index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch/engine/PtNDManager.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.Device; import ai.djl.engine.Engine; import ai.djl.ndarray.BaseNDManager; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.ndarray.types.SparseFormat; import ai.djl.pytorch.jni.JniUtils; import java.nio.Buffer; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.charset.Charset; /** {@code PtNDManager} is the PyTorch implementation of {@link NDManager}. */ public class PtNDManager extends BaseNDManager { private static final PtNDManager SYSTEM_MANAGER = new SystemManager(); private PtNDManager(NDManager parent, Device device) { super(parent, device); } static PtNDManager getSystemManager() { return SYSTEM_MANAGER; } /** {@inheritDoc} */ @Override public ByteBuffer allocateDirect(int capacity) { return ByteBuffer.allocateDirect(capacity).order(ByteOrder.nativeOrder()); } /** {@inheritDoc} */ @Override public PtNDArray from(NDArray array) { if (array == null || array instanceof PtNDArray) { return (PtNDArray) array; } PtNDArray result = create(array.toByteBuffer(), array.getShape(), array.getDataType()); result.setName(array.getName()); return result; } /** {@inheritDoc} */ @Override public PtNDArray create(Shape shape, DataType dataType) { return JniUtils.createEmptyNdArray(this, shape, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public PtNDArray create(Buffer data, Shape shape, DataType dataType) { int size = Math.toIntExact(shape.size()); BaseNDManager.validateBuffer(data, dataType, size); if (data.isDirect() && data instanceof ByteBuffer) { return JniUtils.createNdFromByteBuffer( this, (ByteBuffer) data, shape, dataType, SparseFormat.DENSE, device); } ByteBuffer buf = allocateDirect(size * dataType.getNumOfBytes()); copyBuffer(data, buf); return JniUtils.createNdFromByteBuffer( this, buf, shape, dataType, SparseFormat.DENSE, device); } /** {@inheritDoc} */ @Override public NDArray create(String[] data, Charset charset, Shape shape) { return new PtNDArray(this, data, shape); } /** {@inheritDoc} */ @Override public NDArray createCoo(Buffer data, long[][] indices, Shape shape) { // length should be the same as indices dim 1 try (NDArray valueNd = create(data, new Shape(indices[0].length))) { try (NDArray indicesNd = create(indices)) { return JniUtils.createSparseCoo((PtNDArray) indicesNd, (PtNDArray) valueNd, shape); } } } /** {@inheritDoc} */ @Override public NDArray zeros(Shape shape, DataType dataType) { return JniUtils.createZerosNdArray(this, shape, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray ones(Shape shape, DataType dataType) { return JniUtils.createOnesNdArray(this, shape, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray full(Shape shape, float value, DataType dataType) { return JniUtils.full(this, shape, value, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray arange(int start, int stop, int step, DataType dataType) { return arange((float) start, (float) stop, (float) step, dataType, device); } /** {@inheritDoc} */ @Override public NDArray arange(float start, float stop, float step, DataType dataType) { if (Math.signum(stop - start) != Math.signum(step)) { return create(new Shape(0), dataType, device); } return JniUtils.arange(this, start, stop, step, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray eye(int rows, int cols, int k, DataType dataType) { if (k != 0) { throw new UnsupportedOperationException( "index of the diagonal is not supported in PyTorch"); } return JniUtils.eye(this, rows, cols, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray linspace(float start, float stop, int num, boolean endpoint) { if (!endpoint) { throw new UnsupportedOperationException("endpoint only support true"); } return JniUtils.linspace( this, start, stop, num, DataType.FLOAT32, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray randomInteger(long low, long high, Shape shape, DataType dataType) { return JniUtils.randint(this, low, high, shape, dataType, device); } /** {@inheritDoc} */ @Override public NDArray randomPermutation(long n) { return JniUtils.randperm(this, n, DataType.INT64, device); } /** {@inheritDoc} */ @Override public NDArray randomUniform(float low, float high, Shape shape, DataType dataType) { return JniUtils.uniform(this, low, high, shape, dataType, device); } /** {@inheritDoc} */ @Override public NDArray randomNormal(float loc, float scale, Shape shape, DataType dataType) { return JniUtils.normal(this, loc, scale, shape, dataType, device); } /** {@inheritDoc} */ @Override public NDArray hanningWindow(long numPoints) { return JniUtils.hannWindow(this, numPoints, true, device); } /** {@inheritDoc} */ @Override public PtNDManager newSubManager(Device device) { PtNDManager manager = new PtNDManager(this, device); attachUncappedInternal(manager.uid, manager); return manager; } /** {@inheritDoc} */ @Override public final Engine getEngine() { return Engine.getEngine(PtEngine.ENGINE_NAME); } /** The SystemManager is the root {@link PtNDManager} of which all others are children. */ private static final class SystemManager extends PtNDManager implements SystemNDManager { SystemManager() { super(null, null); } } }
0
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch/engine/PtSymbolBlock.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.MalformedModelException; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.nn.AbstractSymbolBlock; import ai.djl.nn.Parameter; import ai.djl.nn.ParameterList; import ai.djl.nn.SymbolBlock; import ai.djl.pytorch.jni.IValue; import ai.djl.pytorch.jni.IValueUtils; import ai.djl.pytorch.jni.JniUtils; import ai.djl.training.ParameterStore; import ai.djl.util.PairList; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.IOException; import java.util.LinkedHashMap; import java.util.Map; import java.util.concurrent.atomic.AtomicReference; /** * {@code PtSymbolBlock} is the PyTorch implementation of {@link SymbolBlock}. * * <p>You can create a {@code PtSymbolBlock} using {@link ai.djl.Model#load(java.nio.file.Path, * String)}. */ // TODO: Memory handling public class PtSymbolBlock extends AbstractSymbolBlock implements AutoCloseable { private static final Logger logger = LoggerFactory.getLogger(PtSymbolBlock.class); private AtomicReference<Long> handle; private String uid; private PtNDManager manager; private boolean isTrain; private PairList<String, Shape> inputDescriptions; private PairList<String, Shape> outputDescriptions; private boolean first; private Map<String, Parameter> parameters; /** * Constructs a {@code PtSymbolBlock}. * * <p>You can create a {@code PtSymbolBlock} using {@link ai.djl.Model#load(java.nio.file.Path, * String)}. * * @param manager the manager to use for the block * @param handle the module handle */ @SuppressWarnings("this-escape") public PtSymbolBlock(PtNDManager manager, long handle) { this(manager); this.handle = new AtomicReference<>(handle); uid = String.valueOf(handle); manager.attachInternal(uid, this); } /** * Constructs an Empty {@code PtSymbolBlock}. * * @param manager the manager to use for the block */ public PtSymbolBlock(PtNDManager manager) { this.manager = manager; // training mode is on by default isTrain = true; first = true; } /** {@inheritDoc} */ @Override public void close() { Long pointer = handle.getAndSet(null); if (pointer != null) { JniUtils.deleteModule(pointer); manager.detachInternal(uid); manager = null; } } /** * Runs the forward of this PyTorch module. * * @param inputs the input {@link IValue} * @return the result {@link IValue} */ public IValue forward(IValue... inputs) { return IValueUtils.forward(this, inputs); } /** {@inheritDoc} */ @Override protected NDList forwardInternal( ParameterStore parameterStore, NDList inputs, boolean training, PairList<String, Object> params) { // TODO refactor the forward to not take ParameterStore if (isTrain != training) { isTrain = training; if (isTrain) { JniUtils.enableTrainingMode(this); } else { JniUtils.enableInferenceMode(this); } } if (System.getProperty("ai.djl.pytorch.graph_optimizer") != null) { /* * By default, graph_optimizer is enabled. But it requires a warm-up time in a few * inference calls. This optimizer setting is thread local, thus has to be disabled per * thread. User must programmatically call JniUtils.setGraphExecutorOptimize(false) if * he wants to disable graph optimizer per model. */ boolean setOptimizer = Boolean.getBoolean("ai.djl.pytorch.graph_optimizer"); JniUtils.setGraphExecutorOptimize(setOptimizer); } if (first) { synchronized (this) { if (first) { inputDescriptions = new PairList<>(); outputDescriptions = new PairList<>(); for (NDArray array : inputs) { inputDescriptions.add(array.getName(), array.getShape()); } NDList outputs = IValueUtils.forward(this, inputs, training); for (NDArray array : outputs) { outputDescriptions.add(array.getName(), array.getShape()); } first = false; return outputs; } } } return IValueUtils.forward(this, inputs, training); } /** {@inheritDoc} */ @Override public PairList<String, Shape> describeInput() { if (inputDescriptions == null) { logger.warn( "Input shapes are unknown, please run predict or forward once" + " and call describeInput again."); } return inputDescriptions; } /** {@inheritDoc} */ @Override public ParameterList getDirectParameters() { if (parameters == null) { NDList params = JniUtils.moduleGetParams(this, manager); parameters = new LinkedHashMap<>(params.size()); for (NDArray param : params) { parameters.put( param.getName(), Parameter.builder() .setName(param.getName()) .setType(inferType(param.getName())) .optArray(param) .build()); } } // Defensive copy return new ParameterList(parameters); } private static Parameter.Type inferType(String name) { if (name.contains("bias")) { return Parameter.Type.BIAS; } else if (name.contains("gamma")) { return Parameter.Type.GAMMA; } else if (name.contains("beta")) { return Parameter.Type.BETA; } else if (name.contains("moving_mean") || name.contains("running_mean")) { return Parameter.Type.RUNNING_MEAN; } else if (name.contains("moving_var") || name.contains("running_var")) { return Parameter.Type.RUNNING_VAR; } else if (name.contains("weight")) { return Parameter.Type.WEIGHT; } return Parameter.Type.OTHER; } /** {@inheritDoc} */ @Override public PairList<String, Shape> describeOutput() { if (outputDescriptions == null) { logger.warn( "Output shapes are unknown, please run predict or forward once" + " and call describeOutput again."); } return outputDescriptions; } /** {@inheritDoc} */ @Override public Shape[] getOutputShapes(Shape[] inputShapes) { try (NDManager manager = NDManager.newBaseManager()) { NDList list = new NDList(); // TODO: Only tested for float32 for (Shape shape : inputShapes) { list.add(manager.ones(shape)); } NDList result = forwardInternal(new ParameterStore(manager, false), list, false, null); return result.stream().map(NDArray::getShape).toArray(Shape[]::new); } } /** {@inheritDoc} */ @Override public Shape[] getOutputShapes(Shape[] inputShapes, DataType[] dataTypes) { try (NDManager manager = NDManager.newBaseManager("PyTorch")) { NDList list = new NDList(); for (int i = 0; i < inputShapes.length; i++) { list.add( manager.ones( inputShapes[i], dataTypes == null ? DataType.FLOAT32 : dataTypes[i])); } NDList result = forwardInternal(new ParameterStore(manager, false), list, false, null); return result.stream().map(NDArray::getShape).toArray(Shape[]::new); } } /** {@inheritDoc} */ @Override public void saveParameters(DataOutputStream os) throws IOException { os.writeByte(version); JniUtils.writeModule(this, os, true); } /** {@inheritDoc} */ @Override public void loadParameters(NDManager manager, DataInputStream is) throws IOException, MalformedModelException { byte loadVersion = is.readByte(); if (loadVersion != version) { throw new MalformedModelException("Unsupported encoding version: " + loadVersion); } long rawHandle = JniUtils.loadModuleHandle(is, manager.getDevice(), true, true); this.handle = new AtomicReference<>(rawHandle); uid = String.valueOf(rawHandle); manager.attachInternal(uid, this); } /** * Get the native PyTorch model pointer. * * @return the pointer */ public Long getHandle() { Long reference = handle.get(); if (reference == null) { throw new IllegalStateException("PyTorch model handle has been released!"); } return reference; } }
0
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch/engine/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains classes to interface with the underlying PyTorch Engine. */ package ai.djl.pytorch.engine;
0
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch/jni/IValue.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import ai.djl.ndarray.NDList; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.pytorch.engine.PtNDArray; import ai.djl.pytorch.engine.PtNDManager; import ai.djl.util.NativeResource; import java.util.Arrays; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; /** * A class represent a PyTorch {@code IValue} data. * * <p>DJL doesn't support creating nested IValue. */ public class IValue extends NativeResource<Long> { IValue(long handle) { super(handle); } /** * Returns the type of the IValue. * * @return the type of the IValue */ public String getType() { return PyTorchLibrary.LIB.iValueGetType(getHandle()); } /** * Returns if the IValue is a {@code Tensor} type. * * @return if the IValue is a Tensor type */ public boolean isTensor() { return PyTorchLibrary.LIB.iValueIsTensor(getHandle()); } /** * Returns if the IValue is a {@code boolean} type. * * @return if the IValue is a boolean type */ public boolean isBoolean() { return PyTorchLibrary.LIB.iValueIsBool(getHandle()); } /** * Returns if the IValue is a {@code long} type. * * @return if the IValue is a long type */ public boolean isLong() { return PyTorchLibrary.LIB.iValueIsLong(getHandle()); } /** * Returns if the IValue is a {@code double} type. * * @return if the IValue is a double type */ public boolean isDouble() { return PyTorchLibrary.LIB.iValueIsDouble(getHandle()); } /** * Returns if the IValue is a {@code String} type. * * @return if the IValue is a String type */ public boolean isString() { return PyTorchLibrary.LIB.iValueIsString(getHandle()); } /** * Returns if the IValue is a {@code boolean[]} type. * * @return if the IValue is a boolean[] type */ public boolean isBooleanList() { return PyTorchLibrary.LIB.iValueIsBoolList(getHandle()); } /** * Returns if the IValue is a {@code long[]} type. * * @return if the IValue is a long[] type */ public boolean isLongList() { return PyTorchLibrary.LIB.iValueIsLongList(getHandle()); } /** * Returns if the IValue is a {@code double[]} type. * * @return if the IValue is a double[] type */ public boolean isDoubleList() { return PyTorchLibrary.LIB.iValueIsDoubleList(getHandle()); } /** * Returns if the IValue is a {@code IValue[]} type. * * <p>The elements in the array must have the same type. * * @return if the IValue is a IValue[] type */ public boolean isTensorList() { return PyTorchLibrary.LIB.iValueIsTensorList(getHandle()); } /** * Returns if the IValue is a {@code IValue[]} type. * * <p>The elements in the array must have the same type. * * @return if the IValue is a IValue[] type */ public boolean isList() { return PyTorchLibrary.LIB.iValueIsList(getHandle()); } /** * Returns if the IValue is a {@code Map&lt;String, V&gt;} type. * * @return if the IValue is a Map&lt;String, V&gt; type */ public boolean isMap() { return PyTorchLibrary.LIB.iValueIsMap(getHandle()); } /** * Returns if the IValue is a tuple type. * * @return if the IValue is a tuple type */ public boolean isTuple() { return PyTorchLibrary.LIB.iValueIsTuple(getHandle()); } /** * Creates a new {@code IValue} of type {@code PtNDArray}. * * @param array the NDArray * @return a new {@code IValue} of type {@code PtNDArray} */ public static IValue from(PtNDArray array) { if (array.getDataType() == DataType.STRING) { Shape shape = array.getShape(); String[] strs = array.toStringArray(); if (shape.isScalar()) { return from(strs[0]); } IValue[] list = new IValue[strs.length]; PtNDManager manager = array.getManager(); for (int i = 0; i < strs.length; i++) { IValue ivalue = from(strs[i]); manager.attachUncappedInternal(ivalue.getUid(), ivalue); list[i] = ivalue; } return listFrom(list); } return new IValue(PyTorchLibrary.LIB.iValueFromTensor(array.getHandle())); } /** * Creates a new {@code IValue} of type {@code boolean}. * * @param value the boolean value * @return a new {@code IValue} of type {@code boolean} */ public static IValue from(boolean value) { return new IValue(PyTorchLibrary.LIB.iValueFromBool(value)); } /** * Creates a new {@code IValue} of type {@code long}. * * @param value the long value * @return a new {@code IValue} of type {@code long} */ public static IValue from(long value) { return new IValue(PyTorchLibrary.LIB.iValueFromLong(value)); } /** * Creates a new {@code IValue} of type {@code double}. * * @param value the double value * @return a new {@code IValue} of type {@code double} */ public static IValue from(double value) { return new IValue(PyTorchLibrary.LIB.iValueFromDouble(value)); } /** * Creates a new {@code IValue} of type {@code String}. * * @param value the String value * @return a new {@code IValue} of type {@code String} */ public static IValue from(String value) { return new IValue(PyTorchLibrary.LIB.iValueFromString(value)); } /** * Creates a new {@code IValue} of type {@code boolean[]}. * * @param list the boolean[] value * @return a new {@code IValue} of type {@code boolean[]} */ public static IValue listFrom(boolean... list) { return new IValue(PyTorchLibrary.LIB.iValueFromBoolList(list)); } /** * Creates a new {@code IValue} of type {@code long[]}. * * @param list the long[] value * @return a new {@code IValue} of type {@code long[]} */ public static IValue listFrom(long... list) { return new IValue(PyTorchLibrary.LIB.iValueFromLongList(list)); } /** * Creates a new {@code IValue} of type {@code double[]}. * * @param list the double[] value * @return a new {@code IValue} of type {@code double[]} */ public static IValue listFrom(double... list) { return new IValue(PyTorchLibrary.LIB.iValueFromDoubleList(list)); } /** * Creates a new {@code IValue} of type {@code NDArray[]}. * * @param list the NDArray[] value * @return a new {@code IValue} of type {@code NDArray[]} */ public static IValue listFrom(PtNDArray... list) { long[] tensors = Arrays.stream(list).mapToLong(PtNDArray::getHandle).toArray(); return new IValue(PyTorchLibrary.LIB.iValueFromTensorList(tensors)); } /** * Creates a new {@code IValue} of type {@code NDArray[]}. * * @param list the NDArray[] value * @return a new {@code IValue} of type {@code NDArray[]} */ public static IValue listFrom(IValue... list) { if (list.length == 0) { throw new IllegalArgumentException("Empty IValue list is not supported."); } long[] tensors = Arrays.stream(list).mapToLong(IValue::getHandle).toArray(); return new IValue(PyTorchLibrary.LIB.iValueFromList(tensors)); } /** * Creates a new {@code IValue} of type {@code NDArray[]}. * * @param list the NDArray[] value * @return a new {@code IValue} of type {@code NDArray[]} */ public static IValue tupleFrom(IValue... list) { long[] tensors = Arrays.stream(list).mapToLong(IValue::getHandle).toArray(); return new IValue(PyTorchLibrary.LIB.iValueFromTuple(tensors)); } /** * Creates a new {@code IValue} of type {@code Map[String, PtNDArray]}. * * @param map the Map[String, IValue] value * @return a new {@code IValue} of type {@code Map[String, PtNDArray]} */ public static IValue stringMapFrom(Map<String, PtNDArray> map) { String[] keys = new String[map.size()]; long[] handles = new long[map.size()]; int i = 0; for (Map.Entry<String, PtNDArray> entry : map.entrySet()) { keys[i] = entry.getKey(); handles[i] = entry.getValue().getHandle(); ++i; } return new IValue(PyTorchLibrary.LIB.iValueFromStringMap(keys, handles)); } /** * Creates a new {@code IValue} of type {@code Map[String, IValue]}. * * @param map the Map[String, IValue] value * @return a new {@code IValue} of type {@code Map[String, IValue]} */ public static IValue stringIValueMapFrom(Map<String, IValue> map) { String[] keys = new String[map.size()]; long[] handles = new long[map.size()]; int i = 0; for (Map.Entry<String, IValue> entry : map.entrySet()) { keys[i] = entry.getKey(); handles[i] = entry.getValue().getHandle(); ++i; } return new IValue(PyTorchLibrary.LIB.iValueFromStringIValueMap(keys, handles)); } /** * Returns the {@code boolean} value of this IValue. * * @return the boolean value of this IValue */ public boolean toBoolean() { return PyTorchLibrary.LIB.iValueToBool(getHandle()); } /** * Returns the {@code long} value of this IValue. * * @return the long value of this IValue */ public long toLong() { return PyTorchLibrary.LIB.iValueToLong(getHandle()); } /** * Returns the {@code double} value of this IValue. * * @return the double value of this IValue */ public double toDouble() { return PyTorchLibrary.LIB.iValueToDouble(getHandle()); } /** * Returns the {@code String} value of this IValue. * * @return the String value of this IValue */ public String toStringValue() { return PyTorchLibrary.LIB.iValueToString(getHandle()); } /** * Returns the {@code boolean[]} value of this IValue. * * @return the boolean[] value of this IValue */ public boolean[] toBooleanArray() { return PyTorchLibrary.LIB.iValueToBoolList(getHandle()); } /** * Returns the {@code long[]} value of this IValue. * * @return the long[] value of this IValue */ public long[] toLongArray() { return PyTorchLibrary.LIB.iValueToLongList(getHandle()); } /** * Returns the {@code double[]} value of this IValue. * * @return the double[] value of this IValue */ public double[] toDoubleArray() { return PyTorchLibrary.LIB.iValueToDoubleList(getHandle()); } /** * Returns the {@code NDArray} value of this IValue. * * @param manager the {@code NDManager} to create the NDArray * @return the NDArray value of this IValue */ public PtNDArray toTensor(PtNDManager manager) { return new PtNDArray(manager, PyTorchLibrary.LIB.iValueToTensor(getHandle())); } /** * Returns the {@code NDArray[]} value of this IValue. * * @param manager the NDManager to create NDArray * @return the NDArray[] value of this IValue */ public PtNDArray[] toTensorArray(PtNDManager manager) { long[] handles = PyTorchLibrary.LIB.iValueToTensorList(getHandle()); PtNDArray[] ret = new PtNDArray[handles.length]; for (int i = 0; i < ret.length; ++i) { ret[i] = new PtNDArray(manager, handles[i]); } return ret; } /** * Returns the {@code IValue[]} value of this IValue list. * * @return the IValue[] value of this IValue list */ public IValue[] toIValueArray() { long[] handles = PyTorchLibrary.LIB.iValueToIValueList(getHandle()); IValue[] ret = new IValue[handles.length]; for (int i = 0; i < ret.length; ++i) { ret[i] = new IValue(handles[i]); } return ret; } /** * Returns the {@code Map&lt;String, IValue&gt;} value of this IValue. * * @return the Map&lt;String, IValue&gt; value of this IValue */ public Map<String, IValue> toIValueMap() { long[] handles = PyTorchLibrary.LIB.iValueToMap(getHandle()); Map<String, IValue> map = new ConcurrentHashMap<>(); for (int i = 0; i < handles.length; i += 2) { IValue key = new IValue(handles[i]); map.put(key.toStringValue(), new IValue(handles[i + 1])); key.close(); } return map; } /** * Returns the {@code Map&lt;String, IValue&gt;} value of this IValue. * * @return the Map&lt;String, IValue&gt; value of this IValue */ public IValue[] toIValueTuple() { long[] handles = PyTorchLibrary.LIB.iValueToIValueTuple(getHandle()); IValue[] ret = new IValue[handles.length]; for (int i = 0; i < ret.length; ++i) { ret[i] = new IValue(handles[i]); } return ret; } /** * Returns the {@code NDList} value of this IValue. * * @param manager the NDManager to create NDArray * @return the {@code NDList} value of this IValue */ public NDList toNDList(PtNDManager manager) { if (isTensor()) { return new NDList(toTensor(manager)); } else if (isTensorList()) { return new NDList(toTensorArray(manager)); } else if (isMap()) { // Only allows one level <String, NDArray> type of map NDList list = new NDList(); Map<String, IValue> map = toIValueMap(); for (Map.Entry<String, IValue> entry : map.entrySet()) { IValue iv = entry.getValue(); if (!iv.isTensor()) { throw new UnsupportedOperationException("Only one level of map is supported."); } PtNDArray value = entry.getValue().toTensor(manager); value.setName(entry.getKey()); list.add(value); iv.close(); } return list; } else if (isList()) { NDList list = new NDList(); for (IValue ivalue : toIValueArray()) { list.addAll(ivalue.toNDList(manager)); ivalue.close(); } return list; } else if (isTuple()) { NDList list = new NDList(); for (IValue ivalue : toIValueTuple()) { list.addAll(ivalue.toNDList(manager)); ivalue.close(); } return list; } else if (isString()) { return new NDList(manager.create(toStringValue())); } throw new UnsupportedOperationException("Unsupported IValue type."); } /** {@inheritDoc} */ @Override public void close() { Long pointer = handle.getAndSet(null); if (pointer != null) { PyTorchLibrary.LIB.torchDeleteIValue(pointer); } } }
0
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch/jni/IValueUtils.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.pytorch.engine.PtNDArray; import ai.djl.pytorch.engine.PtNDManager; import ai.djl.pytorch.engine.PtSymbolBlock; import ai.djl.util.Pair; import ai.djl.util.PairList; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; import java.util.regex.Matcher; import java.util.regex.Pattern; /** IValueUtils is utility class to deal with IValue in PyTorch. */ public final class IValueUtils { private static final Pattern PATTERN_LIST = Pattern.compile("\\w+\\[]"); private static final Pattern PATTERN_TUPLE = Pattern.compile("\\w+\\(\\)"); private static final Pattern PATTERN_TUPLE_OF_TUPLE = Pattern.compile("\\w+(\\([\\d,]+\\))"); private static final boolean CUDA_STREAM = Boolean.getBoolean("ai.djl.pytorch.enable_cuda_stream"); private IValueUtils() {} /** * Runs the forward of PyTorch module. * * @param block the block that contains PyTorch module * @param inputs the input {@link NDList} * @param isTrain if running on training mode * @return the result {@link NDList} */ public static NDList forward(PtSymbolBlock block, NDList inputs, boolean isTrain) { Pair<IValue[], String> inputPair = getInputs(inputs); IValue[] ivalues = inputPair.getKey(); String method = inputPair.getValue(); long[] iValueHandles = Arrays.stream(ivalues).mapToLong(IValue::getHandle).toArray(); long result = PyTorchLibrary.LIB.moduleRunMethod( block.getHandle(), method, iValueHandles, isTrain, CUDA_STREAM); PtNDManager manager = (PtNDManager) inputs.get(0).getManager(); Arrays.stream(ivalues).forEach(IValue::close); try (IValue iValue = new IValue(result)) { return iValue.toNDList(manager); } } /** * Runs the forward of PyTorch module. * * @param block the block that contains PyTorch module * @param inputs the input {@link IValue} * @return the result {@link IValue} */ public static IValue forward(PtSymbolBlock block, IValue[] inputs) { return runMethod(block, "forward", inputs); } /** * Runs the method of PyTorch module. * * @param block the block that contains PyTorch module * @param methodName the name of method for calling * @param inputs the input {@link IValue} * @return the result {@link IValue} */ public static IValue runMethod(PtSymbolBlock block, String methodName, IValue... inputs) { long[] iValueHandles = Arrays.stream(inputs).mapToLong(IValue::getHandle).toArray(); return new IValue( PyTorchLibrary.LIB.moduleRunMethod( block.getHandle(), methodName, iValueHandles, false, CUDA_STREAM)); } private static int addToMap( Map<String, Integer> map, String key, List<PairList<String, PtNDArray>> list) { return map.computeIfAbsent( key, k -> { list.add(new PairList<>()); return list.size() - 1; }); } static Pair<IValue[], String> getInputs(NDList ndList) { List<PairList<String, PtNDArray>> outputs = new ArrayList<>(); Map<String, Integer> indexMap = new ConcurrentHashMap<>(); String methodName = "forward"; for (NDArray array : ndList) { String name = array.getName(); Matcher m; if (name != null && name.contains(".")) { String[] strings = name.split("\\.", 2); int index = addToMap(indexMap, strings[0], outputs); PairList<String, PtNDArray> pl = outputs.get(index); pl.add(strings[1], (PtNDArray) array); } else if (name != null && name.startsWith("module_method:")) { methodName = name.substring(14); } else if (name != null && PATTERN_LIST.matcher(name).matches()) { int index = addToMap(indexMap, name, outputs); PairList<String, PtNDArray> pl = outputs.get(index); pl.add("[]", (PtNDArray) array); } else if (name != null && PATTERN_TUPLE.matcher(name).matches()) { int index = addToMap(indexMap, name, outputs); PairList<String, PtNDArray> pl = outputs.get(index); pl.add("()", (PtNDArray) array); } else if (name != null && (m = PATTERN_TUPLE_OF_TUPLE.matcher(name)).matches()) { int index = addToMap(indexMap, name, outputs); String key = m.group(1); PairList<String, PtNDArray> pl = outputs.get(index); pl.add(key, (PtNDArray) array); } else { PairList<String, PtNDArray> pl = new PairList<>(); pl.add(null, (PtNDArray) array); outputs.add(pl); } } IValue[] ret = new IValue[outputs.size()]; for (int i = 0; i < outputs.size(); ++i) { PairList<String, PtNDArray> pl = outputs.get(i); String key = pl.get(0).getKey(); if (key == null) { // not List, Dict, Tuple input ret[i] = IValue.from(pl.get(0).getValue()); } else if ("[]".equals(key)) { // list PtNDArray[] arrays = pl.values().toArray(new PtNDArray[0]); ret[i] = IValue.listFrom(arrays); } else if ("()".equals(key)) { // Tuple IValue[] arrays = pl.values().stream().map(IValue::from).toArray(IValue[]::new); ret[i] = IValue.tupleFrom(arrays); } else if (key.startsWith("(")) { // Tuple of tuple String[] keys = key.substring(1, key.length() - 1).split(","); int[] dim = Arrays.stream(keys).mapToInt(Integer::parseInt).toArray(); List<PtNDArray> arrays = pl.values(); int product = 1; for (int d : dim) { product *= d; } if (product != arrays.size()) { throw new IllegalArgumentException("Invalid NDList tuple size: " + key); } ret[i] = IValueUtils.toTupleIValueRecur(arrays, dim, 0, 0).getKey(); } else { Map<String, PtNDArray> map = new ConcurrentHashMap<>(); for (Pair<String, PtNDArray> pair : pl) { map.put(pair.getKey(), pair.getValue()); } ret[i] = IValue.stringMapFrom(map); } } return new Pair<>(ret, methodName); } private static Pair<IValue, Integer> toTupleIValueRecur( List<PtNDArray> list, int[] dims, int start, int level) { if (dims.length - 1 == level) { int dim = dims[level]; IValue[] iValues = new IValue[dim]; for (int i = 0; i < dim; i++) { iValues[i] = IValue.from(list.get(i + start)); } return new Pair<>(IValue.tupleFrom(iValues), Math.toIntExact((start + dim))); } IValue[] output = new IValue[dims[0]]; for (int j = 0; j < dims[level]; j++) { Pair<IValue, Integer> p = toTupleIValueRecur(list, dims, start, level + 1); start = p.getValue(); output[j] = p.getKey(); } return new Pair<>(IValue.tupleFrom(output), start); } }
0
