Output) o; return code == output.code && Objects.equals(message, output.message); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl
java-sources/ai/djl/api/0.34.0/ai/djl/modality/package-info.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains utility classes for each of the predefined modalities. */ package ai.djl.modality;
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio/Audio.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.audio; /** * {@code Audio} is a container of an audio in DJL. The raw data of the audio is wrapped in a float * array. */ public class Audio { private float[] data; private float sampleRate; private int channels; /** * Constructs a new {@code Audio} instance. * * @param data the wrapped float array data */ public Audio(float[] data) { this.data = data; } /** * Constructs a new {@code Audio} instance. * * @param data the wrapped float array data * @param sampleRate the sample rate * @param channels number of channels */ public Audio(float[] data, float sampleRate, int channels) { this.data = data; this.sampleRate = sampleRate; this.channels = channels; } /** * Returns the float array data. * * @return The float array data. */ public float[] getData() { return data; } /** * Returns the sample rate. * * @return sample rate. */ public float getSampleRate() { return sampleRate; } /** * Returns the number of channels of an audio file. * * @return the number of channels of an audio file */ public int getChannels() { return channels; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio/AudioFactory.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.audio; import ai.djl.ndarray.NDArray; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.IOException; import java.io.InputStream; import java.net.URI; import java.net.URL; import java.nio.file.Path; import java.nio.file.Paths; /** * {@code AudioFactory} contains audio creation mechanism on top of different platforms like PC and * Android. System will choose appropriate Factory based on the supported audio type. */ public abstract class AudioFactory { private static final Logger logger = LoggerFactory.getLogger(AudioFactory.class); private static final String[] FACTORIES = { "ai.djl.audio.FFmpegAudioFactory", "ai.djl.modality.audio.SampledAudioFactory" }; protected int channels; protected int sampleRate; protected int sampleFormat; /** * Constructs a new instance of {@code AudioFactory}. * * @return a new instance of {@code AudioFactory} */ public static AudioFactory newInstance() { for (String f : FACTORIES) { try { Class<? extends AudioFactory> clazz = Class.forName(f).asSubclass(AudioFactory.class); return clazz.getDeclaredConstructor().newInstance(); } catch (ReflectiveOperationException e) { logger.trace("", e); } } throw new IllegalStateException("Failed to create AudioFactory!"); } /** * Returns {@link Audio} from file. * * @param path the path to the audio * @return {@link Audio} * @throws IOException Audio not found or not readable */ public abstract Audio fromFile(Path path) throws IOException; /** * Returns {@link Audio} from URL. * * @param url the URL to load from * @return {@link Audio} * @throws IOException URL is not valid. */ public Audio fromUrl(URL url) throws IOException { try (InputStream is = url.openStream()) { return fromInputStream(is); } } /** * Returns {@link Audio} from URL. * * @param url the String represent URL to load from * @return {@link Audio} * @throws IOException URL is not valid. */ public Audio fromUrl(String url) throws IOException { URI uri = URI.create(url); if (uri.isAbsolute()) { return fromUrl(uri.toURL()); } return fromFile(Paths.get(url)); } /** * Returns {@link Audio} from {@link InputStream}. * * @param is {@link InputStream} * @return {@link Audio} * @throws IOException image cannot be read from input stream. */ public abstract Audio fromInputStream(InputStream is) throws IOException; /** * Returns {@link Audio} from raw data. * * @param data the raw data in float array form. * @return {@link Audio} */ public Audio fromData(float[] data) { return new Audio(data); } /** * Returns {@link Audio} from {@link NDArray}. * * @param array the NDArray with CHW format * @return {@link Audio} */ public Audio fromNDArray(NDArray array) { throw new UnsupportedOperationException("Not supported!"); } /** * Sets the number of channels for {@link AudioFactory} to use. * * @param channels the number of channels for {@link AudioFactory} to use * @return this factory */ public AudioFactory setChannels(int channels) { this.channels = channels; return this; } /** * Returns the channels of this factory. * * @return the channels of this factory */ public int getChannels() { return channels; } /** * Sets the sampleRate for {@link AudioFactory} to use. * * @param sampleRate the sampleRate for {@link AudioFactory} to use * @return this factory */ public AudioFactory setSampleRate(int sampleRate) { this.sampleRate = sampleRate; return this; } /** * Returns the sample rate. * * @return the sample rate in integer */ public int getSampleRate() { return sampleRate; } /** * Sets the audio sample format for {@link AudioFactory} to use. * * @param sampleFormat the sample format * @return this factory. */ public AudioFactory setSampleFormat(int sampleFormat) { this.sampleFormat = sampleFormat; return this; } /** * Returns the sample format name of the audio. * * @return the format name of the audio */ public int getSampleFormat() { return sampleFormat; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio/SampledAudioFactory.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.audio; import ai.djl.modality.cv.ImageFactory; import java.io.BufferedInputStream; import java.io.IOException; import java.io.InputStream; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.ShortBuffer; import java.nio.file.Path; import javax.sound.sampled.AudioFormat; import javax.sound.sampled.AudioInputStream; import javax.sound.sampled.AudioSystem; import javax.sound.sampled.UnsupportedAudioFileException; /** * {@code SampledAudioFactory} is an implementation of {@link ImageFactory} using the Java Sampled * Package. * * @see <a * href="http://google.com">https://docs.oracle.com/javase/tutorial/sound/sampled-overview.html</a> */ public class SampledAudioFactory extends AudioFactory { /** {@inheritDoc} */ @Override public AudioFactory setChannels(int channel) { if (channel != 0) { throw new UnsupportedOperationException("SampledAudioFactory only support 1 channel."); } return this; } /** {@inheritDoc} */ @Override public AudioFactory setSampleRate(int sampleRate) { throw new UnsupportedOperationException("Not supported."); } /** {@inheritDoc} */ @Override public AudioFactory setSampleFormat(int sampleFormat) { throw new UnsupportedOperationException("Not supported."); } /** {@inheritDoc} */ @Override public Audio fromFile(Path path) throws IOException { try (AudioInputStream ais = AudioSystem.getAudioInputStream(path.toFile())) { AudioFormat format = ais.getFormat(); byte[] bytes = read(ais); float[] floats = bytesToFloats(bytes, format.isBigEndian()); return new Audio(floats, format.getSampleRate(), format.getChannels()); } catch (UnsupportedAudioFileException e) { throw new IOException("Unsupported Audio file", e); } } /** {@inheritDoc} */ @Override public Audio fromInputStream(InputStream is) throws IOException { try (AudioInputStream ais = AudioSystem.getAudioInputStream(new BufferedInputStream(is))) { AudioFormat format = ais.getFormat(); byte[] bytes = read(ais); float[] floats = bytesToFloats(bytes, format.isBigEndian()); return new Audio(floats, format.getSampleRate(), format.getChannels()); } catch (UnsupportedAudioFileException e) { throw new IOException("Unsupported Audio file", e); } } private byte[] read(AudioInputStream ais) throws IOException { AudioFormat format = ais.getFormat(); int frameSize = format.getFrameSize(); // Some audio formats may have unspecified frame size if (frameSize == AudioSystem.NOT_SPECIFIED) { frameSize = 1; } int size = (int) ais.getFrameLength() * frameSize; byte[] ret = new byte[size]; byte[] buf = new byte[1024]; int offset = 0; int read; while ((read = ais.read(buf)) != -1) { System.arraycopy(buf, 0, ret, offset, read); offset += read; } return ret; } private float[] bytesToFloats(byte[] bytes, boolean isBigEndian) { ByteOrder order = isBigEndian ? ByteOrder.BIG_ENDIAN : ByteOrder.LITTLE_ENDIAN; ShortBuffer buffer = ByteBuffer.wrap(bytes).order(order).asShortBuffer(); short[] shorts = new short[buffer.capacity()]; buffer.get(shorts); // Feed in float values between -1.0f and 1.0f. float[] floats = new float[shorts.length]; for (int i = 0; i < shorts.length; i++) { floats[i] = ((float) shorts[i]) / (float) Short.MAX_VALUE; } return floats; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio/package-info.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains utility classes for audio processing. */ package ai.djl.modality.audio;
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio/translator/SpeechRecognitionTranslator.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.audio.translator; import ai.djl.modality.audio.Audio; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.types.Shape; import ai.djl.translate.NoBatchifyTranslator; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorContext; /** * A {@link Translator} that post-process the {@link Audio} into {@link String} to get a text * translation of the audio. */ public class SpeechRecognitionTranslator implements NoBatchifyTranslator<Audio, String> { /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, Audio input) throws Exception { float[] data = input.getData(); NDArray array = ctx.getNDManager().create(data, new Shape(1, data.length)); return new NDList(array); } /** {@inheritDoc} */ @Override public String processOutput(TranslatorContext ctx, NDList list) throws Exception { return list.get(0).toStringArray()[0]; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio/translator/SpeechRecognitionTranslatorFactory.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.audio.translator; import ai.djl.Model; import ai.djl.modality.audio.Audio; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import ai.djl.util.Pair; import java.io.Serializable; import java.lang.reflect.Type; import java.util.HashSet; import java.util.Map; import java.util.Set; /** A {@link TranslatorFactory} that creates a {@link SpeechRecognitionTranslator} instance. */ public class SpeechRecognitionTranslatorFactory implements TranslatorFactory, Serializable { private static final long serialVersionUID = 1L; private static final Set<Pair<Type, Type>> SUPPORTED_TYPES = new HashSet<>(); static { SUPPORTED_TYPES.add(new Pair<>(Audio.class, String.class)); } /** {@inheritDoc} */ @Override public Set<Pair<Type, Type>> getSupportedTypes() { return SUPPORTED_TYPES; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <I, O> Translator<I, O> newInstance( Class<I> input, Class<O> output, Model model, Map<String, ?> arguments) { if (input == Audio.class && output == String.class) { return (Translator<I, O>) new SpeechRecognitionTranslator(); } throw new IllegalArgumentException("Unsupported input/output types."); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio
java-sources/ai/djl/api/0.34.0/ai/djl/modality/audio/translator/package-info.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains utility classes for speech recognition processing. */ package ai.djl.modality.audio.translator;
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/BufferedImageFactory.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv; import ai.djl.modality.cv.output.BoundingBox; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.output.Joints; import ai.djl.modality.cv.output.Landmark; import ai.djl.modality.cv.output.Mask; import ai.djl.modality.cv.output.Point; import ai.djl.modality.cv.output.Rectangle; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.util.RandomUtils; import java.awt.BasicStroke; import java.awt.Color; import java.awt.FontMetrics; import java.awt.Graphics2D; import java.awt.RenderingHints; import java.awt.image.BufferedImage; import java.awt.image.DataBufferByte; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.nio.ByteBuffer; import java.nio.file.Path; import java.util.List; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; import javax.imageio.ImageIO; /** {@code BufferedImageFactory} is the default implementation of {@link ImageFactory}. */ public class BufferedImageFactory extends ImageFactory { static { if (System.getProperty("apple.awt.UIElement") == null) { // disables coffee cup image showing up on macOS System.setProperty("apple.awt.UIElement", "true"); } } /** {@inheritDoc} */ @Override public Image fromFile(Path path) throws IOException { BufferedImage image = ImageIO.read(path.toFile()); if (image == null) { throw new IOException("Failed to read image from: " + path); } return new BufferedImageWrapper(image); } /** {@inheritDoc} */ @Override public Image fromInputStream(InputStream is) throws IOException { BufferedImage image = ImageIO.read(is); if (image == null) { throw new IOException("Failed to read image from input stream"); } return new BufferedImageWrapper(image); } /** {@inheritDoc} */ @Override public Image fromImage(Object image) { if (!(image instanceof BufferedImage)) { throw new IllegalArgumentException("only BufferedImage allowed"); } return new BufferedImageWrapper((BufferedImage) image); } /** {@inheritDoc} */ @Override public Image fromNDArray(NDArray array) { Shape shape = array.getShape(); if (shape.dimension() == 4) { throw new UnsupportedOperationException("Batch is not supported"); } else if (shape.get(0) == 1 || shape.get(2) == 1) { throw new UnsupportedOperationException("Grayscale image is not supported"); } int[] raw = array.toType(DataType.UINT8, false).toUint8Array(); if (NDImageUtils.isCHW(shape)) { int height = (int) shape.get(1); int width = (int) shape.get(2); BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); int[] pixels = new int[width * height]; int imageArea = height * width; for (int h = 0; h < height; ++h) { for (int w = 0; w < width; ++w) { int index = h * width + w; int red = raw[index]; int green = raw[imageArea + index]; int blue = raw[imageArea * 2 + index]; pixels[index] = (red << 16) | (green << 8) | blue; } } image.setRGB(0, 0, width, height, pixels, 0, width); return new BufferedImageWrapper(image); } int height = (int) shape.get(0); int width = (int) shape.get(1); BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); int[] pixels = new int[width * height]; for (int h = 0; h < height; ++h) { for (int w = 0; w < width; ++w) { int index = h * width + w; int pos = index * 3; int red = raw[pos]; int green = raw[pos + 1]; int blue = raw[pos + 2]; pixels[index] = (red << 16) | (green << 8) | blue; } } image.setRGB(0, 0, width, height, pixels, 0, width); return new BufferedImageWrapper(image); } /** {@inheritDoc} */ @Override public Image fromPixels(int[] pixels, int width, int height) { BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB); image.setRGB(0, 0, width, height, pixels, 0, width); return new BufferedImageWrapper(image); } protected void save(BufferedImage image, OutputStream os, String type) throws IOException { ImageIO.write(image, type, os); } private class BufferedImageWrapper implements Image { private BufferedImage image; BufferedImageWrapper(BufferedImage image) { this.image = image; } /** {@inheritDoc} */ @Override public int getWidth() { return image.getWidth(); } /** {@inheritDoc} */ @Override public int getHeight() { return image.getHeight(); } /** {@inheritDoc} */ @Override public BufferedImage getWrappedImage() { return image; } /** {@inheritDoc} */ @Override public BufferedImageWrapper resize(int width, int height, boolean copy) { if (!copy && image.getWidth() == width && image.getHeight() == height) { return this; } java.awt.Image img = image.getScaledInstance(width, height, java.awt.Image.SCALE_SMOOTH); BufferedImage scaled = new BufferedImage(width, height, image.getType()); Graphics2D g2d = scaled.createGraphics(); g2d.drawImage(img, 0, 0, null); g2d.dispose(); return new BufferedImageWrapper(scaled); } /** {@inheritDoc} */ @Override public Image getSubImage(int x, int y, int w, int h) { return new BufferedImageWrapper(image.getSubimage(x, y, w, h)); } /** {@inheritDoc} */ @Override public Image duplicate() { BufferedImage copy = new BufferedImage(image.getWidth(), image.getHeight(), image.getType()); byte[] sourceData = ((DataBufferByte) image.getRaster().getDataBuffer()).getData(); byte[] biData = ((DataBufferByte) copy.getRaster().getDataBuffer()).getData(); System.arraycopy(sourceData, 0, biData, 0, sourceData.length); return new BufferedImageWrapper(copy); } /** {@inheritDoc} */ @Override public Image getMask(int[][] mask) { int w = mask[0].length; int h = mask.length; BufferedImageWrapper resized = resize(w, h, true); BufferedImage img = resized.getWrappedImage(); int[] pixels = new int[w * h]; int index = 0; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { if (mask[y][x] != 0) { pixels[index] = img.getRGB(x, y); } index++; } } return fromPixels(pixels, w, h); } private void convertIdNeeded() { if (image.getType() == BufferedImage.TYPE_INT_ARGB) { return; } BufferedImage newImage = new BufferedImage( image.getWidth(), image.getHeight(), BufferedImage.TYPE_INT_ARGB); Graphics2D g = newImage.createGraphics(); g.drawImage(image, 0, 0, null); g.dispose(); image = newImage; } /** {@inheritDoc} */ @Override public NDArray toNDArray(NDManager manager, Flag flag) { int width = image.getWidth(); int height = image.getHeight(); int channel; if (flag == Flag.GRAYSCALE) { channel = 1; } else { channel = 3; } ByteBuffer bb = manager.allocateDirect(channel * height * width); if (image.getType() == BufferedImage.TYPE_BYTE_GRAY) { int[] data = new int[width * height]; image.getData().getPixels(0, 0, width, height, data); for (int gray : data) { byte b = (byte) gray; bb.put(b); if (flag != Flag.GRAYSCALE) { bb.put(b); bb.put(b); } } } else { // get an array of integer pixels in the default RGB color mode int[] pixels = image.getRGB(0, 0, width, height, null, 0, width); for (int rgb : pixels) { int red = (rgb >> 16) & 0xFF; int green = (rgb >> 8) & 0xFF; int blue = rgb & 0xFF; if (flag == Flag.GRAYSCALE) { int gray = Math.round(0.299f * red + 0.587f * green + 0.114f * blue); bb.put((byte) gray); } else { bb.put((byte) red); bb.put((byte) green); bb.put((byte) blue); } } } bb.rewind(); return manager.create(bb, new Shape(height, width, channel), DataType.UINT8); } /** {@inheritDoc} */ @Override public void save(OutputStream os, String type) throws IOException { BufferedImageFactory.this.save(image, os, type); } /** {@inheritDoc} */ @Override public List<BoundingBox> findBoundingBoxes() { // TODO: Add grayscale conversion and use BoundFinder to implement throw new UnsupportedOperationException("Not supported for BufferedImage"); } /** {@inheritDoc} */ @Override public void drawBoundingBoxes(DetectedObjects detections, float opacity) { // Make image copy with alpha channel because original image was jpg convertIdNeeded(); Graphics2D g = (Graphics2D) image.getGraphics(); int stroke = 2; g.setStroke(new BasicStroke(stroke)); g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); int imageWidth = image.getWidth(); int imageHeight = image.getHeight(); List<DetectedObjects.DetectedObject> list = detections.items(); int k = 10; Map<String, Integer> classNumberTable = new ConcurrentHashMap<>(); for (DetectedObjects.DetectedObject result : list) { String className = result.getClassName(); BoundingBox box = result.getBoundingBox(); if (classNumberTable.containsKey(className)) { g.setPaint(new Color(classNumberTable.get(className))); } else { g.setPaint(new Color(k)); classNumberTable.put(className, k); k = (k + 100) % 255; } if (!className.isEmpty()) { Rectangle rectangle = box.getBounds(); int x = (int) (rectangle.getX() * imageWidth); int y = (int) (rectangle.getY() * imageHeight); g.drawRect( x, y, (int) (rectangle.getWidth() * imageWidth), (int) (rectangle.getHeight() * imageHeight)); drawText(g, className, x, y, stroke, 4); } // If we have a mask instead of a plain rectangle, draw tha mask if (box instanceof Mask) { drawMask((Mask) box, opacity); } else if (box instanceof Landmark) { drawLandmarks(box); } } g.dispose(); } /** {@inheritDoc} */ @Override public void drawRectangle(Rectangle rect, int rgb, int thickness) { Graphics2D g = (Graphics2D) image.getGraphics(); g.setStroke(new BasicStroke(thickness)); g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); g.setPaint(new Color(rgb)); int x = (int) rect.getX(); int y = (int) rect.getY(); g.drawRect(x, y, (int) rect.getWidth(), (int) rect.getHeight()); } /** {@inheritDoc} */ @Override public void drawMarks(List<Point> points, int radius) { Graphics2D g = (Graphics2D) image.getGraphics(); g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); g.setColor(new Color(246, 96, 0)); for (Point point : points) { int[][] star = createStar(point, radius); g.fillPolygon(star[0], star[1], 10); } g.dispose(); } /** {@inheritDoc} */ @Override public void drawJoints(Joints joints) { // Make image copy with alpha channel because original image was jpg convertIdNeeded(); Graphics2D g = (Graphics2D) image.getGraphics(); g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); int imageWidth = image.getWidth(); int imageHeight = image.getHeight(); List<Joints.Joint> list = joints.getJoints(); if (list.size() == 17) { g.setColor(new Color(224, 255, 37)); g.setStroke(new BasicStroke(3)); drawLine(g, list.get(5), list.get(7), imageWidth, imageHeight); drawLine(g, list.get(7), list.get(9), imageWidth, imageHeight); drawLine(g, list.get(6), list.get(8), imageWidth, imageHeight); drawLine(g, list.get(8), list.get(10), imageWidth, imageHeight); drawLine(g, list.get(11), list.get(13), imageWidth, imageHeight); drawLine(g, list.get(12), list.get(14), imageWidth, imageHeight); drawLine(g, list.get(13), list.get(15), imageWidth, imageHeight); drawLine(g, list.get(14), list.get(16), imageWidth, imageHeight); drawLine(g, list.get(5), list.get(6), imageWidth, imageHeight); drawLine(g, list.get(11), list.get(12), imageWidth, imageHeight); drawLine(g, list.get(5), list.get(11), imageWidth, imageHeight); drawLine(g, list.get(6), list.get(12), imageWidth, imageHeight); } g.setColor(new Color(37, 150, 190)); g.setStroke(new BasicStroke(2)); for (Joints.Joint joint : list) { int x = (int) (joint.getX() * imageWidth); int y = (int) (joint.getY() * imageHeight); g.fillOval(x - 6, y - 6, 12, 12); } g.dispose(); } /** {@inheritDoc} */ @Override public void drawImage(Image overlay, boolean resize) { if (!(overlay.getWrappedImage() instanceof BufferedImage)) { throw new IllegalArgumentException("Only BufferedImage allowed"); } if (resize) { overlay = overlay.resize(getWidth(), getHeight(), false); } BufferedImage target = new BufferedImage(getWidth(), getHeight(), BufferedImage.TYPE_INT_ARGB); Graphics2D g = (Graphics2D) target.getGraphics(); g.drawImage(image, 0, 0, null); g.drawImage((BufferedImage) overlay.getWrappedImage(), 0, 0, null); g.dispose(); image = target; } private void drawLine( Graphics2D g, Joints.Joint from, Joints.Joint to, int width, int height) { int x0 = (int) (from.getX() * width); int y0 = (int) (from.getY() * height); int x1 = (int) (to.getX() * width); int y1 = (int) (to.getY() * height); g.drawLine(x0, y0, x1, y1); } private void drawText(Graphics2D g, String text, int x, int y, int stroke, int padding) { FontMetrics metrics = g.getFontMetrics(); x += stroke / 2; y += stroke / 2; int width = metrics.stringWidth(text) + padding * 2 - stroke / 2; int height = metrics.getHeight() + metrics.getDescent(); int ascent = metrics.getAscent(); java.awt.Rectangle background = new java.awt.Rectangle(x, y, width, height); g.fill(background); g.setPaint(Color.WHITE); g.drawString(text, x + padding, y + ascent); } private void drawMask(Mask mask, float ratio) { float r = RandomUtils.nextFloat(); float g = RandomUtils.nextFloat(); float b = RandomUtils.nextFloat(); int imageWidth = image.getWidth(); int imageHeight = image.getHeight(); int x = 0; int y = 0; int w = imageWidth; int h = imageHeight; if (!mask.isFullImageMask()) { x = (int) (mask.getX() * imageWidth); y = (int) (mask.getY() * imageHeight); w = (int) (mask.getWidth() * imageWidth); h = (int) (mask.getHeight() * imageHeight); // Correct some coordinates of box when going out of image if (x < 0) { x = 0; } if (y < 0) { y = 0; } } float[][] probDist = mask.getProbDist(); if (ratio < 0 || ratio > 1) { float max = 0; for (float[] row : probDist) { for (float f : row) { max = Math.max(max, f); } } ratio = 0.5f / max; } BufferedImage maskImage = new BufferedImage( probDist[0].length, probDist.length, BufferedImage.TYPE_INT_ARGB); for (int yCor = 0; yCor < probDist.length; yCor++) { for (int xCor = 0; xCor < probDist[0].length; xCor++) { float opacity = probDist[yCor][xCor] * ratio; maskImage.setRGB(xCor, yCor, new Color(r, g, b, opacity).darker().getRGB()); } } java.awt.Image scaled = maskImage.getScaledInstance(w, h, java.awt.Image.SCALE_SMOOTH); Graphics2D gR = (Graphics2D) image.getGraphics(); gR.drawImage(scaled, x, y, null); gR.dispose(); } private void drawLandmarks(BoundingBox box) { Graphics2D g = (Graphics2D) image.getGraphics(); g.setColor(new Color(246, 96, 0)); BasicStroke bStroke = new BasicStroke(4, BasicStroke.CAP_BUTT, BasicStroke.JOIN_MITER); g.setStroke(bStroke); for (Point point : box.getPath()) { g.drawRect((int) point.getX(), (int) point.getY(), 2, 2); } g.dispose(); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/Image.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv; import ai.djl.modality.cv.output.BoundingBox; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.output.Joints; import ai.djl.modality.cv.output.Point; import ai.djl.modality.cv.output.Rectangle; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDManager; import java.io.IOException; import java.io.OutputStream; import java.util.List; /** * {@code Image} is a container of an image in DJL. The storage type of the image depends on the * platform you are running on. */ public interface Image { /** * Gets the width of the image. * * @return pixels representing width */ int getWidth(); /** * Gets the height of the image. * * @return pixels representing height */ int getHeight(); /** * Gets the wrapped image. * * @return the wrapped image object */ Object getWrappedImage(); /** * Creates a new resized image. * * @param width the new image's desired width * @param height the new image's desired height * @param copy false to return original image if size is the same * @return the new resized image. */ Image resize(int width, int height, boolean copy); /** * Returns a new {@code Image} of masked area. * * @param mask the mask for each pixel in the image * @return the mask image. */ Image getMask(int[][] mask); /** * Gets the subimage defined by a specified rectangular region. * * @param x the X coordinate of the upper-left corner of the specified rectangular region * @param y the Y coordinate of the upper-left corner of the specified rectangular region * @param w the width of the specified rectangular region * @param h the height of the specified rectangular region * @return subimage of this image */ Image getSubImage(int x, int y, int w, int h); /** * Gets a deep copy of the original image. * * @return the copy of the original image. */ Image duplicate(); /** * Converts image to a RGB {@link NDArray}. * * @param manager a {@link NDManager} to create the new NDArray with * @return {@link NDArray} */ default NDArray toNDArray(NDManager manager) { return toNDArray(manager, null); } /** * Converts image to a {@link NDArray}. * * @param manager a {@link NDManager} to create the new NDArray with * @param flag the color mode * @return {@link NDArray} */ NDArray toNDArray(NDManager manager, Flag flag); /** * Save the image to file. * * @param os {@link OutputStream} to save the image. * @param type type of the image, such as "png", "jpeg" * @throws IOException image cannot be saved through output stream */ void save(OutputStream os, String type) throws IOException; /** * Find bounding boxes from a masked image with 0/1 or 0/255. * * @return the List of bounding boxes of the images */ List<BoundingBox> findBoundingBoxes(); /** * Draws the bounding boxes on the image. * * @param detections the object detection results */ default void drawBoundingBoxes(DetectedObjects detections) { drawBoundingBoxes(detections, -1); } /** * Draws the bounding boxes on the image. * * @param detections the object detection results */ void drawBoundingBoxes(DetectedObjects detections, float opacity); /** * Draws a rectangle on the image. * * @param rect the rectangle to draw * @param rgb the color * @param thickness the thickness */ void drawRectangle(Rectangle rect, int rgb, int thickness); /** * Draws a mark on the image. * * @param points as list of {@code Point} */ default void drawMarks(List<Point> points) { int w = getWidth(); int h = getHeight(); int size = Math.min(w, h) / 50; drawMarks(points, size); } /** * Draws a mark on the image. * * @param points as list of {@code Point} * @param size the radius of the star mark */ void drawMarks(List<Point> points, int size); /** * Draws all joints of a body on an image. * * @param joints the joints of the body */ void drawJoints(Joints joints); /** * Draws the overlay on the image. * * @param overlay the overlay image * @param resize true to resize the overlay image to match the image */ void drawImage(Image overlay, boolean resize); /** * Creates a star shape. * * @param point the coordinate * @param radius the radius * @return the polygon points */ default int[][] createStar(Point point, int radius) { int[][] ret = new int[2][10]; double midX = point.getX(); double midY = point.getY(); double[] ratio = {radius, radius * 0.38196601125}; double delta = Math.PI / 5; for (int i = 0; i < 10; ++i) { double angle = i * delta; double r = ratio[i % 2]; double x = Math.cos(angle) * r; double y = Math.sin(angle) * r; ret[0][i] = (int) (x + midX); ret[1][i] = (int) (y + midY); } return ret; } /** Flag indicates the color channel options for images. */ enum Flag { GRAYSCALE, COLOR; /** * Returns the number of channels for this flag. * * @return the number of channels for this flag */ public int numChannels() { switch (this) { case GRAYSCALE: return 1; case COLOR: return 3; default: throw new IllegalArgumentException("Invalid FLAG"); } } } /** Interpolation indicates the Interpolation options for resizinig an image. */ enum Interpolation { NEAREST, BILINEAR, AREA, BICUBIC } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/ImageFactory.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv; import ai.djl.ndarray.NDArray; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.net.URI; import java.net.URL; import java.nio.file.Path; import java.nio.file.Paths; import java.util.Base64; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * {@code ImageFactory} contains image creation mechanism on top of different platforms like PC and * Android. System will choose appropriate Factory based on the supported image type. */ public abstract class ImageFactory { private static final Logger logger = LoggerFactory.getLogger(ImageFactory.class); private static final String[] FACTORIES = { "ai.djl.opencv.OpenCVImageFactory", "ai.djl.modality.cv.BufferedImageFactory", "ai.djl.android.core.BitmapImageFactory" }; private static final Pattern URL_PATTERN = Pattern.compile("^data:image/\\w+;base64,(.+)"); private static ImageFactory factory = newInstance(); private static ImageFactory newInstance() { int index = 0; if ("http://www.android.com/".equals(System.getProperty("java.vendor.url"))) { index = 2; } for (int i = index; i < FACTORIES.length; ++i) { try { Class<? extends ImageFactory> clazz = Class.forName(FACTORIES[i]).asSubclass(ImageFactory.class); return clazz.getConstructor().newInstance(); } catch (ReflectiveOperationException | ExceptionInInitializerError e) { logger.trace("", e); } } throw new IllegalStateException("Create new ImageFactory failed!"); } /** * Gets new instance of Image factory from the provided factory implementation. * * @return {@link ImageFactory} */ public static ImageFactory getInstance() { return factory; } /** * Sets a custom instance of {@code ImageFactory}. * * @param factory a custom instance of {@code ImageFactory} */ public static void setImageFactory(ImageFactory factory) { ImageFactory.factory = factory; } /** * Gets {@link Image} from file. * * @param path the path to the image * @return {@link Image} * @throws IOException Image not found or not readable */ public abstract Image fromFile(Path path) throws IOException; /** * Gets {@link Image} from URL. * * @param url the URL to load from * @return {@link Image} * @throws IOException URL is not valid. */ public Image fromUrl(URL url) throws IOException { try (InputStream is = url.openStream()) { return fromInputStream(is); } } /** * Gets {@link Image} from string representation. * * @param url the String represent URL or base64 encoded image to load from * @return {@link Image} * @throws IOException URL is not valid. */ public Image fromUrl(String url) throws IOException { Matcher m = URL_PATTERN.matcher(url); if (m.matches()) { // url="data:image/png;base64,..." byte[] buf = Base64.getDecoder().decode(m.group(1)); try (InputStream is = new ByteArrayInputStream(buf)) { return fromInputStream(is); } } URI uri = URI.create(url); if (uri.isAbsolute()) { return fromUrl(uri.toURL()); } return fromFile(Paths.get(url)); } /** * Gets {@link Image} from {@link InputStream}. * * @param is {@link InputStream} * @return {@link Image} * @throws IOException image cannot be read from input stream. */ public abstract Image fromInputStream(InputStream is) throws IOException; /** * Gets {@link Image} from varies Java image types. * * <p>Image can be BufferedImage or BitMap depends on platform * * @param image the image object. * @return {@link Image} */ public abstract Image fromImage(Object image); /** * Gets {@link Image} from {@link NDArray}. * * @param array the NDArray with CHW format * @return {@link Image} */ public abstract Image fromNDArray(NDArray array); /** * Gets {@link Image} from array. * * @param pixels the array of ARGB values used to initialize the pixels. * @param width the width of the image * @param height the height of the image * @return {@link Image} */ public abstract Image fromPixels(int[] pixels, int width, int height); }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/MultiBoxDetection.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv; import ai.djl.ndarray.NDList; /** * {@code MultiBoxDetection} is the class that takes the output of a multi-box detection model, and * converts it into an NDList that contains the object detections. * * <p>The output from a Single Shot Detection(SSD) network would be class probabilities, box offset * predictions, and the generated anchor boxes. Once out-of-boundary boxes are eliminated, and boxes * with scores lower than the threshold are removed, we will ideally have a small number of * candidates for each object in the image. Since anchor boxes are generated in multiple scales * around each pixel by {@link MultiBoxPrior}, there are bound to be multiple boxes around each * object which have a score greater than the threshold. We use Non-Maximum Suppression(NMS) to * choose one box that is most likely to fit the object in the image. * * <p>{@code MultiBoxDetection} handles all of these tasks, and returns an {@link NDList} with a * single {@link ai.djl.ndarray.NDArray} of {@link ai.djl.ndarray.types.Shape} (batch_size, Number * of generated anchor boxes, 6). For each generated anchor box, there is an {@link * ai.djl.ndarray.NDArray} of {@link ai.djl.ndarray.types.Shape} (6,). The values in each of those * arrays represent the following: {@code [class, score, x_min, y_min, x_max, y_max]}. The {@code * class} is set to -1 for boxes that are removed or classified as background. The {@code score} is * the confidence with which the model thinks the box contains an object of the specified {@code * class}, and the other four values represent the normalised co-ordinates of the box. */ public class MultiBoxDetection { private boolean clip; private float threshold; private int backgroundId; private float nmsThreshold; private boolean forceSuppress; private int nmsTopK; /** * Creates a new instance of {@code MultiBoxDetection} with the arguments from the given {@link * Builder}. * * @param builder the {@link Builder} with the necessary arguments */ public MultiBoxDetection(Builder builder) { this.clip = builder.clip; this.threshold = builder.threshold; this.backgroundId = builder.backgroundId; this.nmsThreshold = builder.nmsThreshold; this.forceSuppress = builder.forceSuppress; this.nmsTopK = builder.nmsTopK; } /** * Converts multi-box detection predictions. * * @param inputs a NDList of (class probabilities, box predictions, and anchors) in that order * @return an {@link NDList} with a single {@link ai.djl.ndarray.NDArray} of {@link * ai.djl.ndarray.types.Shape} (batch_size, Number of generated anchor boxes, 6). For each * generated anchor box, there is an {@link ai.djl.ndarray.NDArray} of {@link * ai.djl.ndarray.types.Shape} (6,). The values in each of those arrays represent the * following: {@code [class, score, x_min, y_min, x_max, y_max]} */ public NDList detection(NDList inputs) { if (inputs == null || inputs.size() != 3) { throw new IllegalArgumentException( "NDList must contain class probabilities, box predictions, and anchors"); } return inputs.head() .getNDArrayInternal() .multiBoxDetection( inputs, clip, threshold, backgroundId, nmsThreshold, forceSuppress, nmsTopK); } /** * Creates a builder to build a {@code MultiBoxDetection}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** The Builder to construct a {@link MultiBoxDetection} object. */ public static final class Builder { boolean clip = true; private float threshold = 0.01f; int backgroundId; private float nmsThreshold = 0.5f; boolean forceSuppress; private int nmsTopK = -1; Builder() {} /** * Sets the boolean parameter that indicates whether to clip out-of-boundary boxes. It is * set to {@code true} by default. * * @param clip whether to clip out-of-boundary boxes * @return this {@code Builder} */ public Builder optClip(boolean clip) { this.clip = clip; return this; } /** * Sets the boolean parameter that indicates whether to suppress all detections regardless * of class_id. It is set to {@code false} by default. * * @param forceSuppress whether to suppress all detections regardless of class_id * @return this {@code Builder} */ public Builder optForceSuppress(boolean forceSuppress) { this.forceSuppress = forceSuppress; return this; } /** * Sets the class ID for the background. Defaults to 0. * * @param backgroundId the class ID for the background * @return this {@code Builder} */ public Builder optBackgroundId(int backgroundId) { this.backgroundId = backgroundId; return this; } /** * Sets the boolean parameter that indicates whether to clip out-of-boundary boxes. Defaults * to -1 which implies that there is no limit. * * @param nmsTopK whether to clip out-of-boundary boxes * @return this {@code Builder} */ public Builder optNmsTopK(int nmsTopK) { this.nmsTopK = nmsTopK; return this; } /** * Sets the threshold score for a detection to be a positive prediction. Defaults to 0.01. * * @param threshold the threshold score for a detection to be a positive prediction * @return this {@code Builder} */ public Builder optThreshold(float threshold) { this.threshold = threshold; return this; } /** * Sets the non-maximum suppression(NMS) threshold. Defaults to 0.5. * * @param nmsThreshold the non-maximum suppression(NMS) threshold * @return this {@code Builder} */ public Builder optNmsThreshold(float nmsThreshold) { this.nmsThreshold = nmsThreshold; return this; } /** * Builds a {@link MultiBoxDetection} block. * * @return the {@link MultiBoxDetection} block */ public MultiBoxDetection build() { return new MultiBoxDetection(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/MultiBoxPrior.