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch/jni/JniUtils.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import ai.djl.Device; import ai.djl.ndarray.NDList; import ai.djl.ndarray.index.NDIndex; import ai.djl.ndarray.index.dim.NDIndexAll; import ai.djl.ndarray.index.dim.NDIndexBooleans; import ai.djl.ndarray.index.dim.NDIndexElement; import ai.djl.ndarray.index.dim.NDIndexFixed; import ai.djl.ndarray.index.dim.NDIndexNull; import ai.djl.ndarray.index.dim.NDIndexPick; import ai.djl.ndarray.index.dim.NDIndexSlice; import ai.djl.ndarray.index.dim.NDIndexTake; import ai.djl.ndarray.index.full.NDIndexFullPick; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.ndarray.types.SparseFormat; import ai.djl.nn.recurrent.RNN; import ai.djl.pytorch.engine.PtDeviceType; import ai.djl.pytorch.engine.PtNDArray; import ai.djl.pytorch.engine.PtNDManager; import ai.djl.pytorch.engine.PtSymbolBlock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.DataInputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.file.Path; import java.util.Arrays; import java.util.HashSet; import java.util.List; import java.util.ListIterator; import java.util.Set; /** * A class containing utilities to interact with the PyTorch Engine's Java Native Interface (JNI) * layer. */ @SuppressWarnings("MissingJavadocMethod") public final class JniUtils { private static final Logger logger = LoggerFactory.getLogger(JniUtils.class); private static Set<String> configs; private static final int NULL_PTR = 0; private static final int BYTE_LENGTH = 4194304; private JniUtils() {} private static int layoutMapper(SparseFormat fmt, Device device) { if (fmt == SparseFormat.DENSE) { // Enable MKLDNN with environment variable // Using MKLDNN with GPU would throw exception on libtorch if (Boolean.getBoolean("ai.djl.pytorch.use_mkldnn") && !device.equals(Device.gpu())) { return 2; } return 0; } else if (fmt == SparseFormat.COO) { return 1; } else { throw new IllegalArgumentException( "Current PyTorch only support SparseFormat.DENSE and SparseFormat.COO"); } } public static boolean isGradMode() { return PyTorchLibrary.LIB.torchIsGradMode(); } public static void setGradMode(boolean enable) { PyTorchLibrary.LIB.torchSetGradMode(enable); } public static int getNumInteropThreads() { return PyTorchLibrary.LIB.torchGetNumInteropThreads(); } public static int getNumThreads() { return PyTorchLibrary.LIB.torchGetNumThreads(); } public static void setNumInteropThreads(int threads) { PyTorchLibrary.LIB.torchSetNumInteropThreads(threads); } public static void setNumThreads(int threads) { PyTorchLibrary.LIB.torchSetNumThreads(threads); } public static void setBenchmarkCuDNN(boolean enable) { PyTorchLibrary.LIB.torchSetBenchmarkCuDNN(enable); } public static synchronized Set<String> getFeatures() { if (configs != null) { return configs; } Set<String> features = new HashSet<>(); PyTorchLibrary.LIB.torchShowConfig(features); configs = features; return configs; } public static void setSeed(long seed) { PyTorchLibrary.LIB.torchManualSeed(seed); } /** * Calls this method to start profile the area you are interested in. * * <p>Example usage * * <pre> * JniUtils.startProfile(false, true, true); * Predictor.predict(img); * JniUtils.stopProfile(outputFile) * </pre> * * @param useCuda Enables timing of CUDA events as well using the cudaEvent API. * @param recordShape If shapes recording is set, information about input dimensions will be * collected * @param profileMemory Whether to report memory usage */ public static synchronized void startProfile( boolean useCuda, boolean recordShape, boolean profileMemory) { PyTorchLibrary.LIB.torchStartProfile(useCuda, recordShape, profileMemory); } public static synchronized void stopProfile(String outputFile) { PyTorchLibrary.LIB.torchStopProfile(outputFile); } // TODO: Unchecked Datatype and device mapping public static PtNDArray createNdFromByteBuffer( PtNDManager manager, ByteBuffer data, Shape shape, DataType dType, SparseFormat fmt, Device device) { int layout = layoutMapper(fmt, device); long handle = PyTorchLibrary.LIB.torchFromBlob( data, shape.getShape(), dType.ordinal(), layout, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false); if (layout == 1 || layout == 2 || device.isGpu()) { // MKLDNN & COO & GPU device will explicitly make a copy in native code // so we don't want to hold a reference on Java side return new PtNDArray(manager, handle); } return new PtNDArray(manager, handle, data); } public static void emptyCudaCache() { PyTorchLibrary.LIB.torchCudaEmptyCache(); } public static PtNDArray createEmptyNdArray( PtNDManager manager, Shape shape, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return new PtNDArray( manager, PyTorchLibrary.LIB.torchEmpty( shape.getShape(), dType.ordinal(), layoutVal, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray createZerosNdArray( PtNDManager manager, Shape shape, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return new PtNDArray( manager, PyTorchLibrary.LIB.torchZeros( shape.getShape(), dType.ordinal(), layoutVal, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray createOnesNdArray( PtNDManager manager, Shape shape, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return new PtNDArray( manager, PyTorchLibrary.LIB.torchOnes( shape.getShape(), dType.ordinal(), layoutVal, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray full( PtNDManager manager, Shape shape, double fillValue, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return new PtNDArray( manager, PyTorchLibrary.LIB.torchFull( shape.getShape(), fillValue, dType.ordinal(), layoutVal, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray zerosLike( PtNDArray array, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return new PtNDArray( array.getManager(), PyTorchLibrary.LIB.torchZerosLike( array.getHandle(), dType.ordinal(), layoutVal, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray onesLike( PtNDArray array, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return new PtNDArray( array.getManager(), PyTorchLibrary.LIB.torchOnesLike( array.getHandle(), dType.ordinal(), layoutVal, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray arange( PtNDManager manager, float start, float stop, float step, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return new PtNDArray( manager, PyTorchLibrary.LIB.torchArange( start, stop, step, dType.ordinal(), layoutVal, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray linspace( PtNDManager manager, float start, float stop, int step, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return new PtNDArray( manager, PyTorchLibrary.LIB.torchLinspace( start, stop, step, dType.ordinal(), layoutVal, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray createSparseCoo(PtNDArray indices, PtNDArray values, Shape shape) { return new PtNDArray( values.getManager(), PyTorchLibrary.LIB.torchSparseCoo( shape.getShape(), indices.getHandle(), values.getHandle(), false)); } public static PtNDArray to(PtNDArray ndArray, DataType dataType, Device device) { PtNDManager manager = ndArray.getManager(); // the device of the manager should always match the one in NDArray which the manager attach // to if (!device.equals(manager.getDevice())) { manager = manager.newSubManager(device); } return new PtNDArray( manager, PyTorchLibrary.LIB.torchTo( ndArray.getHandle(), dataType.ordinal(), new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()})); } public static PtNDArray toSparse(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchToSparse(ndArray.getHandle())); } public static PtNDArray toDense(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchToDense(ndArray.getHandle())); } public static PtNDArray broadcast(PtNDArray ndArray, Shape shape) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchExpand(ndArray.getHandle(), shape.getShape())); } public static PtNDArray slice(PtNDArray ndArray, long dim, long start, long stop, long step) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSlice(ndArray.getHandle(), dim, start, stop, step)); } public static PtNDArray index( PtNDArray ndArray, long[] minIndices, long[] maxIndices, long[] stepIndices, PtNDManager manager) { return new PtNDArray( manager, PyTorchLibrary.LIB.torchIndex( ndArray.getHandle(), minIndices, maxIndices, stepIndices)); } @SuppressWarnings("OptionalGetWithoutIsPresent") public static PtNDArray indexAdv(PtNDArray ndArray, NDIndex index, PtNDManager manager) { if (ndArray == null) { return ndArray; } List<NDIndexElement> indices = index.getIndices(); long torchIndexHandle = PyTorchLibrary.LIB.torchIndexInit(indices.size()); try { // Index aggregation ListIterator<NDIndexElement> it = indices.listIterator(); while (it.hasNext()) { if (it.nextIndex() == index.getEllipsisIndex()) { PyTorchLibrary.LIB.torchIndexAppendNoneEllipsis(torchIndexHandle, true); } NDIndexElement elem = it.next(); if (elem instanceof NDIndexNull) { PyTorchLibrary.LIB.torchIndexAppendNoneEllipsis(torchIndexHandle, false); } else if (elem instanceof NDIndexSlice) { Long min = ((NDIndexSlice) elem).getMin(); Long max = ((NDIndexSlice) elem).getMax(); Long step = ((NDIndexSlice) elem).getStep(); int nullSliceBinary = (min == null ? 1 : 0) * 2 + (max == null ? 1 : 0); // nullSliceBinary encodes whether the slice end {min, max} is null: // is_null == 1, ! is_null == 0; // 0b11 == 3, 0b10 = 2, ... // If {min, max} is null, then its value is ineffective, thus set to -1. PyTorchLibrary.LIB.torchIndexAppendSlice( torchIndexHandle, min == null ? -1 : min, max == null ? -1 : max, step == null ? 1 : step, nullSliceBinary); } else if (elem instanceof NDIndexAll) { PyTorchLibrary.LIB.torchIndexAppendSlice(torchIndexHandle, -1, -1, 1, 3); } else if (elem instanceof NDIndexFixed) { PyTorchLibrary.LIB.torchIndexAppendFixed( torchIndexHandle, ((NDIndexFixed) elem).getIndex()); } else if (elem instanceof NDIndexBooleans) { PtNDArray indexArr = (PtNDArray) ((NDIndexBooleans) elem).getIndex(); PyTorchLibrary.LIB.torchIndexAppendArray( torchIndexHandle, indexArr.getHandle()); } else if (elem instanceof NDIndexTake) { PtNDArray indexArr = manager.from(((NDIndexTake) elem).getIndex()); if (indexArr.getDataType() != DataType.INT64) { indexArr = indexArr.toType(DataType.INT64, true); } PyTorchLibrary.LIB.torchIndexAppendArray( torchIndexHandle, indexArr.getHandle()); } else if (elem instanceof NDIndexPick) { // Backward compatible NDIndexFullPick fullPick = NDIndexFullPick.fromIndex(index, ndArray.getShape()).get(); return pick(ndArray, manager.from(fullPick.getIndices()), fullPick.getAxis()); } } if (indices.size() == index.getEllipsisIndex()) { PyTorchLibrary.LIB.torchIndexAppendNoneEllipsis(torchIndexHandle, true); } long ret = PyTorchLibrary.LIB.torchIndexAdvGet(ndArray.getHandle(), torchIndexHandle); return new PtNDArray(manager, ret); } finally { PyTorchLibrary.LIB.torchDeleteIndex(torchIndexHandle); } } @SuppressWarnings("OptionalGetWithoutIsPresent") public static void indexAdvPut(PtNDArray ndArray, NDIndex index, PtNDArray data) { if (ndArray == null) { return; } List<NDIndexElement> indices = index.getIndices(); long torchIndexHandle = PyTorchLibrary.LIB.torchIndexInit(indices.size()); try { // Index aggregation ListIterator<NDIndexElement> it = indices.listIterator(); while (it.hasNext()) { if (it.nextIndex() == index.getEllipsisIndex()) { PyTorchLibrary.LIB.torchIndexAppendNoneEllipsis(torchIndexHandle, true); } NDIndexElement elem = it.next(); if (elem instanceof NDIndexNull) { PyTorchLibrary.LIB.torchIndexAppendNoneEllipsis(torchIndexHandle, false); } else if (elem instanceof NDIndexSlice) { Long min = ((NDIndexSlice) elem).getMin(); Long max = ((NDIndexSlice) elem).getMax(); Long step = ((NDIndexSlice) elem).getStep(); int nullSliceBinary = (min == null ? 1 : 0) * 2 + (max == null ? 1 : 0); // nullSliceBinary encodes whether the slice end {min, max} is null: // is_null == 1, ! is_null == 0; // 0b11 == 3, 0b10 = 2, ... // If {min, max} is null, then its value is ineffective, thus set to -1. PyTorchLibrary.LIB.torchIndexAppendSlice( torchIndexHandle, min == null ? -1 : min, max == null ? -1 : max, step == null ? 1 : step, nullSliceBinary); } else if (elem instanceof NDIndexAll) { PyTorchLibrary.LIB.torchIndexAppendSlice(torchIndexHandle, -1, -1, 1, 3); } else if (elem instanceof NDIndexFixed) { PyTorchLibrary.LIB.torchIndexAppendFixed( torchIndexHandle, ((NDIndexFixed) elem).getIndex()); } else if (elem instanceof NDIndexBooleans) { PtNDArray indexArr = (PtNDArray) ((NDIndexBooleans) elem).getIndex(); PyTorchLibrary.LIB.torchIndexAppendArray( torchIndexHandle, indexArr.getHandle()); } else if (elem instanceof NDIndexTake) { PtNDArray indexArr = (PtNDArray) ((NDIndexTake) elem).getIndex(); if (indexArr.getDataType() != DataType.INT64) { indexArr = indexArr.toType(DataType.INT64, true); } PyTorchLibrary.LIB.torchIndexAppendArray( torchIndexHandle, indexArr.getHandle()); } else if (elem instanceof NDIndexPick) { // Backward compatible NDIndexFullPick fullPick = NDIndexFullPick.fromIndex(index, ndArray.getShape()).get(); pick( ndArray, ndArray.getManager().from(fullPick.getIndices()), fullPick.getAxis()); return; } } if (indices.size() == index.getEllipsisIndex()) { PyTorchLibrary.LIB.torchIndexAppendNoneEllipsis(torchIndexHandle, true); } PyTorchLibrary.LIB.torchIndexAdvPut( ndArray.getHandle(), torchIndexHandle, data.getHandle()); } finally { PyTorchLibrary.LIB.torchDeleteIndex(torchIndexHandle); } } public static void indexSet( PtNDArray ndArray, PtNDArray value, long[] minIndices, long[] maxIndices, long[] stepIndices) { PyTorchLibrary.LIB.torchIndexPut( ndArray.getHandle(), value.getHandle(), minIndices, maxIndices, stepIndices); } public static void set(PtNDArray self, ByteBuffer data) { // Note the ByteBuffer here is directByteBuffer PyTorchLibrary.LIB.torchSet(self.getHandle(), data); } public static PtNDArray gather(PtNDArray ndArray, PtNDArray index, long dim) { if (index.getDataType() != DataType.INT64) { index = index.toType(DataType.INT64, true); } return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchGather(ndArray.getHandle(), index.getHandle(), dim, false)); } public static PtNDArray take(PtNDArray ndArray, PtNDArray index, PtNDManager manager) { if (index.getDataType() != DataType.INT64) { index = index.toType(DataType.INT64, true); } return new PtNDArray( manager, PyTorchLibrary.LIB.torchTake(ndArray.getHandle(), index.getHandle())); } public static PtNDArray put(PtNDArray ndArray, PtNDArray index, PtNDArray value) { if (index.getDataType() != DataType.INT64) { index = index.toType(DataType.INT64, true); } return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchPut( ndArray.getHandle(), index.getHandle(), value.getHandle())); } public static PtNDArray scatter(PtNDArray ndArray, PtNDArray index, PtNDArray value, int axis) { if (index.getDataType() != DataType.INT64) { index = index.toType(DataType.INT64, true); } return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchScatter( ndArray.getHandle(), index.getHandle(), value.getHandle(), axis)); } public static PtNDArray pick(PtNDArray ndArray, PtNDArray index, long dim) { Shape indexShape = index.getShape(); Shape ndShape = ndArray.getShape(); int shapeDims = indexShape.dimension(); int ndDims = ndShape.dimension(); if (shapeDims != ndDims) { for (int i = 0; i < ndDims - shapeDims; ++i) { if (indexShape.equals(ndShape.slice(i, shapeDims))) { long[] shapes = indexShape.getShape(); long[] newShape = new long[ndDims]; Arrays.fill(newShape, 0, i, 1L); Arrays.fill(newShape, i, i + shapes.length, shapes[i]); Arrays.fill(newShape, i + shapes.length, ndDims, 1L); indexShape = new Shape(newShape); break; } } if (indexShape.equals(index.getShape())) { throw new IllegalArgumentException( "expand shape failed! Cannot expand from " + indexShape + "to " + ndShape); } index = index.reshape(indexShape); } if (index.getDataType() != DataType.INT64) { index = index.toType(DataType.INT64, true); } return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchGather(ndArray.getHandle(), index.getHandle(), dim, false)); } public static PtNDArray where(PtNDArray condition, PtNDArray self, PtNDArray other) { return new PtNDArray( self.getManager(), PyTorchLibrary.LIB.torchWhere( condition.getHandle(), self.getHandle(), other.getHandle())); } public static PtNDArray booleanMask(PtNDArray ndArray, PtNDArray indicesNd) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchMaskedSelect(ndArray.getHandle(), indicesNd.getHandle())); } public static void booleanMaskSet(PtNDArray ndArray, PtNDArray value, PtNDArray indicesNd) { PyTorchLibrary.LIB.torchMaskedPut( ndArray.getHandle(), value.getHandle(), indicesNd.getHandle()); } public static PtNDArray getItem(PtNDArray ndArray, long[] indices, PtNDManager manager) { // use a specialized API here // due to significant performance gain // for commonly used data loading call if (indices.length == 1) { return new PtNDArray( manager, PyTorchLibrary.LIB.torchGetItem(ndArray.getHandle(), indices[0])); } return new PtNDArray( manager, PyTorchLibrary.LIB.torchGetItem(ndArray.getHandle(), indices)); } public static PtNDArray clone(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.tensorClone(ndArray.getHandle())); } public static PtNDArray pad(PtNDArray ndArray, long[] shape, double value) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchPad(ndArray.getHandle(), shape, value)); } public static PtNDArray reshape(PtNDArray ndArray, long[] shape) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchReshape(ndArray.getHandle(), shape)); } public static PtNDArray stack(PtNDArray[] arrays, int dim) { long[] pointers = Arrays.stream(arrays).mapToLong(PtNDArray::getHandle).toArray(); return new PtNDArray(arrays[0].getManager(), PyTorchLibrary.LIB.torchStack(pointers, dim)); } public static PtNDArray cat(PtNDArray[] arrays, long dim) { long[] pointers = Arrays.stream(arrays).mapToLong(PtNDArray::getHandle).toArray(); return new PtNDArray(arrays[0].getManager(), PyTorchLibrary.LIB.torchCat(pointers, dim)); } public static PtNDArray tile(PtNDArray ndArray, long[] repeats) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchRepeat(ndArray.getHandle(), repeats)); } public static PtNDArray repeat(PtNDArray ndArray, long repeat, long dim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchRepeatInterleave(ndArray.getHandle(), repeat, dim)); } public static PtNDArray softmax(PtNDArray ndArray, long dim, DataType dTpe) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSoftmax(ndArray.getHandle(), dim, dTpe.ordinal())); } public static PtNDArray logSoftmax(PtNDArray ndArray, long dim, DataType dTpe) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchLogSoftmax(ndArray.getHandle(), dim, dTpe.ordinal())); } public static PtNDArray argMax(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchArgMax(ndArray.getHandle())); } public static PtNDArray argMax(PtNDArray ndArray, long dim, boolean keepDim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchArgMax(ndArray.getHandle(), dim, keepDim)); } public static NDList topK( PtNDArray ndArray, long k, long axis, boolean largest, boolean sorted) { long[] handles = PyTorchLibrary.LIB.torchTopK(ndArray.getHandle(), k, axis, largest, sorted); NDList list = new NDList(handles.length); for (long handle : handles) { PtNDArray array = new PtNDArray(ndArray.getManager(), handle); list.add(array); } return list; } public static PtNDArray argMin(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchArgMin(ndArray.getHandle())); } public static PtNDArray argMin(PtNDArray ndArray, long dim, boolean keepDim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchArgMin(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray argSort(PtNDArray ndArray, long dim, boolean keepDim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchArgSort(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray sort(PtNDArray ndArray, long dim, boolean descending) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSort(ndArray.getHandle(), dim, descending)); } public static PtNDArray permute(PtNDArray ndArray, long[] dims) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchPermute(ndArray.getHandle(), dims)); } public static PtNDArray flip(PtNDArray ndArray, long[] dims) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchFlip(ndArray.getHandle(), dims)); } public static PtNDArray transpose(PtNDArray ndArray, long dim1, long dim2) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchTranspose(ndArray.getHandle(), dim1, dim2)); } public static boolean contentEqual(PtNDArray ndArray1, PtNDArray ndArray2) { return PyTorchLibrary.LIB.contentEqual(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray add(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchAdd(ndArray1.getHandle(), ndArray2.getHandle())); } public static void addi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchAddi(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray sub(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchSub(ndArray1.getHandle(), ndArray2.getHandle())); } public static void subi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchSubi(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray mul(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchMul(ndArray1.getHandle(), ndArray2.getHandle())); } public static void muli(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchMuli(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray div(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchTrueDivide(ndArray1.getHandle(), ndArray2.getHandle())); } public static void divi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchTrueDividei(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray remainder(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchRemainder(ndArray1.getHandle(), ndArray2.getHandle())); } public static void remainderi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchRemainderi(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray pow(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchPow(ndArray1.getHandle(), ndArray2.getHandle())); } public static void powi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchPowi(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray sign(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSign(ndArray.getHandle())); } public static void signi(PtNDArray ndArray) { PyTorchLibrary.LIB.torchSigni(ndArray.getHandle()); } public static PtNDArray logicalAnd(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchLogicalAnd(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray logicalOr(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchLogicalOr(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray logicalXor(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchLogicalXor(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray logicalNot(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchLogicalNot(ndArray.getHandle())); } public static PtNDArray matmul(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchMatmul(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray bmm(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchBmm(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray xlogy(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchXLogY(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray dot(PtNDArray ndArray1, PtNDArray ndArray2) { if (ndArray1.getShape().dimension() == 1) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchDot(ndArray1.getHandle(), ndArray2.getHandle())); } return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchMatmul(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray max(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchMaximum(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray max(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchMax(ndArray.getHandle())); } public static PtNDArray max(PtNDArray ndArray, long dim, boolean keepDim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchMax(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray min(PtNDArray ndArray1, PtNDArray ndArray2) { return new PtNDArray( ndArray1.getManager(), PyTorchLibrary.LIB.torchMinimum(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray min(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchMin(ndArray.getHandle())); } public static PtNDArray min(PtNDArray ndArray, long dim, boolean keepDim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchMin(ndArray.getHandle(), dim, keepDim)); } public static NDList median(PtNDArray ndArray, long dim, boolean keepDim) { long[] handles = PyTorchLibrary.LIB.torchMedian(ndArray.getHandle(), dim, keepDim); return new NDList( new PtNDArray(ndArray.getManager(), handles[0]), new PtNDArray(ndArray.getManager(), handles[1])); } public static PtNDArray mean(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchMean(ndArray.getHandle())); } public static PtNDArray mean(PtNDArray ndArray, long dim, boolean keepDim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchMean(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray rot90(PtNDArray ndArray, int times, int[] axes) { long[] longaxes = Arrays.stream(axes).mapToLong(i -> i).toArray(); return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchRot90(ndArray.getHandle(), times, longaxes)); } public static PtNDArray sum(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSum(ndArray.getHandle())); } public static PtNDArray sum(PtNDArray ndArray, long[] dims, boolean keepDim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSum(ndArray.getHandle(), dims, keepDim)); } public static PtNDArray cumProd(PtNDArray ndArray, long dim, DataType dataType) { int dtPosition = -1; if (dataType != null) { dtPosition = dataType.ordinal(); } return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchCumProd(ndArray.getHandle(), dim, dtPosition)); } public static PtNDArray prod(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchProd(ndArray.getHandle())); } public static PtNDArray prod(PtNDArray ndArray, long dim, boolean keepDim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchProd(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray cumSum(PtNDArray ndArray, long dim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchCumSum(ndArray.getHandle(), dim)); } public static PtNDArray diagonal(PtNDArray ndArray, long offset, long axis1, long axis2) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchDiagonal(ndArray.getHandle(), offset, axis1, axis2)); } public static PtNDArray oneHot(PtNDArray ndArray, int depth, DataType dataType) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNOneHot( ndArray.toType(DataType.INT64, false).getHandle(), depth)) .toType(dataType, false); } public static NDList split(PtNDArray ndArray, long size, long axis) { long[] ndPtrs = PyTorchLibrary.LIB.torchSplit(ndArray.getHandle(), size, axis); NDList list = new NDList(); for (long ptr : ndPtrs) { list.add(new PtNDArray(ndArray.getManager(), ptr)); } return list; } public static NDList split(PtNDArray ndArray, long[] indices, long axis) { long[] ndPtrs = PyTorchLibrary.LIB.torchSplit(ndArray.getHandle(), indices, axis); NDList list = new NDList(); for (long ptr : ndPtrs) { list.add(new PtNDArray(ndArray.getManager(), ptr)); } return list; } public static PtNDArray squeeze(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSqueeze(ndArray.getHandle())); } public static PtNDArray squeeze(PtNDArray ndArray, long dim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSqueeze(ndArray.getHandle(), dim)); } public static PtNDArray unsqueeze(PtNDArray ndArray, long dim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchUnsqueeze(ndArray.getHandle(), dim)); } public static NDList unique( PtNDArray ndArray, Integer dim, boolean sorted, boolean returnInverse, boolean returnCounts) { long[] handles; if (dim == null) { // In this case the output will be flattened. handles = PyTorchLibrary.LIB.torchUnique( ndArray.getHandle(), -1, sorted, returnInverse, returnCounts); } else { // Dimension wrap dim = Math.floorMod(dim, ndArray.getShape().dimension()); handles = PyTorchLibrary.LIB.torchUnique( ndArray.getHandle(), dim, sorted, returnInverse, returnCounts); } NDList list = new NDList(handles.length); for (long handle : handles) { PtNDArray array = new PtNDArray(ndArray.getManager(), handle); list.add(array); } return list; } public static PtNDArray flatten(PtNDArray ndArray, long startDim, long endDim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchFlatten(ndArray.getHandle(), startDim, endDim)); } public static PtNDArray fft(PtNDArray ndArray, long length, long axis) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchFft(ndArray.getHandle(), length, axis)); } public static PtNDArray ifft(PtNDArray ndArray, long length, long axis) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchIfft(ndArray.getHandle(), length, axis)); } public static PtNDArray rfft(PtNDArray ndArray, long length, long axis) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchRfft(ndArray.getHandle(), length, axis)); } public static PtNDArray irfft(PtNDArray ndArray, long length, long axis) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchIrfft(ndArray.getHandle(), length, axis)); } public static PtNDArray stft( PtNDArray ndArray, long nFft, long hopLength, PtNDArray window, boolean center, boolean normalize, boolean returnComplex) { long handle = PyTorchLibrary.LIB.torchStft( ndArray.getHandle(), nFft, hopLength, window.getHandle(), center, normalize, returnComplex); if (handle == -1) { throw new UnsupportedOperationException("real() is not supported."); } return new PtNDArray(ndArray.getManager(), handle); } public static PtNDArray fft2(PtNDArray ndArray, long[] sizes, long[] axes) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchFft2(ndArray.getHandle(), sizes, axes)); } public static PtNDArray ifft2(PtNDArray ndArray, long[] sizes, long[] axes) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchIfft2(ndArray.getHandle(), sizes, axes)); } public static PtNDArray real(PtNDArray ndArray) { long handle = PyTorchLibrary.LIB.torchViewAsReal(ndArray.getHandle()); if (handle == -1) { throw new UnsupportedOperationException("real() is not supported."); } return new PtNDArray(ndArray.getManager(), handle); } public static PtNDArray complex(PtNDArray ndArray) { long handle = PyTorchLibrary.LIB.torchViewAsComplex(ndArray.getHandle()); if (handle == -1) { throw new UnsupportedOperationException("complex() is not supported."); } return new PtNDArray(ndArray.getManager(), handle); } public static PtNDArray conj(PtNDArray ndArray) { return new PtNDArray(ndArray.getManager(), PyTorchLibrary.LIB.conj(ndArray.getHandle())); } public static PtNDArray abs(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchAbs(ndArray.getHandle())); } public static PtNDArray square(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSquare(ndArray.getHandle())); } public static PtNDArray floor(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchFloor(ndArray.getHandle())); } public static PtNDArray ceil(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchCeil(ndArray.getHandle())); } public static PtNDArray round(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchRound(ndArray.getHandle())); } public static PtNDArray trunc(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchTrunc(ndArray.getHandle())); } public static PtNDArray clip(PtNDArray ndArray, Number min, Number max) { PtNDArray minNd = (PtNDArray) ndArray.getManager().create(min); PtNDArray maxNd = (PtNDArray) ndArray.getManager().create(max); return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchClamp( ndArray.getHandle(), minNd.getHandle(), maxNd.getHandle())); } public static PtNDArray exp(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchExp(ndArray.getHandle())); } public static PtNDArray gammaln(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchLgamma(ndArray.getHandle())); } public static PtNDArray log(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchLog(ndArray.getHandle())); } public static PtNDArray log10(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchLog10(ndArray.getHandle())); } public static PtNDArray log2(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchLog2(ndArray.getHandle())); } public static PtNDArray sin(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSin(ndArray.getHandle())); } public static PtNDArray cos(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchCos(ndArray.getHandle())); } public static PtNDArray tan(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchTan(ndArray.getHandle())); } public static PtNDArray asin(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchASin(ndArray.getHandle())); } public static PtNDArray acos(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchAcos(ndArray.getHandle())); } public static PtNDArray atan(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchAtan(ndArray.getHandle())); } public static PtNDArray atan2(PtNDArray self, PtNDArray other) { return new PtNDArray( self.getManager(), PyTorchLibrary.LIB.torchAtan2(self.getHandle(), other.getHandle())); } public static PtNDArray sqrt(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSqrt(ndArray.getHandle())); } public static PtNDArray sinh(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSinh(ndArray.getHandle())); } public static PtNDArray cosh(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchCosh(ndArray.getHandle())); } public static PtNDArray tanh(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchTanh(ndArray.getHandle())); } public static PtNDArray sigmoid(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchSigmoid(ndArray.getHandle())); } public static PtNDArray all(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchAll(ndArray.getHandle())); } public static PtNDArray any(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchAny(ndArray.getHandle())); } public static PtNDArray none(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNone(ndArray.getHandle())); } public static PtNDArray eq(PtNDArray self, PtNDArray other) { return new PtNDArray( self.getManager(), PyTorchLibrary.LIB.torchEq(self.getHandle(), other.getHandle())); } public static PtNDArray neq(PtNDArray self, PtNDArray other) { return new PtNDArray( self.getManager(), PyTorchLibrary.LIB.torchNeq(self.getHandle(), other.getHandle())); } public static PtNDArray gt(PtNDArray self, PtNDArray other) { return new PtNDArray( self.getManager(), PyTorchLibrary.LIB.torchGt(self.getHandle(), other.getHandle())); } public static PtNDArray gte(PtNDArray self, PtNDArray other) { return new PtNDArray( self.getManager(), PyTorchLibrary.LIB.torchGte(self.getHandle(), other.getHandle())); } public static PtNDArray lt(PtNDArray self, PtNDArray other) { return new PtNDArray( self.getManager(), PyTorchLibrary.LIB.torchLt(self.getHandle(), other.getHandle())); } public static PtNDArray lte(PtNDArray self, PtNDArray other) { return new PtNDArray( self.getManager(), PyTorchLibrary.LIB.torchLte(self.getHandle(), other.getHandle())); } public static PtNDArray neg(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNeg(ndArray.getHandle())); } public static void negi(PtNDArray ndArray) { PyTorchLibrary.LIB.torchNegi(ndArray.getHandle()); } public static PtNDArray isNaN(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchIsNaN(ndArray.getHandle())); } public static PtNDArray isInf(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchIsInf(ndArray.getHandle())); } public static PtNDArray randint( PtNDManager manager, long low, long high, Shape size, DataType dataType, Device device) { return new PtNDArray( manager, PyTorchLibrary.LIB.torchRandint( low, high, size.getShape(), dataType.ordinal(), layoutMapper(SparseFormat.DENSE, device), new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray randperm( PtNDManager manager, long n, DataType dataType, Device device) { return new PtNDArray( manager, PyTorchLibrary.LIB.torchRandPerm( n, dataType.ordinal(), layoutMapper(SparseFormat.DENSE, device), new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray normal( PtNDManager manager, double mean, double std, Shape size, DataType dataType, Device device) { return new PtNDArray( manager, PyTorchLibrary.LIB.torchNormal( mean, std, size.getShape(), dataType.ordinal(), layoutMapper(SparseFormat.DENSE, device), new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray uniform( PtNDManager manager, double low, double high, Shape size, DataType dataType, Device device) { return new PtNDArray( manager, PyTorchLibrary.LIB.tensorUniform( low, high, size.getShape(), dataType.ordinal(), layoutMapper(SparseFormat.DENSE, device), new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray eye( PtNDManager manager, int n, int m, DataType dataType, Device device, SparseFormat fmt) { return new PtNDArray( manager, PyTorchLibrary.LIB.torchEye( n, m, dataType.ordinal(), layoutMapper(fmt, device), new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, false)); } public static PtNDArray hannWindow( PtNDManager manager, long numPoints, boolean periodic, Device device) { return new PtNDArray( manager, PyTorchLibrary.LIB.torchHannWindow( numPoints, periodic, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()})); } public static PtNDArray erfinv(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchErfinv(ndArray.getHandle())); } public static PtNDArray erf(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchErf(ndArray.getHandle())); } public static PtNDArray inverse(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchInverse(ndArray.getHandle())); } public static PtNDArray interpolate( PtNDArray ndArray, long[] size, int mode, boolean alignCorners) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNInterpolate( ndArray.getHandle(), size, mode, alignCorners)); } public static PtNDArray linear(PtNDArray input, PtNDArray weight, PtNDArray bias) { return new PtNDArray( input.getManager(), PyTorchLibrary.LIB.torchNNLinear( input.getHandle(), weight.getHandle(), bias == null ? NULL_PTR : bias.getHandle())); } public static PtNDArray embedding(PtNDArray input, PtNDArray weight, boolean sparse) { return new PtNDArray( input.getManager(), PyTorchLibrary.LIB.torchNNEmbedding(input.getHandle(), weight.getHandle(), sparse)); } public static PtNDArray relu(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNRelu(ndArray.getHandle())); } public static PtNDArray softPlus(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNSoftPlus(ndArray.getHandle())); } public static PtNDArray softSign(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNSoftSign(ndArray.getHandle())); } public static PtNDArray leakyRelu(PtNDArray ndArray, double negativeSlope) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNLeakyRelu(ndArray.getHandle(), negativeSlope)); } public static PtNDArray elu(PtNDArray ndArray, double alpha) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNElu(ndArray.getHandle(), alpha)); } public static PtNDArray selu(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNSelu(ndArray.getHandle())); } public static PtNDArray gelu(PtNDArray ndArray) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNGelu(ndArray.getHandle())); } public static PtNDArray convolution( PtNDArray ndArray, PtNDArray weight, PtNDArray bias, Shape stride, Shape padding, Shape dilation, int groups) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNConvNd( ndArray.getHandle(), weight.getHandle(), (bias != null) ? bias.getHandle() : NULL_PTR, stride.getShape(), padding.getShape(), dilation.getShape(), groups)); } public static PtNDArray batchNorm( PtNDArray ndArray, PtNDArray gamma, PtNDArray beta, PtNDArray runningMean, PtNDArray runningVar, boolean isTraining, double momentum, double eps) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNBatchNorm( ndArray.getHandle(), gamma.getHandle(), beta.getHandle(), runningMean.getHandle(), runningVar.getHandle(), isTraining, momentum, eps)); } public static PtNDArray layerNorm( PtNDArray ndArray, Shape normalizedShape, PtNDArray gamma, PtNDArray beta, double eps) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNLayerNorm( ndArray.getHandle(), normalizedShape.getShape(), gamma.getHandle(), beta.getHandle(), eps)); } public static PtNDArray normalize(PtNDArray ndArray, double p, long dim, double eps) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNNormalize(ndArray.getHandle(), p, dim, eps)); } public static PtNDArray dropout(PtNDArray ndArray, double prob, boolean training) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNDropout(ndArray.getHandle(), prob, training)); } public static NDList rnn( PtNDArray input, PtNDArray hx, NDList params, boolean hasBiases, int numLayers, RNN.Activation activation, double dropRate, boolean training, boolean bidirectional, boolean batchFirst) { PtNDManager manager = input.getManager(); long[] paramHandles = params.stream().mapToLong(array -> ((PtNDArray) array).getHandle()).toArray(); long[] outputs = PyTorchLibrary.LIB.torchNNRnn( input.getHandle(), hx.getHandle(), paramHandles, hasBiases, numLayers, activation.ordinal(), dropRate, training, bidirectional, batchFirst); NDList res = new NDList(); for (long output : outputs) { res.add(new PtNDArray(manager, output)); } return res; } public static NDList gru( PtNDArray input, PtNDArray hx, NDList params, boolean hasBiases, int numLayers, double dropRate, boolean training, boolean bidirectional, boolean batchFirst) { PtNDManager manager = input.getManager(); long[] paramHandles = params.stream().mapToLong(array -> ((PtNDArray) array).getHandle()).toArray(); long[] outputs = PyTorchLibrary.LIB.torchNNGru( input.getHandle(), hx.getHandle(), paramHandles, hasBiases, numLayers, dropRate, training, bidirectional, batchFirst); NDList res = new NDList(); for (long output : outputs) { res.add(new PtNDArray(manager, output)); } return res; } public static NDList lstm( PtNDArray input, NDList hx, NDList params, boolean hasBiases, int numLayers, double dropRate, boolean training, boolean bidirectional, boolean batchFirst) { PtNDManager manager = input.getManager(); long[] hxHandles = hx.stream().mapToLong(array -> ((PtNDArray) array).getHandle()).toArray(); long[] paramHandles = params.stream().mapToLong(array -> ((PtNDArray) array).getHandle()).toArray(); long[] outputs = PyTorchLibrary.LIB.torchNNLstm( input.getHandle(), hxHandles, paramHandles, hasBiases, numLayers, dropRate, training, bidirectional, batchFirst); NDList res = new NDList(); for (long output : outputs) { res.add(new PtNDArray(manager, output)); } return res; } public static PtNDArray avgPool( PtNDArray ndArray, Shape kernelSize, Shape stride, Shape padding, boolean ceilMode, boolean countIncludePad) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNAvgPool( ndArray.getHandle(), kernelSize.getShape(), stride.getShape(), padding.getShape(), ceilMode, countIncludePad)); } public static PtNDArray maxPool( PtNDArray ndArray, Shape kernelSize, Shape stride, Shape padding, boolean ceilMode) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNMaxPool( ndArray.getHandle(), kernelSize.getShape(), stride.getShape(), padding.getShape(), ceilMode)); } public static PtNDArray adaptiveMaxPool(PtNDArray ndArray, Shape outputSize) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNAdaptiveMaxPool( ndArray.getHandle(), outputSize.getShape())); } public static PtNDArray adaptiveAvgPool(PtNDArray ndArray, Shape outputSize) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNAdaptiveAvgPool( ndArray.getHandle(), outputSize.getShape())); } public static PtNDArray lpPool( PtNDArray ndArray, double normType, Shape kernelSize, Shape stride, boolean ceilMode) { if (ndArray.getShape().dimension() - 2 == 3) { throw new UnsupportedOperationException("3D lpPool is not supported in PyTorch engine"); } return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNNLpPool( ndArray.getHandle(), normType, kernelSize.getShape(), stride.getShape(), ceilMode)); } public static DataType getDataType(PtNDArray ndArray) { int dataType = PyTorchLibrary.LIB.torchDType(ndArray.getHandle()); return DataType.values()[dataType]; } public static Device getDevice(PtNDArray ndArray) { int[] device = PyTorchLibrary.LIB.torchDevice(ndArray.getHandle()); String deviceType = PtDeviceType.fromDeviceType(device[0]); return Device.of(deviceType, device[1]); } public static SparseFormat getSparseFormat(PtNDArray ndArray) { int layout = PyTorchLibrary.LIB.torchLayout(ndArray.getHandle()); if (layout == 0) { return SparseFormat.DENSE; } else if (layout == 1) { return SparseFormat.COO; } else if (layout == 2) { logger.debug("MKLDNN layout is used!"); return SparseFormat.DENSE; } throw new UnsupportedOperationException("Unsupported data format"); } public static Shape getShape(PtNDArray ndArray) { return new Shape(PyTorchLibrary.LIB.torchSizes(ndArray.getHandle())); } public static ByteBuffer getByteBuffer(PtNDArray ndArray, boolean tryDirect) { // Operation is CPU only if (!ndArray.getDevice().equals(Device.cpu())) { ndArray = ndArray.toDevice(Device.cpu(), false); } if (tryDirect) { if (ndArray.isSparse() || getLayout(ndArray) == 2 || !PyTorchLibrary.LIB.torchIsContiguous(ndArray.getHandle())) { // keep the same lifecycle as origin NDArray ndArray = new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchToContiguous(ndArray.getHandle())); } return PyTorchLibrary.LIB .torchDirectByteBuffer(ndArray.getHandle()) .order(ByteOrder.nativeOrder()); } return ByteBuffer.wrap(PyTorchLibrary.LIB.torchDataPtr(ndArray.getHandle())) .order(ByteOrder.nativeOrder()); } public static void deleteNDArray(long handle) { PyTorchLibrary.LIB.torchDeleteTensor(handle); } public static boolean requiresGrad(PtNDArray ndArray) { return PyTorchLibrary.LIB.torchRequiresGrad(ndArray.getHandle()); } public static String getGradientFunctionNames(PtNDArray ndArray) { return PyTorchLibrary.LIB.torchGradFnName(ndArray.getHandle()); } public static void attachGradient(PtNDArray ndArray, boolean requiresGrad) { PyTorchLibrary.LIB.torchAttachGrad(ndArray.getHandle(), requiresGrad); } public static PtNDArray detachGradient(PtNDArray ndArray) { // TODO: detached ndarray may not use the same manager for the attached one return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchDetachGrad(ndArray.getHandle())); } public static PtNDArray getGradient(PtNDArray ndArray) { long pointer = PyTorchLibrary.LIB.torchGrad(ndArray.getHandle()); if (pointer == NULL_PTR) { return null; } return new PtNDArray(ndArray.getManager(), pointer); } public static void backward( PtNDArray ndArray, PtNDArray gradNd, boolean keepGraph, boolean createGraph) { PyTorchLibrary.LIB.torchBackward( ndArray.getHandle(), gradNd.getHandle(), keepGraph, createGraph); } public static void deleteModule(long pointer) { PyTorchLibrary.LIB.torchDeleteModule(pointer); } public static void setGraphExecutorOptimize(boolean enabled) { PyTorchLibrary.LIB.setGraphExecutorOptimize(enabled); } public static PtSymbolBlock loadModule( PtNDManager manager, Path path, boolean mapLocation, String[] extraFileKeys, String[] extraFileValues, boolean trainParam) { Device device = manager.getDevice(); // MPS doesn't support mapLocation if ("mps".equals(device.getDeviceType())) { mapLocation = false; } logger.debug("mapLocation: {}", mapLocation); logger.debug("extraFileKeys: {}", Arrays.toString(extraFileKeys)); long handle = PyTorchLibrary.LIB.moduleLoad( path.toString(), new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, mapLocation, extraFileKeys, extraFileValues, trainParam); return new PtSymbolBlock(manager, handle); } public static PtSymbolBlock loadModule( PtNDManager manager, InputStream is, boolean mapLocation, boolean hasSize) throws IOException { long handle = loadModuleHandle(is, manager.getDevice(), mapLocation, hasSize); return new PtSymbolBlock(manager, handle); } public static long loadModuleHandle( InputStream is, Device device, boolean mapLocation, boolean hasSize) throws IOException { byte[] buf = new byte[BYTE_LENGTH]; long size = -1; if (hasSize) { size = new DataInputStream(is).readLong(); } // MPS doesn't support mapLocation if ("mps".equals(device.getDeviceType())) { mapLocation = false; } logger.debug("mapLocation: {}", mapLocation); return PyTorchLibrary.LIB.moduleLoad( is, new int[] {PtDeviceType.toDeviceType(device), device.getDeviceId()}, mapLocation, buf, size); } public static void writeModule(PtSymbolBlock block, OutputStream os, boolean writeSize) { byte[] buf = new byte[BYTE_LENGTH]; PyTorchLibrary.LIB.moduleWrite(block.getHandle(), os, buf, writeSize); } public static NDList moduleGetParams(PtSymbolBlock block, PtNDManager manager) { long[] handles = PyTorchLibrary.LIB.moduleGetParams(block.getHandle()); String[] names = PyTorchLibrary.LIB.moduleGetParamNames(block.getHandle()); NDList list = new NDList(handles.length); for (int i = 0; i < handles.length; i++) { PtNDArray array = new PtNDArray(manager, handles[i]); array.setName(names[i]); list.add(array); } return list; } public static String[] getMethodNames(PtSymbolBlock block) { return PyTorchLibrary.LIB.moduleGetMethodNames(block.getHandle()); } public static void enableInferenceMode(PtSymbolBlock block) { PyTorchLibrary.LIB.moduleEval(block.getHandle()); } public static void enableTrainingMode(PtSymbolBlock block) { PyTorchLibrary.LIB.moduleTrain(block.getHandle()); } public static void zeroGrad(PtNDArray weight) { PyTorchLibrary.LIB.zeroGrad(weight.getHandle()); } public static void adamUpdate( PtNDArray weight, PtNDArray grad, PtNDArray mean, PtNDArray variance, float lr, float learningRateBiasCorrection, float wd, float rescaleGrad, float clipGrad, float beta1, float beta2, float eps, boolean adamw) { PyTorchLibrary.LIB.adamUpdate( weight.getHandle(), grad.getHandle(), mean.getHandle(), variance.getHandle(), lr, learningRateBiasCorrection, wd, rescaleGrad, clipGrad, beta1, beta2, eps, adamw); } public static void sgdUpdate( PtNDArray weight, PtNDArray grad, PtNDArray state, float lr, float wd, float rescaleGrad, float clipGrad, float momentum) { PyTorchLibrary.LIB.sgdUpdate( weight.getHandle(), grad.getHandle(), (state == null) ? NULL_PTR : state.getHandle(), lr, wd, rescaleGrad, clipGrad, momentum); } // Internal use only public static int getLayout(PtNDArray array) { return PyTorchLibrary.LIB.torchLayout(array.getHandle()); } public static PtNDArray norm(PtNDArray ndArray, int ord, int[] axes, boolean keepDims) { long[] longAxes = Arrays.stream(axes).mapToLong(i -> i).toArray(); return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNorm(ndArray.getHandle(), ord, longAxes, keepDims)); } public static PtNDArray nonZeros(PtNDArray ndArray) { if (ndArray.isScalar()) { ndArray = (PtNDArray) ndArray.reshape(-1); } return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchNonZeros(ndArray.getHandle())); } public static PtNDArray diff(PtNDArray ndArray, int n, int dim) { return new PtNDArray( ndArray.getManager(), PyTorchLibrary.LIB.torchDiff(ndArray.getHandle(), n, dim)); } }
0
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch/jni/LibUtils.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import ai.djl.engine.EngineException; import ai.djl.repository.Version; import ai.djl.util.ClassLoaderUtils; import ai.djl.util.Platform; import ai.djl.util.Utils; import ai.djl.util.cuda.CudaUtils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.File; import java.io.IOException; import java.io.InputStream; import java.net.URL; import java.net.URLDecoder; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.StandardCopyOption; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.Set; import java.util.concurrent.ConcurrentHashMap; import java.util.regex.Matcher; import java.util.regex.Pattern; import java.util.stream.Stream; import java.util.zip.GZIPInputStream; /** * Utilities for finding the PyTorch Engine binary on the System. * * <p>The Engine will be searched for in a variety of locations in the following order: * * <ol> * <li>In the path specified by the PYTORCH_LIBRARY_PATH environment variable * <li>In a jar file location in the classpath. These jars can be created with the pytorch-native * module. * </ol> */ @SuppressWarnings("MissingJavadocMethod") public final class LibUtils { private static final Logger logger = LoggerFactory.getLogger(LibUtils.class); private static final String NATIVE_LIB_NAME = System.mapLibraryName("torch"); private static final String JNI_LIB_NAME = System.mapLibraryName("djl_torch"); private static final Pattern VERSION_PATTERN = Pattern.compile("(\\d+\\.\\d+\\.\\d+(-[a-z]+)?)(-SNAPSHOT)?(-\\d+)?"); private static final Pattern LIB_PATTERN = Pattern.compile("(.*\\.(so(\\.\\d+)*|dll|dylib))"); private static LibTorch libTorch; private LibUtils() {} public static synchronized void loadLibrary() { // TODO workaround to make it work on Android Studio // It should search for several places to find the native library if ("http://www.android.com/".equals(System.getProperty("java.vendor.url"))) { System.loadLibrary("djl_torch"); // NOPMD return; } libTorch = getLibTorch(); loadLibTorch(libTorch); Path path = findJniLibrary(libTorch).toAbsolutePath(); loadNativeLibrary(path.toString()); } private static LibTorch getLibTorch() { LibTorch lib = findOverrideLibrary(); if (lib != null) { return lib; } return findNativeLibrary(); } public static String getVersion() { Matcher m = VERSION_PATTERN.matcher(libTorch.version); if (m.matches()) { return m.group(1); } return libTorch.version; } public static String getLibtorchPath() { return libTorch.dir.toString(); } private static void loadLibTorch(LibTorch libTorch) { Path libDir = libTorch.dir.toAbsolutePath(); if (Files.exists(libDir.resolve("libstdc++.so.6"))) { String libstd = Utils.getEnvOrSystemProperty("LIBSTDCXX_LIBRARY_PATH"); if (libstd != null) { try { logger.info("Loading libstdc++.so.6 from: {}", libstd); System.load(libstd); } catch (UnsatisfiedLinkError e) { logger.warn("Failed Loading libstdc++.so.6 from: {}", libstd); } } } String libExclusion = Utils.getEnvOrSystemProperty("PYTORCH_LIBRARY_EXCLUSION", ""); Set<String> exclusion = new HashSet<>(Arrays.asList(libExclusion.split(","))); boolean isCuda = libTorch.flavor.contains("cu"); List<String> deferred = Arrays.asList( System.mapLibraryName("fbgemm"), System.mapLibraryName("caffe2_nvrtc"), System.mapLibraryName("torch_cpu"), System.mapLibraryName("c10_cuda"), System.mapLibraryName("torch_cuda_cpp"), System.mapLibraryName("torch_cuda_cu"), System.mapLibraryName("torch_cuda"), System.mapLibraryName("nvfuser_codegen"), System.mapLibraryName("torch")); Set<String> loadLater = new HashSet<>(deferred); try (Stream<Path> paths = Files.walk(libDir)) { Map<Path, Integer> rank = new ConcurrentHashMap<>(); paths.filter( path -> { String name = path.getFileName().toString(); if (!LIB_PATTERN.matcher(name).matches() || exclusion.contains(name)) { return false; } else if (!isCuda && name.contains("nvrtc") && name.contains("cudart") && name.contains("nvTools")) { return false; } else if (name.startsWith("libarm_compute-") || name.startsWith("libopenblasp")) { rank.put(path, 2); return true; } else if (name.startsWith("libarm_compute_")) { rank.put(path, 3); return true; } else if (!loadLater.contains(name) && Files.isRegularFile(path) && !name.endsWith(JNI_LIB_NAME) && !name.contains("torch_") && !name.contains("caffe2_") && !name.startsWith("cudnn")) { rank.put(path, 1); return true; } return false; }) .sorted(Comparator.comparingInt(rank::get)) .map(Path::toString) .forEach(LibUtils::loadNativeLibrary); if (Files.exists((libDir.resolve("cudnn64_8.dll")))) { loadNativeLibrary(libDir.resolve("cudnn64_8.dll").toString()); loadNativeLibrary(libDir.resolve("cudnn_ops_infer64_8.dll").toString()); loadNativeLibrary(libDir.resolve("cudnn_ops_train64_8.dll").toString()); loadNativeLibrary(libDir.resolve("cudnn_cnn_infer64_8.dll").toString()); loadNativeLibrary(libDir.resolve("cudnn_cnn_train64_8.dll").toString()); loadNativeLibrary(libDir.resolve("cudnn_adv_infer64_8.dll").toString()); loadNativeLibrary(libDir.resolve("cudnn_adv_train64_8.dll").toString()); } else if (Files.exists((libDir.resolve("cudnn64_7.dll")))) { loadNativeLibrary(libDir.resolve("cudnn64_7.dll").toString()); } if (!isCuda) { deferred = Arrays.asList( System.mapLibraryName("fbgemm"), System.mapLibraryName("torch_cpu"), System.mapLibraryName("torch")); } for (String dep : deferred) { Path path = libDir.resolve(dep); if (Files.exists(path)) { loadNativeLibrary(path.toString()); } } } catch (IOException e) { throw new EngineException("Folder not exist! " + libDir, e); } } private static LibTorch findOverrideLibrary() { String libPath = Utils.getEnvOrSystemProperty("PYTORCH_LIBRARY_PATH"); if (libPath != null) { return findLibraryInPath(libPath); } return null; } private static LibTorch findLibraryInPath(String libPath) { String[] paths = libPath.split(File.pathSeparator); for (String path : paths) { File p = new File(path); if (!p.exists()) { continue; } if (p.isFile() && NATIVE_LIB_NAME.equals(p.getName())) { return new LibTorch(p.getParentFile().toPath().toAbsolutePath()); } File file = new File(path, NATIVE_LIB_NAME); if (file.exists() && file.isFile()) { return new LibTorch(p.toPath().toAbsolutePath()); } } return null; } private static Path findJniLibrary(LibTorch libTorch) { String classifier = libTorch.classifier; String version = libTorch.version; String djlVersion = libTorch.apiVersion; String flavor = libTorch.flavor; // Looking for JNI in libTorch.dir first Path libDir = libTorch.dir.toAbsolutePath(); Path path = libDir.resolve(djlVersion + '-' + JNI_LIB_NAME); if (Files.exists(path)) { return path; } path = libDir.resolve(JNI_LIB_NAME); if (Files.exists(path)) { return path; } // always use cache dir, cache dir might be different from libTorch.dir Path cacheDir = Utils.getEngineCacheDir("pytorch"); Path dir = cacheDir.resolve(version + '-' + flavor + '-' + classifier); path = dir.resolve(djlVersion + '-' + JNI_LIB_NAME); if (Files.exists(path)) { return path; } Matcher matcher = VERSION_PATTERN.matcher(version); if (!matcher.matches()) { throw new EngineException("Unexpected version: " + version); } version = matcher.group(1); try { URL url = ClassLoaderUtils.getResource("jnilib/pytorch.properties"); String jniVersion = null; if (url != null) { Properties prop = new Properties(); try (InputStream is = Utils.openUrl(url)) { prop.load(is); } jniVersion = prop.getProperty("jni_version"); if (jniVersion == null) { throw new AssertionError("No PyTorch jni version found."); } } if (jniVersion == null) { downloadJniLib(dir, path, djlVersion, version, classifier, flavor); return path; } else if (!jniVersion.startsWith(version + '-' + djlVersion)) { logger.warn("Found mismatch PyTorch jni: {}", jniVersion); downloadJniLib(dir, path, djlVersion, version, classifier, flavor); return path; } } catch (IOException e) { throw new AssertionError("Failed to read PyTorch jni properties file.", e); } Path tmp = null; String libPath = "jnilib/" + classifier + '/' + flavor + '/' + JNI_LIB_NAME; logger.info("Extracting {} to cache ...", libPath); try (InputStream is = ClassLoaderUtils.getResourceAsStream(libPath)) { Files.createDirectories(dir); tmp = Files.createTempFile(dir, "jni", "tmp"); Files.copy(is, tmp, StandardCopyOption.REPLACE_EXISTING); Utils.moveQuietly(tmp, path); return path; } catch (IOException e) { throw new EngineException("Cannot copy jni files", e); } finally { if (tmp != null) { Utils.deleteQuietly(tmp); } } } private static LibTorch findNativeLibrary() { Platform platform = Platform.detectPlatform("pytorch"); String overrideVersion = Utils.getEnvOrSystemProperty("PYTORCH_VERSION"); if (overrideVersion != null && !overrideVersion.isEmpty() && !platform.getVersion().startsWith(overrideVersion)) { // platform.version can be 1.8.1-20210421 logger.warn("Override PyTorch version: {}.", overrideVersion); platform = Platform.detectPlatform("pytorch", overrideVersion); return downloadPyTorch(platform); } if (platform.isPlaceholder()) { return downloadPyTorch(platform); } return copyNativeLibraryFromClasspath(platform); } private static LibTorch copyNativeLibraryFromClasspath(Platform platform) { logger.debug("Found bundled PyTorch package: {}.", platform); String version = platform.getVersion(); String flavor = platform.getFlavor(); if (!flavor.endsWith("-precxx11") && Arrays.asList(platform.getLibraries()).contains("libstdc++.so.6")) { // for PyTorch 1.9.1 and older flavor += "-precxx11"; // NOPMD } String classifier = platform.getClassifier(); Path tmp = null; try { Path cacheDir = Utils.getEngineCacheDir("pytorch"); logger.debug("Using cache dir: {}", cacheDir); Path dir = cacheDir.resolve(version + '-' + flavor + '-' + classifier); Path path = dir.resolve(NATIVE_LIB_NAME); if (Files.exists(path)) { return new LibTorch(dir.toAbsolutePath(), platform, flavor); } Utils.deleteQuietly(dir); Matcher m = VERSION_PATTERN.matcher(version); if (!m.matches()) { throw new AssertionError("Unexpected version: " + version); } String pathPrefix = "pytorch/" + flavor + '/' + classifier; Files.createDirectories(cacheDir); tmp = Files.createTempDirectory(cacheDir, "tmp"); for (String file : platform.getLibraries()) { String libPath = pathPrefix + '/' + file; logger.info("Extracting {} to cache ...", libPath); try (InputStream is = ClassLoaderUtils.getResourceAsStream(libPath)) { Files.copy(is, tmp.resolve(file), StandardCopyOption.REPLACE_EXISTING); } } Utils.moveQuietly(tmp, dir); return new LibTorch(dir.toAbsolutePath(), platform, flavor); } catch (IOException e) { throw new EngineException("Failed to extract PyTorch native library", e); } finally { if (tmp != null) { Utils.deleteQuietly(tmp); } } } private static void loadNativeLibrary(String path) { logger.debug("Loading native library: {}", path); String nativeHelper = System.getProperty("ai.djl.pytorch.native_helper"); if (nativeHelper != null && !nativeHelper.isEmpty()) { ClassLoaderUtils.nativeLoad(nativeHelper, path); } else { System.load(path); // NOPMD } } private static LibTorch downloadPyTorch(Platform platform) { String version = platform.getVersion(); String classifier = platform.getClassifier(); String precxx11; String flavor = Utils.getEnvOrSystemProperty("PYTORCH_FLAVOR"); boolean override; if (flavor == null || flavor.isEmpty()) { flavor = platform.getFlavor(); if (System.getProperty("os.name").startsWith("Linux") && (Boolean.parseBoolean(Utils.getEnvOrSystemProperty("PYTORCH_PRECXX11")) || ("aarch64".equals(platform.getOsArch()) && new Version(version).compareTo(new Version("2.7.1")) < 0))) { precxx11 = "-precxx11"; } else { precxx11 = ""; } flavor += precxx11; override = false; } else { logger.info("Uses override PYTORCH_FLAVOR: {}", flavor); precxx11 = flavor.endsWith("-precxx11") ? "-precxx11" : ""; override = true; } Path cacheDir = Utils.getEngineCacheDir("pytorch"); Path dir = cacheDir.resolve(version + '-' + flavor + '-' + classifier); Path path = dir.resolve(NATIVE_LIB_NAME); if (Files.exists(path)) { logger.debug("Using cache dir: {}", dir); return new LibTorch(dir.toAbsolutePath(), platform, flavor); } Matcher matcher = VERSION_PATTERN.matcher(version); if (!matcher.matches()) { throw new AssertionError("Unexpected version: " + version); } String link = "https://publish.djl.ai/pytorch/" + matcher.group(1); Path tmp = null; Path indexFile = cacheDir.resolve(version + ".txt"); if (Files.notExists(indexFile)) { Path tempFile = cacheDir.resolve(version + ".tmp"); try (InputStream is = Utils.openUrl(link + "/files.txt")) { Files.createDirectories(cacheDir); Files.copy(is, tempFile, StandardCopyOption.REPLACE_EXISTING); Utils.moveQuietly(tempFile, indexFile); } catch (IOException e) { throw new EngineException("Failed to save pytorch index file", e); } finally { Utils.deleteQuietly(tempFile); } } try (InputStream is = Files.newInputStream(indexFile)) { // if files not found Files.createDirectories(cacheDir); List<String> lines = Utils.readLines(is); if (flavor.startsWith("cu")) { int cudaVersion = Integer.parseInt(flavor.substring(2, 5)); Pattern pattern = Pattern.compile( "cu(\\d\\d\\d)" + precxx11 + '/' + classifier + "/native/lib/" + NATIVE_LIB_NAME + ".gz"); List<Integer> cudaVersions = new ArrayList<>(); boolean match = false; for (String line : lines) { Matcher m = pattern.matcher(line); if (m.matches()) { cudaVersions.add(Integer.parseInt(m.group(1))); } } // find highest matching CUDA version cudaVersions.sort(Collections.reverseOrder()); for (int cuda : cudaVersions) { if (override && cuda == cudaVersion) { match = true; break; } else if (cuda <= cudaVersion) { flavor = "cu" + cuda + precxx11; match = true; break; } } if (!match) { logger.warn("No matching cuda flavor for {} found: {}.", classifier, flavor); // fallback to CPU flavor = "cpu" + precxx11; } // check again dir = cacheDir.resolve(version + '-' + flavor + '-' + classifier); path = dir.resolve(NATIVE_LIB_NAME); if (Files.exists(path)) { return new LibTorch(dir.toAbsolutePath(), platform, flavor); } } logger.debug("Using cache dir: {}", dir); tmp = Files.createTempDirectory(cacheDir, "tmp"); boolean found = false; for (String line : lines) { if (line.startsWith(flavor + '/' + classifier + '/')) { found = true; URL url = new URL(link + '/' + line); String fileName = line.substring(line.lastIndexOf('/') + 1, line.length() - 3); fileName = URLDecoder.decode(fileName, "UTF-8"); logger.info("Downloading {} ...", url); try (InputStream fis = new GZIPInputStream(Utils.openUrl(url))) { Files.copy(fis, tmp.resolve(fileName), StandardCopyOption.REPLACE_EXISTING); } } } if (!found) { throw new EngineException( "No PyTorch native library matches your operating system: " + platform); } Utils.moveQuietly(tmp, dir); return new LibTorch(dir.toAbsolutePath(), platform, flavor); } catch (IOException e) { throw new EngineException("Failed to download PyTorch native library", e); } finally { if (tmp != null) { Utils.deleteQuietly(tmp); } } } private static void downloadJniLib( Path cacheDir, Path path, String djlVersion, String version, String classifier, String flavor) { String url = "https://publish.djl.ai/pytorch/" + version + "/jnilib/" + djlVersion + '/' + classifier + '/' + flavor + '/' + JNI_LIB_NAME; logger.info("Downloading jni {} to cache ...", url); Path tmp = null; try (InputStream is = Utils.openUrl(url)) { Files.createDirectories(cacheDir); tmp = Files.createTempFile(cacheDir, "jni", "tmp"); Files.copy(is, tmp, StandardCopyOption.REPLACE_EXISTING); Utils.moveQuietly(tmp, path); } catch (IOException e) { throw new EngineException("Cannot download jni files: " + url, e); } finally { if (tmp != null) { Utils.deleteQuietly(tmp); } } } private static final class LibTorch { Path dir; String version; String apiVersion; String flavor; String classifier; LibTorch(Path dir) { Platform platform = Platform.detectPlatform("pytorch"); this.dir = dir; this.apiVersion = platform.getApiVersion(); this.classifier = platform.getClassifier(); version = Utils.getEnvOrSystemProperty("PYTORCH_VERSION"); if (version == null || version.isEmpty()) { version = platform.getVersion(); } flavor = Utils.getEnvOrSystemProperty("PYTORCH_FLAVOR"); if (flavor == null || flavor.isEmpty()) { if (CudaUtils.getGpuCount() > 0) { flavor = "cu" + CudaUtils.getCudaVersionString() + "-precxx11"; } else if ("linux".equals(platform.getOsPrefix())) { flavor = "cpu-precxx11"; } else { flavor = "cpu"; } } } LibTorch(Path dir, Platform platform, String flavor) { this.dir = dir; this.version = platform.getVersion(); this.apiVersion = platform.getApiVersion(); this.classifier = platform.getClassifier(); this.flavor = flavor; } } }
0
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch/jni/PyTorchLibrary.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import java.io.InputStream; import java.io.OutputStream; import java.nio.ByteBuffer; import java.util.Set; /** A class containing utilities to interact with the PyTorch Engine's JNI layer. */ final class PyTorchLibrary { static final PyTorchLibrary LIB = new PyTorchLibrary(); private PyTorchLibrary() {} native boolean torchIsGradMode(); native void torchSetGradMode(boolean enable); native int torchGetNumInteropThreads(); native int torchGetNumThreads(); native void torchSetNumInteropThreads(int threads); native void torchSetNumThreads(int threads); native void torchSetBenchmarkCuDNN(boolean enable); native void torchManualSeed(long seed); native void torchShowConfig(Set<String> set); native void torchStartProfile(boolean useCuda, boolean recordShape, boolean profileMemory); native void torchStopProfile(String outputFile); native long[] torchSizes(long handle); native byte[] torchDataPtr(long handle); native ByteBuffer torchDirectByteBuffer(long handle); native boolean torchIsContiguous(long handle); native long torchToContiguous(long handle); native int torchDType(long handle); native int[] torchDevice(long handle); native int torchLayout(long handle); native long torchTo(long handle, int dType, int[] device); native long torchGetItem(long handle, long index); native long torchGetItem(long handle, long[] indices); native long torchToSparse(long handle); native long torchToDense(long handle); native long tensorClone(long handle); native void torchCudaEmptyCache(); native long torchEmpty(long[] shape, int dType, int layout, int[] device, boolean requiredGrad); native long torchZeros(long[] shape, int dType, int layout, int[] device, boolean requiredGrad); native long torchOnes(long[] shape, int dType, int layout, int[] device, boolean requiredGrad); native long torchFull( long[] shape, double fillValue, int dType, int layout, int[] device, boolean requiredGrad); native long torchZerosLike( long handle, int dType, int layout, int[] device, boolean requiredGrad); native long torchOnesLike( long handle, int dType, int layout, int[] device, boolean requiredGrad); native long torchSparseCoo( long[] shape, long indicesHandle, long valueHandle, boolean requiredGrad); native long torchArange( float start, float end, float step, int dType, int layout, int[] device, boolean requiredGrad); native long torchLinspace( float start, float end, int step, int dType, int layout, int[] device, boolean requiredGrad); native long torchAdd(long self, long other); native void torchAddi(long self, long other); native long torchExpand(long self, long[] shape); native long torchSub(long self, long other); native void torchSubi(long self, long other); native long torchMul(long self, long other); native void torchMuli(long self, long other); native long torchTrueDivide(long self, long other); native void torchTrueDividei(long self, long other); native long torchRemainder(long self, long other); native void torchRemainderi(long self, long other); native long torchRot90(long self, long k, long[] axes); native long torchPow(long self, long exponent); native void torchPowi(long self, long exponent); native long torchSign(long self); native void torchSigni(long self); native long torchMatmul(long self, long other); native long torchBmm(long self, long other); native long torchXLogY(long self, long other); native long torchDot(long self, long other); native long torchLogicalAnd(long self, long other); native long torchLogicalOr(long self, long other); native long torchLogicalXor(long self, long other); native long torchLogicalNot(long handle); native long torchPad(long handle, long[] shape, double value); native long torchReshape(long handle, long[] shape); native long torchSoftmax(long handle, long dim, int dType); native long torchLogSoftmax(long handle, long dim, int dType); native long torchArgMax(long handle); native long torchArgMax(long handle, long dim, boolean keepDim); native long[] torchTopK(long handle, long k, long axis, boolean largest, boolean sorted); native long torchArgMin(long handle); native long torchArgMin(long handle, long dim, boolean keepDim); native long torchArgSort(long handle, long dim, boolean keepDim); native long torchSort(long handle, long dim, boolean descending); native long torchPermute(long handle, long[] dims); native long torchFlip(long handle, long[] dims); native long torchTranspose(long handle, long axis1, long axis2); native boolean contentEqual(long handle1, long handle2); native long torchFromBlob( ByteBuffer data, long[] shape, int dType, int layout, int[] device, boolean requiredGrad); native long torchIndex(long handle, long[] minIndices, long[] maxIndices, long[] stepIndices); native void torchIndexPut( long handle, long valueHandle, long[] minIndices, long[] maxIndices, long[] stepIndices); native void torchIndexAdvPut(long handle, long torchIndexHandle, long data); native void torchSet(long handle, ByteBuffer data); native long torchSlice(long handle, long dim, long start, long end, long step); native long torchGather(long handle, long index, long dim, boolean sparseGrad); native long torchTake(long handle, long index); native long torchPut(long handle, long index, long value); native long torchScatter(long handle, long index, long value, int axis); native long torchMaskedSelect(long handle, long maskHandle); native void torchMaskedPut(long handle, long valueHandle, long maskHandle); native void torchDeleteTensor(long handle); native void torchDeleteIndex(long handle); native void torchDeleteModule(long handle); native void torchDeleteIValue(long handle); native long torchMaximum(long self, long other); native long torchMax(long handle); native long torchMax(long handle, long dim, boolean keepDim); native long torchMinimum(long self, long other); native long[] torchMedian(long self, long dim, boolean keepDim); native long torchMin(long handle); native long torchMin(long handle, long dim, boolean keepDim); native long torchMean(long handle); native long torchMean(long handle, long dim, boolean keepDim); native long torchSum(long handle); native long torchSum(long handle, long[] dim, boolean keepDim); native long torchCumProd(long handle, long dim, int dtype); native long torchProd(long handle); native long torchProd(long handle, long dim, boolean keepDim); native long torchCumSum(long handle, long dim); native long torchDiagonal(long handle, long offset, long axis1, long axis2); native long torchFlatten(long handle, long startDim, long endDim); native long torchFft(long handle, long length, long axis); native long torchIfft(long handle, long length, long axis); native long torchRfft(long handle, long length, long axis); native long torchIrfft(long handle, long length, long axis); native long torchStft( long handle, long nFft, long hopLength, long windowHandle, boolean center, boolean normalize, boolean returnComplex); native long torchFft2(long handle, long[] sizes, long[] axes); native long torchIfft2(long handle, long[] sizes, long[] axes); native long torchViewAsReal(long handle); native long torchViewAsComplex(long handle); native long conj(long handle); native long[] torchSplit(long handle, long size, long dim); native long[] torchSplit(long handle, long[] indices, long dim); native long torchUnsqueeze(long handle, long dim); native long torchSqueeze(long handle); native long torchSqueeze(long handle, long axis); native long[] torchUnique( long handle, long dim, boolean sorted, boolean returnInverse, boolean returnCounts); native long torchStack(long[] handles, long dim); native long torchCat(long[] handles, long dim); native long torchRepeat(long handle, long[] repeats); native long torchRepeatInterleave(long handle, long repeat, long axis); native long torchAbs(long handle); native long torchSquare(long self); native long torchFloor(long handle); native long torchCeil(long handle); native long torchClamp(long handle, long min, long max); native long torchRound(long handle); native long torchTrunc(long handle); native long torchExp(long handle); native long torchLgamma(long handle); native long torchLog(long handle); native long torchLog10(long handle); native long torchLog2(long handle); native long torchSin(long handle); native long torchCos(long handle); native long torchTan(long handle); native long torchASin(long handle); native long torchAcos(long handle); native long torchAtan(long handle); native long torchAtan2(long self, long other); native long torchSqrt(long handle); native long torchSinh(long handle); native long torchCosh(long handle); native long torchTanh(long handle); native long torchSigmoid(long handle); native long torchWhere(long handle, long x, long y); native long torchAll(long self); native long torchAny(long self); native long torchNone(long self); native long torchEq(long self, long other); native long torchNeq(long self, long other); native long torchGt(long self, long other); native long torchGte(long self, long other); native long torchLt(long self, long other); native long torchLte(long self, long other); native long torchNeg(long self); native void torchNegi(long self); native long torchIsNaN(long self); native long torchIsInf(long self); native long torchRandint( long low, long high, long[] sizes, int dType, int layout, int[] device, boolean requiredGrad); native long torchRandPerm(long n, int dType, int layout, int[] device, boolean requireGrad); native long torchNormal( double mean, double std, long[] sizes, int dType, int layout, int[] device, boolean requiredGrad); native long tensorUniform( double from, double to, long[] sizes, int dType, int layout, int[] device, boolean requiredGrad); native long torchEye(int n, int m, int dType, int layout, int[] device, boolean requiredGrad); native long torchHannWindow(long nfft, boolean periodic, int[] device); native long torchErfinv(long handle); native long torchErf(long handle); native long torchInverse(long self); native long torchNNInterpolate(long handle, long[] size, int mode, boolean alignCorners); native long torchNNLinear(long handle, long weightHandle, long biasHandle); native long torchNNEmbedding(long handle, long weightHandle, boolean sparse); native long torchNNRelu(long handle); native long torchNNSoftPlus(long handle); native long torchNNSoftSign(long handle); native long torchNNLeakyRelu(long handle, double negativeSlope); native long torchNNElu(long handle, double alpha); native long torchNNSelu(long handle); native long torchNNGelu(long handle); native long torchNNConvNd( long inputHandle, long weightHandle, long biasHandle, long[] stride, long[] padding, long[] dilation, int groups); native long torchNNDropout(long inputHandle, double probability, boolean isTrain); native long torchNNNormalize(long inputHandle, double p, long dim, double eps); native long torchNNLayerNorm( long inputHandle, long[] normalizedShape, long weigthHandle, long biasHandle, double eps); native long torchNNBatchNorm( long inputHandle, long runningMeanHandle, long runningVarHandle, long weigthHandle, long biasHandle, boolean training, double momentum, double eps); native long[] torchNNRnn( long inputHandle, long hxHandle, long[] paramHandles, boolean hasBiases, int numLayers, int activation, double dropRate, boolean training, boolean bidirectional, boolean batchFirst); native long[] torchNNGru( long inputHandle, long hxHandle, long[] paramHandles, boolean hasBiases, int numLayers, double dropRate, boolean training, boolean bidirectional, boolean batchFirst); native long[] torchNNLstm( long inputHandle, long[] hxHandles, long[] paramHandles, boolean hasBiases, int numLayers, double dropRate, boolean training, boolean bidirectional, boolean batchFirst); native long torchNNAvgPool( long inputHandle, long[] kernel, long[] stride, long[] pad, boolean useCeil, boolean countIncludePad); native long torchNNMaxPool( long inputHandle, long[] kernelSize, long[] stride, long[] padding, boolean ceilMode); native long torchNNAdaptiveAvgPool(long inputHandle, long[] outputSize); native long torchNNAdaptiveMaxPool(long inputHandle, long[] outputSize); native long torchNNLpPool( long inputHandle, double normType, long[] kernelSize, long[] stride, boolean ceilMode); native long torchNNOneHot(long inputHandle, int depth); native boolean torchRequiresGrad(long inputHandle); native String torchGradFnName(long inputHandle); native void torchAttachGrad(long inputHandle, boolean requiresGrad); native long torchGrad(long inputHandle); native long torchDetachGrad(long inputHandle); native void torchBackward( long inputHandle, long gradHandle, boolean keepGraph, boolean createGraph); native long moduleLoad( String path, int[] device, boolean mapLocation, String[] extraFileNames, String[] extraFileValues, boolean trainParam); native long moduleLoad( InputStream is, int[] device, boolean mapLocation, byte[] buffer, long size); native void moduleEval(long handle); native void moduleTrain(long handle); native long moduleRunMethod( long moduleHandle, String methodName, long[] iValueHandles, boolean isTrain, boolean separateCudaStream); native void setGraphExecutorOptimize(boolean enabled); native void moduleWrite(long moduleHandle, OutputStream os, byte[] buffer, boolean writeSize); native long[] moduleGetParams(long moduleHandle); native String[] moduleGetParamNames(long moduleHandle); native String[] moduleGetMethodNames(long moduleHandle); native long iValueFromTensor(long tensorHandle); native long iValueFromBool(boolean value); native long iValueFromLong(long value); native long iValueFromDouble(double value); native long iValueFromString(String value); native long iValueFromBoolList(boolean... value); native long iValueFromLongList(long... value); native long iValueFromDoubleList(double... value); native long iValueFromTensorList(long[] tensorHandles); native long iValueFromList(long[] ivalueHandles); native long iValueFromTuple(long[] ivalueHandles); native long iValueFromStringMap(String[] keys, long[] tensorHandles); native long iValueFromStringIValueMap(String[] keys, long[] tensorHandles); native long iValueToTensor(long iValueHandle); native boolean iValueToBool(long iValueHandle); native long iValueToLong(long iValueHandle); native double iValueToDouble(long iValueHandle); native String iValueToString(long iValueHandle); native boolean[] iValueToBoolList(long iValueHandle); native long[] iValueToLongList(long iValueHandle); native double[] iValueToDoubleList(long iValueHandle); native long[] iValueToTensorList(long iValueHandle); native long[] iValueToIValueList(long iValueHandle); native long[] iValueToIValueTuple(long iValueHandle); native long[] iValueToMap(long iValueHandle); native String iValueGetType(long iValueHandle); native boolean iValueIsTensor(long iValueHandle); native boolean iValueIsBool(long iValueHandle); native boolean iValueIsLong(long iValueHandle); native boolean iValueIsDouble(long iValueHandle); native boolean iValueIsString(long iValueHandle); native boolean iValueIsBoolList(long iValueHandle); native boolean iValueIsLongList(long iValueHandle); native boolean iValueIsDoubleList(long iValueHandle); native boolean iValueIsTensorList(long iValueHandle); native boolean iValueIsList(long iValueHandle); native boolean iValueIsTuple(long iValueHandle); native boolean iValueIsMap(long iValueHandle); native void zeroGrad(long handle); native void adamUpdate( long weight, long grad, long mean, long variance, float lr, float learningRateBiasCorrection, float wd, float rescaleGrad, float clipGrad, float beta1, float beta2, float eps, boolean adamw); native void sgdUpdate( long weight, long grad, long state, float lr, float wd, float rescaleGrad, float clipGrad, float momentum); native long torchNorm(long handle, int ord, long[] axis, boolean keepDims); native long torchNonZeros(long handle); native long torchIndexInit(int size); native long torchIndexAdvGet(long handle, long torchIndexHandle); native void torchIndexAppendNoneEllipsis(long torchIndexHandle, boolean isEllipsis); native void torchIndexAppendSlice( long torchIndexHandle, long min, long max, long step, int nullSliceBinary); native void torchIndexAppendFixed(long torchIndexHandle, long idx); native void torchIndexAppendArray(long torchIndexHandle, long arrayHandle); native long torchDiff(long self, int n, int dim); }
0
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine/0.34.0/ai/djl/pytorch/jni/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains classes to interface with the underlying PyTorch Engine. */ package ai.djl.pytorch.jni;
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtDeviceType.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.Device; import ai.djl.DeviceType; /** DeviceType is the PyTorch equivalent of the types in {@link Device}. */ public final class PtDeviceType implements DeviceType { private PtDeviceType() {} /** * Converts a {@link Device} to the corresponding PyTorch device number. * * @param device the java {@link Device} * @return the PyTorch device number */ public static int toDeviceType(Device device) { String deviceType = device.getDeviceType(); if (Device.Type.CPU.equals(deviceType)) { return 0; } else if (Device.Type.GPU.equals(deviceType)) { return 1; } else { throw new IllegalArgumentException("Unsupported device: " + device.toString()); } } /** * Converts from an PyTorch device number to {@link Device}. * * @param deviceType the PyTorch device number * @return the corresponding {@link Device} */ public static String fromDeviceType(int deviceType) { switch (deviceType) { case 0: return Device.Type.CPU; case 1: return Device.Type.GPU; default: throw new IllegalArgumentException("Unsupported deviceType: " + deviceType); } } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtEngine.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.Device; import ai.djl.Model; import ai.djl.engine.Engine; import ai.djl.ndarray.NDManager; import ai.djl.pytorch.jni.JniUtils; import ai.djl.pytorch.jni.LibUtils; import ai.djl.training.GradientCollector; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * The {@code PtEngine} is an implementation of the {@link Engine} based on the <a * href="https://pytorch.org/">PyTorch Deep Learning Framework</a>. * * <p>To get an instance of the {@code PtEngine} when it is not the default Engine, call {@link * Engine#getEngine(String)} with the Engine name "PyTorch". */ public final class PtEngine extends Engine { private static final Logger logger = LoggerFactory.getLogger(PtEngine.class); public static final String ENGINE_NAME = "PyTorch"; private PtEngine() {} static Engine newInstance() { try { LibUtils.loadLibrary(); if (Integer.getInteger("ai.djl.pytorch.num_interop_threads") != null) { JniUtils.setNumInteropThreads( Integer.getInteger("ai.djl.pytorch.num_interop_threads")); } if (Integer.getInteger("ai.djl.pytorch.num_threads") != null) { JniUtils.setNumThreads(Integer.getInteger("ai.djl.pytorch.num_threads")); } logger.info("Number of inter-op threads is " + JniUtils.getNumInteropThreads()); logger.info("Number of intra-op threads is " + JniUtils.getNumThreads()); return new PtEngine(); } catch (Throwable t) { logger.warn("Failed to load PyTorch native library", t); } return null; } /** {@inheritDoc} */ @Override public String getEngineName() { return ENGINE_NAME; } /** {@inheritDoc} */ @Override public String getVersion() { return "1.6.0"; } /** {@inheritDoc} */ @Override public boolean hasCapability(String capability) { return JniUtils.getFeatures().contains(capability); } /** {@inheritDoc} */ @Override public Model newModel(String name, Device device) { return new PtModel(name, device); } /** {@inheritDoc} */ @Override public NDManager newBaseManager() { return PtNDManager.getSystemManager().newSubManager(); } /** {@inheritDoc} */ @Override public NDManager newBaseManager(Device device) { return PtNDManager.getSystemManager().newSubManager(device); } /** {@inheritDoc} */ @Override public GradientCollector newGradientCollector() { return new PtGradientCollector(); } /** {@inheritDoc} */ @Override public void setRandomSeed(int seed) { JniUtils.setSeed(seed); } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtEngineProvider.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.engine.Engine; import ai.djl.engine.EngineProvider; /** {@code PtEngineProvider} is the PyTorch implementation of {@link EngineProvider}. */ public class PtEngineProvider implements EngineProvider { private static Engine engine; /** {@inheritDoc} */ @Override public synchronized Engine getEngine() { if (engine == null) { engine = PtEngine.newInstance(); } return engine; } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtGradientCollector.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.ndarray.NDArray; import ai.djl.pytorch.jni.JniUtils; import ai.djl.training.GradientCollector; /** {@code PtGradientCollector} is the PyTorch implementation of {@link GradientCollector}. */ public class PtGradientCollector implements GradientCollector { /** {@inheritDoc} */ @Override public void backward(NDArray target) { // TODO manager should create the new NDArray on the same device NDArray grad = target.getManager() .ones(target.getShape(), target.getDataType()) .toDevice(target.getDevice(), false); backward(target, grad, false, false); } /** * Computes the gradients of the NDArray w.r.t variables. * * @param target the target/head array to run backward on * @param grad The “vector” in the Jacobian-vector product, usually gradients w.r.t. each * element of corresponding tensors * @param keepGraph whether to retain the computation graph for another backward pass on the * same graph. By default the computation history is cleared. * @param createGraph If true, graph of the derivative will be constructed, allowing to compute * higher order derivative products. Defaults to false. */ private void backward(NDArray target, NDArray grad, boolean keepGraph, boolean createGraph) { JniUtils.backward((PtNDArray) target, (PtNDArray) grad, keepGraph, createGraph); } /** {@inheritDoc} */ @Override public void close() { // TODO: do some clean up if necessary } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtModel.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.BaseModel; import ai.djl.Device; import ai.djl.MalformedModelException; import ai.djl.Model; import ai.djl.inference.Predictor; import ai.djl.ndarray.types.DataType; import ai.djl.pytorch.jni.JniUtils; import ai.djl.training.Trainer; import ai.djl.training.TrainingConfig; import ai.djl.training.initializer.Initializer; import ai.djl.translate.Translator; import java.io.FileNotFoundException; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Path; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.stream.Collectors; /** * {@code PtModel} is the PyTorch implementation of {@link Model}. * * <p>PtModel contains all the methods in Model to load and process a model. In addition, it * provides PyTorch Specific functionality */ public class PtModel extends BaseModel { /** * Constructs a new Model on a given device. * * @param name the model name * @param device the device the model should be located on */ PtModel(String name, Device device) { super(name); device = Device.defaultIfNull(device); manager = PtNDManager.getSystemManager().newSubManager(device); dataType = DataType.FLOAT32; } /** {@inheritDoc} */ @Override public void load(Path modelPath, String prefix, Map<String, Object> options) throws IOException, MalformedModelException { modelDir = modelPath.toAbsolutePath(); if (prefix == null) { prefix = modelName; } if (block == null) { Path modelFile = findModelFile(prefix); if (modelFile == null) { modelFile = findModelFile(modelDir.toFile().getName()); if (modelFile == null) { throw new FileNotFoundException(".pt file not found in: " + modelDir); } } block = JniUtils.loadModule((PtNDManager) manager, modelFile, manager.getDevice()); } else { Path paramFile = paramPathResolver(prefix, options); if (paramFile == null) { throw new IOException( "Parameter file not found in: " + modelDir + ". If you only specified model path, make sure path name match" + "your saved model file name."); } readParameters(paramFile, options); } } private Path findModelFile(String prefix) { Path modelFile = modelDir.resolve(prefix); if (Files.notExists(modelFile) || !Files.isRegularFile(modelFile)) { if (prefix.endsWith(".pt")) { return null; } modelFile = modelDir.resolve(prefix + ".pt"); if (Files.notExists(modelFile) || !Files.isRegularFile(modelFile)) { return null; } } return modelFile; } /** {@inheritDoc} */ @Override public Trainer newTrainer(TrainingConfig trainingConfig) { Initializer initializer = trainingConfig.getInitializer(); if (block == null) { throw new IllegalStateException( "You must set a block for the model before creating a new trainer"); } block.setInitializer(initializer); return new Trainer(this, trainingConfig); } /** {@inheritDoc} */ @Override public <I, O> Predictor<I, O> newPredictor(Translator<I, O> translator) { // TODO: modify copy return new Predictor<>(this, translator, false); } /** {@inheritDoc} */ @Override public String[] getArtifactNames() { try { List<Path> files = Files.walk(modelDir).filter(Files::isRegularFile).collect(Collectors.toList()); List<String> ret = new ArrayList<>(files.size()); for (Path path : files) { String fileName = path.toFile().getName(); if (fileName.endsWith(".pt")) { // ignore model files. continue; } Path relative = modelDir.relativize(path); ret.add(relative.toString()); } return ret.toArray(new String[0]); } catch (IOException e) { throw new AssertionError("Failed list files", e); } } /** {@inheritDoc} */ @Override public void cast(DataType dataType) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public void close() { manager.close(); } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtNDArray.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.Device; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.internal.NDFormat; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.ndarray.types.SparseFormat; import ai.djl.pytorch.jni.JniUtils; import ai.djl.pytorch.jni.NativeResource; import ai.djl.pytorch.jni.Pointer; import java.nio.Buffer; import java.nio.ByteBuffer; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.List; import java.util.Set; import java.util.stream.Collectors; import java.util.stream.IntStream; /** {@code PtNDArray} is the PyTorch implementation of {@link NDArray}. */ public class PtNDArray extends NativeResource implements NDArray { private static final int MAX_SIZE = 100; private static final int MAX_DEPTH = 10; private static final int MAX_ROWS = 10; private static final int MAX_COLUMNS = 20; private String name; private Device device; private DataType dataType; private Shape shape; private SparseFormat sparseFormat; // use Boolean object to maintain three status: null, false, true private Boolean hasGradient; private PtNDManager manager; private PtNDArrayEx ptNDArrayEx; /** * Constructs an PyTorch from a native handle (internal. Use {@link NDManager} instead). * * @param manager the manager to attach the new array to * @param handle the pointer to the native PyTorch memory */ PtNDArray(PtNDManager manager, Pointer handle) { super(handle); this.manager = manager; this.ptNDArrayEx = new PtNDArrayEx(this); manager.attach(getUid(), this); } /** {@inheritDoc} */ @Override public PtNDManager getManager() { return manager; } /** {@inheritDoc} */ @Override public String getName() { return name; } /** {@inheritDoc} */ @Override public void setName(String name) { this.name = name; } /** {@inheritDoc} */ @Override public DataType getDataType() { if (dataType == null) { dataType = JniUtils.getDataType(this); } return dataType; } /** {@inheritDoc} */ @Override public Device getDevice() { if (device == null) { device = JniUtils.getDevice(this); } return device; } /** {@inheritDoc} */ @Override public Shape getShape() { if (shape == null) { shape = JniUtils.getShape(this); } return shape; } /** {@inheritDoc} */ @Override public SparseFormat getSparseFormat() { if (sparseFormat == null) { sparseFormat = JniUtils.getSparseFormat(this); } return sparseFormat; } /** {@inheritDoc} */ @Override public PtNDArray toDevice(Device device, boolean copy) { return JniUtils.to(this, getDataType(), device, copy); } /** {@inheritDoc} */ @Override public PtNDArray toType(DataType dataType, boolean copy) { return JniUtils.to(this, dataType, getDevice(), copy); } /** {@inheritDoc} */ @Override public void attachGradient() { attachGradient(null); } /** {@inheritDoc} */ @Override public void attachGradient(SparseFormat sparseFormat) { if (sparseFormat != null && !sparseFormat.equals(SparseFormat.DENSE)) { throw new UnsupportedOperationException( "Sparse NDArray gradient atttach not supported"); } JniUtils.attachGradient(this); hasGradient = true; } /** {@inheritDoc} */ @Override public PtNDArray getGradient() { if (!hasGradient()) { throw new IllegalStateException( "No gradient attached to this NDArray, please call array.requiredGradient()" + "on your NDArray or block.setInitializer() on your Block"); } PtNDArray res = JniUtils.getGradient(this); // If you call getGradient() before you run the backward, // you will get nothing in PyTorch engine. // To align with MXNet's behavior, we will create a zeros NDArray. // TODO should we access the grad NDArray after we close the parameter NDArray? if (res == null) { res = (PtNDArray) getManager().zeros(getShape()); } return res; } /** {@inheritDoc} */ @Override public boolean hasGradient() { if (hasGradient == null) { hasGradient = JniUtils.requiresGrad(this); } return hasGradient; } /** {@inheritDoc} */ @Override public ByteBuffer toByteBuffer() { return JniUtils.getByteBuffer(this); } /** {@inheritDoc} */ @Override public void set(Buffer data) { PtNDArray other = getManager().create(data, getShape(), getDataType()); JniUtils.set(this, other); other.close(); } /** {@inheritDoc} */ @Override public void copyTo(NDArray array) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDManager attach(NDManager manager) { detach(); NDManager original = this.manager; this.manager = (PtNDManager) manager; manager.attach(getUid(), this); return original; } /** {@inheritDoc} */ @Override public void detach() { manager.detach(getUid()); manager = PtNDManager.getSystemManager(); } /** {@inheritDoc} */ @Override public NDArray duplicate() { return JniUtils.clone(this); } /** {@inheritDoc} */ @Override public PtNDArray booleanMask(NDArray index, int axis) { Shape indexShape = index.getShape(); if (indexShape.equals(getShape())) { // Result is flattened since shape is undetermined return JniUtils.booleanMask(this, (PtNDArray) index); } else if (indexShape.equals(getShape().slice(axis))) { // index will be broadcasted by default try (PtNDArray flattedResult = JniUtils.booleanMask(this, (PtNDArray) index)) { // Shape recovery Shape remainder = getShape().slice(0, axis); long selectedSize = flattedResult.getShape().size() / remainder.size(); return flattedResult.reshape(remainder.addAll(new Shape(selectedSize))); } } else { throw new UnsupportedOperationException( "Not supported for shape not broadcastable " + indexShape.toString() + " vs " + getShape().toString()); } } /** {@inheritDoc} */ @Override public NDArray sequenceMask(NDArray sequenceLength, float value) { throw new UnsupportedOperationException("Not implemented yet"); } /** {@inheritDoc} */ @Override public NDArray sequenceMask(NDArray sequenceLength) { throw new UnsupportedOperationException("Not implemented yet"); } /** {@inheritDoc} */ @Override public PtNDArray zerosLike() { return JniUtils.zerosLike(this, getDataType(), getDevice(), SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public PtNDArray onesLike() { return JniUtils.onesLike(this, getDataType(), getDevice(), SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public boolean contentEquals(Number number) { return JniUtils.contentEqual(this, (PtNDArray) manager.create(number)); } /** {@inheritDoc} */ @Override public boolean contentEquals(NDArray other) { if (other == null || (!shapeEquals(other))) { return false; } if (getDataType() != other.getDataType()) { return false; } return JniUtils.contentEqual(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray eq(Number n) { try (NDArray number = manager.create(n)) { return eq(number); } } /** {@inheritDoc} */ @Override public PtNDArray eq(NDArray other) { return JniUtils.eq(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray neq(Number n) { try (NDArray number = manager.create(n)) { return neq(number); } } /** {@inheritDoc} */ @Override public PtNDArray neq(NDArray other) { return JniUtils.neq(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray gt(Number n) { try (NDArray number = manager.create(n)) { return gt(number); } } /** {@inheritDoc} */ @Override public PtNDArray gt(NDArray other) { return JniUtils.gt(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray gte(Number n) { try (NDArray number = manager.create(n)) { return gte(number); } } /** {@inheritDoc} */ @Override public PtNDArray gte(NDArray other) { return JniUtils.gte(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray lt(Number n) { try (NDArray number = manager.create(n)) { return lt(number); } } /** {@inheritDoc} */ @Override public PtNDArray lt(NDArray other) { return JniUtils.lt(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray lte(Number n) { try (NDArray number = manager.create(n)) { return lte(number); } } /** {@inheritDoc} */ @Override public PtNDArray lte(NDArray other) { return JniUtils.lte(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray add(Number n) { try (NDArray number = manager.create(n)) { return add(number); } } /** {@inheritDoc} */ @Override public PtNDArray add(NDArray other) { return JniUtils.add(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray sub(Number n) { try (NDArray number = manager.create(n)) { return sub(number); } } /** {@inheritDoc} */ @Override public PtNDArray sub(NDArray other) { return JniUtils.sub(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray mul(Number n) { try (NDArray number = manager.create(n)) { return mul(number); } } /** {@inheritDoc} */ @Override public PtNDArray mul(NDArray other) { return JniUtils.mul(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray div(Number n) { try (NDArray number = manager.create(n)) { return div(number); } } /** {@inheritDoc} */ @Override public PtNDArray div(NDArray other) { return JniUtils.div(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray mod(Number n) { try (NDArray number = manager.create(n)) { return mod(number); } } /** {@inheritDoc} */ @Override public PtNDArray mod(NDArray other) { return JniUtils.remainder(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray pow(Number n) { try (NDArray number = manager.create(n)) { return pow(number); } } /** {@inheritDoc} */ @Override public PtNDArray pow(NDArray other) { return JniUtils.pow(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray addi(Number n) { try (NDArray number = manager.create(n)) { return addi(number); } } /** {@inheritDoc} */ @Override public PtNDArray addi(NDArray other) { JniUtils.addi(this, (PtNDArray) other); return this; } /** {@inheritDoc} */ @Override public PtNDArray subi(Number n) { try (NDArray number = manager.create(n)) { return subi(number); } } /** {@inheritDoc} */ @Override public PtNDArray subi(NDArray other) { JniUtils.subi(this, (PtNDArray) other); return this; } /** {@inheritDoc} */ @Override public PtNDArray muli(Number n) { try (NDArray number = manager.create(n)) { return muli(number); } } /** {@inheritDoc} */ @Override public PtNDArray muli(NDArray other) { JniUtils.muli(this, (PtNDArray) other); return this; } /** {@inheritDoc} */ @Override public PtNDArray divi(Number n) { try (NDArray number = manager.create(n)) { return divi(number); } } /** {@inheritDoc} */ @Override public PtNDArray divi(NDArray other) { JniUtils.divi(this, (PtNDArray) other); return this; } /** {@inheritDoc} */ @Override public PtNDArray modi(Number n) { try (NDArray number = manager.create(n)) { return modi(number); } } /** {@inheritDoc} */ @Override public PtNDArray modi(NDArray other) { JniUtils.remainderi(this, (PtNDArray) other); return this; } /** {@inheritDoc} */ @Override public PtNDArray powi(Number n) { try (NDArray number = manager.create(n)) { return powi(number); } } /** {@inheritDoc} */ @Override public PtNDArray powi(NDArray other) { JniUtils.powi(this, (PtNDArray) other); return this; } /** {@inheritDoc} */ @Override public PtNDArray sign() { return JniUtils.sign(this); } /** {@inheritDoc} */ @Override public PtNDArray signi() { JniUtils.signi(this); return this; } /** {@inheritDoc} */ @Override public PtNDArray maximum(Number n) { try (NDArray number = manager.create(n)) { return maximum(number); } } /** {@inheritDoc} */ @Override public PtNDArray maximum(NDArray other) { return JniUtils.max(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray minimum(Number n) { try (NDArray number = manager.create(n)) { return minimum(number); } } /** {@inheritDoc} */ @Override public PtNDArray minimum(NDArray other) { return JniUtils.min(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray all() { try (PtNDArray bool = toType(DataType.BOOLEAN, true)) { return JniUtils.all(bool); } } /** {@inheritDoc} */ @Override public PtNDArray any() { try (PtNDArray bool = toType(DataType.BOOLEAN, true)) { return JniUtils.any(bool); } } /** {@inheritDoc} */ @Override public PtNDArray none() { try (PtNDArray bool = toType(DataType.BOOLEAN, true)) { return JniUtils.none(bool); } } /** {@inheritDoc} */ @Override public PtNDArray neg() { return JniUtils.neg(this); } /** {@inheritDoc} */ @Override public PtNDArray negi() { JniUtils.negi(this); return this; } /** {@inheritDoc} */ @Override public PtNDArray abs() { return JniUtils.abs(this); } /** {@inheritDoc} */ @Override public PtNDArray square() { return JniUtils.square(this); } /** {@inheritDoc} */ @Override public NDArray sqrt() { return JniUtils.sqrt(this); } /** {@inheritDoc} */ @Override public PtNDArray cbrt() { return JniUtils.pow(this, (PtNDArray) getManager().create(1.0 / 3)); } /** {@inheritDoc} */ @Override public PtNDArray floor() { return JniUtils.floor(this); } /** {@inheritDoc} */ @Override public PtNDArray ceil() { return JniUtils.ceil(this); } /** {@inheritDoc} */ @Override public PtNDArray round() { return JniUtils.round(this); } /** {@inheritDoc} */ @Override public PtNDArray trunc() { return JniUtils.trunc(this); } /** {@inheritDoc} */ @Override public PtNDArray exp() { return JniUtils.exp(this); } /** {@inheritDoc} */ @Override public PtNDArray log() { return JniUtils.log(this); } /** {@inheritDoc} */ @Override public PtNDArray log10() { return JniUtils.log10(this); } /** {@inheritDoc} */ @Override public PtNDArray log2() { return JniUtils.log2(this); } /** {@inheritDoc} */ @Override public PtNDArray sin() { return JniUtils.sin(this); } /** {@inheritDoc} */ @Override public PtNDArray cos() { return JniUtils.cos(this); } /** {@inheritDoc} */ @Override public PtNDArray tan() { return JniUtils.tan(this); } /** {@inheritDoc} */ @Override public PtNDArray asin() { return JniUtils.asin(this); } /** {@inheritDoc} */ @Override public PtNDArray acos() { return JniUtils.acos(this); } /** {@inheritDoc} */ @Override public PtNDArray atan() { return JniUtils.atan(this); } /** {@inheritDoc} */ @Override public PtNDArray sinh() { return JniUtils.sinh(this); } /** {@inheritDoc} */ @Override public PtNDArray cosh() { return JniUtils.cosh(this); } /** {@inheritDoc} */ @Override public PtNDArray tanh() { return JniUtils.tanh(this); } /** {@inheritDoc} */ @Override public PtNDArray asinh() { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray acosh() { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray atanh() { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray toDegrees() { return mul(180.0).div(Math.PI); } /** {@inheritDoc} */ @Override public PtNDArray toRadians() { return mul(Math.PI).div(180.0); } /** {@inheritDoc} */ @Override public PtNDArray max() { return JniUtils.max(this); } /** {@inheritDoc} */ @Override public PtNDArray max(int[] axes, boolean keepDims) { if (axes.length > 1) { // TODO fix this throw new UnsupportedOperationException("Only 1 axis is support!"); } return JniUtils.max(this, axes[0], keepDims); } /** {@inheritDoc} */ @Override public PtNDArray min() { return JniUtils.min(this); } /** {@inheritDoc} */ @Override public PtNDArray min(int[] axes, boolean keepDims) { if (axes.length > 1) { // TODO fix this throw new UnsupportedOperationException("Only 1 axis is support!"); } return JniUtils.min(this, axes[0], keepDims); } /** {@inheritDoc} */ @Override public PtNDArray sum() { return JniUtils.sum(this); } /** {@inheritDoc} */ @Override public PtNDArray sum(int[] axes, boolean keepDims) { return JniUtils.sum(this, Arrays.stream(axes).mapToLong(i -> i).toArray(), keepDims); } /** {@inheritDoc} */ @Override public PtNDArray prod() { return JniUtils.prod(this); } /** {@inheritDoc} */ @Override public PtNDArray prod(int[] axes, boolean keepDims) { if (axes.length > 1) { throw new UnsupportedOperationException("Only 1 axis is support!"); } return JniUtils.prod(this, axes[0], keepDims); } /** {@inheritDoc} */ @Override public PtNDArray mean() { return JniUtils.mean(this); } /** {@inheritDoc} */ @Override public PtNDArray mean(int[] axes, boolean keepDims) { if (axes.length > 1) { // TODO fix this throw new UnsupportedOperationException("Only 1 axis is support!"); } return JniUtils.mean(this, axes[0], keepDims); } /** {@inheritDoc} */ @Override public PtNDArray trace(int offset, int axis1, int axis2) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDList split(long sections, int axis) { long size = getShape().get(axis) / sections; return JniUtils.split(this, size, axis); } /** {@inheritDoc} */ @Override public NDList split(long[] indices, int axis) { if (indices.length == 0) { return new NDList(this); } List<Long> ptIndex = new ArrayList<>(); ptIndex.add(indices[0]); for (int i = 1; i < indices.length; i++) { ptIndex.add(indices[i] - indices[i - 1]); } ptIndex.add(size(axis) - indices[indices.length - 1]); return JniUtils.split(this, ptIndex.stream().mapToLong(i -> i).toArray(), axis); } /** {@inheritDoc} */ @Override public PtNDArray flatten() { return JniUtils.flatten(this, 0, -1); } /** {@inheritDoc} */ @Override public PtNDArray reshape(Shape shape) { return JniUtils.reshape(this, shape.getShape()); } /** {@inheritDoc} */ @Override public PtNDArray expandDims(int axis) { return JniUtils.unsqueeze(this, axis); } /** {@inheritDoc} */ @Override public PtNDArray squeeze() { return JniUtils.squeeze(this); } /** {@inheritDoc} */ @Override public PtNDArray squeeze(int axis) { return JniUtils.squeeze(this, axis); } /** {@inheritDoc} */ @Override public PtNDArray squeeze(int[] axes) { if (isScalar()) { if (axes.length > 1 || axes[0] != 0) { throw new IllegalArgumentException( "axis " + axes[0] + "is out of bounds for array of dimension 0"); } return (PtNDArray) duplicate(); } long[] shapeArr = getShape().getShape(); List<Long> newShape = new ArrayList<>(); Set<Integer> set = IntStream.of(axes).boxed().collect(Collectors.toCollection(HashSet::new)); // check input for (int axis : axes) { if (shapeArr[axis] != 1) { throw new IllegalArgumentException( "cannot select an axis to squeeze out which has size not equal to one"); } } for (int i = 0; i < shapeArr.length; i++) { if (!set.contains(i)) { newShape.add(shapeArr[i]); } } return (PtNDArray) reshape(newShape.stream().mapToLong(i -> i).toArray()); } /** {@inheritDoc} */ @Override public PtNDArray logicalAnd(NDArray other) { return JniUtils.logicalAnd(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray logicalOr(NDArray other) { return JniUtils.logicalOr(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray logicalXor(NDArray other) { return JniUtils.logicalXor(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray logicalNot() { return JniUtils.logicalNot(this); } /** {@inheritDoc} */ @Override public PtNDArray argSort(int axis, boolean ascending) { if (!ascending) { throw new UnsupportedOperationException("Only support ascending!"); } return JniUtils.argSort(this, axis, false); } /** {@inheritDoc} */ @Override public PtNDArray sort() { return sort(-1); } /** {@inheritDoc} */ @Override public PtNDArray sort(int axis) { return JniUtils.sort(this, axis, false); } /** {@inheritDoc} */ @Override public PtNDArray softmax(int axis) { return JniUtils.softmax(this, axis, getDataType()); } /** {@inheritDoc} */ @Override public PtNDArray logSoftmax(int axis) { return JniUtils.logSoftmax(this, axis, getDataType()); } /** {@inheritDoc} */ @Override public PtNDArray cumSum() { // TODO: change default behavior on cumSum if (isScalar()) { return (PtNDArray) reshape(1); } if (isEmpty()) { return (PtNDArray) reshape(0); } return cumSum(0); } /** {@inheritDoc} */ @Override public PtNDArray cumSum(int axis) { return JniUtils.cumSum(this, axis); } /** {@inheritDoc} */ @Override public PtNDArray isInfinite() { return JniUtils.isInf(this); } /** {@inheritDoc} */ @Override public PtNDArray isNaN() { return JniUtils.isNaN(this); } /** {@inheritDoc} */ @Override public PtNDArray tile(long repeats) { // zero-dim if (isEmpty()) { return (PtNDArray) duplicate(); } // scalar int dim = (isScalar()) ? 1 : getShape().dimension(); long[] repeatsArray = new long[dim]; Arrays.fill(repeatsArray, repeats); return tile(repeatsArray); } /** {@inheritDoc} */ @Override public PtNDArray tile(int axis, long repeats) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray tile(long[] repeats) { return JniUtils.tile(this, repeats); } /** {@inheritDoc} */ @Override public PtNDArray tile(Shape desiredShape) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray repeat(long repeats) { // zero-dim if (isEmpty()) { return (PtNDArray) duplicate(); } // scalar int dim = (isScalar()) ? 1 : getShape().dimension(); long[] repeatsArray = new long[dim]; Arrays.fill(repeatsArray, repeats); return repeat(repeatsArray); } /** {@inheritDoc} */ @Override public PtNDArray repeat(int axis, long repeats) { return JniUtils.repeat(this, repeats, axis); } /** {@inheritDoc} */ @Override public PtNDArray repeat(long[] repeats) { PtNDArray result = this; for (int dim = 0; dim < repeats.length; dim++) { PtNDArray temp = result; result = JniUtils.repeat(result, repeats[dim], dim); if (temp != this) { temp.close(); } } return result; } /** {@inheritDoc} */ @Override public PtNDArray repeat(Shape desiredShape) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray dot(NDArray other) { int selfDim = this.getShape().dimension(); int otherDim = other.getShape().dimension(); if (selfDim != otherDim || selfDim > 2) { throw new UnsupportedOperationException( "Dimension mismatch or high dimensional dot operation is not supported. Please use .matMul instead."); } return JniUtils.dot(this, (PtNDArray) other); } @Override public NDArray matMul(NDArray other) { if (isScalar() || other.isScalar()) { throw new IllegalArgumentException("scalar is not allowed for matMul()"); } return JniUtils.matmul(this, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray clip(Number min, Number max) { return JniUtils.clip(this, min, max); } /** {@inheritDoc} */ @Override public PtNDArray swapAxes(int axis1, int axis2) { return JniUtils.transpose(this, axis1, axis2); } @Override public NDArray flip(int... axes) { return JniUtils.flip(this, Arrays.stream(axes).mapToLong(ele -> (long) ele).toArray()); } /** {@inheritDoc} */ @Override public PtNDArray transpose() { int dim = getShape().dimension(); int[] reversedShape = IntStream.range(0, dim).map(i -> dim - i - 1).toArray(); return transpose(reversedShape); } /** {@inheritDoc} */ @Override public PtNDArray transpose(int... axes) { if (isScalar() && axes.length > 0) { throw new IllegalArgumentException("axes don't match NDArray"); } return JniUtils.permute(this, Arrays.stream(axes).mapToLong(i -> i).toArray()); } /** {@inheritDoc} */ @Override public PtNDArray broadcast(Shape shape) { return JniUtils.broadcast(this, shape); } /** {@inheritDoc} */ @Override public PtNDArray argMax() { if (isEmpty()) { throw new IllegalArgumentException("attempt to get argMax of an empty NDArray"); } return JniUtils.argMax(this); } /** {@inheritDoc} */ @Override public PtNDArray argMax(int axis) { // TODO pytorch bug: https://github.com/pytorch/pytorch/issues/37084 if (isScalar()) { return (PtNDArray) manager.create(0L); } return JniUtils.argMax(this, axis, false); } /** {@inheritDoc} */ @Override public PtNDArray argMin() { if (isEmpty()) { throw new IllegalArgumentException("attempt to get argMin of an empty NDArray"); } return JniUtils.argMin(this); } /** {@inheritDoc} */ @Override public PtNDArray argMin(int axis) { // TODO pytorch bug: https://github.com/pytorch/pytorch/issues/37084 if (isScalar()) { return (PtNDArray) manager.create(0L); } return JniUtils.argMin(this, axis, false); } /** {@inheritDoc} */ @Override public PtNDArray percentile(Number percentile) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray percentile(Number percentile, int[] axes) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray median() { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray median(int[] axes) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray toDense() { if (!isSparse() && JniUtils.getLayout(this) != 2) { return (PtNDArray) duplicate(); } return JniUtils.toDense(this); } /** {@inheritDoc} */ @Override public PtNDArray toSparse(SparseFormat fmt) { if (fmt == SparseFormat.DENSE) { throw new IllegalArgumentException("Default type is not allowed"); } if (fmt != SparseFormat.COO) { throw new UnsupportedOperationException("Only COO sparse type supported for PyTorch"); } if (fmt == getSparseFormat()) { return (PtNDArray) duplicate(); } return JniUtils.toSparse(this); } /** {@inheritDoc} */ @Override public PtNDArray nonzero() { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArrayEx getNDArrayInternal() { return ptNDArrayEx; } /** {@inheritDoc} */ @Override public String toString() { if (isReleased()) { return "This array is already closed"; } // index operator in toDebugString is not supported for MKLDNN & Sparse layout if (JniUtils.getLayout(this) != 0) { try (NDArray tmp = toDense()) { return NDFormat.format(tmp, MAX_SIZE, MAX_DEPTH, MAX_ROWS, MAX_COLUMNS); } } return toDebugString(MAX_SIZE, MAX_DEPTH, MAX_ROWS, MAX_COLUMNS); } /** {@inheritDoc} */ @Override public boolean equals(Object obj) { if (obj instanceof PtNDArray) { return contentEquals((PtNDArray) obj); } return false; } /** {@inheritDoc} */ @Override public int hashCode() { return 0; } /** {@inheritDoc} */ @Override public void close() { Pointer pointer = handle.getAndSet(null); if (pointer != null) { JniUtils.deleteNdArray(pointer); manager.detach(getUid()); manager = null; } } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtNDArrayEx.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.NDUtils; import ai.djl.ndarray.index.NDArrayIndexer; import ai.djl.ndarray.internal.NDArrayEx; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.pytorch.jni.JniUtils; import ai.djl.util.PairList; import java.util.List; /** {@code PtNDArrayEx} is the PyTorch implementation of the {@link NDArrayEx}. */ public class PtNDArrayEx implements NDArrayEx { private static final NDArrayIndexer INDEXER = new PtNDArrayIndexer(); private PtNDArray array; /** * Constructs an {@code PtNDArrayEx} given a {@link NDArray}. * * @param parent the {@link NDArray} to extend */ PtNDArrayEx(PtNDArray parent) { this.array = parent; } /** {@inheritDoc} */ @Override public PtNDArray rdiv(Number n) { return rdiv(array.getManager().create(n)); } /** {@inheritDoc} */ @Override public PtNDArray rdiv(NDArray b) { return (PtNDArray) b.div(array); } /** {@inheritDoc} */ @Override public PtNDArray rdivi(Number n) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rdivi(NDArray b) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rsub(Number n) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rsub(NDArray b) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rsubi(Number n) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rsubi(NDArray b) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rmod(Number n) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rmod(NDArray b) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rmodi(Number n) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rmodi(NDArray b) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rpow(Number n) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray rpowi(Number n) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray relu() { return JniUtils.relu(array); } /** {@inheritDoc} */ @Override public PtNDArray sigmoid() { return JniUtils.sigmoid(array); } /** {@inheritDoc} */ @Override public PtNDArray tanh() { return JniUtils.tanh(array); } /** {@inheritDoc} */ @Override public PtNDArray softPlus() { return JniUtils.softPlus(array); } /** {@inheritDoc} */ @Override public PtNDArray softSign() { return JniUtils.softSign(array); } /** {@inheritDoc} */ @Override public PtNDArray leakyRelu(float alpha) { return JniUtils.leakyRelu(array, alpha); } /** {@inheritDoc} */ @Override public PtNDArray elu(float alpha) { return JniUtils.elu(array, alpha); } /** {@inheritDoc} */ @Override public PtNDArray selu() { return JniUtils.selu(array); } /** {@inheritDoc} */ @Override public PtNDArray gelu() { return JniUtils.gelu(array); } /** {@inheritDoc} */ @Override public PtNDArray maxPool(Shape kernelShape, Shape stride, Shape padding, boolean ceilMode) { return JniUtils.maxPool(array, kernelShape, stride, padding, ceilMode); } /** {@inheritDoc} */ @Override public PtNDArray globalMaxPool() { Shape shape = getPoolShape(array); try (NDArray temp = JniUtils.adaptiveMaxPool(array, shape)) { return (PtNDArray) temp.reshape(array.getShape().slice(0, 2)); } } /** {@inheritDoc} */ @Override public PtNDArray avgPool( Shape kernelShape, Shape stride, Shape padding, boolean ceilMode, boolean countIncludePad) { return JniUtils.avgPool(array, kernelShape, stride, padding, ceilMode, countIncludePad); } /** {@inheritDoc} */ @Override public PtNDArray globalAvgPool() { Shape shape = getPoolShape(array); try (NDArray temp = JniUtils.adaptiveAvgPool(array, shape)) { return (PtNDArray) temp.reshape(array.getShape().slice(0, 2)); } } /** {@inheritDoc} */ @Override public PtNDArray lpPool( float normType, Shape kernelShape, Shape stride, Shape padding, boolean ceilMode) { if (padding.size() != 0) { throw new IllegalArgumentException("padding is not supported for PyTorch engine"); } return JniUtils.lpPool(array, normType, kernelShape, stride, ceilMode); } /** {@inheritDoc} */ @Override public PtNDArray globalLpPool(float normType) { try (NDArray temp = JniUtils.lpPool( array, normType, array.getShape().slice(2), getPoolShape(array), false)) { return (PtNDArray) temp.reshape(array.getShape().slice(0, 2)); } } /** {@inheritDoc} */ @Override public void adadeltaUpdate( NDList inputs, NDList weights, float weightDecay, float rescaleGrad, float clipGrad, float rho, float epsilon) { throw new UnsupportedOperationException( "AdaDelta optimzier is not supported for PyTorch engine!"); } /** {@inheritDoc} */ @Override public void adagradUpdate( NDList inputs, NDList weights, float learningRate, float weightDecay, float rescaleGrad, float clipGrad, float epsilon) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public void adamUpdate( NDList inputs, NDList weights, float learningRate, float weightDecay, float rescaleGrad, float clipGrad, float beta1, float beta2, float epsilon, boolean lazyUpdate) { // TODO: Lazy update not used JniUtils.adamUpdate( (PtNDArray) inputs.get(0), (PtNDArray) inputs.get(1), (PtNDArray) inputs.get(2), (PtNDArray) inputs.get(3), learningRate, weightDecay, rescaleGrad, clipGrad, beta1, beta2, epsilon); // call zero-grad JniUtils.zeroGrad((PtNDArray) weights.singletonOrThrow()); } /** {@inheritDoc} */ @Override public void nagUpdate( NDList inputs, NDList weights, float learningRate, float weightDecay, float rescaleGrad, float clipGrad, float momentum) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public void rmspropUpdate( NDList inputs, NDList weights, float learningRate, float weightDecay, float rescaleGrad, float clipGrad, float rho, float momentum, float epsilon, boolean centered) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public void sgdUpdate( NDList inputs, NDList weights, float learningRate, float weightDecay, float rescaleGrad, float clipGrad, float momentum, boolean lazyUpdate) { // TODO: Lazy update not used JniUtils.sgdUpdate( (PtNDArray) inputs.get(0), (PtNDArray) inputs.get(1), (momentum == 0f) ? null : (PtNDArray) inputs.get(2), learningRate, weightDecay, rescaleGrad, clipGrad, momentum); // call zero-grad JniUtils.zeroGrad((PtNDArray) weights.singletonOrThrow()); } /** {@inheritDoc} */ @Override public NDList convolution( NDArray input, NDArray weight, NDArray bias, Shape stride, Shape padding, Shape dilation, int groups) { return new NDList( JniUtils.convolution( (PtNDArray) input, (PtNDArray) weight, (PtNDArray) bias, stride, padding, dilation, groups)); } /** {@inheritDoc} */ @Override public NDList linear(NDArray input, NDArray weight, NDArray bias) { return new NDList(JniUtils.linear((PtNDArray) input, (PtNDArray) weight, (PtNDArray) bias)); } /** {@inheritDoc} */ @Override public NDList embedding( NDList inputs, int numItems, int embeddingSize, boolean sparseGrad, DataType dataType, PairList<String, Object> additional) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDList prelu(NDArray input, NDArray alpha) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDList dropout(NDArray input, float rate, boolean training) { return new NDList(JniUtils.dropout((PtNDArray) input, rate, training)); } /** {@inheritDoc} */ @Override public