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv; import ai.djl.ndarray.NDArray; import java.util.Arrays; import java.util.Collections; import java.util.List; /** * {@code MultiBoxPrior} is the class that generates anchor boxes that act as priors for object * detection. * * <p>Object detection algorithms usually sample a large number of regions in the input image, * determine whether these regions contain objects of interest, and adjust the edges of the regions * so as to predict the ground-truth bounding box of the target more accurately. Different models * may use different region sampling methods. These bounding boxes are also called anchor boxes. * * <p>{@code MultiBoxPrior} generates these anchor boxes, based on the required sizes and aspect * ratios and returns an {@link NDArray} of {@link ai.djl.ndarray.types.Shape} (1, Number of anchor * boxes, 4). Anchor boxes need not be generated separately for the each example in the batch. One * set of anchor boxes per batch is sufficient. * * <p>The number of anchor boxes generated depends on the number of sizes and aspect ratios. If the * number of sizes is \(n\) and the number of ratios is \(m\), the total number of boxes generated * per pixel is \(n + m - 1\). */ public class MultiBoxPrior { private List<Float> sizes; private List<Float> ratios; private List<Float> steps; private List<Float> offsets; private boolean clip; /** * Creates a new instance of {@code MultiBoxPrior} with the arguments from the given {@link * Builder}. * * @param builder the {@link Builder} with the necessary arguments */ public MultiBoxPrior(Builder builder) { this.sizes = builder.sizes; this.ratios = builder.ratios; this.steps = builder.steps; this.offsets = builder.offsets; this.clip = builder.clip; } /** * Generates the anchorBoxes array in the input's manager and device. * * @param input the input whose manager and device to put the generated boxes in * @return the generated boxes */ public NDArray generateAnchorBoxes(NDArray input) { return input.getNDArrayInternal().multiBoxPrior(sizes, ratios, steps, offsets, clip).head(); } /** * Creates a builder to build a {@code MultiBoxPrior}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** The Builder to construct a {@link MultiBoxPrior} object. */ public static final class Builder { List<Float> sizes = Collections.singletonList(1f); List<Float> ratios = Collections.singletonList(1f); List<Float> steps = Arrays.asList(-1f, -1f); List<Float> offsets = Arrays.asList(0.5f, 0.5f); boolean clip; Builder() {} /** * Sets the sizes of the anchor boxes to be generated around each pixel. * * @param sizes the size of the anchor boxes generated around each pixel * @return this {@code Builder} */ public Builder setSizes(List<Float> sizes) { this.sizes = sizes; return this; } /** * Sets the aspect ratios of the anchor boxes to be generated around each pixel. * * @param ratios the aspect ratios of the anchor boxes to be generated around each pixel * @return this {@code Builder} */ public Builder setRatios(List<Float> ratios) { this.ratios = ratios; return this; } /** * Sets the step across \(x\) and \(y\) dimensions. Defaults to -1 across both dimensions. * * @param steps the step across \(x\) and \(y\) dimensions * @return this {@code Builder} */ public Builder optSteps(List<Float> steps) { this.steps = steps; return this; } /** * Sets the value of the center-box offsets across \(x\) and \(y\) dimensions. Defaults to * 0.5 across both dimensions. * * @param offsets the value of the center-box offsets across \(x\) and \(y\) dimensions * @return this {@code Builder} */ public Builder optOffsets(List<Float> offsets) { this.offsets = offsets; return this; } /** * Sets the boolean parameter that indicates whether to clip out-of-boundary boxes. It is * set to {@code false} by default. * * @param clip whether to clip out-of-boundary boxes * @return this {@code Builder} */ public Builder optClip(boolean clip) { this.clip = clip; return this; } /** * Builds a {@link MultiBoxPrior} block. * * @return the {@link MultiBoxPrior} block */ public MultiBoxPrior build() { return new MultiBoxPrior(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/MultiBoxTarget.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv; import ai.djl.ndarray.NDList; /** * {@code MultiBoxTarget} is the class that computes the training targets for training a Single Shot * Detection (SSD) models. * * <p>The output from a Single Shot Detection (SSD) network would be class probabilities, box offset * predictions, and the generated anchor boxes. The labels contain a class label and the bounding * box for each object in the image. The generated anchor boxes are each a prior, and need loss * computed for each of them. This requires that we assign a ground truth box to every one of them. * * <p>{@code MultiBoxTarget} takes an {@link NDList} containing (anchor boxes, labels, class * predictions) in that order. It computes the Intersection-over-Union (IoU) of each anchor box * against every ground-truth box. For every anchor box, it assigns a ground-truth box with maximum * IoU with respect to the anchor box if the IoU is greater than a given threshold. Once a * ground-truth box is assigned for each anchor box, it computes the offset of each anchor box with * respect to it's assigned ground-truth box. * * <p>{@code MultiBoxTarget} handles these tasks and returns an {@link NDList} containing (Bounding * box offsets, bounding box masks, class labels). Bounding box offsets and class labels are * computed as above. Bounding box masks is a mask array that contains either a 0 or 1, with the 0s * corresponding to the anchor boxes whose IoUs with the ground-truth boxes were less than the given * threshold. */ public class MultiBoxTarget { int minNegativeSamples; private float iouThreshold; private float negativeMiningRatio; private float ignoreLabel; private float negativeMiningThreshold; /** * Creates a new instance of {@code MultiBoxTarget} with the arguments from the given {@link * Builder}. * * @param builder the {@link Builder} with the necessary arguments */ public MultiBoxTarget(Builder builder) { this.minNegativeSamples = builder.minNegativeSamples; this.iouThreshold = builder.iouThreshold; this.negativeMiningThreshold = builder.negativeMiningThreshold; this.negativeMiningRatio = builder.negativeMinigRatio; this.ignoreLabel = builder.ignoreLabel; } /** * Computes multi-box training targets. * * @param inputs a NDList of (anchors, labels, and class prediction) in that order * @return an {@link NDList} containing (Bounding box offsets, bounding box masks, class labels) */ public NDList target(NDList inputs) { if (inputs == null || inputs.size() != 3) { throw new IllegalArgumentException( "NDList must contain anchors, labels, and class predictions"); } return inputs.head() .getNDArrayInternal() .multiBoxTarget( inputs, iouThreshold, ignoreLabel, negativeMiningRatio, negativeMiningThreshold, minNegativeSamples); } /** * Creates a builder to build a {@code MultiBoxTarget}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** The Builder to construct a {@link MultiBoxTarget} object. */ public static final class Builder { int minNegativeSamples; float iouThreshold = 0.5f; float ignoreLabel = -1; float negativeMiningThreshold = 0.5f; float negativeMinigRatio = -1; Builder() {} /** * Sets the minimum number of negative samples. * * @param minNegativeSamples the minimum number of negative samples * @return this {@code Builder} */ public Builder optMinNegativeSamples(int minNegativeSamples) { this.minNegativeSamples = minNegativeSamples; return this; } /** * Sets the anchor-GroundTruth overlap threshold to be regarded as a positive match. * * @param iouThreshold the anchor-GroundTruth overlap threshold to be regarded as a positive * match * @return this {@code Builder} */ public Builder optIouThreshold(float iouThreshold) { this.iouThreshold = iouThreshold; return this; } /** * Sets the label for ignored anchors. Defaults to -1. * * @param ignoreLabel the label for ignored anchors * @return this {@code Builder} */ public Builder optIgnoreLabel(float ignoreLabel) { this.ignoreLabel = ignoreLabel; return this; } /** * Sets the threshold used for negative mining. * * @param negativeMiningThreshold the threshold used for negative mining * @return this {@code Builder} */ public Builder optNegativeMiningThreshold(float negativeMiningThreshold) { this.negativeMiningThreshold = negativeMiningThreshold; return this; } /** * Sets the max negative to positive samples ratio. Use -1 to disable mining. Defaults to * -1. * * @param negativeMinigRatio the max negative to positive samples ratio * @return this {@code Builder} */ public Builder optNegativeMinigRatio(float negativeMinigRatio) { this.negativeMinigRatio = negativeMinigRatio; return this; } /** * Builds a {@link MultiBoxTarget} block. * * @return the {@link MultiBoxTarget} block */ public MultiBoxTarget build() { return new MultiBoxTarget(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/VisionLanguageInput.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv; import ai.djl.modality.Input; import ai.djl.translate.TranslateException; import ai.djl.util.JsonUtils; import com.google.gson.JsonElement; import com.google.gson.JsonObject; import com.google.gson.JsonParseException; import com.google.gson.annotations.SerializedName; import java.io.IOException; /** The input container for a vision language model. */ public class VisionLanguageInput { private Image image; private String text; @SerializedName("candidate_labels") private String[] candidates; @SerializedName("hypothesis_template") private String hypothesisTemplate; /** * Constructs a new {@code ImageTextInput} instance. * * @param image the image input * @param text the prompt */ public VisionLanguageInput(Image image, String text) { this(image, text, null, null); } /** * Constructs a new {@code ImageTextInput} instance. * * @param image the image input * @param candidates the candidate labels */ public VisionLanguageInput(Image image, String[] candidates) { this(image, null, candidates, null); } /** * Constructs a new {@code ImageTextInput} instance. * * @param image the image input * @param text the prompt * @param candidates the candidate labels * @param hypothesisTemplate the hypothesis template */ public VisionLanguageInput( Image image, String text, String[] candidates, String hypothesisTemplate) { this.image = image; this.text = text; this.candidates = candidates; this.hypothesisTemplate = hypothesisTemplate; } /** * Returns the {@code ImageTextInput} from the {@link Input}. * * @param input the input object * @return the {@code ImageTextInput} from the {@link Input} * @throws TranslateException if the input is invalid * @throws IOException if failed to load image */ public static VisionLanguageInput parseInput(Input input) throws TranslateException, IOException { String data = input.getData().getAsString(); try { JsonObject obj = JsonUtils.GSON.fromJson(data, JsonObject.class); JsonElement url = obj.get("image"); if (url == null) { url = obj.get("image_url"); } if (url == null) { throw new TranslateException("Missing \"image\" parameter in input."); } Image img = ImageFactory.getInstance().fromUrl(url.getAsString()); String text = JsonUtils.GSON.fromJson(obj.get("text"), String.class); String[] candidates = JsonUtils.GSON.fromJson(obj.get("candidate_labels"), String[].class); String hypothesisTemplate = JsonUtils.GSON.fromJson(obj.get("hypothesis_template"), String.class); return new VisionLanguageInput(img, text, candidates, hypothesisTemplate); } catch (JsonParseException e) { throw new TranslateException("Input is not a valid json.", e); } } /** * Returns the image input. * * @return the image input */ public Image getImage() { return image; } /** * Sets the image input. * * @param image the image input */ public void setImage(Image image) { this.image = image; } /** * Returns the prompt text. * * @return the prompt text */ public String getText() { return text; } /** * Sets the prompt text. * * @param text the prompt text */ public void setText(String text) { this.text = text; } /** * Returns the candidate labels. * * @return the candidate labels */ public String[] getCandidates() { return candidates; } /** * Sets the candidate labels. * * @param candidates the candidate labels */ public void setCandidates(String[] candidates) { this.candidates = candidates; } /** * Returns the hypothesis template. * * @return the hypothesis template */ public String getHypothesisTemplate() { return hypothesisTemplate == null ? "This is a photo of {}." : hypothesisTemplate; } /** * Sets the hypothesis template. * * @param hypothesisTemplate the hypothesis template */ public void setHypothesisTemplate(String hypothesisTemplate) { this.hypothesisTemplate = hypothesisTemplate; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/package-info.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains utility classes for computer vision tasks and image processing. */ package ai.djl.modality.cv;
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/output/BoundingBox.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.output; import java.io.Serializable; /** An interface representing a bounding box around an object inside an image. */ public interface BoundingBox extends Serializable { /** * Returns the bounding {@code Rectangle} of this {@code BoundingBox}. * * @return a new {@code Rectangle} for this {@code BoundingBox} */ Rectangle getBounds(); /** * Returns an iterator object that iterates along the {@code BoundingBox} boundary and provides * access to the geometry of the {@code BoundingBox} outline. * * @return a {@code Iterable} object, which independently traverses the geometry of the {@code * BoundingBox} */ Iterable<Point> getPath(); /** * Returns the top left point of the bounding box. * * @return the {@link Point} of the top left corner */ Point getPoint(); /** * Returns the Intersection over Union (IoU) value between bounding boxes. * * <p>Also known as <a href="https://en.wikipedia.org/wiki/Jaccard_index">Jaccard index</a> * * @param box the bounding box to calculate * @return the IoU value */ double getIoU(BoundingBox box); }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/output/CategoryMask.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.output; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.ImageFactory; import ai.djl.util.JsonSerializable; import ai.djl.util.JsonUtils; import ai.djl.util.RandomUtils; import com.google.gson.JsonElement; import com.google.gson.JsonObject; import java.util.List; import java.util.stream.Collectors; /** * A class representing the segmentation result of an image in an {@link * ai.djl.Application.CV#SEMANTIC_SEGMENTATION} case. */ public class CategoryMask implements JsonSerializable { private static final long serialVersionUID = 1L; private static final int COLOR_BLACK = 0xFF000000; @SuppressWarnings("serial") private List<String> classes; private int[][] mask; /** * Constructs a Mask with the given data. * * @param classes the list of classes * @param mask the category mask for each pixel in the image */ public CategoryMask(List<String> classes, int[][] mask) { this.classes = classes; this.mask = mask; } /** * Returns the list of classes. * * @return list of classes */ public List<String> getClasses() { return classes; } /** * Returns the class for each pixel. * * @return the class for each pixel */ public int[][] getMask() { return mask; } /** {@inheritDoc} */ @Override public JsonElement serialize() { JsonObject ret = new JsonObject(); ret.add("classes", JsonUtils.GSON.toJsonTree(classes)); ret.add("mask", JsonUtils.GSON.toJsonTree(mask)); return ret; } /** {@inheritDoc} */ @Override public String toString() { StringBuilder sb = new StringBuilder(4096); String list = classes.stream().map(s -> '"' + s + '"').collect(Collectors.joining(", ")); sb.append("{\n\t\"classes\": [").append(list).append("],\n\t\"mask\": "); sb.append(JsonUtils.GSON_COMPACT.toJson(mask)); sb.append("\n}"); return sb.toString(); } /** * Extracts the detected objects from the image. * * @param image the original image * @return the detected objects from the image */ public Image getMaskImage(Image image) { return image.getMask(mask); } /** * Extracts the specified object from the image. * * @param image the original image * @param classId the class to extract from the image * @return the specific object on the image */ public Image getMaskImage(Image image, int classId) { int width = mask[0].length; int height = mask.length; int[][] selected = new int[height][width]; for (int h = 0; h < height; ++h) { for (int w = 0; w < width; ++w) { selected[h][w] = mask[h][w] == classId ? 1 : 0; } } return image.getMask(selected); } /** * Extracts the background from the image. * * @param image the original image * @return the background of the image */ public Image getBackgroundImage(Image image) { return getMaskImage(image, 0); } /** * Highlights the detected object on the image with random colors. * * @param image the original image * @param opacity the opacity of the overlay. Value is between 0 and 255 inclusive, where 0 * means the overlay is completely transparent and 255 means the overlay is completely * opaque. */ public void drawMask(Image image, int opacity) { drawMask(image, opacity, COLOR_BLACK); } /** * Highlights the detected object on the image with random colors. * * @param image the original image * @param opacity the opacity of the overlay. Value is between 0 and 255 inclusive, where 0 * means the overlay is completely transparent and 255 means the overlay is completely * opaque. * @param background replace the background with specified background color, use transparent * color to remove background */ public void drawMask(Image image, int opacity, int background) { int[] colors = generateColors(background, opacity); Image maskImage = getColorOverlay(colors); image.drawImage(maskImage, true); } /** * Highlights the specified object with specific color. * * @param image the original image * @param classId the class to draw on the image * @param color the rgb color with opacity * @param opacity the opacity of the overlay. Value is between 0 and 255 inclusive, where 0 * means the overlay is completely transparent and 255 means the overlay is completely * opaque. */ public void drawMask(Image image, int classId, int color, int opacity) { int[] colors = new int[classes.size()]; colors[classId] = color & 0xFFFFFF | opacity << 24; Image colorOverlay = getColorOverlay(colors); image.drawImage(colorOverlay, true); } private Image getColorOverlay(int[] colors) { int height = mask.length; int width = mask[0].length; int[] pixels = new int[width * height]; for (int h = 0; h < height; h++) { for (int w = 0; w < width; w++) { int index = mask[h][w]; pixels[h * width + w] = colors[index]; } } return ImageFactory.getInstance().fromPixels(pixels, width, height); } private int[] generateColors(int background, int opacity) { int[] colors = new int[classes.size()]; colors[0] = background; for (int i = 1; i < classes.size(); i++) { int red = RandomUtils.nextInt(256); int green = RandomUtils.nextInt(256); int blue = RandomUtils.nextInt(256); colors[i] = opacity << 24 | red << 16 | green << 8 | blue; } return colors; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/output/DetectedObjects.java
/* * Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.output; import ai.djl.modality.Classifications; import java.util.List; /** * A class representing the detected objects results for a single image in an {@link * ai.djl.Application.CV#OBJECT_DETECTION} case. */ public class DetectedObjects extends Classifications { private static final long serialVersionUID = 1L; @SuppressWarnings("serial") private List<BoundingBox> boundingBoxes; /** * Constructs a DetectedObjects, usually during post-processing. * * <p>All three inputs(classNames, probabilities, boundingBoxes) should be parallel lists. * * @param classNames the names of the objects that were detected * @param probabilities the probability of the objects that were detected * @param boundingBoxes the bounding boxes of the objects that were detected */ public DetectedObjects( List<String> classNames, List<Double> probabilities, List<BoundingBox> boundingBoxes) { super(classNames, probabilities); this.boundingBoxes = boundingBoxes; this.topK = Integer.MAX_VALUE; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <T extends Classification> T item(int index) { return (T) new DetectedObject( classNames.get(index), probabilities.get(index), boundingBoxes.get(index)); } /** * Returns the number of objects found in an image. * * @return the number of objects found in an image */ public int getNumberOfObjects() { return boundingBoxes.size(); } /** A {@code DetectedObject} represents a single potential detected Object for an image. */ public static final class DetectedObject extends Classification { private BoundingBox boundingBox; /** * Constructs a bounding box with the given data. * * @param className name of the type of object * @param probability probability that the object is correct * @param boundingBox the location of the object */ public DetectedObject(String className, double probability, BoundingBox boundingBox) { super(className, probability); this.boundingBox = boundingBox; } /** * Returns the {@link ai.djl.modality.cv.output.BoundingBox} of the detected object. * * @return the {@link ai.djl.modality.cv.output.BoundingBox} of the detected object */ public BoundingBox getBoundingBox() { return boundingBox; } /** {@inheritDoc} */ @Override public String toString() { double probability = getProbability(); StringBuilder sb = new StringBuilder(200); sb.append("{\"className\": \"").append(getClassName()).append("\", \"probability\": "); if (probability < 0.00001) { sb.append(String.format("%.1e", probability)); } else { probability = (int) (probability * 100000) / 100000f; sb.append(String.format("%.5f", probability)); } if (boundingBox != null) { sb.append(", \"boundingBox\": ").append(boundingBox); } sb.append('}'); return sb.toString(); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/output/Joints.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.output; import ai.djl.util.JsonUtils; import java.io.Serializable; import java.util.List; /** * A result of all joints found during Human Pose Estimation on a single image. * * @see <a href="https://en.wikipedia.org/wiki/Articulated_body_pose_estimation">Wikipedia</a> */ public class Joints implements Serializable { private static final long serialVersionUID = 1L; @SuppressWarnings("serial") private List<Joint> joints; /** * Constructs the {@code Joints} with the provided joints. * * @param joints the joints */ public Joints(List<Joint> joints) { this.joints = joints; } /** * Gets the joints for the image. * * @return the list of joints */ public List<Joint> getJoints() { return joints; } /** {@inheritDoc} */ @Override public String toString() { return JsonUtils.GSON_PRETTY.toJson(this) + "\n"; } /** * A joint that was detected using Human Pose Estimation on an image. * * @see Joints */ public static class Joint extends Point { private static final long serialVersionUID = 1L; private double confidence; /** * Constructs a Joint with given data. * * @param x the x coordinate of the joint * @param y the y coordinate of the joint * @param confidence the confidence probability for the joint */ public Joint(double x, double y, double confidence) { super(x, y); this.confidence = confidence; } /** * Returns the confidence probability for the joint. * * @return the confidence */ public double getConfidence() { return confidence; } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/output/Landmark.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.output; import ai.djl.util.JsonUtils; import com.google.gson.JsonObject; import java.util.List; /** {@code Landmark} is the container that stores the key points for landmark on a single face. */ public class Landmark extends Rectangle { private static final long serialVersionUID = 1L; @SuppressWarnings("serial") private List<Point> points; /** * Constructs a {@code Landmark} using a list of points. * * @param x the left coordinate of the bounding rectangle * @param y the top coordinate of the bounding rectangle * @param width the width of the bounding rectangle * @param height the height of the bounding rectangle * @param points the key points for each face */ public Landmark(double x, double y, double width, double height, List<Point> points) { super(x, y, width, height); this.points = points; } /** {@inheritDoc} */ @Override public Iterable<Point> getPath() { return points; } /** {@inheritDoc} */ @Override public JsonObject serialize() { JsonObject ret = super.serialize(); ret.add("landmarks", JsonUtils.GSON.toJsonTree(points)); return ret; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/output/Mask.java
/* * Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.output; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.types.Shape; import ai.djl.util.JsonUtils; import com.google.gson.JsonObject; import com.google.gson.JsonPrimitive; /** * A mask with a probability for each pixel within a bounding rectangle. * * <p>This class is usually used to record the results of an Image Segmentation task. */ public class Mask extends Rectangle { private static final long serialVersionUID = 1L; private float[][] probDist; private boolean fullImageMask; /** * Constructs a Mask with the given data. * * @param x the left coordinate of the bounding rectangle * @param y the top coordinate of the bounding rectangle * @param width the width of the bounding rectangle * @param height the height of the bounding rectangle * @param dist the probability distribution for each pixel in the rectangle */ public Mask(double x, double y, double width, double height, float[][] dist) { this(x, y, width, height, dist, false); } /** * Constructs a Mask with the given data. * * @param x the left coordinate of the bounding rectangle * @param y the top coordinate of the bounding rectangle * @param width the width of the bounding rectangle * @param height the height of the bounding rectangle * @param dist the probability distribution for each pixel in the rectangle * @param fullImageMask if the mask if for full image */ public Mask( double x, double y, double width, double height, float[][] dist, boolean fullImageMask) { super(x, y, width, height); this.probDist = dist; this.fullImageMask = fullImageMask; } /** * Returns the probability for each pixel. * * @return the probability for each pixel */ public float[][] getProbDist() { return probDist; } /** * Returns if the mask is for full image. * * @return if the mask is for full image */ public boolean isFullImageMask() { return fullImageMask; } /** {@inheritDoc} */ @Override public JsonObject serialize() { JsonObject ret = super.serialize(); if (fullImageMask) { ret.add("fullImageMask", new JsonPrimitive(true)); } ret.add("mask", JsonUtils.GSON.toJsonTree(probDist)); return ret; } /** * Converts the mask tensor to a mask array. * * @param array the mask NDArray * @return the mask array */ public static float[][] toMask(NDArray array) { Shape maskShape = array.getShape(); int height = (int) maskShape.get(0); int width = (int) maskShape.get(1); float[] flattened = array.toFloatArray(); float[][] mask = new float[height][width]; for (int i = 0; i < height; i++) { System.arraycopy(flattened, i * width, mask[i], 0, width); } return mask; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/output/Point.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.output; import ai.djl.util.JsonUtils; import java.io.Serializable; /** * A point representing a location in {@code (x,y)} coordinate space, specified in double precision. */ public class Point implements Serializable { private static final long serialVersionUID = 1L; private double x; private double y; /** * Constructs and initializes a point at the specified {@code (x,y)} location in the coordinate * space. * * @param x the X coordinate of the newly constructed {@code Point} * @param y the Y coordinate of the newly constructed {@code Point} */ public Point(double x, double y) { this.x = x; this.y = y; } /** * Returns the X coordinate of this {@code Point} in {@code double} precision. * * @return the X coordinate of this {@code Point} */ public double getX() { return x; } /** * Returns the Y coordinate of this {@code Point} in {@code double} precision. * * @return the Y coordinate of this {@code Point} */ public double getY() { return y; } /** {@inheritDoc} */ @Override public String toString() { return JsonUtils.GSON_COMPACT.toJson(this); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/output/Rectangle.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.output; import ai.djl.util.JsonSerializable; import ai.djl.util.JsonUtils; import com.google.gson.JsonObject; import java.util.ArrayList; import java.util.List; import java.util.PriorityQueue; /** * A {@code Rectangle} specifies an area in a coordinate space that is enclosed by the {@code * Rectangle} object's upper-left point {@link Point} in the coordinate space, its width, and its * height. * * <p>The rectangle coordinates are usually from 0-1 and are ratios of the image size. For example, * if you have an image width of 400 pixels and the rectangle starts at 100 pixels, you would use * .25. */ public class Rectangle implements BoundingBox, JsonSerializable { private static final long serialVersionUID = 1L; @SuppressWarnings("serial") private List<Point> corners; private double width; private double height; /** * Constructs a new {@code Rectangle} whose upper-left corner is specified as {@code (x,y)} and * whose width and height are specified by the arguments of the same name. * * @param x the specified X coordinate (0-1) * @param y the specified Y coordinate (0-1) * @param width the width of the {@code Rectangle} (0-1) * @param height the height of the {@code Rectangle} (0-1) */ public Rectangle(double x, double y, double width, double height) { this(new Point(x, y), width, height); } /** * Constructs a new {@code Rectangle} whose upper-left corner is specified as coordinate {@code * point} and whose width and height are specified by the arguments of the same name. * * @param point the upper-left corner of the coordinate (0-1) * @param width the width of the {@code Rectangle} (0-1) * @param height the height of the {@code Rectangle} (0-1) */ public Rectangle(Point point, double width, double height) { this.width = width; this.height = height; corners = new ArrayList<>(4); corners.add(point); corners.add(new Point(point.getX() + width, point.getY())); corners.add(new Point(point.getX() + width, point.getY() + height)); corners.add(new Point(point.getX(), point.getY() + height)); } /** {@inheritDoc} */ @Override public Rectangle getBounds() { return this; } /** {@inheritDoc} */ @Override public Iterable<Point> getPath() { return corners; } /** {@inheritDoc} */ @Override public Point getPoint() { return corners.get(0); } /** {@inheritDoc} */ @Override public double getIoU(BoundingBox box) { Rectangle rect = box.getBounds(); // computing area of each rectangles double s1 = (width + 1) * (height + 1); double s2 = (rect.getWidth() + 1) * (rect.getHeight() + 1); double sumArea = s1 + s2; // find each edge of intersect rectangle double left = Math.max(getX(), rect.getX()); double top = Math.max(getY(), rect.getY()); double right = Math.min(getX() + getWidth(), rect.getX() + rect.getWidth()); double bottom = Math.min(getY() + getHeight(), rect.getY() + rect.getHeight()); // judge if there is a intersect if (left > right || top > bottom) { return 0.0; } double intersect = (right - left + 1) * (bottom - top + 1); return intersect / (sumArea - intersect); } /** * Returns the left x-coordinate of the Rectangle. * * @return the left x-coordinate of the Rectangle (0-1) */ public double getX() { return getPoint().getX(); } /** * Returns the top y-coordinate of the Rectangle. * * @return the top y-coordinate of the Rectangle (0-1) */ public double getY() { return getPoint().getY(); } /** * Returns the width of the Rectangle. * * @return the width of the Rectangle (0-1) */ public double getWidth() { return width; } /** * Returns the height of the Rectangle. * * @return the height of the Rectangle (0-1) */ public double getHeight() { return height; } /** * Returns the upper left and bottom right coordinates. * * @return the upper left and bottom right coordinates */ public double[] getCoordinates() { Point upLeft = corners.get(0); Point bottomRight = corners.get(2); return new double[] {upLeft.getX(), upLeft.getY(), bottomRight.getX(), bottomRight.getY()}; } /** {@inheritDoc} */ @Override public JsonObject serialize() { JsonObject ret = new JsonObject(); ret.add("rect", JsonUtils.GSON.toJsonTree(getCoordinates())); return ret; } /** {@inheritDoc} */ @Override public String toString() { return toJson(); } /** * Applies nms (non-maximum suppression) to the list of rectangles. * * @param boxes an list of {@code Rectangle} * @param scores a list of scores * @param nmsThreshold the nms threshold * @return the filtered list with the index of the original list */ public static List<Integer> nms( List<Rectangle> boxes, List<Double> scores, float nmsThreshold) { List<Integer> ret = new ArrayList<>(); PriorityQueue<Integer> pq = new PriorityQueue<>( 50, (lhs, rhs) -> { // Intentionally reversed to put high confidence at the head of the // queue. return Double.compare(scores.get(rhs), scores.get(lhs)); }); for (int i = 0; i < boxes.size(); ++i) { pq.add(i); } // do non maximum suppression while (!pq.isEmpty()) { // insert detection with max confidence int[] detections = pq.stream().mapToInt(Integer::intValue).toArray(); ret.add(detections[0]); Rectangle box = boxes.get(detections[0]); pq.clear(); for (int i = 1; i < detections.length; i++) { int detection = detections[i]; Rectangle location = boxes.get(detection); if (box.boxIou(location) < nmsThreshold) { pq.add(detection); } } } return ret; } private double boxIou(Rectangle other) { double intersection = intersection(other); double union = getWidth() * getHeight() + other.getWidth() * other.getHeight() - intersection; return intersection / union; } private double intersection(Rectangle b) { double w = overlap( (getX() * 2 + getWidth()) / 2, getWidth(), (b.getX() * 2 + b.getWidth()) / 2, b.getWidth()); double h = overlap( (getY() * 2 + getHeight()) / 2, getHeight(), (b.getY() * 2 + b.getHeight()) / 2, b.getHeight()); if (w < 0 || h < 0) { return 0; } return w * h; } private double overlap(double x1, double w1, double x2, double w2) { double l1 = x1 - w1 / 2; double l2 = x2 - w2 / 2; double left = Math.max(l1, l2); double r1 = x1 + w1 / 2; double r2 = x2 + w2 / 2; double right = Math.min(r1, r2); return right - left; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/output/package-info.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains output types used in various computer vision applications. */ package ai.djl.modality.cv.output;
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/CenterCrop.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** A {@link Transform} that crops the center of an image. */ public class CenterCrop implements Transform { private int width; private int height; /** * Creates a {@code CenterCrop} {@link Transform} that crops to size {@code min(width, height)}. */ public CenterCrop() { width = -1; height = -1; } /** * Creates a {@code CenterCrop} {@link Transform} that crops the given width and height. * * @param width the desired width of the cropped image * @param height the desired height of the cropped image */ public CenterCrop(int width, int height) { this.width = width; this.height = height; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { if (width < 0) { return NDImageUtils.centerCrop(array); } return NDImageUtils.centerCrop(array, width, height); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/CenterFit.java
/* * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.types.Shape; import ai.djl.translate.Transform; /** A {@link Transform} that fit the size of an image. */ public class CenterFit implements Transform { private int width; private int height; /** * Creates a {@code CenterFit} {@link Transform} that fit to the given width and height with * given interpolation. * * @param width the desired width * @param height the desired height */ public CenterFit(int width, int height) { this.width = width; this.height = height; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { Shape shape = array.getShape(); int w = (int) shape.get(1); int h = (int) shape.get(0); if (w > width || h > height) { array = NDImageUtils.centerCrop(array, Math.min(w, width), Math.min(h, height)); } int padW = width - w; int padH = height - h; if (padW > 0 || padH > 0) { padW = Math.max(0, padW); padH = Math.max(0, padH); int padW1 = padW / 2; int padH1 = padH / 2; Shape padding = new Shape(0, 0, padW1, padW - padW1, padH1, padH - padH1); array = array.pad(padding, 0); } return array; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/Crop.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** A {@link Transform} that crops the image to a given location and size. */ public class Crop implements Transform { private int x; private int y; private int width; private int height; /** * Creates a {@code CenterCrop} {@link Transform}. * * @param x the x coordinate of the top-left corner of the crop * @param y the y coordinate of the top-left corner of the crop * @param width the width of the cropped image * @param height the height of the cropped image */ public Crop(int x, int y, int width, int height) { this.x = x; this.y = y; this.width = width; this.height = height; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { return NDImageUtils.crop(array, x, y, width, height); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/Normalize.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** A {@link Transform} that normalizes an image {@link NDArray} of shape CHW or NCHW. */ public class Normalize implements Transform { private float[] mean; private float[] std; /** * Creates a {@code Normalize} {@link Transform} that normalizes. * * @param mean the mean to normalize with for each channel * @param std the standard deviation to normalize with for each channel * @see NDImageUtils#normalize(NDArray, float[], float[]) */ public Normalize(float[] mean, float[] std) { this.mean = mean; this.std = std; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { return NDImageUtils.normalize(array, mean, std); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/OneHot.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** A {@link Transform} that converts the labels {@link NDArray} to one-hot labels. */ public class OneHot implements Transform { private int numClass; /** * Creates a {@code OneHot} {@link Transform} that converts the sparse label to one-hot label. * * @param numClass number of classes */ public OneHot(int numClass) { this.numClass = numClass; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { return array.oneHot(numClass); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/Pad.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.types.Shape; import ai.djl.translate.Transform; /** A {@link Transform} that pad the image to square. */ public class Pad implements Transform { private double value; /** * Constructs a new {@code Pad} instance. * * @param value the padding value */ public Pad(double value) { this.value = value; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { Shape shape = array.getShape(); int w = (int) shape.get(1); int h = (int) shape.get(0); if (w == h) { return array; } int max = Math.max(w, h); int padW = max - w; int padH = max - h; Shape padding = new Shape(0, 0, 0, padW, 0, padH); array = array.pad(padding, value); return array; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/RandomBrightness.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** * A {@link Transform} that randomly jitters image brightness with a factor chosen from [max(0, 1 - * brightness), 1 + brightness]. */ public class RandomBrightness implements Transform { private float brightness; /** * Creates a {@code RandomBrightness} {@link Transform}. * * @param brightness the brightness factor from 0 to 1 */ public RandomBrightness(float brightness) { this.brightness = brightness; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { return NDImageUtils.randomBrightness(array, brightness); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/RandomColorJitter.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** * A {@link Transform} that randomly jitters the brightness, contrast, saturation, and hue of an * image. */ public class RandomColorJitter implements Transform { private float brightness; private float contrast; private float saturation; private float hue; /** * Creates a {@code RandomColorJitter} {@link Transform}. * * @param brightness the brightness factor from 0 to 1 * @param contrast the contrast factor from 0 to 1 * @param saturation the saturation factor from 0 to 1 * @param hue the hue factor from 0 to 1 */ public RandomColorJitter(float brightness, float contrast, float saturation, float hue) { this.brightness = brightness; this.contrast = contrast; this.saturation = saturation; this.hue = hue; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { return NDImageUtils.randomColorJitter(array, brightness, contrast, saturation, hue); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/RandomFlipLeftRight.