NDList batchNorm( NDArray input, NDArray runningMean, NDArray runningVar, NDArray gamma, NDArray beta, int axis, float momentum, float eps, boolean training) { // TODO PyTorch will support axis argument // https://github.com/pytorch/pytorch/issues/21856 if (axis == -1) { return new NDList( JniUtils.batchNorm( (PtNDArray) input, (PtNDArray) runningMean, (PtNDArray) runningVar, (PtNDArray) gamma, (PtNDArray) beta, training, // momentum is defined differently in PyTorch 1f - momentum, eps)); } // apply the swapAxes to simulate BatchNorm with axis try (NDManager subManager = input.getManager().newSubManager()) { input.attach(subManager); NDArray result = input; result = result.swapAxes(1, axis); result = JniUtils.batchNorm( (PtNDArray) result, (PtNDArray) runningMean, (PtNDArray) runningVar, (PtNDArray) gamma, (PtNDArray) beta, training, // momentum is defined differently in PyTorch 1f - momentum, eps); result = result.swapAxes(1, axis); input.attach(subManager.getParentManager()); result.attach(subManager.getParentManager()); return new NDList(result); } } /** {@inheritDoc} */ @Override public NDList rnn( NDList inputs, String mode, long stateSize, float dropRate, int numStackedLayers, boolean useSequenceLength, boolean useBidirectional, boolean stateOutputs, PairList<String, Object> additional) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDList lstm( NDList inputs, long stateSize, float dropRate, int numStackedLayers, boolean useSequenceLength, boolean useBidirectional, boolean stateOutputs, double lstmStateClipMin, double lstmStateClipMax, PairList<String, Object> additional) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray resize(int width, int height, int interpolation) { // create subManager to help close intermediate NDArray try (NDManager subManager = array.getManager().newSubManager()) { array.attach(subManager); NDArray result = array; if (result.isEmpty()) { throw new IllegalArgumentException("attempt to resize of an empty NDArray"); } if (result.getDataType() != DataType.FLOAT32) { result = result.toType(DataType.FLOAT32, true); } int dim = result.getShape().dimension(); if (dim == 3) { result = result.expandDims(0); } result = result.transpose(0, 3, 1, 2); result = JniUtils.interpolate( (PtNDArray) result, new long[] {height, width}, getInterpolationMode(interpolation), false) .transpose(0, 2, 3, 1); if (dim == 3) { result = result.squeeze(0); } array.attach(subManager.getParentManager()); result.attach(subManager.getParentManager()); return (PtNDArray) result; } } @Override public NDArray randomFlipLeftRight() { throw new UnsupportedOperationException("Not implemented"); } @Override public NDArray randomFlipTopBottom() { throw new UnsupportedOperationException("Not implemented"); } @Override public NDArray randomBrightness(float brightness) { throw new UnsupportedOperationException("Not implemented"); } @Override public NDArray randomHue(float hue) { throw new UnsupportedOperationException("Not implemented"); } @Override public NDArray randomColorJitter( float brightness, float contrast, float saturation, float hue) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDArrayIndexer getIndexer() { return INDEXER; } /** {@inheritDoc} */ @Override public PtNDArray where(NDArray condition, NDArray other) { // Try to broadcast if shape mismatch if (!condition.getShape().equals(array.getShape())) { throw new UnsupportedOperationException( "condition and self shape mismatch, broadcast is not supported"); } return JniUtils.where((PtNDArray) condition, array, (PtNDArray) other); } /** {@inheritDoc} */ @Override public PtNDArray stack(NDList arrays, int axis) { NDArray[] srcArray = new NDArray[arrays.size() + 1]; srcArray[0] = array; System.arraycopy(arrays.toArray(new NDArray[0]), 0, srcArray, 1, arrays.size()); return JniUtils.stack(srcArray, axis); } /** {@inheritDoc} */ @Override public PtNDArray concat(NDList list, int axis) { NDUtils.checkConcatInput(list); NDArray[] srcArray = new NDArray[list.size() + 1]; srcArray[0] = array; System.arraycopy(list.toArray(new NDArray[0]), 0, srcArray, 1, list.size()); return JniUtils.cat(srcArray, axis); } /** {@inheritDoc} */ @Override public NDList multiBoxTarget( NDList inputs, float iouThreshold, float ignoreLabel, float negativeMiningRatio, float negativeMiningThreshold, int minNegativeSamples) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDList multiBoxPrior( List<Float> sizes, List<Float> ratios, List<Float> steps, List<Float> offsets, boolean clip) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDList multiBoxDetection( NDList inputs, boolean clip, float threshold, int backgroundId, float nmsThreshold, boolean forceSuppress, int nmsTopK) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDArray getArray() { return array; } private Shape getPoolShape(NDArray array) { switch (array.getShape().dimension() - 2) { case 1: return new Shape(1); case 2: return new Shape(1, 1); case 3: return new Shape(1, 1, 1); default: throw new IllegalArgumentException("the input dimension should be in [3, 5]"); } } // Here is the list of PyTorch C++ interpolation mapping: kNearest, kLinear, kBilinear, // kBicubic, kTrilinear, kArea private int getInterpolationMode(int interpolation) { switch (interpolation) { case 0: return 0; case 1: return 2; case 2: return 5; case 3: return 3; default: throw new UnsupportedOperationException( "The kind of interpolation is not supported."); } } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtNDArrayIndexer.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.index.NDArrayIndexer; import ai.djl.ndarray.index.dim.NDIndexBooleans; import ai.djl.ndarray.index.full.NDIndexFullPick; import ai.djl.ndarray.index.full.NDIndexFullSlice; import ai.djl.ndarray.types.Shape; import ai.djl.pytorch.jni.JniUtils; import java.util.Stack; /** The {@link NDArrayIndexer} used by the {@link PtNDArray}. */ public class PtNDArrayIndexer extends NDArrayIndexer { /** {@inheritDoc} */ @Override public NDArray get(NDArray array, NDIndexFullPick fullPick) { return JniUtils.pick( (PtNDArray) array, (PtNDArray) fullPick.getIndices(), fullPick.getAxis()); } /** {@inheritDoc} */ @Override public NDArray get(NDArray array, NDIndexFullSlice fullSlice) { long[] min = fullSlice.getMin(); long[] max = fullSlice.getMax(); long[] step = fullSlice.getStep(); try (PtNDArray res = JniUtils.index((PtNDArray) array, min, max, step)) { return res.squeeze(fullSlice.getToSqueeze()); } } /** {@inheritDoc} */ @Override public void set(NDArray array, NDIndexFullSlice fullSlice, NDArray value) { Stack<NDArray> prepareValue = new Stack<>(); prepareValue.add(value); prepareValue.add(prepareValue.peek().toDevice(array.getDevice(), false)); // Deal with the case target: (1, 10, 1), original (10) // try to find (10, 1) and reshape (10) to that Shape targetShape = fullSlice.getShape(); while (targetShape.size() > value.size()) { targetShape = targetShape.slice(1); } prepareValue.add(prepareValue.peek().reshape(targetShape)); prepareValue.add(prepareValue.peek().broadcast(fullSlice.getShape())); JniUtils.indexSet( (PtNDArray) array, (PtNDArray) prepareValue.peek(), fullSlice.getMin(), fullSlice.getMax(), fullSlice.getStep()); for (NDArray toClean : prepareValue) { if (toClean != value) { toClean.close(); } } } /** {@inheritDoc} */ @Override public void set(NDArray array, NDIndexBooleans indices, NDArray value) { try (NDArray mask = indices.getIndex()) { JniUtils.booleanMaskSet((PtNDArray) array, (PtNDArray) value, (PtNDArray) mask); } } /** {@inheritDoc} */ @Override public void set(NDArray array, NDIndexFullSlice fullSlice, Number value) { set(array, fullSlice, array.getManager().create(value)); } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtNDManager.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.Device; import ai.djl.engine.Engine; import ai.djl.ndarray.BaseNDManager; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.ndarray.types.SparseFormat; import ai.djl.pytorch.jni.JniUtils; import ai.djl.pytorch.jni.Pointer; import ai.djl.util.PairList; import java.nio.Buffer; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.DoubleBuffer; import java.nio.FloatBuffer; import java.nio.IntBuffer; import java.nio.LongBuffer; import java.nio.file.Path; /** {@code PtNDManager} is the PyTorch implementation of {@link NDManager}. */ public class PtNDManager extends BaseNDManager { private static final PtNDManager SYSTEM_MANAGER = new SystemManager(); private PtNDManager(NDManager parent, Device device) { super(parent, device); } static PtNDManager getSystemManager() { return SYSTEM_MANAGER; } /** {@inheritDoc} */ @Override public ByteBuffer allocateDirect(int capacity) { return ByteBuffer.allocateDirect(capacity).order(ByteOrder.nativeOrder()); } /** * Creates an {@link PtNDArray} with the given Native Memory Pointer and attaches to this * manager. * * @param handle the array's native memory pointer * @return the created array */ public PtNDArray create(Pointer handle) { return new PtNDArray(this, handle); } /** {@inheritDoc} */ @Override public PtNDArray create(Shape shape, DataType dataType) { return JniUtils.createEmptyNdArray(this, shape, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public PtNDArray create(Buffer data, Shape shape, DataType dataType) { if (data.isDirect() && data instanceof ByteBuffer) { return JniUtils.createNdFromByteBuffer( this, (ByteBuffer) data, shape, dataType, SparseFormat.DENSE, device); } int size = data.remaining(); // int8, uint8, boolean use ByteBuffer, so need to explicitly input DataType DataType inputType = DataType.fromBuffer(data); int numOfBytes = inputType.getNumOfBytes(); ByteBuffer buf = allocateDirect(size * numOfBytes); switch (inputType) { case FLOAT32: buf.asFloatBuffer().put((FloatBuffer) data); break; case FLOAT64: buf.asDoubleBuffer().put((DoubleBuffer) data); break; case UINT8: case INT8: case BOOLEAN: buf.put((ByteBuffer) data); break; case INT32: buf.asIntBuffer().put((IntBuffer) data); break; case INT64: buf.asLongBuffer().put((LongBuffer) data); break; case FLOAT16: default: throw new AssertionError("Show never happen"); } return JniUtils.createNdFromByteBuffer( this, buf, shape, dataType, SparseFormat.DENSE, device); } /** {@inheritDoc} */ @Override public NDArray createCSR(Buffer data, long[] indptr, long[] indices, Shape shape) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDArray createRowSparse(Buffer data, Shape dataShape, long[] indices, Shape shape) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDList load(Path path) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDArray zeros(Shape shape, DataType dataType) { return JniUtils.createZerosNdArray(this, shape, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray ones(Shape shape, DataType dataType) { return JniUtils.createOnesNdArray(this, shape, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray full(Shape shape, float value, DataType dataType) { return JniUtils.full(this, shape, value, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray arange(int start, int stop, int step, DataType dataType) { return arange((float) start, (float) stop, (float) step, dataType, device); } /** {@inheritDoc} */ @Override public NDArray arange(float start, float stop, float step, DataType dataType) { if (Math.signum(stop - start) != Math.signum(step)) { return create(new Shape(0), dataType, device); } return JniUtils.arange(this, start, stop, step, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray eye(int rows, int cols, int k, DataType dataType) { if (k != 0) { throw new UnsupportedOperationException( "index of the diagonal is not supported in PyTorch"); } return JniUtils.eye(this, rows, cols, dataType, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray linspace(float start, float stop, int num, boolean endpoint) { if (!endpoint) { throw new UnsupportedOperationException("endpoint only support true"); } return JniUtils.linspace( this, start, stop, num, DataType.FLOAT32, device, SparseFormat.DENSE); } /** {@inheritDoc} */ @Override public NDArray randomUniform(float low, float high, Shape shape, DataType dataType) { return JniUtils.uniform(this, low, high, shape, dataType, device); } /** {@inheritDoc} */ @Override public NDArray randomNormal(float loc, float scale, Shape shape, DataType dataType) { return JniUtils.normal(this, loc, scale, shape, dataType, device); } /** {@inheritDoc} */ @Override public NDArray randomMultinomial(int n, NDArray pValues) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDArray randomMultinomial(int n, NDArray pValues, Shape shape) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public PtNDManager newSubManager() { return newSubManager(device); } /** {@inheritDoc} */ @Override public PtNDManager newSubManager(Device device) { PtNDManager manager = new PtNDManager(this, device); attach(manager.uid, manager); return manager; } /** {@inheritDoc} */ @Override public void invoke( String operation, NDArray[] src, NDArray[] dest, PairList<String, ?> params) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public NDList invoke(String operation, NDList src, PairList<String, ?> params) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public Engine getEngine() { return Engine.getEngine(PtEngine.ENGINE_NAME); } /** The SystemManager is the root {@link PtNDManager} of which all others are children. */ private static final class SystemManager extends PtNDManager { SystemManager() { super(null, Device.defaultDevice()); } /** {@inheritDoc} */ @Override public void attach(String resourceId, AutoCloseable resource) {} /** {@inheritDoc} */ @Override public void detach(String resourceId) {} /** {@inheritDoc} */ @Override public void close() {} } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/engine/PtSymbolBlock.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.engine; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.nn.BlockList; import ai.djl.nn.ParameterList; import ai.djl.nn.SymbolBlock; import ai.djl.pytorch.jni.IValueUtils; import ai.djl.pytorch.jni.JniUtils; import ai.djl.pytorch.jni.NativeResource; import ai.djl.pytorch.jni.Pointer; import ai.djl.training.ParameterStore; import ai.djl.training.initializer.Initializer; import ai.djl.util.PairList; import java.io.DataInputStream; import java.io.DataOutputStream; /** * {@code PtSymbolBlock} is the PyTorch implementation of {@link SymbolBlock}. * * <p>You can create a {@code PtSymbolBlock} using {@link ai.djl.Model#load(java.nio.file.Path, * String)}. */ // TODO: Memory handling public class PtSymbolBlock extends NativeResource implements SymbolBlock { private PtNDManager manager; private boolean isTrain; /** * Constructs a {@code PtSymbolBlock}. * * <p>You can create a {@code PtSymbolBlock} using {@link ai.djl.Model#load(java.nio.file.Path, * String)}. * * @param manager the manager to use for the block * @param handle the module handle */ public PtSymbolBlock(PtNDManager manager, Pointer handle) { super(handle); this.manager = manager; manager.attach(getUid(), this); // training mode is on by default isTrain = true; } /** {@inheritDoc} */ @Override public void close() { Pointer pointer = handle.getAndSet(null); if (pointer != null) { JniUtils.deleteModule(pointer); manager.detach(getUid()); manager = null; } } /** {@inheritDoc} */ @Override public void removeLastBlock() { throw new UnsupportedOperationException("Not supported for PyTorch"); } /** {@inheritDoc} */ @Override public NDList forward( ParameterStore parameterStore, NDList inputs, boolean training, PairList<String, Object> params) { // TODO refactor the forward to not take ParameterStore if (isTrain != training) { isTrain = training; if (isTrain) { JniUtils.enableTrainingMode(this); } else { JniUtils.enableInferenceMode(this); } } return IValueUtils.forward(this, inputs, training); } /** {@inheritDoc} */ @Override public void setInitializer(Initializer initializer) { throw new UnsupportedOperationException("Not supported for PyTorch"); } /** {@inheritDoc} */ @Override public void setInitializer(Initializer initializer, String paramName) { throw new UnsupportedOperationException("Not supported for PyTorch"); } /** {@inheritDoc} */ @Override public Shape[] initialize(NDManager manager, DataType dataType, Shape... inputShapes) { throw new UnsupportedOperationException("Not supported for PyTorch"); } /** {@inheritDoc} */ @Override public boolean isInitialized() { return true; } /** {@inheritDoc} */ @Override public void cast(DataType dataType) { throw new UnsupportedOperationException("Not supported for PyTorch"); } /** {@inheritDoc} */ @Override public void clear() { throw new UnsupportedOperationException("Not supported for PyTorch"); } /** {@inheritDoc} */ @Override public PairList<String, Shape> describeInput() { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public BlockList getChildren() { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public ParameterList getDirectParameters() { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public ParameterList getParameters() { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public Shape getParameterShape(String name, Shape[] inputShapes) { throw new UnsupportedOperationException("Not implemented"); } /** {@inheritDoc} */ @Override public Shape[] getOutputShapes(NDManager manager, Shape[] inputShapes) { return new Shape[0]; } /** {@inheritDoc} */ @Override public void saveParameters(DataOutputStream os) { throw new UnsupportedOperationException("Not supported for PyTorch"); } /** {@inheritDoc} */ @Override public void loadParameters(NDManager manager, DataInputStream is) { throw new UnsupportedOperationException("Not supported for PyTorch"); } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/jni/IValueUtils.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import ai.djl.ndarray.NDList; import ai.djl.pytorch.engine.PtNDArray; import ai.djl.pytorch.engine.PtNDManager; import ai.djl.pytorch.engine.PtSymbolBlock; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; /** IValueUtils is utility class to deal with IValue in PyTorch. */ public final class IValueUtils { private IValueUtils() {} /** * Create IValue Pointer from NDArray. * * @param array {@link PtNDArray} * @return IValue Pointer */ public static Pointer toIValuePointer(PtNDArray array) { return PyTorchLibrary.LIB.iValueCreateFromTensor(array.getHandle()); } /** * Check IValue is a container of {@link PtNDArray}. * * @param iValueHandle IValue {@link Pointer} * @return result */ public static boolean isNDArray(Pointer iValueHandle) { return PyTorchLibrary.LIB.iValueIsTensor(iValueHandle); } /** * Check IValue is a container of {@link NDList}. * * @param iValueHandle IValue {@link Pointer} * @return result */ public static boolean isNDList(Pointer iValueHandle) { return PyTorchLibrary.LIB.iValueIsTensorList(iValueHandle); } /** * Check IValue is a container of IValue List. * * @param iValueHandle IValue {@link Pointer} * @return result */ public static boolean isList(Pointer iValueHandle) { return PyTorchLibrary.LIB.iValueIsList(iValueHandle); } /** * Check IValue is a container of IValue Tuple. * * @param iValueHandle IValue {@link Pointer} * @return result */ public static boolean isTuple(Pointer iValueHandle) { return PyTorchLibrary.LIB.iValueIsTuple(iValueHandle); } /** * Check IValue is a container of IValue Map. * * @param iValueHandle IValue {@link Pointer} * @return result */ public static boolean isMap(Pointer iValueHandle) { return PyTorchLibrary.LIB.iValueIsMap(iValueHandle); } /** * Check IValue is a container of String. * * @param iValueHandle IValue {@link Pointer} * @return result */ public static boolean isString(Pointer iValueHandle) { return PyTorchLibrary.LIB.iValueIsString(iValueHandle); } /** * Extract IValue with a {@link PtNDArray} value. * * @param iValueHandle IValue {@link Pointer} * @param manager {@link PtNDManager} that creates {@link PtNDArray} * @return {@link ai.djl.ndarray.NDArray} */ public static PtNDArray toNDArray(Pointer iValueHandle, PtNDManager manager) { Pointer ndHandle = PyTorchLibrary.LIB.iValueToTensor(iValueHandle); return manager.create(ndHandle); } /** * Extract IValue to {@link NDList}. * * @param iValueHandle IValue {@link Pointer} * @param manager {@link PtNDManager} that creates {@link PtNDArray} * @return {@link NDList} */ public static NDList toNDList(Pointer iValueHandle, PtNDManager manager) { Pointer[] ndHandles = PyTorchLibrary.LIB.iValueToTensorList(iValueHandle); NDList list = new NDList(); for (Pointer handle : ndHandles) { list.add(manager.create(handle)); } return list; } /** * Extract IValue to String. * * @param iValueHandle IValue {@link Pointer} * @return String */ public static String toString(Pointer iValueHandle) { return PyTorchLibrary.LIB.iValueToString(iValueHandle); } /** * Extract IValue to an IValue Array. * * @param iValueHandle IValue {@link Pointer} * @return IValue array */ public static Pointer[] toIValueArray(Pointer iValueHandle) { if (isTuple(iValueHandle)) { return PyTorchLibrary.LIB.iValueToListFromTuple(iValueHandle); } return PyTorchLibrary.LIB.iValueToList(iValueHandle); } /** * Extract IValue to a Map. * * @param iValueHandle IValue {@link Pointer} * @return IValue Map */ public static Map<Pointer, Pointer> toIValueMap(Pointer iValueHandle) { Pointer[] iValueHandles = PyTorchLibrary.LIB.iValueToMap(iValueHandle); Map<Pointer, Pointer> map = new ConcurrentHashMap<>(); for (int i = 0; i < iValueHandles.length; i += 2) { map.put(iValueHandles[i], iValueHandles[i + 1]); } return map; } private static NDList forwardHelper(Pointer iValueHandle, PtNDManager manager) { NDList list = new NDList(); if (isNDArray(iValueHandle)) { list.add(toNDArray(iValueHandle, manager)); } else if (isNDList(iValueHandle)) { list.addAll(toNDList(iValueHandle, manager)); } else if (isList(iValueHandle) || isTuple(iValueHandle)) { for (Pointer handle : toIValueArray(iValueHandle)) { list.addAll(forwardHelper(handle, manager)); } } else if (isMap(iValueHandle)) { // Only allows <String, NDArray> type of map Map<Pointer, Pointer> map = toIValueMap(iValueHandle); for (Map.Entry<Pointer, Pointer> entry : map.entrySet()) { String name = toString(entry.getKey()); // free the IValue handle PyTorchLibrary.LIB.torchDeleteIValue(entry.getKey()); PtNDArray value = toNDArray(entry.getValue(), manager); // free the IValue handle PyTorchLibrary.LIB.torchDeleteIValue(entry.getValue()); value.setName(name); list.add(value); } } else { // free the IValue handle PyTorchLibrary.LIB.torchDeleteIValue(iValueHandle); throw new UnsupportedOperationException("Unsupported IValue type"); } // free the IValue handle PyTorchLibrary.LIB.torchDeleteIValue(iValueHandle); return list; } /** * Run the forward of PyTorch module. * * @param block the block that contains PyTorch module * @param inputs input {@link NDList} * @param isTrain is running on training mode * @return result {@link NDList} */ public static NDList forward(PtSymbolBlock block, NDList inputs, boolean isTrain) { Pointer[] arrayHandles = inputs.stream() .map(input -> ((PtNDArray) input).getHandle()) .toArray(Pointer[]::new); Pointer result = PyTorchLibrary.LIB.moduleForward(block.getHandle(), arrayHandles, isTrain); PtNDManager manager = (PtNDManager) inputs.get(0).getManager(); return forwardHelper(result, manager); } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/jni/JniUtils.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import ai.djl.Device; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.ndarray.types.SparseFormat; import ai.djl.pytorch.engine.PtDeviceType; import ai.djl.pytorch.engine.PtNDArray; import ai.djl.pytorch.engine.PtNDManager; import ai.djl.pytorch.engine.PtSymbolBlock; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.file.Path; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * A class containing utilities to interact with the PyTorch Engine's Java Native Interface (JNI) * layer. */ @SuppressWarnings("MissingJavadocMethod") public final class JniUtils { private static final Logger logger = LoggerFactory.getLogger(JniUtils.class); private static Set<String> configs; private JniUtils() {} private static int layoutMapper(SparseFormat fmt, Device device) { if (fmt == SparseFormat.DENSE) { // Enable MKLDNN with environment variable // Using MKLDNN with GPU would throw exception on libtorch if (Boolean.getBoolean("ai.djl.pytorch.use_mkldnn") && !device.equals(Device.gpu())) { return 2; } return 0; } else if (fmt == SparseFormat.COO) { return 1; } else { throw new IllegalArgumentException( "Current PyTorch only support SparseFormat.DENSE and SparseFormat.COO"); } } public static int getNumInteropThreads() { return PyTorchLibrary.LIB.torchGetNumInteropThreads(); } public static int getNumThreads() { return PyTorchLibrary.LIB.torchGetNumThreads(); } public static void setNumInteropThreads(int threads) { PyTorchLibrary.LIB.torchSetNumInteropThreads(threads); } public static void setNumThreads(int threads) { PyTorchLibrary.LIB.torchSetNumThreads(threads); } public static Set<String> getFeatures() { if (configs != null) { return configs; } Set<String> features = new HashSet<>(); PyTorchLibrary.LIB.torchShowConfig(features); configs = features; return configs; } public static void setSeed(long seed) { PyTorchLibrary.LIB.torchManualSeed(seed); } // TODO: Unchecked Datatype and device mapping public static PtNDArray createNdFromByteBuffer( PtNDManager manager, ByteBuffer data, Shape shape, DataType dType, SparseFormat fmt, Device device) { int layoutVal = layoutMapper(fmt, device); return manager.create( PyTorchLibrary.LIB.torchFromBlob( data, shape.getShape(), dType.ordinal(), layoutVal, new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray createEmptyNdArray( PtNDManager manager, Shape shape, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return manager.create( PyTorchLibrary.LIB.torchEmpty( shape.getShape(), dType.ordinal(), layoutVal, new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray createZerosNdArray( PtNDManager manager, Shape shape, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return manager.create( PyTorchLibrary.LIB.torchZeros( shape.getShape(), dType.ordinal(), layoutVal, new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray createOnesNdArray( PtNDManager manager, Shape shape, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return manager.create( PyTorchLibrary.LIB.torchOnes( shape.getShape(), dType.ordinal(), layoutVal, new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray full( PtNDManager manager, Shape shape, double fillValue, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return manager.create( PyTorchLibrary.LIB.torchFull( shape.getShape(), fillValue, dType.ordinal(), layoutVal, new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray zerosLike( PtNDArray array, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return array.getManager() .create( PyTorchLibrary.LIB.torchZerosLike( array.getHandle(), dType.ordinal(), layoutVal, new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray onesLike( PtNDArray array, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return array.getManager() .create( PyTorchLibrary.LIB.torchOnesLike( array.getHandle(), dType.ordinal(), layoutVal, new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray arange( PtNDManager manager, float start, float stop, float step, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return manager.create( PyTorchLibrary.LIB.torchArange( start, stop, step, dType.ordinal(), layoutVal, new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray linspace( PtNDManager manager, float start, float stop, int step, DataType dType, Device device, SparseFormat fmt) { int layoutVal = layoutMapper(fmt, device); return manager.create( PyTorchLibrary.LIB.torchLinspace( start, stop, step, dType.ordinal(), layoutVal, new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray to(PtNDArray ndArray, DataType dataType, Device device, boolean copy) { PtNDManager manager = ndArray.getManager(); // the device of the manager should always match the one in NDArray which the manager attach // to if (!device.equals(manager.getDevice())) { manager = manager.newSubManager(device); } return manager.create( PyTorchLibrary.LIB.torchTo( ndArray.getHandle(), dataType.ordinal(), new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, copy)); } public static PtNDArray toSparse(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchToSparse(ndArray.getHandle())); } public static PtNDArray toDense(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchToDense(ndArray.getHandle())); } public static PtNDArray broadcast(PtNDArray ndArray, Shape shape) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchExpand(ndArray.getHandle(), shape.getShape())); } public static PtNDArray slice(PtNDArray ndArray, long dim, long start, long stop, long step) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchSlice(ndArray.getHandle(), dim, start, stop, step)); } public static PtNDArray index( PtNDArray ndArray, long[] minIndices, long[] maxIndices, long[] stepIndices) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchIndex( ndArray.getHandle(), minIndices, maxIndices, stepIndices)); } public static void indexSet( PtNDArray ndArray, PtNDArray value, long[] minIndices, long[] maxIndices, long[] stepIndices) { PyTorchLibrary.LIB.torchIndexPut( ndArray.getHandle(), value.getHandle(), minIndices, maxIndices, stepIndices); } public static void set(PtNDArray self, PtNDArray other) { PyTorchLibrary.LIB.torchSet(self.getHandle(), other.getHandle()); } public static PtNDArray pick(PtNDArray ndArray, PtNDArray index, long dim) { Shape indexShape = index.getShape(); Shape ndShape = ndArray.getShape(); int shapeDims = indexShape.dimension(); int ndDims = ndShape.dimension(); if (shapeDims != ndDims) { for (int i = 0; i < ndDims - shapeDims; ++i) { if (indexShape.equals(ndShape.slice(i, shapeDims))) { long[] shapes = indexShape.getShape(); long[] newShape = new long[ndDims]; Arrays.fill(newShape, 0, i, 1L); Arrays.fill(newShape, i, i + shapes.length, shapes[i]); Arrays.fill(newShape, i + shapes.length, ndDims, 1L); indexShape = new Shape(newShape); break; } } if (indexShape.equals(index.getShape())) { throw new IllegalArgumentException( "expand shape failed! Cannot expand from " + indexShape + "to " + ndShape); } index = index.reshape(indexShape); } if (index.getDataType() != DataType.INT64) { index = index.toType(DataType.INT64, true); } return ndArray.getManager() .create( PyTorchLibrary.LIB.torchGather( ndArray.getHandle(), index.getHandle(), dim, false)); } public static PtNDArray where(PtNDArray condition, PtNDArray self, PtNDArray other) { return self.getManager() .create( PyTorchLibrary.LIB.torchWhere( condition.getHandle(), self.getHandle(), other.getHandle())); } public static PtNDArray booleanMask(PtNDArray ndArray, PtNDArray indicesNd) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchMaskedSelect( ndArray.getHandle(), indicesNd.getHandle())); } public static void booleanMaskSet(PtNDArray ndArray, PtNDArray value, PtNDArray indicesNd) { PyTorchLibrary.LIB.torchMaskedPut( ndArray.getHandle(), value.getHandle(), indicesNd.getHandle()); } public static PtNDArray clone(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.tensorClone(ndArray.getHandle())); } public static PtNDArray reshape(PtNDArray ndArray, long[] shape) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchReshape(ndArray.getHandle(), shape)); } public static PtNDArray stack(NDArray[] arrays, int dim) { Pointer[] pointers = Arrays.stream(arrays) .map(array -> ((PtNDArray) array).getHandle()) .toArray(Pointer[]::new); return ((PtNDManager) arrays[0].getManager()) .create(PyTorchLibrary.LIB.torchStack(pointers, dim)); } public static PtNDArray cat(NDArray[] arrays, long dim) { Pointer[] pointers = Arrays.stream(arrays) .map(array -> ((PtNDArray) array).getHandle()) .toArray(Pointer[]::new); return ((PtNDManager) arrays[0].getManager()) .create(PyTorchLibrary.LIB.torchCat(pointers, dim)); } public static PtNDArray tile(PtNDArray ndArray, long[] repeats) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchRepeat(ndArray.getHandle(), repeats)); } public static PtNDArray repeat(PtNDArray ndArray, long repeat, long dim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchRepeatInterleave(ndArray.getHandle(), repeat, dim)); } public static PtNDArray softmax(PtNDArray ndArray, long dim, DataType dTpe) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchSoftmax(ndArray.getHandle(), dim, dTpe.ordinal())); } public static PtNDArray logSoftmax(PtNDArray ndArray, long dim, DataType dTpe) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchLogSoftmax( ndArray.getHandle(), dim, dTpe.ordinal())); } public static PtNDArray argMax(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchArgMax(ndArray.getHandle())); } public static PtNDArray argMax(PtNDArray ndArray, long dim, boolean keepDim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchArgMax(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray argMin(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchArgMin(ndArray.getHandle())); } public static PtNDArray argMin(PtNDArray ndArray, long dim, boolean keepDim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchArgMin(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray argSort(PtNDArray ndArray, long dim, boolean keepDim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchArgSort(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray sort(PtNDArray ndArray, long dim, boolean descending) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchSort(ndArray.getHandle(), dim, descending)); } public static PtNDArray permute(PtNDArray ndArray, long[] dims) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchPermute(ndArray.getHandle(), dims)); } public static PtNDArray flip(PtNDArray ndArray, long[] dims) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchFlip(ndArray.getHandle(), dims)); } public static PtNDArray transpose(PtNDArray ndArray, long dim1, long dim2) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchTranspose(ndArray.getHandle(), dim1, dim2)); } public static boolean contentEqual(PtNDArray ndArray1, PtNDArray ndArray2) { return PyTorchLibrary.LIB.contentEqual(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray add(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create(PyTorchLibrary.LIB.torchAdd(ndArray1.getHandle(), ndArray2.getHandle())); } public static void addi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchAddi(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray sub(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create(PyTorchLibrary.LIB.torchSub(ndArray1.getHandle(), ndArray2.getHandle())); } public static void subi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchSubi(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray mul(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create(PyTorchLibrary.LIB.torchMul(ndArray1.getHandle(), ndArray2.getHandle())); } public static void muli(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchMuli(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray div(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create( PyTorchLibrary.LIB.torchTrueDivide( ndArray1.getHandle(), ndArray2.getHandle())); } public static void divi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchTrueDividei(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray remainder(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create( PyTorchLibrary.LIB.torchRemainder( ndArray1.getHandle(), ndArray2.getHandle())); } public static void remainderi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchRemainderi(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray pow(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create(PyTorchLibrary.LIB.torchPow(ndArray1.getHandle(), ndArray2.getHandle())); } public static void powi(PtNDArray ndArray1, PtNDArray ndArray2) { PyTorchLibrary.LIB.torchPowi(ndArray1.getHandle(), ndArray2.getHandle()); } public static PtNDArray sign(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchSign(ndArray.getHandle())); } public static void signi(PtNDArray ndArray) { PyTorchLibrary.LIB.torchSigni(ndArray.getHandle()); } public static PtNDArray logicalAnd(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create( PyTorchLibrary.LIB.torchLogicalAnd( ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray logicalOr(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create( PyTorchLibrary.LIB.torchLogicalOr( ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray logicalXor(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create( PyTorchLibrary.LIB.torchLogicalXor( ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray logicalNot(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchLogicalNot(ndArray.getHandle())); } public static PtNDArray matmul(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create(PyTorchLibrary.LIB.torchMatmul(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray dot(PtNDArray ndArray1, PtNDArray ndArray2) { if (ndArray1.getShape().dimension() == 1) { return ndArray1.getManager() .create( PyTorchLibrary.LIB.torchDot( ndArray1.getHandle(), ndArray2.getHandle())); } return ndArray1.getManager() .create(PyTorchLibrary.LIB.torchMM(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray max(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create(PyTorchLibrary.LIB.torchMax(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray max(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchMax(ndArray.getHandle())); } public static PtNDArray max(PtNDArray ndArray, long dim, boolean keepDim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchMax(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray min(PtNDArray ndArray1, PtNDArray ndArray2) { return ndArray1.getManager() .create(PyTorchLibrary.LIB.torchMin(ndArray1.getHandle(), ndArray2.getHandle())); } public static PtNDArray min(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchMin(ndArray.getHandle())); } public static PtNDArray min(PtNDArray ndArray, long dim, boolean keepDim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchMin(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray mean(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchMean(ndArray.getHandle())); } public static PtNDArray mean(PtNDArray ndArray, long dim, boolean keepDim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchMean(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray sum(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchSum(ndArray.getHandle())); } public static PtNDArray sum(PtNDArray ndArray, long[] dims, boolean keepDim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchSum(ndArray.getHandle(), dims, keepDim)); } public static PtNDArray prod(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchProd(ndArray.getHandle())); } public static PtNDArray prod(PtNDArray ndArray, long dim, boolean keepDim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchProd(ndArray.getHandle(), dim, keepDim)); } public static PtNDArray cumSum(PtNDArray ndArray, long dim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchCumSum(ndArray.getHandle(), dim)); } public static NDList split(PtNDArray ndArray, long size, long axis) { Pointer[] ndPtrs = PyTorchLibrary.LIB.torchSplit(ndArray.getHandle(), size, axis); NDList list = new NDList(); for (Pointer ptr : ndPtrs) { list.add(ndArray.getManager().create(ptr)); } return list; } public static NDList split(PtNDArray ndArray, long[] indices, long axis) { Pointer[] ndPtrs = PyTorchLibrary.LIB.torchSplit(ndArray.getHandle(), indices, axis); NDList list = new NDList(); for (Pointer ptr : ndPtrs) { list.add(ndArray.getManager().create(ptr)); } return list; } public static PtNDArray squeeze(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchSqueeze(ndArray.getHandle())); } public static PtNDArray squeeze(PtNDArray ndArray, long dim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchSqueeze(ndArray.getHandle(), dim)); } public static PtNDArray unsqueeze(PtNDArray ndArray, long dim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchUnsqueeze(ndArray.getHandle(), dim)); } public static PtNDArray flatten(PtNDArray ndArray, long startDim, long endDim) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchFlatten(ndArray.getHandle(), startDim, endDim)); } public static PtNDArray abs(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchAbs(ndArray.getHandle())); } public static PtNDArray square(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchSquare(ndArray.getHandle())); } public static PtNDArray floor(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchFloor(ndArray.getHandle())); } public static PtNDArray ceil(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchCeil(ndArray.getHandle())); } public static PtNDArray round(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchRound(ndArray.getHandle())); } public static PtNDArray trunc(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchTrunc(ndArray.getHandle())); } public static PtNDArray clip(PtNDArray ndArray, Number min, Number max) { PtNDArray minNd = (PtNDArray) ndArray.getManager().create(min); PtNDArray maxNd = (PtNDArray) ndArray.getManager().create(max); return ndArray.getManager() .create( PyTorchLibrary.LIB.torchClamp( ndArray.getHandle(), minNd.getHandle(), maxNd.getHandle())); } public static PtNDArray exp(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchExp(ndArray.getHandle())); } public static PtNDArray log(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchLog(ndArray.getHandle())); } public static PtNDArray log10(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchLog10(ndArray.getHandle())); } public static PtNDArray log2(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchLog2(ndArray.getHandle())); } public static PtNDArray sin(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchSin(ndArray.getHandle())); } public static PtNDArray cos(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchCos(ndArray.getHandle())); } public static PtNDArray tan(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchTan(ndArray.getHandle())); } public static PtNDArray asin(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchASin(ndArray.getHandle())); } public static PtNDArray acos(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchAcos(ndArray.getHandle())); } public static PtNDArray atan(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchAtan(ndArray.getHandle())); } public static PtNDArray sqrt(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchSqrt(ndArray.getHandle())); } public static PtNDArray sinh(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchSinh(ndArray.getHandle())); } public static PtNDArray cosh(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchCosh(ndArray.getHandle())); } public static PtNDArray tanh(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchTanh(ndArray.getHandle())); } public static PtNDArray sigmoid(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchSigmoid(ndArray.getHandle())); } public static PtNDArray all(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchAll(ndArray.getHandle())); } public static PtNDArray any(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchAny(ndArray.getHandle())); } public static PtNDArray none(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchNone(ndArray.getHandle())); } public static PtNDArray eq(PtNDArray self, PtNDArray other) { return self.getManager() .create(PyTorchLibrary.LIB.torchEq(self.getHandle(), other.getHandle())); } public static PtNDArray neq(PtNDArray self, PtNDArray other) { return self.getManager() .create(PyTorchLibrary.LIB.torchNeq(self.getHandle(), other.getHandle())); } public static PtNDArray gt(PtNDArray self, PtNDArray other) { return self.getManager() .create(PyTorchLibrary.LIB.torchGt(self.getHandle(), other.getHandle())); } public static PtNDArray gte(PtNDArray self, PtNDArray other) { return self.getManager() .create(PyTorchLibrary.LIB.torchGte(self.getHandle(), other.getHandle())); } public static PtNDArray lt(PtNDArray self, PtNDArray other) { return self.getManager() .create(PyTorchLibrary.LIB.torchLt(self.getHandle(), other.getHandle())); } public static PtNDArray lte(PtNDArray self, PtNDArray other) { return self.getManager() .create(PyTorchLibrary.LIB.torchLte(self.getHandle(), other.getHandle())); } public static PtNDArray neg(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchNeg(ndArray.getHandle())); } public static void negi(PtNDArray ndArray) { PyTorchLibrary.LIB.torchNegi(ndArray.getHandle()); } public static PtNDArray isNaN(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchIsNaN(ndArray.getHandle())); } public static PtNDArray isInf(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchIsInf(ndArray.getHandle())); } public static PtNDArray normal( PtNDManager manager, double mean, double std, Shape size, DataType dataType, Device device) { return manager.create( PyTorchLibrary.LIB.atNormal( mean, std, size.getShape(), dataType.ordinal(), layoutMapper(SparseFormat.DENSE, device), new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray uniform( PtNDManager manager, double low, double high, Shape size, DataType dataType, Device device) { return manager.create( PyTorchLibrary.LIB.tensorUniform( low, high, size.getShape(), dataType.ordinal(), layoutMapper(SparseFormat.DENSE, device), new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray eye( PtNDManager manager, int n, int m, DataType dataType, Device device, SparseFormat fmt) { return manager.create( PyTorchLibrary.LIB.torchEye( n, m, dataType.ordinal(), layoutMapper(fmt, device), new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }, false)); } public static PtNDArray interpolate( PtNDArray ndArray, long[] size, int mode, boolean alignCorners) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchNNInterpolate( ndArray.getHandle(), size, mode, alignCorners)); } public static PtNDArray linear(PtNDArray input, PtNDArray weight, PtNDArray bias) { return input.getManager() .create( PyTorchLibrary.LIB.torchNNLinear( input.getHandle(), weight.getHandle(), bias == null ? null : bias.getHandle())); } public static PtNDArray relu(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchNNRelu(ndArray.getHandle())); } public static PtNDArray softPlus(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchNNSoftPlus(ndArray.getHandle())); } public static PtNDArray softSign(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchNNSoftSign(ndArray.getHandle())); } public static PtNDArray leakyRelu(PtNDArray ndArray, double negativeSlope) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchNNLeakyRelu(ndArray.getHandle(), negativeSlope)); } public static PtNDArray elu(PtNDArray ndArray, double alpha) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchNNElu(ndArray.getHandle(), alpha)); } public static PtNDArray selu(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchNNSelu(ndArray.getHandle())); } public static PtNDArray gelu(PtNDArray ndArray) { return ndArray.getManager().create(PyTorchLibrary.LIB.torchNNGelu(ndArray.getHandle())); } public static PtNDArray convolution( PtNDArray ndArray, PtNDArray weight, PtNDArray bias, Shape stride, Shape padding, Shape dilation, int groups) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchNNConvNd( ndArray.getHandle(), weight.getHandle(), (bias != null) ? bias.getHandle() : null, stride.getShape(), padding.getShape(), dilation.getShape(), groups)); } public static PtNDArray batchNorm( PtNDArray ndArray, PtNDArray gamma, PtNDArray beta, PtNDArray runningMean, PtNDArray runningVar, boolean isTraining, double momentum, double eps) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchNNBatchNorm( ndArray.getHandle(), gamma.getHandle(), beta.getHandle(), runningMean.getHandle(), runningVar.getHandle(), isTraining, momentum, eps)); } public static PtNDArray dropout(PtNDArray ndArray, double prob, boolean training) { return ndArray.getManager() .create(PyTorchLibrary.LIB.torchNNDropout(ndArray.getHandle(), prob, training)); } public static PtNDArray avgPool( PtNDArray ndArray, Shape kernelSize, Shape stride, Shape padding, boolean ceilMode, boolean countIncludePad) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchNNAvgPool( ndArray.getHandle(), kernelSize.getShape(), stride.getShape(), padding.getShape(), ceilMode, countIncludePad)); } public static PtNDArray maxPool( PtNDArray ndArray, Shape kernelSize, Shape stride, Shape padding, boolean ceilMode) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchNNMaxPool( ndArray.getHandle(), kernelSize.getShape(), stride.getShape(), padding.getShape(), ceilMode)); } public static PtNDArray adaptiveMaxPool(PtNDArray ndArray, Shape outputSize) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchNNAdaptiveMaxPool( ndArray.getHandle(), outputSize.getShape())); } public static PtNDArray adaptiveAvgPool(PtNDArray ndArray, Shape outputSize) { return ndArray.getManager() .create( PyTorchLibrary.LIB.torchNNAdaptiveAvgPool( ndArray.getHandle(), outputSize.getShape())); } public static PtNDArray lpPool( PtNDArray ndArray, double normType, Shape kernelSize, Shape stride, boolean ceilMode) { if (ndArray.getShape().dimension() - 2 == 3) { throw new UnsupportedOperationException("3D lpPool is not supported in PyTorch engine"); } return ndArray.getManager() .create( PyTorchLibrary.LIB.torchNNLpPool( ndArray.getHandle(), normType, kernelSize.getShape(), stride.getShape(), ceilMode)); } public static DataType getDataType(PtNDArray ndArray) { int dataType = PyTorchLibrary.LIB.torchDType(ndArray.getHandle()); return DataType.values()[dataType]; } public static Device getDevice(PtNDArray ndArray) { int[] device = PyTorchLibrary.LIB.torchDevice(ndArray.getHandle()); String deviceType = PtDeviceType.fromDeviceType(device[0]); return Device.of(deviceType, device[1]); } public static SparseFormat getSparseFormat(PtNDArray ndArray) { int layout = PyTorchLibrary.LIB.torchLayout(ndArray.getHandle()); if (layout == 0) { return SparseFormat.DENSE; } else if (layout == 1) { return SparseFormat.COO; } else if (layout == 2) { logger.debug("MKLDNN layout is used!"); return SparseFormat.DENSE; } throw new UnsupportedOperationException("Unsupported data format"); } public static Shape getShape(PtNDArray ndArray) { return new Shape(PyTorchLibrary.LIB.torchSizes(ndArray.getHandle())); } public static ByteBuffer getByteBuffer(PtNDArray ndArray) { // Operation is CPU only if (!ndArray.getDevice().equals(Device.cpu())) { ndArray = ndArray.toDevice(Device.cpu(), false); } return ByteBuffer.wrap(PyTorchLibrary.LIB.torchDataPtr(ndArray.getHandle())) .order(ByteOrder.nativeOrder()); } public static void deleteNdArray(Pointer handle) { PyTorchLibrary.LIB.torchDeleteTensor(handle); } public static boolean requiresGrad(PtNDArray ndArray) { return PyTorchLibrary.LIB.torchRequiresGrad(ndArray.getHandle()); } public static String getGradientFunctionNames(PtNDArray ndArray) { return PyTorchLibrary.LIB.torchGradFnName(ndArray.getHandle()); } public static void attachGradient(PtNDArray ndArray) { PyTorchLibrary.LIB.torchAttachGrad(ndArray.getHandle()); } public static PtNDArray detachGradient(PtNDArray ndArray) { // TODO: detached ndarray may not use the same manager for the attached one return ndArray.getManager().create(PyTorchLibrary.LIB.torchDetachGrad(ndArray.getHandle())); } public static PtNDArray getGradient(PtNDArray ndArray) { Pointer pointer = PyTorchLibrary.LIB.torchGrad(ndArray.getHandle()); if (pointer == null) { return null; } return ndArray.getManager().create(pointer); } public static void backward( PtNDArray ndArray, PtNDArray gradNd, boolean keepGraph, boolean createGraph) { PyTorchLibrary.LIB.torchBackward( ndArray.getHandle(), gradNd.getHandle(), keepGraph, createGraph); } public static void deleteModule(Pointer pointer) { PyTorchLibrary.LIB.torchDeleteModule(pointer); } public static PtSymbolBlock loadModule(PtNDManager manager, Path path, Device device) { Pointer handle = PyTorchLibrary.LIB.moduleLoad( path.toString(), new int[] { PtDeviceType.toDeviceType(device), device.equals(Device.cpu()) ? -1 : device.getDeviceId() }); return new PtSymbolBlock(manager, handle); } public static void enableInferenceMode(PtSymbolBlock block) { PyTorchLibrary.LIB.moduleEval(block.getHandle()); } public static void enableTrainingMode(PtSymbolBlock block) { PyTorchLibrary.LIB.moduleTrain(block.getHandle()); } public static void zeroGrad(PtNDArray weight) { PyTorchLibrary.LIB.zeroGrad(weight.getHandle()); } public static void adamUpdate( PtNDArray weight, PtNDArray grad, PtNDArray mean, PtNDArray variance, float lr, float wd, float rescaleGrad, float clipGrad, float beta1, float beta2, float eps) { PyTorchLibrary.LIB.adamUpdate( weight.getHandle(), grad.getHandle(), mean.getHandle(), variance.getHandle(), lr, wd, rescaleGrad, clipGrad, beta1, beta2, eps); } public static void sgdUpdate( PtNDArray weight, PtNDArray grad, PtNDArray state, float lr, float wd, float rescaleGrad, float clipGrad, float momentum) { PyTorchLibrary.LIB.sgdUpdate( weight.getHandle(), grad.getHandle(), (state == null) ? null : state.getHandle(), lr, wd, rescaleGrad, clipGrad, momentum); } // Internal use only public static int getLayout(PtNDArray array) { return PyTorchLibrary.LIB.torchLayout(array.getHandle()); } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/jni/LibUtils.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import ai.djl.util.Platform; import ai.djl.util.Utils; import java.io.File; import java.io.IOException; import java.io.InputStream; import java.net.URL; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.nio.file.StandardCopyOption; import java.util.Collections; import java.util.Enumeration; import java.util.List; import java.util.Properties; import java.util.concurrent.atomic.AtomicBoolean; import java.util.regex.Matcher; import java.util.regex.Pattern; import java.util.stream.Stream; import java.util.zip.GZIPInputStream; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * Utilities for finding the PyTorch Engine binary on the System. * * <p>The Engine will be searched for in a variety of locations in the following order: * * <ol> * <li>In the path specified by the PYTORCH_LIBRARY_PATH environment variable * <li>In a jar file location in the classpath. These jars can be created with the pytorch-native * module. * </ol> */ @SuppressWarnings("MissingJavadocMethod") public final class LibUtils { private static final Logger logger = LoggerFactory.getLogger(LibUtils.class); private static final String LIB_NAME = "djl_torch"; private static final String NATIVE_LIB_NAME = "torch"; private static final Pattern VERSION_PATTERN = Pattern.compile("(\\d+\\.\\d+\\.\\d+(-\\w)?)(-SNAPSHOT)?(-\\d+)?"); private LibUtils() {} public static void loadLibrary() { // TODO workaround to make it work on Android Studio // It should search for several places to find the native library if (System.getProperty("java.vendor.url").equals("http://www.android.com/")) { System.loadLibrary(LIB_NAME); // NOPMD return; } String libName = findOverrideLibrary(); if (libName == null) { AtomicBoolean fallback = new AtomicBoolean(false); String nativeLibDir = findNativeLibrary(fallback); if (nativeLibDir != null) { libName = copyJniLibraryFromClasspath(Paths.get(nativeLibDir), fallback.get()); } else { throw new IllegalStateException("Native library not found"); } } logger.debug("Loading pytorch library from: {}", libName); if (System.getProperty("os.name").startsWith("Win")) { loadWinDependencies(libName); } System.load(libName); // NOPMD } private static void loadWinDependencies(String libName) { Path libDir = Paths.get(libName).getParent(); if (libDir == null) { throw new IllegalArgumentException("Invalid library path!"); } try (Stream<Path> paths = Files.walk(libDir)) { paths.filter( path -> { String name = path.getFileName().toString(); return !"c10_cuda.dll".equals(name) && !"torch.dll".equals(name) && !"torch_cpu.dll".equals(name) && !"torch_cuda.dll".equals(name) && !"fbgemm.dll".equals(name) && Files.isRegularFile(path) && !name.endsWith("djl_torch.dll"); }) .map(path -> path.toAbsolutePath().toString()) .forEach(System::load); System.load(libDir.resolve("fbgemm.dll").toAbsolutePath().toString()); System.load(libDir.resolve("torch_cpu.dll").toAbsolutePath().toString()); if (Files.exists(libDir.resolve("c10_cuda.dll"))) { // Windows System.load is global load System.load(libDir.resolve("c10_cuda.dll").toAbsolutePath().toString()); System.load(libDir.resolve("torch_cuda.dll").toAbsolutePath().toString()); } System.load(libDir.resolve("torch.dll").toAbsolutePath().toString()); } catch (IOException e) { throw new IllegalArgumentException("Folder not exist! " + libDir, e); } } private static String findOverrideLibrary() { String libPath = System.getenv("PYTORCH_LIBRARY_PATH"); if (libPath != null) { String libName = findLibraryInPath(libPath); if (libName != null) { return libName; } } libPath = System.getProperty("java.library.path"); if (libPath != null) { return findLibraryInPath(libPath); } return null; } private static String findLibraryInPath(String libPath) { String[] paths = libPath.split(File.pathSeparator); List<String> mappedLibNames; mappedLibNames = Collections.singletonList(System.mapLibraryName(LIB_NAME)); for (String path : paths) { File p = new File(path); if (!p.exists()) { continue; } for (String name : mappedLibNames) { if (p.isFile() && p.getName().endsWith(name)) { return p.getAbsolutePath(); } File file = new File(path, name); if (file.exists() && file.isFile()) { return file.getAbsolutePath(); } } } return null; } private static String copyJniLibraryFromClasspath(Path nativeDir, boolean fallback) { String name = System.mapLibraryName(LIB_NAME); Platform platform = Platform.fromSystem(); String classifier = platform.getClassifier(); String flavor = platform.getFlavor(); if (fallback || flavor.isEmpty()) { flavor = "cpu"; } Properties prop = new Properties(); try (InputStream stream = LibUtils.class.getResourceAsStream( "/jnilib/" + classifier + "/" + flavor + "/pytorch.properties")) { prop.load(stream); } catch (IOException e) { throw new IllegalStateException("Cannot find pytorch property file", e); } String version = prop.getProperty("version"); Path path = nativeDir.resolve(version + flavor + name); if (Files.exists(path)) { return path.toAbsolutePath().toString(); } Path tmp = null; try (InputStream stream = LibUtils.class.getResourceAsStream( "/jnilib/" + classifier + "/" + flavor + "/" + name)) { tmp = Files.createTempFile(nativeDir, "jni", "tmp"); Files.copy(stream, tmp, StandardCopyOption.REPLACE_EXISTING); Utils.moveQuietly(tmp, path); return path.toAbsolutePath().toString(); } catch (IOException e) { throw new IllegalStateException("Cannot copy jni files", e); } finally { if (tmp != null) { Utils.deleteQuietly(tmp); } } } private static synchronized String findNativeLibrary(AtomicBoolean fallback) { Enumeration<URL> urls; try { urls = Thread.currentThread() .getContextClassLoader() .getResources("native/lib/pytorch.properties"); } catch (IOException e) { logger.warn("", e); return null; } // No native jars if (!urls.hasMoreElements()) { return null; } Platform systemPlatform = Platform.fromSystem(); try { Platform matching = null; Platform placeholder = null; while (urls.hasMoreElements()) { URL url = urls.nextElement(); Platform platform = Platform.fromUrl(url); if (platform.isPlaceholder()) { placeholder = platform; } else if (platform.matches(systemPlatform)) { matching = platform; break; } } if (matching != null) { return copyNativeLibraryFromClasspath(matching); } if (placeholder != null) { try { return downloadPyTorch(placeholder, fallback); } catch (IOException e) { throw new IllegalStateException("Failed to download PyTorch native library", e); } } } catch (IOException e) { throw new IllegalStateException( "Failed to read PyTorch native library jar properties", e); } throw new IllegalStateException( "Your PyTorch native library jar does not match your operating system. Make sure the Maven Dependency Classifier matches your system type."); } private static String copyNativeLibraryFromClasspath(Platform platform) { Path tmp = null; String version = platform.getVersion(); String flavor = platform.getFlavor(); String classifier = platform.getClassifier(); try { String libName = System.mapLibraryName(NATIVE_LIB_NAME); Path cacheDir = getCacheDir(); logger.debug("Using cache dir: {}", cacheDir); Path dir = cacheDir.resolve(version + flavor + '-' + classifier); Path path = dir.resolve(libName); if (Files.exists(path)) { return dir.toAbsolutePath().toString(); } Files.createDirectories(cacheDir); tmp = Files.createTempDirectory(cacheDir, "tmp"); for (String file : platform.getLibraries()) { String libPath = "/native/lib/" + file; try (InputStream is = LibUtils.class.getResourceAsStream(libPath)) { Files.copy(is, tmp.resolve(file), StandardCopyOption.REPLACE_EXISTING); } } Utils.moveQuietly(tmp, dir); return dir.toAbsolutePath().toString(); } catch (IOException e) { throw new IllegalStateException("Failed to extract PyTorch native library", e); } finally { if (tmp != null) { Utils.deleteQuietly(tmp); } } } private static String downloadPyTorch(Platform platform, AtomicBoolean fallback) throws IOException { String version = platform.getVersion(); String flavor = platform.getFlavor(); if (flavor.isEmpty()) { flavor = "cpu"; } String classifier = platform.getClassifier(); String os = platform.getOsPrefix(); String libName = System.mapLibraryName(NATIVE_LIB_NAME); Path cacheDir = getCacheDir(); logger.debug("Using cache dir: {}", cacheDir); Path dir = cacheDir.resolve(version + flavor + '-' + classifier); Path path = dir.resolve(libName); if (Files.exists(path)) { return dir.toAbsolutePath().toString(); } // if files not found Files.createDirectories(cacheDir); Matcher matcher = VERSION_PATTERN.matcher(version); if (!matcher.matches()) { throw new IllegalArgumentException("Unexpected version: " + version); } String link = "https://djl-ai.s3.amazonaws.com/publish/pytorch-" + matcher.group(1); Path tmp = null; try (InputStream is = new URL(link + "/files.txt").openStream()) { List<String> lines = Utils.readLines(is); if (flavor.startsWith("cu") && !lines.contains(flavor + '/' + os + "/native/lib/" + libName + ".gz")) { logger.warn("No matching cuda flavor for {} found: {}.", os, flavor); // fallback to CPU flavor = "cpu"; fallback.set(true); // check again dir = cacheDir.resolve(version + flavor + '-' + classifier); path = dir.resolve(libName); if (Files.exists(path)) { return dir.toAbsolutePath().toString(); } } tmp = Files.createTempDirectory(cacheDir, "tmp"); for (String line : lines) { if (line.startsWith(flavor + '/' + os + '/')) { URL url = new URL(link + '/' + line); String fileName = line.substring(line.lastIndexOf('/') + 1, line.length() - 3); logger.info("Downloading {} ...", url); try (InputStream fis = new GZIPInputStream(url.openStream())) { Files.copy(fis, tmp.resolve(fileName), StandardCopyOption.REPLACE_EXISTING); } } } Utils.moveQuietly(tmp, dir); return dir.toAbsolutePath().toString(); } finally { if (tmp != null) { Utils.deleteQuietly(tmp); } } } private static Path getCacheDir() { String cacheDir = System.getProperty("ENGINE_CACHE_DIR"); if (cacheDir == null || cacheDir.isEmpty()) { cacheDir = System.getenv("ENGINE_CACHE_DIR"); if (cacheDir == null || cacheDir.isEmpty()) { cacheDir = System.getProperty("DJL_CACHE_DIR"); if (cacheDir == null || cacheDir.isEmpty()) { cacheDir = System.getenv("DJL_CACHE_DIR"); if (cacheDir == null || cacheDir.isEmpty()) { String userHome = System.getProperty("user.home"); return Paths.get(userHome, ".pytorch/cache"); } } return Paths.get(cacheDir, "pytorch"); } } return Paths.get(cacheDir, ".pytorch/cache"); } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/jni/NativeResource.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import java.util.concurrent.atomic.AtomicReference; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * {@code NativeResource} is an internal class for {@link AutoCloseable} blocks of memory created in * the PyTorch Engine. */ public abstract class NativeResource implements AutoCloseable { private static final Logger logger = LoggerFactory.getLogger(NativeResource.class); protected final AtomicReference<Pointer> handle; private String uid; private Exception exception; protected NativeResource(Pointer pointer) { this.handle = new AtomicReference<>(pointer); uid = String.valueOf(pointer.getValue()); if (logger.isTraceEnabled()) { exception = new Exception(); } } /** * Gets the boolean that indicates whether this resource has been released. * * @return whether this resource has been released */ public boolean isReleased() { return handle.get() == null; } /** * Gets the {@link Pointer} to this resource. * * @return the {@link Pointer} to this resource */ protected Pointer getHandle() { Pointer pointer = handle.get(); if (pointer == null) { throw new IllegalStateException("Native resource has been release already."); } return pointer; } /** * Gets the unique ID of this resource. * * @return the unique ID of this resource */ public final String getUid() { return uid; } /** {@inheritDoc} */ @Override public void close() { throw new UnsupportedOperationException("Not implemented."); } /** {@inheritDoc} */ @SuppressWarnings("deprecation") @Override protected void finalize() throws Throwable { if (handle.get() != null) { if (exception != null) { logger.warn( "Resource ({}) was not closed explicitly: {}", getUid(), getClass().getSimpleName()); logger.warn("Resource was created:", exception); } } close(); super.finalize(); } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/jni/Pointer.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; /** * An abstraction for a native pointer data type. A Pointer instance represents, on the Java side, a * native pointer. The native pointer could be any <em>type</em> of native pointer. */ public class Pointer { private final long peer; /** * Creates an instance of {@link Pointer}. * * @param peer the native peer of the pointer */ public Pointer(long peer) { this.peer = peer; } /** * Returns the native peer of the pointer address. * * @return the native peer of the pointer address */ public long getValue() { return peer; } }