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; import ai.djl.util.RandomUtils; /** * A {@link Transform} that randomly flip the input image left to right with a probability of 0.5. */ public class RandomFlipLeftRight implements Transform { /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { if (RandomUtils.nextFloat() > 0.5) { array.flip(1); } return array; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/RandomFlipTopBottom.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; import ai.djl.util.RandomUtils; /** * A {@link Transform} that randomly flip the input image top to bottom with a probability of 0.5. */ public class RandomFlipTopBottom implements Transform { /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { if (RandomUtils.nextFloat() > 0.5) { array.flip(0); } return array; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/RandomHue.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** * A {@link Transform} that randomly jitters image hue with a factor chosen from [max(0, 1 - hue), 1 * + hue]. */ public class RandomHue implements Transform { private float hue; /** * Creates a {@code RandomHue} {@link Transform}. * * @param hue the hue factor from 0 to 1 */ public RandomHue(float hue) { this.hue = hue; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { return NDImageUtils.randomHue(array, hue); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/RandomResizedCrop.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** A {@link Transform} that crop the input image with random scale and aspect ratio. */ public class RandomResizedCrop implements Transform { private int width; private int height; private double minAreaScale; private double maxAreaScale; private double minAspectRatio; private double maxAspectRatio; /** * Creates a {@code RandomResizedCrop} {@link Transform}. * * @param width the output width of the image * @param height the output height of the image * @param minAreaScale minimum targetArea/srcArea value * @param maxAreaScale maximum targetArea/srcArea value * @param minAspectRatio minimum aspect ratio * @param maxAspectRatio maximum aspect ratio */ public RandomResizedCrop( int width, int height, double minAreaScale, double maxAreaScale, double minAspectRatio, double maxAspectRatio) { this.width = width; this.height = height; this.minAreaScale = minAreaScale; this.maxAreaScale = maxAreaScale; this.minAspectRatio = minAspectRatio; this.maxAspectRatio = maxAspectRatio; } /** * Creates a {@code RandomResizedCrop} {@link Transform}. * * @param width the output width of the image * @param height the output height of the image */ public RandomResizedCrop(int width, int height) { this.width = width; this.height = height; this.minAreaScale = 0.08; this.maxAreaScale = 1.0; this.minAspectRatio = 3.0 / 4.0; this.maxAspectRatio = 4.0 / 3.0; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { return NDImageUtils.randomResizedCrop( array, width, height, minAreaScale, maxAreaScale, minAspectRatio, maxAspectRatio); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/Resize.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** A {@link Transform} that resizes the image. */ public class Resize implements Transform { private int width; private int height; private Image.Interpolation interpolation; /** * Creates a {@code Resize} {@link Transform} that resizes to the given size. * * @param size the new size to use for both height and width */ public Resize(int size) { this(size, size, Image.Interpolation.BILINEAR); } /** * Creates a {@code Resize} {@link Transform} that resizes to the given width and height. * * @param width the desired width * @param height the desired height */ public Resize(int width, int height) { this(width, height, Image.Interpolation.BILINEAR); } /** * Creates a {@code Resize} {@link Transform} that resizes to the given width and height with * given interpolation. * * @param width the desired width * @param height the desired height * @param interpolation the desired interpolation */ public Resize(int width, int height, Image.Interpolation interpolation) { this.width = width; this.height = height; this.interpolation = interpolation; } /** * Returns the width. * * @return the width */ public int getWidth() { return width; } /** * Returns the height. * * @return the height */ public int getHeight() { return height; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { return NDImageUtils.resize(array, width, height, interpolation); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/ResizeShort.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.types.Shape; import ai.djl.translate.Transform; /** A {@link Transform} that resizes the image and keep aspect ratio. */ public class ResizeShort implements Transform { private int shortEdge; private int longEdge; private Image.Interpolation interpolation; /** * Creates a {@code ResizeShort} {@link Transform} that resizes to the given size. * * @param shortEdge the length of the short edge */ public ResizeShort(int shortEdge) { this(shortEdge, -1, Image.Interpolation.BILINEAR); } /** * Creates a {@code ResizeShort} {@link Transform} that resizes to the given size and given * interpolation. * * @param shortEdge the length of the short edge * @param longEdge the length of the long edge * @param interpolation the desired interpolation */ public ResizeShort(int shortEdge, int longEdge, Image.Interpolation interpolation) { this.shortEdge = shortEdge; this.longEdge = longEdge; this.interpolation = interpolation; } /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { Shape shape = array.getShape(); int width = (int) shape.get(1); int height = (int) shape.get(0); int min = Math.min(width, height); int max = Math.max(width, height); int newShort; int newLong; if (shortEdge < 0) { newShort = min * longEdge / max; newLong = longEdge; } else { newShort = shortEdge; newLong = max * shortEdge / min; if (longEdge > 0 && newLong > longEdge) { newShort = min * longEdge / max; newLong = longEdge; } } int rescaledWidth; int rescaledHeight; if (width > height) { rescaledWidth = newLong; rescaledHeight = newShort; } else { rescaledWidth = newShort; rescaledHeight = newLong; } return NDImageUtils.resize(array, rescaledWidth, rescaledHeight, interpolation); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/ToTensor.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.transform; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.translate.Transform; /** * A {@link Transform} that converts an image {@link NDArray} from preprocessing format to Neural * Network format. * * @see NDImageUtils#toTensor(NDArray) */ public class ToTensor implements Transform { /** {@inheritDoc} */ @Override public NDArray transform(NDArray array) { return NDImageUtils.toTensor(array); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/transform/package-info.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains {@link ai.djl.translate.Transform}s for working with Images. */ package ai.djl.modality.cv.transform;
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/BaseImagePreProcessor.java
/* * Copyright 2025 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.Image; import ai.djl.ndarray.NDList; import ai.djl.translate.TranslatorContext; /** A {@code BaseImageTranslator} that only handles pre-processing inputs. */ public class BaseImagePreProcessor extends BaseImageTranslator<Void> { /** * Constructs an {@code ImageTranslator} with the provided builder. * * @param builder the data to build with */ public BaseImagePreProcessor(BaseBuilder<?> builder) { super(builder); } /** {@inheritDoc} */ @Override public Void processOutput(TranslatorContext ctx, NDList list) { return null; } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, Image input) { return super.processInput(ctx, input); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/BaseImageTranslator.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.transform.CenterCrop; import ai.djl.modality.cv.transform.CenterFit; import ai.djl.modality.cv.transform.Normalize; import ai.djl.modality.cv.transform.Pad; import ai.djl.modality.cv.transform.Resize; import ai.djl.modality.cv.transform.ResizeShort; import ai.djl.modality.cv.transform.ToTensor; import ai.djl.modality.cv.util.NDImageUtils; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.types.Shape; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.Batchifier; import ai.djl.translate.Pipeline; import ai.djl.translate.Transform; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorContext; import ai.djl.util.Utils; import java.io.IOException; import java.io.InputStream; import java.net.MalformedURLException; import java.net.URL; import java.util.Arrays; import java.util.List; import java.util.Map; /** * Built-in {@code Translator} that provides default image pre-processing. * * @param <T> the output object type */ public abstract class BaseImageTranslator<T> implements Translator<Image, T> { private static final float[] MEAN = {0.485f, 0.456f, 0.406f}; private static final float[] STD = {0.229f, 0.224f, 0.225f}; protected Pipeline pipeline; private Image.Flag flag; private Batchifier batchifier; protected int width; protected int height; /** * Constructs an ImageTranslator with the provided builder. * * @param builder the data to build with */ public BaseImageTranslator(BaseBuilder<?> builder) { flag = builder.flag; pipeline = builder.pipeline; batchifier = builder.batchifier; width = builder.width; height = builder.height; } /** {@inheritDoc} */ @Override public Batchifier getBatchifier() { return batchifier; } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, Image input) { NDArray array = input.toNDArray(ctx.getNDManager(), flag); NDList list = pipeline.transform(new NDList(array)); Shape shape = list.get(0).getShape(); int processedWidth; int processedHeight; long[] dim = shape.getShape(); if (NDImageUtils.isCHW(shape)) { processedWidth = (int) dim[dim.length - 1]; processedHeight = (int) dim[dim.length - 2]; } else { processedWidth = (int) dim[dim.length - 2]; processedHeight = (int) dim[dim.length - 3]; } ctx.setAttachment("width", input.getWidth()); ctx.setAttachment("height", input.getHeight()); ctx.setAttachment("processedWidth", processedWidth); ctx.setAttachment("processedHeight", processedHeight); return list; } /** * A builder to extend for all classes extending the {@link BaseImageTranslator}. * * @param <T> the concrete builder type */ @SuppressWarnings("rawtypes") public abstract static class BaseBuilder<T extends BaseBuilder> { protected int width = 224; protected int height = 224; protected Image.Flag flag = Image.Flag.COLOR; protected Pipeline pipeline; protected Batchifier batchifier = Batchifier.STACK; /** * Sets the optional {@link ai.djl.modality.cv.Image.Flag} (default is {@link * Image.Flag#COLOR}). * * @param flag the color mode for the images * @return this builder */ public T optFlag(Image.Flag flag) { this.flag = flag; return self(); } /** * Sets the {@link Pipeline} to use for pre-processing the image. * * @param pipeline the pre-processing pipeline * @return this builder */ public T setPipeline(Pipeline pipeline) { this.pipeline = pipeline; return self(); } /** * Sets the image size. * * @param width the image width * @param height the image height * @return this builder */ public T setImageSize(int width, int height) { this.width = width; this.height = height; return self(); } /** * Adds the {@link Transform} to the {@link Pipeline} use for pre-processing the image. * * @param transform the {@link Transform} to be added * @return this builder */ public T addTransform(Transform transform) { if (pipeline == null) { pipeline = new Pipeline(); } pipeline.add(transform); return self(); } /** * Sets the {@link Batchifier} for the {@link Translator}. * * @param batchifier the {@link Batchifier} to be set * @return this builder */ public T optBatchifier(Batchifier batchifier) { this.batchifier = batchifier; return self(); } protected abstract T self(); protected void validate() { if (pipeline == null) { throw new IllegalArgumentException("pipeline is required."); } } protected void configPreProcess(Map<String, ?> arguments) { if (pipeline == null) { pipeline = new Pipeline(); } width = ArgumentsUtil.intValue(arguments, "width", 224); height = ArgumentsUtil.intValue(arguments, "height", 224); if (arguments.containsKey("flag")) { flag = Image.Flag.valueOf(arguments.get("flag").toString()); } String pad = ArgumentsUtil.stringValue(arguments, "pad", "false"); if ("true".equals(pad)) { addTransform(new Pad(0)); } else if (!"false".equals(pad)) { double padding = Double.parseDouble(pad); addTransform(new Pad(padding)); } String resize = ArgumentsUtil.stringValue(arguments, "resize", "false"); if ("true".equals(resize)) { addTransform(new Resize(width, height)); } else if (!"false".equals(resize)) { String[] tokens = resize.split("\\s*,\\s*"); int w = (int) Double.parseDouble(tokens[0]); int h; Image.Interpolation interpolation; if (tokens.length > 1) { h = (int) Double.parseDouble(tokens[1]); } else { h = w; } if (tokens.length > 2) { interpolation = Image.Interpolation.valueOf(tokens[2]); } else { interpolation = Image.Interpolation.BILINEAR; } addTransform(new Resize(w, h, interpolation)); } String resizeShort = ArgumentsUtil.stringValue(arguments, "resizeShort", "false"); if ("true".equals(resizeShort)) { int shortEdge = Math.max(width, height); addTransform(new ResizeShort(shortEdge)); } else if (!"false".equals(resizeShort)) { String[] tokens = resizeShort.split("\\s*,\\s*"); int shortEdge = (int) Double.parseDouble(tokens[0]); int longEdge; Image.Interpolation interpolation; if (tokens.length > 1) { longEdge = (int) Double.parseDouble(tokens[1]); } else { longEdge = -1; } if (tokens.length > 2) { interpolation = Image.Interpolation.valueOf(tokens[2]); } else { interpolation = Image.Interpolation.BILINEAR; } addTransform(new ResizeShort(shortEdge, longEdge, interpolation)); } if (ArgumentsUtil.booleanValue(arguments, "centerCrop", false)) { addTransform(new CenterCrop(width, height)); } if (ArgumentsUtil.booleanValue(arguments, "centerFit")) { addTransform(new CenterFit(width, height)); } if (ArgumentsUtil.booleanValue(arguments, "toTensor", true)) { addTransform(new ToTensor()); } String normalize = ArgumentsUtil.stringValue(arguments, "normalize", "false"); if ("true".equals(normalize)) { addTransform(new Normalize(MEAN, STD)); } else if (!"false".equals(normalize)) { String[] tokens = normalize.split("\\s*,\\s*"); if (tokens.length != 6) { throw new IllegalArgumentException("Invalid normalize value: " + normalize); } float[] mean = { Float.parseFloat(tokens[0]), Float.parseFloat(tokens[1]), Float.parseFloat(tokens[2]) }; float[] std = { Float.parseFloat(tokens[3]), Float.parseFloat(tokens[4]), Float.parseFloat(tokens[5]) }; addTransform(new Normalize(mean, std)); } String range = (String) arguments.get("range"); if ("0,1".equals(range)) { addTransform(a -> a.div(255f)); } else if ("-1,1".equals(range)) { addTransform(a -> a.div(128f).sub(1)); } if (arguments.containsKey("batchifier")) { batchifier = Batchifier.fromString((String) arguments.get("batchifier")); } } protected void configPostProcess(Map<String, ?> arguments) {} } /** A Builder to construct a {@code ImageClassificationTranslator}. */ @SuppressWarnings("rawtypes") public abstract static class ClassificationBuilder<T extends BaseBuilder> extends BaseBuilder<T> { protected SynsetLoader synsetLoader; /** * Sets the name of the synset file listing the potential classes for an image. * * @param synsetArtifactName a file listing the potential classes for an image * @return the builder */ public T optSynsetArtifactName(String synsetArtifactName) { synsetLoader = new SynsetLoader(synsetArtifactName); return self(); } /** * Sets the URL of the synset file. * * @param synsetUrl the URL of the synset file * @return the builder */ public T optSynsetUrl(String synsetUrl) { try { this.synsetLoader = new SynsetLoader(new URL(synsetUrl)); } catch (MalformedURLException e) { throw new IllegalArgumentException("Invalid synsetUrl: " + synsetUrl, e); } return self(); } /** * Sets the potential classes for an image. * * @param synset the potential classes for an image * @return the builder */ public T optSynset(List<String> synset) { synsetLoader = new SynsetLoader(synset); return self(); } /** {@inheritDoc} */ @Override protected void validate() { super.validate(); if (synsetLoader == null) { synsetLoader = new SynsetLoader("synset.txt"); } boolean hasCrop = false; boolean sizeMismatch = false; for (Transform transform : pipeline.getTransforms()) { if (transform instanceof Resize) { Resize resize = (Resize) transform; if (width != resize.getWidth() || height != resize.getHeight()) { sizeMismatch = true; } } else if (transform instanceof CenterCrop || transform instanceof CenterFit) { hasCrop = true; } } if (sizeMismatch && !hasCrop) { throw new IllegalArgumentException("resized image has mismatched target size"); } } /** {@inheritDoc} */ @Override protected void configPostProcess(Map<String, ?> arguments) { String synset = (String) arguments.get("synset"); if (synset != null) { optSynset(Arrays.asList(synset.split(","))); } String synsetUrl = (String) arguments.get("synsetUrl"); if (synsetUrl != null) { optSynsetUrl(synsetUrl); } String synsetFileName = (String) arguments.get("synsetFileName"); if (synsetFileName != null) { optSynsetArtifactName(synsetFileName); } } } protected static final class SynsetLoader { private String synsetFileName; private URL synsetUrl; private List<String> synset; public SynsetLoader(List<String> synset) { this.synset = synset; } public SynsetLoader(URL synsetUrl) { this.synsetUrl = synsetUrl; } public SynsetLoader(String synsetFileName) { this.synsetFileName = synsetFileName; } public List<String> load(Model model) throws IOException { if (synset != null) { return synset; } else if (synsetUrl != null) { try (InputStream is = synsetUrl.openStream()) { return Utils.readLines(is); } } return model.getArtifact(synsetFileName, Utils::readLines); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/BaseImageTranslatorFactory.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.translator.wrapper.FileImagePreProcessor; import ai.djl.modality.cv.translator.wrapper.InputStreamImagePreProcessor; import ai.djl.modality.cv.translator.wrapper.StringImagePreProcessor; import ai.djl.modality.cv.translator.wrapper.UrlImagePreProcessor; import ai.djl.translate.ExpansionTranslatorFactory; import ai.djl.translate.PreProcessor; import ai.djl.util.Pair; import java.io.InputStream; import java.lang.reflect.Type; import java.net.URL; import java.nio.file.Path; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; import java.util.function.Function; /** * A helper to create a {@link ai.djl.translate.TranslatorFactory} with the {@link * BaseImageTranslator}. * * @param <O> the output type for the {@link ai.djl.translate.TranslatorFactory}. */ public abstract class BaseImageTranslatorFactory<O> extends ExpansionTranslatorFactory<Image, O> { /** {@inheritDoc} */ @Override protected Map<Type, Function<PreProcessor<Image>, PreProcessor<?>>> getPreprocessorExpansions() { Map<Type, Function<PreProcessor<Image>, PreProcessor<?>>> expansions = new ConcurrentHashMap<>(); expansions.put(Path.class, FileImagePreProcessor::new); expansions.put(URL.class, UrlImagePreProcessor::new); expansions.put(String.class, StringImagePreProcessor::new); expansions.put(InputStream.class, InputStreamImagePreProcessor::new); return expansions; } /** {@inheritDoc} */ @Override protected Map<Pair<Type, Type>, TranslatorExpansion<Image, O>> getExpansions() { Map<Pair<Type, Type>, TranslatorExpansion<Image, O>> expansions = new ConcurrentHashMap<>(); expansions.put(new Pair<>(Input.class, Output.class), ImageServingTranslator::new); return expansions; } /** {@inheritDoc} */ @Override public Class<Image> getBaseInputType() { return Image.class; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/BigGANTranslator.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.ImageFactory; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.types.Shape; import ai.djl.translate.NoBatchifyTranslator; import ai.djl.translate.TranslatorContext; /** Built-in {@code Translator} that provides preprocessing and postprocessing for BigGAN. */ public final class BigGANTranslator implements NoBatchifyTranslator<int[], Image[]> { private static final int NUMBER_OF_CATEGORIES = 1000; private static final int SEED_COLUMN_SIZE = 128; private float truncation; /** * Constructs a translator for BigGAN. * * @param truncation value used to scale the normal seed for BigGAN */ public BigGANTranslator(float truncation) { this.truncation = truncation; } /** {@inheritDoc} */ @Override public Image[] processOutput(TranslatorContext ctx, NDList list) { NDArray output = list.get(0).duplicate().addi(1).muli(128).clip(0, 255); int sampleSize = (int) output.getShape().get(0); Image[] images = new Image[sampleSize]; for (int i = 0; i < sampleSize; ++i) { images[i] = ImageFactory.getInstance().fromNDArray(output.get(i)); } return images; } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, int[] input) throws Exception { NDManager manager = ctx.getNDManager(); NDArray classes = manager.create(input).oneHot(NUMBER_OF_CATEGORIES); NDArray seed = manager.truncatedNormal(new Shape(input.length, SEED_COLUMN_SIZE)).muli(truncation); return new NDList(seed, classes, manager.create(truncation)); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/BigGANTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import ai.djl.util.Pair; import java.io.Serializable; import java.lang.reflect.Type; import java.util.Collections; import java.util.Map; import java.util.Set; /** A {@link TranslatorFactory} that creates a {@link BigGANTranslator} instance. */ public class BigGANTranslatorFactory implements TranslatorFactory, Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override public Set<Pair<Type, Type>> getSupportedTypes() { return Collections.singleton(new Pair<>(int[].class, Image[].class)); } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <I, O> Translator<I, O> newInstance( Class<I> input, Class<O> output, Model model, Map<String, ?> arguments) { if (!isSupported(input, output)) { throw new IllegalArgumentException("Unsupported input/output types."); } float truncation = ArgumentsUtil.floatValue(arguments, "truncation", 0.5f); return (Translator<I, O>) new BigGANTranslator(truncation); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/ImageClassificationTranslator.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.Classifications; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.TranslatorContext; import ai.djl.translate.TranslatorOptions; import java.io.IOException; import java.util.List; import java.util.Map; /** A generic {@link ai.djl.translate.Translator} for Image Classification tasks. */ public class ImageClassificationTranslator extends BaseImageTranslator<Classifications> { private SynsetLoader synsetLoader; private boolean applySoftmax; private int topK; private List<String> classes; /** * Constructs an Image Classification using {@link Builder}. * * @param builder the data to build with */ public ImageClassificationTranslator(Builder builder) { super(builder); this.synsetLoader = builder.synsetLoader; this.applySoftmax = builder.applySoftmax; this.topK = builder.topK; } /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws IOException { if (classes == null) { classes = synsetLoader.load(ctx.getModel()); } } /** {@inheritDoc} */ @Override public Classifications processOutput(TranslatorContext ctx, NDList list) { NDArray probabilitiesNd = list.singletonOrThrow(); if (applySoftmax) { probabilitiesNd = probabilitiesNd.softmax(0); } return new Classifications(classes, probabilitiesNd, topK); } /** {@inheritDoc} */ @Override public TranslatorOptions getExpansions() { return new ImageClassificationTranslatorFactory().withTranslator(this); } /** * Creates a builder to build a {@code ImageClassificationTranslator}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code ImageClassificationTranslator} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); builder.configPostProcess(arguments); return builder; } /** A Builder to construct a {@code ImageClassificationTranslator}. */ public static class Builder extends ClassificationBuilder<Builder> { private boolean applySoftmax; private int topK = 5; Builder() {} /** * Set the topK number of classes to be displayed. * * @param topK the number of top classes to return * @return the builder */ public Builder optTopK(int topK) { this.topK = topK; return this; } /** * Sets whether to apply softmax when processing output. Some models already include softmax * in the last layer, so don't apply softmax when processing model output. * * @param applySoftmax boolean whether to apply softmax * @return the builder */ public Builder optApplySoftmax(boolean applySoftmax) { this.applySoftmax = applySoftmax; return this; } /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** {@inheritDoc} */ @Override protected void configPostProcess(Map<String, ?> arguments) { super.configPostProcess(arguments); applySoftmax = ArgumentsUtil.booleanValue(arguments, "applySoftmax"); topK = ArgumentsUtil.intValue(arguments, "topK", 5); } /** * Builds the {@link ImageClassificationTranslator} with the provided data. * * @return an {@link ImageClassificationTranslator} */ public ImageClassificationTranslator build() { validate(); return new ImageClassificationTranslator(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/ImageClassificationTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.Classifications; import ai.djl.modality.cv.Image; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import java.io.Serializable; import java.util.Map; /** A {@link TranslatorFactory} that creates an {@link ImageClassificationTranslator}. */ public class ImageClassificationTranslatorFactory extends BaseImageTranslatorFactory<Classifications> implements Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override protected Translator<Image, Classifications> buildBaseTranslator( Model model, Map<String, ?> arguments) { return ImageClassificationTranslator.builder(arguments).build(); } /** {@inheritDoc} */ @Override public Class<Classifications> getBaseOutputType() { return Classifications.class; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/ImageFeatureExtractor.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.ndarray.NDList; import ai.djl.ndarray.types.DataType; import ai.djl.translate.TranslatorContext; import java.util.Map; /** * A generic {@link ai.djl.translate.Translator} for Image Classification feature extraction tasks. */ public class ImageFeatureExtractor extends BaseImageTranslator<float[]> { /** * Constructs an Image Classification using {@link Builder}. * * @param builder the data to build with */ ImageFeatureExtractor(Builder builder) { super(builder); } /** {@inheritDoc} */ @Override public float[] processOutput(TranslatorContext ctx, NDList list) { return list.get(0).toType(DataType.FLOAT32, false).toFloatArray(); } /** * Creates a builder to build a {@code ImageFeatureExtractor}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code ImageFeatureExtractor} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); return builder; } /** A Builder to construct a {@code ImageFeatureExtractor}. */ public static class Builder extends BaseBuilder<Builder> { Builder() {} /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** * Builds the {@link ImageFeatureExtractor} with the provided data. * * @return an {@link ImageFeatureExtractor} */ public ImageFeatureExtractor build() { validate(); return new ImageFeatureExtractor(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/ImageFeatureExtractorFactory.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import java.io.Serializable; import java.util.Map; /** A {@link TranslatorFactory} that creates an {@link ImageClassificationTranslator}. */ public class ImageFeatureExtractorFactory extends BaseImageTranslatorFactory<float[]> implements Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override protected Translator<Image, float[]> buildBaseTranslator( Model model, Map<String, ?> arguments) { return ImageFeatureExtractor.builder(arguments).build(); } /** {@inheritDoc} */ @Override public Class<float[]> getBaseOutputType() { return float[].class; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/ImageServingTranslator.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.ImageFactory; import ai.djl.ndarray.BytesSupplier; import ai.djl.ndarray.NDList; import ai.djl.translate.Batchifier; import ai.djl.translate.TranslateException; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorContext; import ai.djl.util.JsonSerializable; import ai.djl.util.JsonUtils; import com.google.gson.JsonElement; import com.google.gson.JsonObject; import com.google.gson.JsonParseException; import com.google.gson.JsonPrimitive; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOException; /** A {@link Translator} that can handle generic CV {@link Input} and {@link Output}. */ public class ImageServingTranslator implements Translator<Input, Output> { private Translator<Image, ?> translator; private ImageFactory factory; /** * Constructs a new {@code ImageServingTranslator} instance. * * @param translator a {@code Translator} processes Image input */ public ImageServingTranslator(Translator<Image, ?> translator) { this.translator = translator; factory = ImageFactory.getInstance(); } /** {@inheritDoc} */ @Override public Batchifier getBatchifier() { return translator.getBatchifier(); } /** {@inheritDoc} */ @Override public Output processOutput(TranslatorContext ctx, NDList list) throws Exception { Output output = new Output(); Object obj = translator.processOutput(ctx, list); if (obj instanceof JsonSerializable) { output.add((JsonSerializable) obj); output.addProperty("Content-Type", "application/json"); } else if (obj instanceof Image) { Image img = (Image) obj; try (ByteArrayOutputStream bos = new ByteArrayOutputStream()) { img.save(bos, "png"); output.add(bos.toByteArray()); } output.addProperty("Content-Type", "image/png"); } else { output.add(BytesSupplier.wrapAsJson(obj)); output.addProperty("Content-Type", "application/json"); } return output; } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, Input input) throws Exception { BytesSupplier data = input.getData(); try { if (data == null) { throw new TranslateException("Input data is empty."); } String contentType = input.getProperty("Content-Type", null); if (contentType != null) { int pos = contentType.indexOf(';'); if (pos > 0) { contentType = contentType.substring(0, pos); } } Image image; if ("application/json".equalsIgnoreCase(contentType)) { try { JsonElement element = JsonUtils.GSON.fromJson(data.getAsString(), JsonElement.class); if (element == null || !element.isJsonObject()) { throw new TranslateException("Invalid JsonObject input."); } JsonObject obj = element.getAsJsonObject(); JsonPrimitive url = obj.getAsJsonPrimitive("image_url"); if (url == null) { throw new TranslateException("Missing \"image_url\" in json."); } image = factory.fromUrl(url.getAsString()); } catch (JsonParseException e) { throw new TranslateException("Input is not a valid json.", e); } } else { image = factory.fromInputStream(new ByteArrayInputStream(data.getAsBytes())); } return translator.processInput(ctx, image); } catch (IOException e) { throw new TranslateException("Input is not an Image data type", e); } } /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws Exception { translator.prepare(ctx); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/InstanceSegmentationTranslator.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.BoundingBox; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.output.Mask; import ai.djl.modality.cv.transform.ResizeShort; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.TranslatorContext; import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * A {@link BaseImageTranslator} that post-process the {@link NDArray} into {@link DetectedObjects} * with boundaries at the detailed pixel level. */ public class InstanceSegmentationTranslator extends BaseImageTranslator<DetectedObjects> { private SynsetLoader synsetLoader; private float threshold; private List<String> classes; /** * Creates the Instance Segmentation translator from the given builder. * * @param builder the builder for the translator */ public InstanceSegmentationTranslator(Builder builder) { super(builder); this.synsetLoader = builder.synsetLoader; this.threshold = builder.threshold; } /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws IOException { if (classes == null) { classes = synsetLoader.load(ctx.getModel()); } } /** {@inheritDoc} */ @Override public DetectedObjects processOutput(TranslatorContext ctx, NDList list) { int rescaledWidth = (Integer) ctx.getAttachment("processedWidth"); int rescaledHeight = (Integer) ctx.getAttachment("processedHeight"); float[] ids = list.get(0).toFloatArray(); float[] scores = list.get(1).toFloatArray(); NDArray boundingBoxes = list.get(2); NDArray masks = list.get(3); List<String> retNames = new ArrayList<>(); List<Double> retProbs = new ArrayList<>(); List<BoundingBox> retBB = new ArrayList<>(); for (int i = 0; i < ids.length; ++i) { int classId = (int) ids[i]; double probability = scores[i]; if (classId >= 0 && probability > threshold) { if (classId >= classes.size()) { throw new AssertionError("Unexpected index: " + classId); } String className = classes.get(classId); float[] box = boundingBoxes.get(i).toFloatArray(); double x = box[0] / rescaledWidth; double y = box[1] / rescaledHeight; double w = box[2] / rescaledWidth - x; double h = box[3] / rescaledHeight - y; // Reshape mask to actual image bounding box shape. NDArray array = masks.get(i); float[][] maskFloat = Mask.toMask(array); Mask mask = new Mask(x, y, w, h, maskFloat); retNames.add(className); retProbs.add(probability); retBB.add(mask); } } return new DetectedObjects(retNames, retProbs, retBB); } /** * Creates a builder to build a {@code InstanceSegmentationTranslator}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code InstanceSegmentationTranslator} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); builder.configPostProcess(arguments); return builder; } /** The builder for Instance Segmentation translator. */ public static class Builder extends ClassificationBuilder<Builder> { float threshold = 0.3f; int shortEdge = 600; int maxEdge = 1000; Builder() {} /** * Sets the threshold for prediction accuracy. * * <p>Predictions below the threshold will be dropped. * * @param threshold the threshold for prediction accuracy * @return the builder */ public Builder optThreshold(float threshold) { this.threshold = threshold; return this; } /** * Sets the shorter edge length of the rescaled image. * * @param shortEdge the length of the short edge * @return the builder */ public Builder optShortEdge(int shortEdge) { this.shortEdge = shortEdge; return this; } /** * Sets the maximum edge length of the rescaled image. * * @param maxEdge the length of the longest edge * @return the builder */ public Builder optMaxEdge(int maxEdge) { this.maxEdge = maxEdge; return this; } /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** {@inheritDoc} */ @Override protected void configPostProcess(Map<String, ?> arguments) { super.configPostProcess(arguments); threshold = ArgumentsUtil.floatValue(arguments, "threshold", 0.3f); shortEdge = ArgumentsUtil.intValue(arguments, "shortEdge", 600); maxEdge = ArgumentsUtil.intValue(arguments, "maxEdge", 1000); } /** * Builds the translator. * * @return the new translator */ public InstanceSegmentationTranslator build() { validate(); ResizeShort resize = new ResizeShort(shortEdge, maxEdge, Image.Interpolation.BILINEAR); pipeline.insert(0, null, resize); return new InstanceSegmentationTranslator(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/InstanceSegmentationTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import java.io.Serializable; import java.util.Map; /** A {@link TranslatorFactory} that creates a {@link InstanceSegmentationTranslator} instance. */ public class InstanceSegmentationTranslatorFactory extends ObjectDetectionTranslatorFactory implements Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override protected Translator<Image, DetectedObjects> buildBaseTranslator( Model model, Map<String, ?> arguments) { return InstanceSegmentationTranslator.builder(arguments).build(); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/ObjectDetectionTranslator.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.ndarray.NDArray; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.TranslatorContext; import java.util.List; import java.util.Map; /** * A {@link BaseImageTranslator} that post-process the {@link NDArray} into {@link DetectedObjects} * with boundaries. */ public abstract class ObjectDetectionTranslator extends BaseImageTranslator<DetectedObjects> { protected float threshold; private SynsetLoader synsetLoader; protected List<String> classes; protected boolean applyRatio; protected boolean removePadding; /** * Creates the {@link ObjectDetectionTranslator} from the given builder. * * @param builder the builder for the translator */ protected ObjectDetectionTranslator(ObjectDetectionBuilder<?> builder) { super(builder); this.threshold = builder.threshold; this.synsetLoader = builder.synsetLoader; this.applyRatio = builder.applyRatio; this.removePadding = builder.removePadding; } /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws Exception { if (classes == null) { classes = synsetLoader.load(ctx.getModel()); } } /** The base builder for the object detection translator. */ @SuppressWarnings("rawtypes") public abstract static class ObjectDetectionBuilder<T extends ObjectDetectionBuilder> extends ClassificationBuilder<T> { protected float threshold = 0.2f; protected boolean applyRatio; protected boolean removePadding; /** * Sets the threshold for prediction accuracy. * * <p>Predictions below the threshold will be dropped. * * @param threshold the threshold for the prediction accuracy * @return this builder */ public T optThreshold(float threshold) { this.threshold = threshold; return self(); } /** * Determine Whether to divide output object width/height on the inference result. Default * false. * * <p>DetectedObject value should always bring a ratio based on the width/height instead of * actual width/height. Most of the model will produce ratio as the inference output. This * function is aimed to cover those who produce the pixel value. Make this to true to divide * the width/height in postprocessing in order to get ratio in detectedObjects. * * @param value whether to apply ratio * @return this builder */ public T optApplyRatio(boolean value) { this.applyRatio = value; return self(); } /** {@inheritDoc} */ @Override protected void configPostProcess(Map<String, ?> arguments) { super.configPostProcess(arguments); if (ArgumentsUtil.booleanValue(arguments, "optApplyRatio") || ArgumentsUtil.booleanValue(arguments, "applyRatio")) { optApplyRatio(true); } threshold = ArgumentsUtil.floatValue(arguments, "threshold", 0.2f); String centerFit = ArgumentsUtil.stringValue(arguments, "centerFit", "false"); removePadding = "true".equals(centerFit); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/ObjectDetectionTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.translate.TranslatorFactory; /** * An abstract {@link TranslatorFactory} that creates a {@link ObjectDetectionTranslator} instance. */ public abstract class ObjectDetectionTranslatorFactory extends BaseImageTranslatorFactory<DetectedObjects> { /** {@inheritDoc} */ @Override public Class<DetectedObjects> getBaseOutputType() { return DetectedObjects.class; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/Sam2ServingTranslator.java
/* * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.output.Rectangle; import ai.djl.modality.cv.translator.Sam2Translator.Sam2Input; import ai.djl.ndarray.BytesSupplier; import ai.djl.ndarray.NDList; import ai.djl.translate.Batchifier; import ai.djl.translate.TranslateException; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorContext; import org.apache.commons.codec.binary.Base64OutputStream; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.nio.charset.StandardCharsets; import java.util.LinkedHashMap; import java.util.Map; /** A {@link Translator} that can serve SAM2 model. */ public class Sam2ServingTranslator implements Translator<Input, Output> { private Sam2Translator translator; /** * Constructs a new {@code Sam2ServingTranslator} instance. * * @param translator a {@code Sam2Translator} */ public Sam2ServingTranslator(Sam2Translator translator) { this.translator = translator; } /** {@inheritDoc} */ @Override public Batchifier getBatchifier() { return translator.getBatchifier(); } /** {@inheritDoc} */ @Override public Output processOutput(TranslatorContext ctx, NDList list) throws IOException { Output output = new Output(); Sam2Input sam2 = (Sam2Input) ctx.getAttachment("input"); output.addProperty("Content-Type", "application/json"); DetectedObjects detection = translator.processOutput(ctx, list); Map<String, Object> ret = new LinkedHashMap<>(); // NOPMD ret.put("result", detection); if (sam2.isVisualize()) { Image img = sam2.getImage(); img.drawBoundingBoxes(detection, 0.8f); img.drawMarks(sam2.getPoints()); for (Rectangle rect : sam2.getBoxes()) { img.drawRectangle(rect, 0xff0000, 6); } ByteArrayOutputStream os = new ByteArrayOutputStream(); os.write("data:image/png;base64,".getBytes(StandardCharsets.UTF_8)); Base64OutputStream bos = new Base64OutputStream(os, true, 0, null); img.save(bos, "png"); bos.close(); os.close(); ret.put("image", os.toString(StandardCharsets.UTF_8.name())); } output.add(BytesSupplier.wrapAsJson(ret)); return output; } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, Input input) throws Exception { BytesSupplier data = input.getData(); try { if (data == null) { throw new TranslateException("Input data is empty."); } Sam2Input sam2 = Sam2Input.fromJson(data.getAsString()); ctx.setAttachment("input", sam2); return translator.processInput(ctx, sam2); } catch (IOException e) { throw new TranslateException("Input is not an Image data type", e); } } /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws Exception { translator.prepare(ctx); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/Sam2Translator.java
/* * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.ModelException; import ai.djl.inference.Predictor; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.ImageFactory; import ai.djl.modality.cv.output.BoundingBox; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.output.Mask; import ai.djl.modality.cv.output.Point; import ai.djl.modality.cv.output.Rectangle; import ai.djl.modality.cv.transform.Normalize; import ai.djl.modality.cv.transform.Resize; import ai.djl.modality.cv.transform.ToTensor; import ai.djl.modality.cv.translator.Sam2Translator.Sam2Input; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.NoBatchifyTranslator; import ai.djl.translate.NoopTranslator; import ai.djl.translate.Pipeline; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorContext; import ai.djl.util.JsonUtils; import com.google.gson.annotations.SerializedName; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map; /** A {@link Translator} that handles mask generation task. */ public class Sam2Translator implements NoBatchifyTranslator<Sam2Input, DetectedObjects> { private static final float[] MEAN = {0.485f, 0.456f, 0.406f}; private static final float[] STD = {0.229f, 0.224f, 0.225f}; private Pipeline pipeline; private Predictor<NDList, NDList> predictor; private String encoderPath; private String encodeMethod; /** Constructs a {@code Sam2Translator} instance. */ public Sam2Translator(Builder builder) { pipeline = new Pipeline(); pipeline.add(new Resize(1024, 1024)); pipeline.add(new ToTensor()); pipeline.add(new Normalize(MEAN, STD)); this.encoderPath = builder.encoderPath; this.encodeMethod = builder.encodeMethod; } /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws IOException, ModelException { if (encoderPath == null) { // PyTorch model if (encodeMethod != null) { Model model = ctx.getModel(); predictor = model.newPredictor(new NoopTranslator(null)); model.getNDManager().attachInternal(NDManager.nextUid(), predictor); } return; } Model model = ctx.getModel(); Path path = Paths.get(encoderPath); if (!path.isAbsolute() && Files.notExists(path)) { path = model.getModelPath().resolve(encoderPath); } if (!Files.exists(path)) { throw new IOException("encoder model not found: " + encoderPath); } NDManager manager = ctx.getNDManager(); Model encoder = manager.getEngine().newModel("encoder", manager.getDevice()); encoder.load(path); predictor = encoder.newPredictor(new NoopTranslator(null)); model.getNDManager().attachInternal(NDManager.nextUid(), predictor); model.getNDManager().attachInternal(NDManager.nextUid(), encoder); } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, Sam2Input input) throws Exception { Image image = input.getImage(); int width = image.getWidth(); int height = image.getHeight(); ctx.setAttachment("width", width); ctx.setAttachment("height", height); float[] buf = input.toLocationArray(width, height); NDManager manager = ctx.getNDManager(); NDArray array = image.toNDArray(manager, Image.Flag.COLOR); array = pipeline.transform(new NDList(array)).get(0).expandDims(0); NDArray locations = manager.create(buf, new Shape(1, buf.length / 2, 2)); NDArray labels = manager.create(input.getLabels()); if (predictor == null) { return new NDList(array, locations, labels); } NDList embeddings; if (encodeMethod == null) { embeddings = predictor.predict(new NDList(array)); } else { NDArray placeholder = manager.create(""); placeholder.setName("module_method:" + encodeMethod); embeddings = predictor.predict(new NDList(placeholder, array)); } NDArray mask = manager.zeros(new Shape(1, 1, 256, 256)); NDArray hasMask = manager.zeros(new Shape(1)); for (NDArray arr : embeddings) { arr.setName(null); } return new NDList( embeddings.get(2), embeddings.get(0), embeddings.get(1), locations, labels, mask, hasMask); } /** {@inheritDoc} */ @Override public DetectedObjects processOutput(TranslatorContext ctx, NDList list) { NDArray logits = list.get(0); NDArray scores = list.get(1).squeeze(0); long best = scores.argMax().getLong(); int width = (Integer) ctx.getAttachment("width"); int height = (Integer) ctx.getAttachment("height"); long[] size = {height, width}; int mode = Image.Interpolation.BILINEAR.ordinal(); logits = logits.getNDArrayInternal().interpolation(size, mode, false); NDArray masks = logits.gt(0f).squeeze(0); float[][] dist = Mask.toMask(masks.get(best).toType(DataType.FLOAT32, true)); Mask mask = new Mask(0, 0, width, height, dist, true); double probability = scores.getFloat(best); List<String> classes = Collections.singletonList(""); List<Double> probabilities = Collections.singletonList(probability); List<BoundingBox> boxes = Collections.singletonList(mask); return new DetectedObjects(classes, probabilities, boxes); } /** * Creates a builder to build a {@code Sam2Translator}. * * @return a new builder */ public static Builder builder() { return builder(Collections.emptyMap()); } /** * Creates a builder to build a {@code Sam2Translator} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { return new Builder(arguments); } /** The builder for Sam2Translator. */ public static class Builder { String encoderPath; String encodeMethod; Builder(Map<String, ?> arguments) { encoderPath = ArgumentsUtil.stringValue(arguments, "encoder"); encodeMethod = ArgumentsUtil.stringValue(arguments, "encode_method"); } /** * Sets the encoder model path. * * @param encoderPath the encoder model path * @return the builder */ public Builder optEncoderPath(String encoderPath) { this.encoderPath = encoderPath; return this; } /** * Sets the module name for encode method. * * @param encodeMethod the module name for encode method * @return the builder */ public Builder optEncodeMethod(String encodeMethod) { this.encodeMethod = encodeMethod; return this; } /** * Builds the translator. * * @return the new translator */ public Sam2Translator build() { return new Sam2Translator(this); } } /** A class represents the segment anything input. */ public static final class Sam2Input { private Image image; private Point[] points; private int[] labels; private boolean visualize; /** * Constructs a {@code Sam2Input} instance. * * @param image the image * @param points the locations on the image * @param labels the labels for the locations (0: background, 1: foreground) */ public Sam2Input(Image image, Point[] points, int[] labels) { this(image, points, labels, false); } /** * Constructs a {@code Sam2Input} instance. * * @param image the image * @param points the locations on the image * @param labels the labels for the locations (0: background, 1: foreground) * @param visualize true if output visualized image */ public Sam2Input(Image image, Point[] points, int[] labels, boolean visualize) { this.image = image; this.points = points; this.labels = labels; this.visualize = visualize; } /** * Returns the image. * * @return the image */ public Image getImage() { return image; } /** * Returns {@code true} if output visualized image. * * @return {@code true} if output visualized image */ public boolean isVisualize() { return visualize; } /** * Returns the locations. * * @return the locations */ public List<Point> getPoints() { List<Point> list = new ArrayList<>(); for (int i = 0; i < labels.length; ++i) { if (labels[i] < 2) { list.add(points[i]); } } return list; } /** * Returns the box. * * @return the box */ public List<Rectangle> getBoxes() { List<Rectangle> list = new ArrayList<>(); for (int i = 0; i < labels.length; ++i) { if (labels[i] == 2) { double width = points[i + 1].getX() - points[i].getX(); double height = points[i + 1].getY() - points[i].getY(); list.add(new Rectangle(points[i], width, height)); } } return list; } float[] toLocationArray(int width, int height) { float[] ret = new float[points.length * 2]; int i = 0; for (Point point : points) { ret[i++] = (float) point.getX() / width * 1024; ret[i++] = (float) point.getY() / height * 1024; } return ret; } float[][] getLabels() { float[][] buf = new float[1][labels.length]; for (int i = 0; i < labels.length; ++i) { buf[0][i] = labels[i]; } return buf; } /** * Constructs a {@code Sam2Input} instance from json string. * * @param input the json input * @return a {@code Sam2Input} instance * @throws IOException if failed to load the image */ public static Sam2Input fromJson(String input) throws IOException { Prompt prompt = JsonUtils.GSON.fromJson(input, Prompt.class); if (prompt.image == null) { throw new IllegalArgumentException("Missing image_url value"); } if (prompt.prompt == null || prompt.prompt.length == 0) { throw new IllegalArgumentException("Missing prompt value"); } Image image = ImageFactory.getInstance().fromUrl(prompt.image); Builder builder = builder(image); if (prompt.visualize) { builder.visualize(); } for (Location location : prompt.prompt) { int[] data = location.data; if ("point".equals(location.type)) { builder.addPoint(data[0], data[1], location.label); } else if ("rectangle".equals(location.type)) { builder.addBox(data[0], data[1], data[2], data[3]); } } return builder.build(); } /** * Creates a builder to build a {@code Sam2Input} with the image. * * @param image the image * @return a new builder */ public static Builder builder(Image image) { return new Builder(image); } /** The builder for {@code Sam2Input}. */ public static final class Builder { private Image image; private List<Point> points; private List<Integer> labels; private boolean visualize; Builder(Image image) { this.image = image; points = new ArrayList<>(); labels = new ArrayList<>(); } /** * Adds a point to the {@code Sam2Input}. * * @param x the X coordinate * @param y the Y coordinate * @return the builder */ public Builder addPoint(int x, int y) { return addPoint(x, y, 1); } /** * Adds a point to the {@code Sam2Input}. * * @param x the X coordinate * @param y the Y coordinate * @param label the label of the point, 0 for background, 1 for foreground * @return the builder */ public Builder addPoint(int x, int y, int label) { return addPoint(new Point(x, y), label); } /** * Adds a point to the {@code Sam2Input}. * * @param point the point on image * @param label the label of the point, 0 for background, 1 for foreground * @return the builder */ public Builder addPoint(Point point, int label) { points.add(point); labels.add(label); return this; } /** * Adds a box area to the {@code Sam2Input}. * * @param x the left coordinate * @param y the top coordinate * @param right the right coordinate * @param bottom the bottom coordinate * @return the builder */ public Builder addBox(int x, int y, int right, int bottom) { addPoint(new Point(x, y), 2); addPoint(new Point(right, bottom), 3); return this; } /** * Sets the visualize for the {@code Sam2Input}. * * @return the builder */ public Builder visualize() { visualize = true; return this; } /** * Builds the {@code Sam2Input}. * * @return the new {@code Sam2Input} */ public Sam2Input build() { Point[] location = points.toArray(new Point[0]); int[] array = labels.stream().mapToInt(Integer::intValue).toArray(); return new Sam2Input(image, location, array, visualize); } } private static final class Location { String type; int[] data; int label; public void setType(String type) { this.type = type; } public void setData(int[] data) { this.data = data; } public void setLabel(int label) { this.label = label; } } private static final class Prompt { @SerializedName("image_url") String image; Location[] prompt; boolean visualize; public void setImage(String image) { this.image = image; } public void setPrompt(Location[] prompt) { this.prompt = prompt; } public void setVisualize(boolean visualize) { this.visualize = visualize; } } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/Sam2TranslatorFactory.java
/* * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.translator.Sam2Translator.Sam2Input; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import ai.djl.util.Pair; import java.io.Serializable; import java.lang.reflect.Type; import java.util.HashSet; import java.util.Map; import java.util.Set; /** A {@link TranslatorFactory} that creates a {@link Sam2Translator} instance. */ public class Sam2TranslatorFactory implements TranslatorFactory, Serializable { private static final long serialVersionUID = 1L; private static final Set<Pair<Type, Type>> SUPPORTED_TYPES = new HashSet<>(); static { SUPPORTED_TYPES.add(new Pair<>(Sam2Input.class, DetectedObjects.class)); SUPPORTED_TYPES.add(new Pair<>(Input.class, Output.class)); } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <I, O> Translator<I, O> newInstance( Class<I> input, Class<O> output, Model model, Map<String, ?> arguments) { if (input == Sam2Input.class && output == DetectedObjects.class) { return (Translator<I, O>) Sam2Translator.builder(arguments).build(); } else if (input == Input.class && output == Output.class) { Sam2Translator translator = Sam2Translator.builder(arguments).build(); return (Translator<I, O>) new Sam2ServingTranslator(translator); } throw new IllegalArgumentException("Unsupported input/output types."); } /** {@inheritDoc} */ @Override public Set<Pair<Type, Type>> getSupportedTypes() { return SUPPORTED_TYPES; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/SemanticSegmentationTranslator.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.CategoryMask; import ai.djl.modality.cv.transform.ResizeShort; import ai.djl.ndarray.NDList; import ai.djl.ndarray.types.Shape; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorContext; import java.io.IOException; import java.util.List; import java.util.Map; /** * A {@link Translator} that post-process the {@link Image} into {@link CategoryMask} with output * mask representing the class that each pixel in the original image belong to. */ public class SemanticSegmentationTranslator extends BaseImageTranslator<CategoryMask> { private SynsetLoader synsetLoader; private List<String> classes; /** * Creates the Semantic Segmentation translator from the given builder. * * @param builder the builder for the translator */ public SemanticSegmentationTranslator(Builder builder) { super(builder); this.synsetLoader = builder.synsetLoader; } /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws IOException { if (classes == null) { classes = synsetLoader.load(ctx.getModel()); } } /** {@inheritDoc} */ @Override public CategoryMask processOutput(TranslatorContext ctx, NDList list) { // scores contains the probabilities of each pixel being a certain object float[] scores = list.get(1).toFloatArray(); Shape shape = list.get(1).getShape(); int width = (int) shape.get(2); int height = (int) shape.get(1); int[][] mask = new int[height][width]; int imageSize = width * height; // Build mask array int numOfClasses = classes.size(); for (int h = 0; h < height; h++) { for (int w = 0; w < width; w++) { int index = h * width + w; int maxi = 0; double maxnum = -Double.MAX_VALUE; for (int i = 0; i < numOfClasses; ++i) { // get score for each i at the h,w pixel of the image float score = scores[i * imageSize + index]; if (score > maxnum) { maxnum = score; maxi = i; } } mask[h][w] = maxi; } } return new CategoryMask(classes, mask); } /** * Creates a builder to build a {@code SemanticSegmentationTranslator}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code SemanticSegmentationTranslator} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); builder.configPostProcess(arguments); return builder; } /** The builder for Semantic Segmentation translator. */ public static class Builder extends ClassificationBuilder<Builder> { int shortEdge = 600; int maxEdge = 1000; Builder() {} /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** {@inheritDoc} */ @Override protected void configPostProcess(Map<String, ?> arguments) { super.configPostProcess(arguments); shortEdge = ArgumentsUtil.intValue(arguments, "shortEdge", 600); maxEdge = ArgumentsUtil.intValue(arguments, "maxEdge", 1000); } /** * Builds the translator. * * @return the new translator */ public SemanticSegmentationTranslator build() { validate(); ResizeShort resize = new ResizeShort(shortEdge, maxEdge, Image.Interpolation.BILINEAR); pipeline.insert(0, null, resize); return new SemanticSegmentationTranslator(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/SemanticSegmentationTranslatorFactory.java
/* * Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.CategoryMask; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import java.io.Serializable; import java.util.Map; /** A {@link TranslatorFactory} that creates a {@link SemanticSegmentationTranslator} instance. */ public class SemanticSegmentationTranslatorFactory extends BaseImageTranslatorFactory<CategoryMask> implements Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override protected Translator<Image, CategoryMask> buildBaseTranslator( Model model, Map<String, ?> arguments) { return SemanticSegmentationTranslator.builder(arguments).build(); } /** {@inheritDoc} */ @Override public Class<CategoryMask> getBaseOutputType() { return CategoryMask.class; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/SimplePoseTranslator.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.output.Joints; import ai.djl.modality.cv.output.Joints.Joint; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.index.NDIndex; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.TranslatorContext; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * A {@link BaseImageTranslator} that post-process the {@link NDArray} into human {@link Joints}. */ public class SimplePoseTranslator extends BaseImageTranslator<Joints> { private float threshold; /** * Creates the Pose Estimation translator from the given builder. * * @param builder the builder for the translator */ public SimplePoseTranslator(Builder builder) { super(builder); this.threshold = builder.threshold; } /** {@inheritDoc} */ @Override public Joints processOutput(TranslatorContext ctx, NDList list) { NDArray pred = list.singletonOrThrow(); int numJoints = (int) pred.getShape().get(0); int height = (int) pred.getShape().get(1); int width = (int) pred.getShape().get(2); NDArray predReshaped = pred.reshape(new Shape(1, numJoints, -1)); NDArray maxIndices = predReshaped .argMax(2) .reshape(new Shape(1, numJoints, -1)) .toType(DataType.FLOAT32, false); NDArray maxValues = predReshaped.max(new int[] {2}, true); NDArray result = maxIndices.tile(2, 2); result.set(new NDIndex(":, :, 0"), result.get(":, :, 0").mod(width)); result.set(new NDIndex(":, :, 1"), result.get(":, :, 1").div(width).floor()); // TODO remove asType NDArray predMask = maxValues .gt(0.0) // current boolean NDArray operator didn't support majority of ops // need to cast to int .toType(DataType.UINT8, false) .tile(2, 2) .toType(DataType.BOOLEAN, false); float[] flattened = result.get(predMask).toFloatArray(); float[] flattenedConfidence = maxValues.toFloatArray(); List<Joint> joints = new ArrayList<>(numJoints); for (int i = 0; i < numJoints; ++i) { if (flattenedConfidence[i] > threshold) { joints.add( new Joint( flattened[i * 2] / width, flattened[i * 2 + 1] / height, flattenedConfidence[i])); } } return new Joints(joints); } /** * Creates a builder to build a {@code SimplePoseTranslator}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code SimplePoseTranslator} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); builder.configPostProcess(arguments); return builder; } /** The builder for Pose Estimation translator. */ public static class Builder extends BaseBuilder<Builder> { float threshold = 0.2f; Builder() {} /** * Sets the threshold for prediction accuracy. * * <p>Predictions below the threshold will be dropped. * * @param threshold the threshold for prediction accuracy * @return the builder */ public Builder optThreshold(float threshold) { this.threshold = threshold; return self(); } /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** {@inheritDoc} */ @Override protected void configPostProcess(Map<String, ?> arguments) { threshold = ArgumentsUtil.floatValue(arguments, "threshold", 0.2f); } /** * Builds the translator. * * @return the new translator */ public SimplePoseTranslator build() { validate(); return new SimplePoseTranslator(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/SimplePoseTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.Joints; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import java.io.Serializable; import java.util.Map; /** An {@link TranslatorFactory} that creates a {@link SimplePoseTranslator} instance. */ public class SimplePoseTranslatorFactory extends BaseImageTranslatorFactory<Joints> implements Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override protected Translator<Image, Joints> buildBaseTranslator(Model model, Map<String, ?> arguments) { return SimplePoseTranslator.builder(arguments).build(); } /** {@inheritDoc} */ @Override public Class<Joints> getBaseOutputType() { return Joints.class; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/SingleShotDetectionTranslator.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.output.BoundingBox; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.output.Rectangle; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.translate.TranslatorContext; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * A {@link BaseImageTranslator} that post-process the {@link NDArray} into {@link DetectedObjects} * with boundaries. */ public class SingleShotDetectionTranslator extends ObjectDetectionTranslator { /** * Creates the SSD translator from the given builder. * * @param builder the builder for the translator */ public SingleShotDetectionTranslator(Builder builder) { super(builder); } /** {@inheritDoc} */ @Override public DetectedObjects processOutput(TranslatorContext ctx, NDList list) { float[] classIds = list.get(0).toFloatArray(); float[] probabilities = list.get(1).toFloatArray(); NDArray boundingBoxes = list.get(2); List<String> retNames = new ArrayList<>(); List<Double> retProbs = new ArrayList<>(); List<BoundingBox> retBB = new ArrayList<>(); for (int i = 0; i < classIds.length; ++i) { int classId = (int) classIds[i]; double probability = probabilities[i]; // classId starts from 0, -1 means background if (classId >= 0 && probability > threshold) { if (classId >= classes.size()) { throw new AssertionError("Unexpected index: " + classId); } String className = classes.get(classId); float[] box = boundingBoxes.get(i).toFloatArray(); // rescale box coordinates by width and height double x = width > 0 ? box[0] / width : box[0]; double y = height > 0 ? box[1] / height : box[1]; double w = width > 0 ? box[2] / width - x : box[2] - x; double h = height > 0 ? box[3] / height - y : box[3] - y; Rectangle rect; if (applyRatio) { rect = new Rectangle(x / width, y / height, w / width, h / height); } else { rect = new Rectangle(x, y, w, h); } retNames.add(className); retProbs.add(probability); retBB.add(rect); } } return new DetectedObjects(retNames, retProbs, retBB); } /** * Creates a builder to build a {@code SingleShotDetectionTranslator}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code SingleShotDetectionTranslator} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); builder.configPostProcess(arguments); return builder; } /** The builder for SSD translator. */ public static class Builder extends ObjectDetectionBuilder<Builder> { /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** * Builds the translator. * * @return the new translator */ public SingleShotDetectionTranslator build() { validate(); return new SingleShotDetectionTranslator(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/SingleShotDetectionTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import java.io.Serializable; import java.util.Map; /** An {@link TranslatorFactory} that creates a {@link SingleShotDetectionTranslator} instance. */ public class SingleShotDetectionTranslatorFactory extends ObjectDetectionTranslatorFactory implements Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override protected Translator<Image, DetectedObjects> buildBaseTranslator( Model model, Map<String, ?> arguments) { return SingleShotDetectionTranslator.builder(arguments).build(); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/StyleTransferTranslator.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.ImageFactory; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDArrays; import ai.djl.ndarray.NDList; import ai.djl.ndarray.types.DataType; import ai.djl.translate.NoBatchifyTranslator; import ai.djl.translate.TranslatorContext; /** Built-in {@code Translator} that provides preprocessing and postprocessing for StyleTransfer. */ public class StyleTransferTranslator implements NoBatchifyTranslator<Image, Image> { /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, Image input) { NDArray image = switchFormat(input.toNDArray(ctx.getNDManager())).expandDims(0); return new NDList(image.toType(DataType.FLOAT32, false)); } /** {@inheritDoc} */ @Override public Image processOutput(TranslatorContext ctx, NDList list) { NDArray output = list.get(0).duplicate().addi(1).muli(128); return ImageFactory.getInstance().fromNDArray(output.squeeze()); } private NDArray switchFormat(NDArray array) { return NDArrays.stack(array.split(3, 2)).squeeze(); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/StyleTransferTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import java.io.Serializable; import java.util.Map; /** A {@link TranslatorFactory} that creates a {@link StyleTransferTranslator} instance. */ public class StyleTransferTranslatorFactory extends BaseImageTranslatorFactory<Image> implements Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override protected Translator<Image, Image> buildBaseTranslator(Model model, Map<String, ?> arguments) { return new StyleTransferTranslator(); } /** {@inheritDoc} */ @Override public Class<Image> getBaseOutputType() { return Image.class; } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/YoloPoseTranslator.java
/* * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.output.Joints; import ai.djl.modality.cv.output.Joints.Joint; import ai.djl.modality.cv.output.Rectangle; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.TranslatorContext; import java.util.ArrayList; import java.util.List; import java.util.Map; /** A translator for Yolov8 pose estimation models. */ public class YoloPoseTranslator extends BaseImageTranslator<Joints[]> { private static final int MAX_DETECTION = 300; private float threshold; private float nmsThreshold; /** * Creates the Pose Estimation translator from the given builder. * * @param builder the builder for the translator */ public YoloPoseTranslator(Builder builder) { super(builder); this.threshold = builder.threshold; this.nmsThreshold = builder.nmsThreshold; } /** {@inheritDoc} */ @Override public Joints[] processOutput(TranslatorContext ctx, NDList list) { NDArray pred = list.singletonOrThrow(); NDArray candidates = pred.get(4).gt(threshold); pred = pred.transpose(); NDArray sub = pred.get("..., :4"); sub = YoloTranslator.xywh2xyxy(sub); pred = sub.concat(pred.get("..., 4:"), -1); pred = pred.get(candidates); NDList split = pred.split(new long[] {4, 5}, 1); NDArray box = split.get(0); int numBox = Math.toIntExact(box.getShape().get(0)); float[] buf = box.toFloatArray(); float[] confidences = split.get(1).toFloatArray(); float[] mask = split.get(2).toFloatArray(); List<Rectangle> boxes = new ArrayList<>(numBox); List<Double> scores = new ArrayList<>(numBox); for (int i = 0; i < numBox; ++i) { float xPos = buf[i * 4]; float yPos = buf[i * 4 + 1]; float w = buf[i * 4 + 2] - xPos; float h = buf[i * 4 + 3] - yPos; Rectangle rect = new Rectangle(xPos, yPos, w, h); boxes.add(rect); scores.add((double) confidences[i]); } List<Integer> nms = Rectangle.nms(boxes, scores, nmsThreshold); if (nms.size() > MAX_DETECTION) { nms = nms.subList(0, MAX_DETECTION); } Joints[] ret = new Joints[nms.size()]; for (int i = 0; i < ret.length; ++i) { List<Joint> joints = new ArrayList<>(); ret[i] = new Joints(joints); int index = nms.get(i); int pos = index * 51; for (int j = 0; j < 17; ++j) { joints.add( new Joints.Joint( mask[pos + j * 3] / width, mask[pos + j * 3 + 1] / height, mask[pos + j * 3 + 2])); } } return ret; } /** * Creates a builder to build a {@code YoloPoseTranslator}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code YoloPoseTranslator} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); builder.configPostProcess(arguments); return builder; } /** The builder for Pose Estimation translator. */ public static class Builder extends BaseBuilder<Builder> { float threshold = 0.25f; float nmsThreshold = 0.7f; Builder() {} /** * Sets the threshold for prediction accuracy. * * <p>Predictions below the threshold will be dropped. * * @param threshold the threshold for prediction accuracy * @return the builder */ public Builder optThreshold(float threshold) { this.threshold = threshold; return self(); } /** * Sets the NMS threshold. * * @param nmsThreshold the NMS threshold * @return this builder */ public Builder optNmsThreshold(float nmsThreshold) { this.nmsThreshold = nmsThreshold; return this; } /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** {@inheritDoc} */ @Override protected void configPostProcess(Map<String, ?> arguments) { optThreshold(ArgumentsUtil.floatValue(arguments, "threshold", threshold)); optNmsThreshold(ArgumentsUtil.floatValue(arguments, "nmsThreshold", nmsThreshold)); } /** * Builds the translator. * * @return the new translator */ public YoloPoseTranslator build() { validate(); return new YoloPoseTranslator(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/YoloPoseTranslatorFactory.java
/* * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.Joints; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import ai.djl.util.Pair; import java.io.Serializable; import java.lang.reflect.Type; import java.util.HashSet; import java.util.Map; import java.util.Set; /** An {@link TranslatorFactory} that creates a {@link YoloPoseTranslator} instance. */ public class YoloPoseTranslatorFactory implements TranslatorFactory, Serializable { private static final long serialVersionUID = 1L; private static final Set<Pair<Type, Type>> SUPPORTED_TYPES = new HashSet<>(); static { SUPPORTED_TYPES.add(new Pair<>(Image.class, Joints[].class)); SUPPORTED_TYPES.add(new Pair<>(Input.class, Output.class)); } /** {@inheritDoc} */ @Override public Set<Pair<Type, Type>> getSupportedTypes() { return SUPPORTED_TYPES; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <I, O> Translator<I, O> newInstance( Class<I> input, Class<O> output, Model model, Map<String, ?> arguments) { YoloPoseTranslator translator = YoloPoseTranslator.builder(arguments).build(); if (input == Image.class && output == Joints[].class) { return (Translator<I, O>) translator; } else if (input == Input.class && output == Output.class) { return (Translator<I, O>) new ImageServingTranslator(translator); } throw new IllegalArgumentException("Unsupported input/output types."); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/YoloSegmentationTranslator.java
/* * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.output.BoundingBox; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.output.Mask; import ai.djl.modality.cv.output.Rectangle; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.types.DataType; import ai.djl.translate.TranslatorContext; import java.util.ArrayList; import java.util.List; import java.util.Map; /** A translator for Yolov8 instance segmentation models. */ public class YoloSegmentationTranslator extends YoloV5Translator { private static final int[] AXIS_0 = {0}; private static final int[] AXIS_1 = {1}; private float threshold; private float nmsThreshold; /** * Creates the instance segmentation translator from the given builder. * * @param builder the builder for the translator */ public YoloSegmentationTranslator(Builder builder) { super(builder); this.threshold = builder.threshold; this.nmsThreshold = builder.nmsThreshold; } /** {@inheritDoc} */ @Override public DetectedObjects processOutput(TranslatorContext ctx, NDList list) { NDArray pred = list.get(0); NDArray protos = list.get(1); int maskIndex = classes.size() + 4; NDArray candidates = pred.get("4:" + maskIndex).max(AXIS_0).gt(threshold); pred = pred.transpose(); NDArray sub = pred.get("..., :4"); sub = YoloTranslator.xywh2xyxy(sub); pred = sub.concat(pred.get("..., 4:"), -1); pred = pred.get(candidates); NDList split = pred.split(new long[] {4, maskIndex}, 1); NDArray box = split.get(0); int numBox = Math.toIntExact(box.getShape().get(0)); float[] buf = box.toFloatArray(); float[] confidences = split.get(1).max(AXIS_1).toFloatArray(); long[] ids = split.get(1).argMax(1).toLongArray(); List<Rectangle> boxes = new ArrayList<>(numBox); List<Double> scores = new ArrayList<>(numBox); for (int i = 0; i < numBox; ++i) { float xPos = buf[i * 4]; float yPos = buf[i * 4 + 1]; float w = buf[i * 4 + 2] - xPos; float h = buf[i * 4 + 3] - yPos; Rectangle rect = new Rectangle(xPos, yPos, w, h); boxes.add(rect); scores.add((double) confidences[i]); } List<Integer> nms = Rectangle.nms(boxes, scores, nmsThreshold); long[] idx = nms.stream().mapToLong(Integer::longValue).toArray(); NDArray selected = box.getManager().create(idx); NDArray masks = split.get(2).get(selected); int maskW = Math.toIntExact(protos.getShape().get(2)); int maskH = Math.toIntExact(protos.getShape().get(1)); protos = protos.reshape(32, (long) maskH * maskW); masks = masks.matMul(protos) .reshape(nms.size(), maskH, maskW) .gt(0f) .toType(DataType.FLOAT32, true); float[] maskArray = masks.toFloatArray(); box = box.get(selected); buf = box.toFloatArray(); List<String> retClasses = new ArrayList<>(); List<Double> retProbs = new ArrayList<>(); List<BoundingBox> retBB = new ArrayList<>(); for (int i = 0; i < idx.length; ++i) { float x = buf[i * 4] / width; float y = buf[i * 4 + 1] / height; float w = buf[i * 4 + 2] / width - x; float h = buf[i * 4 + 3] / width - y; int id = nms.get(i); retClasses.add(classes.get((int) ids[id])); retProbs.add((double) confidences[id]); float[][] maskFloat = new float[maskH][maskW]; for (int j = 0; j < maskH; j++) { System.arraycopy(maskArray, j * maskW, maskFloat[j], 0, maskW); } Mask bb = new Mask(x, y, w, h, maskFloat, true); retBB.add(bb); } return new DetectedObjects(retClasses, retProbs, retBB); } /** * Creates a builder to build a {@code YoloSegmentationTranslator}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code YoloSegmentationTranslator} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); builder.configPostProcess(arguments); return builder; } /** The builder for instance segmentation translator. */ public static class Builder extends YoloV5Translator.Builder { Builder() {} /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** {@inheritDoc} */ @Override public YoloSegmentationTranslator build() { validate(); return new YoloSegmentationTranslator(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/YoloSegmentationTranslatorFactory.java
/* * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.translate.Translator; import java.io.Serializable; import java.util.Map; /** A translatorFactory that creates a {@link YoloSegmentationTranslator} instance. */ public class YoloSegmentationTranslatorFactory extends ObjectDetectionTranslatorFactory implements Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override protected Translator<Image, DetectedObjects> buildBaseTranslator( Model model, Map<String, ?> arguments) { return YoloSegmentationTranslator.builder(arguments).build(); } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/YoloTranslator.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.modality.cv.output.BoundingBox; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.output.Rectangle; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.types.DataType; import ai.djl.translate.TranslatorContext; import java.util.ArrayList; import java.util.List; import java.util.Map; /** A translator for yolo models. */ public class YoloTranslator extends ObjectDetectionTranslator { /** * Constructs an ImageTranslator with the provided builder. * * @param builder the data to build with */ public YoloTranslator(Builder builder) { super(builder); } /** {@inheritDoc} */ @Override public DetectedObjects processOutput(TranslatorContext ctx, NDList list) { int[] classIndices = list.get(0).toType(DataType.INT32, true).flatten().toIntArray(); double[] probs = list.get(1).toType(DataType.FLOAT64, true).flatten().toDoubleArray(); NDArray boundingBoxes = list.get(2); int detected = Math.toIntExact(probs.length); NDArray xMin = boundingBoxes.get(":, 0").clip(0, width).div(width); NDArray yMin = boundingBoxes.get(":, 1").clip(0, height).div(height); NDArray xMax = boundingBoxes.get(":, 2").clip(0, width).div(width); NDArray yMax = boundingBoxes.get(":, 3").clip(0, height).div(height); float[] boxX = xMin.toFloatArray(); float[] boxY = yMin.toFloatArray(); float[] boxWidth = xMax.sub(xMin).toFloatArray(); float[] boxHeight = yMax.sub(yMin).toFloatArray(); List<String> retClasses = new ArrayList<>(detected); List<Double> retProbs = new ArrayList<>(detected); List<BoundingBox> retBB = new ArrayList<>(detected); for (int i = 0; i < detected; i++) { if (classIndices[i] < 0 || probs[i] < threshold) { continue; } retClasses.add(classes.get(classIndices[i])); retProbs.add(probs[i]); Rectangle rect; if (applyRatio) { rect = new Rectangle( boxX[i] / width, boxY[i] / height, boxWidth[i] / width, boxHeight[i] / height); } else { rect = new Rectangle(boxX[i], boxY[i], boxWidth[i], boxHeight[i]); } retBB.add(rect); } return new DetectedObjects(retClasses, retProbs, retBB); } static NDArray xywh2xyxy(NDArray array) { NDArray xy = array.get("..., :2"); NDArray wh = array.get("..., 2:").div(2); return xy.sub(wh).concat(xy.add(wh), -1); } /** * Creates a builder to build a {@link YoloTranslator}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code YoloTranslator} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); builder.configPostProcess(arguments); return builder; } /** The builder for {@link YoloTranslator}. */ public static class Builder extends ObjectDetectionBuilder<Builder> { /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** * Builds the translator. * * @return the new translator */ public YoloTranslator build() { validate(); return new YoloTranslator(this); } } }
0
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv
java-sources/ai/djl/api/0.34.0/ai/djl/modality/cv/translator/YoloTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.modality.cv.translator; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import java.io.Serializable; import java.util.Map; /** An {@link TranslatorFactory} that creates a {@link YoloTranslator} instance. */ public class YoloTranslatorFactory extends ObjectDetectionTranslatorFactory implements Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override protected Translator<Image, DetectedObjects> buildBaseTranslator( Model model, Map<String, ?> arguments) { return YoloTranslator.builder(arguments).build(); } }