0
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-engine-precxx11/0.7.0/ai/djl/pytorch/jni/PyTorchLibrary.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; import java.nio.ByteBuffer; import java.util.Set; /** A class containing utilities to interact with the PyTorch Engine's JNI layer. */ final class PyTorchLibrary { static final PyTorchLibrary LIB = new PyTorchLibrary(); private PyTorchLibrary() {} native int torchGetNumInteropThreads(); native int torchGetNumThreads(); native void torchSetNumInteropThreads(int threads); native void torchSetNumThreads(int threads); native void torchManualSeed(long seed); native void torchShowConfig(Set<String> set); native long[] torchSizes(Pointer handle); native byte[] torchDataPtr(Pointer handle); native int torchDType(Pointer handle); native int[] torchDevice(Pointer handle); native int torchLayout(Pointer handle); native Pointer torchTo(Pointer handle, int dType, int[] device, boolean copy); native Pointer torchToSparse(Pointer handle); native Pointer torchToDense(Pointer handle); native Pointer tensorClone(Pointer handle); native Pointer torchEmpty( long[] shape, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchZeros( long[] shape, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchOnes( long[] shape, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchFull( long[] shape, double fillValue, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchZerosLike( Pointer handle, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchOnesLike( Pointer handle, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchArange( float start, float end, float step, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchLinspace( float start, float end, int step, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchAdd(Pointer self, Pointer other); native void torchAddi(Pointer self, Pointer other); native Pointer torchExpand(Pointer self, long[] shape); native Pointer torchSub(Pointer self, Pointer other); native void torchSubi(Pointer self, Pointer other); native Pointer torchMul(Pointer self, Pointer other); native void torchMuli(Pointer self, Pointer other); native Pointer torchTrueDivide(Pointer self, Pointer other); native void torchTrueDividei(Pointer self, Pointer other); native Pointer torchRemainder(Pointer self, Pointer other); native void torchRemainderi(Pointer self, Pointer other); native Pointer torchPow(Pointer self, Pointer exponent); native void torchPowi(Pointer self, Pointer exponent); native Pointer torchSign(Pointer self); native void torchSigni(Pointer self); native Pointer torchMatmul(Pointer self, Pointer other); native Pointer torchDot(Pointer self, Pointer other); native Pointer torchMM(Pointer self, Pointer other); native Pointer torchLogicalAnd(Pointer self, Pointer other); native Pointer torchLogicalOr(Pointer self, Pointer other); native Pointer torchLogicalXor(Pointer self, Pointer other); native Pointer torchLogicalNot(Pointer handle); native Pointer torchReshape(Pointer handle, long[] shape); native Pointer torchSoftmax(Pointer handle, long dim, int dType); native Pointer torchLogSoftmax(Pointer handle, long dim, int dType); native Pointer torchArgMax(Pointer handle); native Pointer torchArgMax(Pointer handle, long dim, boolean keepDim); native Pointer torchArgMin(Pointer handle); native Pointer torchArgMin(Pointer handle, long dim, boolean keepDim); native Pointer torchArgSort(Pointer handle); native Pointer torchArgSort(Pointer handle, long dim, boolean keepDim); native Pointer torchSort(Pointer handle, long dim, boolean descending); native Pointer torchPermute(Pointer handle, long[] dims); native Pointer torchFlip(Pointer handle, long[] dims); native Pointer torchTranspose(Pointer handle, long axis1, long axis2); native boolean contentEqual(Pointer handle1, Pointer handle2); native Pointer torchFromBlob( ByteBuffer data, long[] shape, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchIndex( Pointer handle, long[] minIndices, long[] maxIndices, long[] stepIndices); native void torchIndexPut( Pointer handle, Pointer valueHandle, long[] minIndices, long[] maxIndices, long[] stepIndices); native void torchSet(Pointer selfHandle, Pointer otherHandle); native Pointer torchSlice(Pointer handle, long dim, long start, long end, long step); native Pointer torchGather(Pointer handle, Pointer index, long dim, boolean sparseGrad); native Pointer torchMaskedSelect(Pointer handle, Pointer maskHandle); native void torchMaskedPut(Pointer handle, Pointer valueHandle, Pointer maskHandle); native void torchDeleteTensor(Pointer handle); native void torchDeleteModule(Pointer handle); native void torchDeleteIValue(Pointer handle); native Pointer torchMax(Pointer handle); native Pointer torchMax(Pointer self, Pointer other); native Pointer torchMax(Pointer handle, long dim, boolean keepDim); native Pointer torchMin(Pointer handle); native Pointer torchMin(Pointer self, Pointer other); native Pointer torchMin(Pointer handle, long dim, boolean keepDim); native Pointer torchMean(Pointer handle); native Pointer torchMean(Pointer handle, long dim, boolean keepDim); native Pointer torchSum(Pointer handle); native Pointer torchSum(Pointer handle, long[] dim, boolean keepDim); native Pointer torchProd(Pointer handle); native Pointer torchProd(Pointer handle, long dim, boolean keepDim); native Pointer torchCumSum(Pointer handle, long dim); native Pointer torchFlatten(Pointer handle, long startDim, long endDim); native Pointer[] torchSplit(Pointer handle, long size, long dim); native Pointer[] torchSplit(Pointer handle, long[] indices, long dim); native Pointer torchUnsqueeze(Pointer handle, long dim); native Pointer torchSqueeze(Pointer handle); native Pointer torchSqueeze(Pointer handle, long axis); native Pointer torchStack(Pointer[] handles, long dim); native Pointer torchCat(Pointer[] handles, long dim); native Pointer torchRepeat(Pointer handle, long[] repeats); native Pointer torchRepeatInterleave(Pointer handle, long repeat, long axis); native Pointer torchAbs(Pointer handle); native Pointer torchSquare(Pointer self); native Pointer torchFloor(Pointer handle); native Pointer torchCeil(Pointer handle); native Pointer torchClamp(Pointer handle, Pointer min, Pointer max); native Pointer torchRound(Pointer handle); native Pointer torchTrunc(Pointer handle); native Pointer torchExp(Pointer handle); native Pointer torchLog(Pointer handle); native Pointer torchLog10(Pointer handle); native Pointer torchLog2(Pointer handle); native Pointer torchSin(Pointer handle); native Pointer torchCos(Pointer handle); native Pointer torchTan(Pointer handle); native Pointer torchASin(Pointer handle); native Pointer torchAcos(Pointer handle); native Pointer torchAtan(Pointer handle); native Pointer torchSqrt(Pointer handle); native Pointer torchSinh(Pointer handle); native Pointer torchCosh(Pointer handle); native Pointer torchTanh(Pointer handle); native Pointer torchSigmoid(Pointer handle); native Pointer torchWhere(Pointer handle, Pointer x, Pointer y); native Pointer torchAll(Pointer self); native Pointer torchAny(Pointer self); native Pointer torchNone(Pointer self); native Pointer torchEq(Pointer self, Pointer other); native Pointer torchNeq(Pointer self, Pointer other); native Pointer torchGt(Pointer self, Pointer other); native Pointer torchGte(Pointer self, Pointer other); native Pointer torchLt(Pointer self, Pointer other); native Pointer torchLte(Pointer self, Pointer other); native Pointer torchNeg(Pointer self); native void torchNegi(Pointer self); native Pointer torchIsNaN(Pointer self); native Pointer torchIsInf(Pointer self); native Pointer atNormal( double mean, double std, long[] sizes, int dType, int layout, int[] device, boolean requiredGrad); native Pointer tensorUniform( double from, double to, long[] sizes, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchEye( int n, int m, int dType, int layout, int[] device, boolean requiredGrad); native Pointer torchNNInterpolate(Pointer handle, long[] size, int mode, boolean alignCorners); native Pointer torchNNLinear(Pointer handle, Pointer weightHandle, Pointer biasHandle); native Pointer torchNNRelu(Pointer handle); native Pointer torchNNSoftPlus(Pointer handle); native Pointer torchNNSoftSign(Pointer handle); native Pointer torchNNLeakyRelu(Pointer handle, double negativeSlope); native Pointer torchNNElu(Pointer handle, double alpha); native Pointer torchNNSelu(Pointer handle); native Pointer torchNNGelu(Pointer handle); native Pointer torchNNConvNd( Pointer inputHandle, Pointer weightHandle, Pointer biasHandle, long[] stride, long[] padding, long[] dilation, int groups); native Pointer torchNNDropout(Pointer inputHandle, double probability, boolean isTrain); native Pointer torchNNBatchNorm( Pointer inputHandle, Pointer runningMeanHandle, Pointer runningVarHandle, Pointer weigthHandle, Pointer biasHandle, boolean training, double momentum, double eps); native Pointer torchNNAvgPool( Pointer inputHandle, long[] kernel, long[] stride, long[] pad, boolean useCeil, boolean countIncludePad); native Pointer torchNNMaxPool( Pointer inputHandle, long[] kernelSize, long[] stride, long[] padding, boolean ceilMode); native Pointer torchNNAdaptiveAvgPool(Pointer inputHandle, long[] outputSize); native Pointer torchNNAdaptiveMaxPool(Pointer inputHandle, long[] outputSize); native Pointer torchNNLpPool( Pointer inputHandle, double normType, long[] kernelSize, long[] stride, boolean ceilMode); native boolean torchRequiresGrad(Pointer inputHandle); native String torchGradFnName(Pointer inputHandle); native void torchAttachGrad(Pointer inputHandle); native Pointer torchGrad(Pointer inputHandle); native Pointer torchDetachGrad(Pointer inputHandle); native void torchBackward( Pointer inputHandle, Pointer gradHandle, boolean keepGraph, boolean createGraph); native Pointer moduleLoad(String path, int[] device); native void moduleEval(Pointer handle); native void moduleTrain(Pointer handle); native Pointer moduleForward(Pointer moduleHandle, Pointer[] arrayHandles, boolean isTrain); native Pointer iValueCreateFromTensor(Pointer tensorHandle); native Pointer iValueToTensor(Pointer iValueHandle); native Pointer[] iValueToTensorList(Pointer iValueHandle); native Pointer[] iValueToList(Pointer iValueHandle); native Pointer[] iValueToListFromTuple(Pointer iValueHandle); native Pointer[] iValueToMap(Pointer iValueHandle); native String iValueToString(Pointer iValueHandle); native boolean iValueIsString(Pointer iValueHandle); native boolean iValueIsTensor(Pointer iValueHandle); native boolean iValueIsTensorList(Pointer iValueHandle); native boolean iValueIsList(Pointer iValueHandle); native boolean iValueIsMap(Pointer iValueHandle); native boolean iValueIsTuple(Pointer iValueHandle); native void zeroGrad(Pointer handle); native void adamUpdate( Pointer weight, Pointer grad, Pointer mean, Pointer variance, float lr, float wd, float rescaleGrad, float clipGrad, float beta1, float beta2, float eps); native void sgdUpdate( Pointer weight, Pointer grad, Pointer state, float lr, float wd, float rescaleGrad, float clipGrad, float momentum); }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/PtModelZoo.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo; import ai.djl.Application.CV; import ai.djl.Application.NLP; import ai.djl.Application.TimeSeries; import ai.djl.pytorch.engine.PtEngine; import ai.djl.repository.RemoteRepository; import ai.djl.repository.Repository; import ai.djl.repository.zoo.ModelZoo; import java.util.Collections; import java.util.Set; /** * PtModelZoo is a repository that contains all PyTorch models in {@link * ai.djl.pytorch.engine.PtSymbolBlock} for DJL. */ public class PtModelZoo extends ModelZoo { private static final Repository REPOSITORY = new RemoteRepository("PyTorch", DJL_REPO_URL); public static final String GROUP_ID = "ai.djl.pytorch"; PtModelZoo() { addModel( REPOSITORY.model( CV.ACTION_RECOGNITION, GROUP_ID, "Human-Action-Recognition-VIT-Base-patch16-224", "0.0.1")); addModel(REPOSITORY.model(CV.IMAGE_CLASSIFICATION, GROUP_ID, "resnet", "0.0.1")); addModel( REPOSITORY.model(CV.IMAGE_CLASSIFICATION, GROUP_ID, "resnet18_embedding", "0.0.1")); addModel(REPOSITORY.model(CV.INSTANCE_SEGMENTATION, GROUP_ID, "yolo11n-seg", "0.0.1")); addModel(REPOSITORY.model(CV.INSTANCE_SEGMENTATION, GROUP_ID, "yolov8n-seg", "0.0.1")); addModel(REPOSITORY.model(CV.MASK_GENERATION, GROUP_ID, "sam2-hiera-tiny", "0.0.1")); addModel(REPOSITORY.model(CV.MASK_GENERATION, GROUP_ID, "sam2-hiera-large", "0.0.1")); addModel(REPOSITORY.model(CV.OBJECT_DETECTION, GROUP_ID, "ssd", "0.0.1")); addModel(REPOSITORY.model(CV.OBJECT_DETECTION, GROUP_ID, "yolo11n", "0.0.1")); addModel(REPOSITORY.model(CV.OBJECT_DETECTION, GROUP_ID, "yolov5s", "0.0.1")); addModel(REPOSITORY.model(CV.OBJECT_DETECTION, GROUP_ID, "yolov8n", "0.0.1")); addModel(REPOSITORY.model(CV.POSE_ESTIMATION, GROUP_ID, "yolo11n-pose", "0.0.1")); addModel(REPOSITORY.model(CV.POSE_ESTIMATION, GROUP_ID, "yolov8n-pose", "0.0.1")); addModel( REPOSITORY.model( CV.ZERO_SHOT_OBJECT_DETECTION, GROUP_ID, "yolov8s-worldv2", "0.0.1")); addModel(REPOSITORY.model(NLP.QUESTION_ANSWER, GROUP_ID, "bertqa", "0.0.1")); addModel(REPOSITORY.model(NLP.SENTIMENT_ANALYSIS, GROUP_ID, "distilbert", "0.0.1")); addModel(REPOSITORY.model(CV.IMAGE_GENERATION, GROUP_ID, "biggan-deep", "0.0.1")); addModel(REPOSITORY.model(CV.IMAGE_GENERATION, GROUP_ID, "cyclegan", "0.0.1")); addModel(REPOSITORY.model(CV.SEMANTIC_SEGMENTATION, GROUP_ID, "deeplabv3", "0.0.1")); addModel(REPOSITORY.model(TimeSeries.FORECASTING, GROUP_ID, "deepar", "0.0.1")); } /** {@inheritDoc} */ @Override public String getGroupId() { return GROUP_ID; } /** {@inheritDoc} */ @Override public Set<String> getSupportedEngines() { return Collections.singleton(PtEngine.ENGINE_NAME); } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/PtZooProvider.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo; import ai.djl.repository.zoo.ModelZoo; import ai.djl.repository.zoo.ZooProvider; /** * An PyTorch model zoo provider implements the {@link ai.djl.repository.zoo.ZooProvider} interface. */ public class PtZooProvider implements ZooProvider { /** {@inheritDoc} */ @Override public ModelZoo getModelZoo() { return new PtModelZoo(); } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains the built-in {@link ai.djl.pytorch.zoo.PtModelZoo}. */ package ai.djl.pytorch.zoo;
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/cv
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/cv/objectdetection/PtSsdTranslator.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo.cv.objectdetection; import ai.djl.modality.cv.output.BoundingBox; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.output.Rectangle; import ai.djl.modality.cv.translator.ObjectDetectionTranslator; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDArrays; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.types.DataType; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.TranslatorContext; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; /** * A {@link PtSsdTranslator} that post-process the {@link NDArray} into {@link DetectedObjects} with * boundaries. Reference implementation: <a * href="https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD">SSD</a>. */ public class PtSsdTranslator extends ObjectDetectionTranslator { private NDArray boxRecover; private int figSize; private int[] featSize; private int[] steps; private int[] scale; private int[][] aspectRatio; /** * Creates the SSD translator from the given builder. * * @param builder the builder for the translator */ protected PtSsdTranslator(Builder builder) { super(builder); this.figSize = builder.figSize; this.featSize = builder.featSize; this.steps = builder.steps; this.scale = builder.scale; this.aspectRatio = builder.aspectRatio; } /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws Exception { super.prepare(ctx); NDManager manager = ctx.getPredictorManager(); boxRecover = boxRecover(manager, figSize, featSize, steps, scale, aspectRatio); } /** {@inheritDoc} */ @Override public DetectedObjects processOutput(TranslatorContext ctx, NDList list) { double scaleXY = 0.1; double scaleWH = 0.2; // kill the 1st prediction as not needed NDArray prob = list.get(1).swapAxes(0, 1).softmax(1).get(":, 1:"); prob = NDArrays.stack( new NDList( prob.argMax(1).toType(DataType.FLOAT32, false), prob.max(new int[] {1}))); NDArray boundingBoxes = list.get(0).swapAxes(0, 1); NDArray bbWH = boundingBoxes.get(":, 2:").mul(scaleWH).exp().mul(boxRecover.get(":, 2:")); NDArray bbXY = boundingBoxes .get(":, :2") .mul(scaleXY) .mul(boxRecover.get(":, 2:")) .add(boxRecover.get(":, :2")) .sub(bbWH.mul(0.5f)); boundingBoxes = NDArrays.concat(new NDList(bbXY, bbWH), 1); // filter the result below the threshold NDArray cutOff = prob.get(1).gte(threshold); boundingBoxes = boundingBoxes.transpose().booleanMask(cutOff, 1).transpose(); prob = prob.booleanMask(cutOff, 1); // start categorical filtering long[] order = prob.get(1).argSort().toLongArray(); double desiredIoU = 0.45; prob = prob.transpose(); List<String> retNames = new ArrayList<>(); List<Double> retProbs = new ArrayList<>(); List<BoundingBox> retBB = new ArrayList<>(); Map<Integer, List<BoundingBox>> recorder = new ConcurrentHashMap<>(); for (int i = order.length - 1; i >= 0; i--) { long currMaxLoc = order[i]; float[] classProb = prob.get(currMaxLoc).toFloatArray(); int classId = (int) classProb[0]; double probability = classProb[1]; double[] boxArr = boundingBoxes.get(currMaxLoc).toDoubleArray(); Rectangle rect = new Rectangle(boxArr[0], boxArr[1], boxArr[2], boxArr[3]); List<BoundingBox> boxes = recorder.getOrDefault(classId, new ArrayList<>()); boolean belowIoU = true; for (BoundingBox box : boxes) { if (box.getIoU(rect) > desiredIoU) { belowIoU = false; break; } } if (belowIoU) { boxes.add(rect); recorder.put(classId, boxes); String className = classes.get(classId); retNames.add(className); retProbs.add(probability); retBB.add(rect); } } return new DetectedObjects(retNames, retProbs, retBB); } NDArray boxRecover( NDManager manager, int figSize, int[] featSize, int[] steps, int[] scale, int[][] aspectRatio) { double[] fk = manager.create(steps) .toType(DataType.FLOAT64, true) .getNDArrayInternal() .rdiv((double) figSize) .toDoubleArray(); List<double[]> defaultBoxes = new ArrayList<>(); for (int idx = 0; idx < featSize.length; idx++) { double sk1 = scale[idx] * 1.0 / figSize; double sk2 = scale[idx + 1] * 1.0 / figSize; double sk3 = Math.sqrt(sk1 * sk2); List<double[]> array = new ArrayList<>(); array.add(new double[] {sk1, sk1}); array.add(new double[] {sk3, sk3}); for (int alpha : aspectRatio[idx]) { double w = sk1 * Math.sqrt(alpha); double h = sk1 / Math.sqrt(alpha); array.add(new double[] {w, h}); array.add(new double[] {h, w}); } for (double[] size : array) { for (int i = 0; i < featSize[idx]; i++) { for (int j = 0; j < featSize[idx]; j++) { double cx = (j + 0.5) / fk[idx]; double cy = (i + 0.5) / fk[idx]; defaultBoxes.add(new double[] {cx, cy, size[0], size[1]}); } } } } double[][] boxes = new double[defaultBoxes.size()][defaultBoxes.get(0).length]; for (int i = 0; i < defaultBoxes.size(); i++) { boxes[i] = defaultBoxes.get(i); } return manager.create(boxes).clip(0.0, 1.0); } /** * Creates a builder to build a {@code PtSSDTranslatorBuilder}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code PtSSDTranslatorBuilder} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configPreProcess(arguments); builder.configPostProcess(arguments); return builder; } /** The builder for SSD translator. */ public static class Builder extends ObjectDetectionBuilder<Builder> { private int figSize; private int[] featSize; private int[] steps; private int[] scale; private int[][] aspectRatio; /** * Set the box parameter to reconstruct the anchor box. * * @param figSize image size * @param featSize feature size * @param steps steps to create boxes * @param scale scale between different level of generated boxes * @param aspectRatio parameter go along with scale * @return this builder */ public Builder setBoxes( int figSize, int[] featSize, int[] steps, int[] scale, int[][] aspectRatio) { this.figSize = figSize; this.featSize = featSize; this.steps = steps; this.scale = scale; this.aspectRatio = aspectRatio; return this; } /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** {@inheritDoc} */ @Override protected void configPreProcess(Map<String, ?> arguments) { super.configPreProcess(arguments); } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") protected void configPostProcess(Map<String, ?> arguments) { super.configPostProcess(arguments); threshold = ArgumentsUtil.floatValue(arguments, "threshold", 0.4f); figSize = ArgumentsUtil.intValue(arguments, "size", 300); List<Double> list = (List<Double>) arguments.get("featSize"); if (list == null) { featSize = new int[] {38, 19, 10, 5, 3, 1}; } else { featSize = list.stream().mapToInt(Double::intValue).toArray(); } list = (List<Double>) arguments.get("steps"); if (list == null) { steps = new int[] {8, 16, 32, 64, 100, 300}; } else { steps = list.stream().mapToInt(Double::intValue).toArray(); } list = (List<Double>) arguments.get("scale"); if (list == null) { scale = new int[] {21, 45, 99, 153, 207, 261, 315}; } else { scale = list.stream().mapToInt(Double::intValue).toArray(); } List<List<Double>> ratio = (List<List<Double>>) arguments.get("aspectRatios"); if (ratio == null) { aspectRatio = new int[][] {{2}, {2, 3}, {2, 3}, {2, 3}, {2}, {2}}; } else { aspectRatio = new int[ratio.size()][]; for (int i = 0; i < aspectRatio.length; ++i) { aspectRatio[i] = ratio.get(i).stream().mapToInt(Double::intValue).toArray(); } } } /** * Builds the translator. * * @return the new translator */ public PtSsdTranslator build() { validate(); return new PtSsdTranslator(this); } } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/cv
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/cv/objectdetection/PtSsdTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo.cv.objectdetection; import ai.djl.Model; import ai.djl.modality.cv.Image; import ai.djl.modality.cv.output.DetectedObjects; import ai.djl.modality.cv.translator.ObjectDetectionTranslatorFactory; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import java.util.Map; /** An {@link TranslatorFactory} that creates a {@link PtSsdTranslator} instance. */ public class PtSsdTranslatorFactory extends ObjectDetectionTranslatorFactory { /** {@inheritDoc} */ @Override protected Translator<Image, DetectedObjects> buildBaseTranslator( Model model, Map<String, ?> arguments) { return PtSsdTranslator.builder(arguments).build(); } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/cv
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/cv/objectdetection/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains classes for the {@link ai.djl.Application.CV#OBJECT_DETECTION} models in the {@link * ai.djl.pytorch.zoo.PtModelZoo}. */ package ai.djl.pytorch.zoo.cv.objectdetection;
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains supplemental classes for the {@link ai.djl.Application.NLP} models in the {@link * ai.djl.pytorch.zoo.PtModelZoo}. */ package ai.djl.pytorch.zoo.nlp;
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/qa/PtBertQATranslator.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo.nlp.qa; import ai.djl.modality.nlp.DefaultVocabulary; import ai.djl.modality.nlp.Vocabulary; import ai.djl.modality.nlp.bert.BertFullTokenizer; import ai.djl.modality.nlp.bert.BertToken; import ai.djl.modality.nlp.bert.BertTokenizer; import ai.djl.modality.nlp.qa.QAInput; import ai.djl.modality.nlp.translator.QATranslator; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.translate.TranslatorContext; import java.io.IOException; import java.util.List; import java.util.Map; /** The {@link ai.djl.translate.Translator} for PyTorch Question Answering model. */ public class PtBertQATranslator extends QATranslator { private List<String> tokens; private Vocabulary vocabulary; private BertTokenizer tokenizer; PtBertQATranslator(Builder builder) { super(builder); } /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws IOException { vocabulary = DefaultVocabulary.builder() .addFromTextFile(ctx.getModel().getArtifact(vocab)) .optUnknownToken("[UNK]") .build(); if (tokenizerName == null) { tokenizer = new BertTokenizer(); } else { tokenizer = new BertFullTokenizer(vocabulary, true); } } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, QAInput input) { String question = input.getQuestion(); String paragraph = input.getParagraph(); if (toLowerCase) { question = question.toLowerCase(locale); paragraph = paragraph.toLowerCase(locale); } BertToken token; if (padding) { token = tokenizer.encode(question, paragraph, maxLength); } else { token = tokenizer.encode(question, paragraph); } tokens = token.getTokens(); NDManager manager = ctx.getNDManager(); long[] indices = tokens.stream().mapToLong(vocabulary::getIndex).toArray(); long[] attentionMask = token.getAttentionMask().stream().mapToLong(i -> i).toArray(); NDList ndList = new NDList(3); ndList.add(manager.create(indices)); ndList.add(manager.create(attentionMask)); if (includeTokenTypes) { long[] tokenTypes = token.getTokenTypes().stream().mapToLong(i -> i).toArray(); ndList.add(manager.create(tokenTypes)); } return ndList; } /** {@inheritDoc} */ @Override public String processOutput(TranslatorContext ctx, NDList list) { NDArray startLogits = list.get(0); NDArray endLogits = list.get(1); int startIdx = (int) startLogits.argMax().getLong(); int endIdx = (int) endLogits.argMax().getLong(); if (startIdx >= endIdx) { int tmp = startIdx; startIdx = endIdx; endIdx = tmp; } return tokenizer.buildSentence(tokens.subList(startIdx, endIdx + 1)); } /** * Creates a builder to build a {@code PtBertQATranslator}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** * Creates a builder to build a {@code PtSSDTranslatorBuilder} with specified arguments. * * @param arguments arguments to specify builder options * @return a new builder */ public static Builder builder(Map<String, ?> arguments) { Builder builder = new Builder(); builder.configure(arguments); return builder; } /** The builder for Bert QA translator. */ public static class Builder extends BaseBuilder<Builder> { /** * Returns the builder. * * @return the builder */ @Override protected Builder self() { return this; } /** * Builds the translator. * * @return the new translator */ protected PtBertQATranslator build() { return new PtBertQATranslator(this); } } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/qa/PtBertQATranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo.nlp.qa; import ai.djl.Model; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.modality.nlp.qa.QAInput; import ai.djl.modality.nlp.translator.QATranslator; import ai.djl.modality.nlp.translator.QaServingTranslator; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import ai.djl.util.Pair; import java.lang.reflect.Type; import java.util.HashSet; import java.util.Map; import java.util.Set; /** An {@link TranslatorFactory} that creates a {@link PtBertQATranslator} instance. */ public class PtBertQATranslatorFactory implements TranslatorFactory { private static final Set<Pair<Type, Type>> SUPPORTED_TYPES = new HashSet<>(); static { SUPPORTED_TYPES.add(new Pair<>(QAInput.class, String.class)); SUPPORTED_TYPES.add(new Pair<>(Input.class, Output.class)); } /** {@inheritDoc} */ @Override public Set<Pair<Type, Type>> getSupportedTypes() { return SUPPORTED_TYPES; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <I, O> Translator<I, O> newInstance( Class<I> input, Class<O> output, Model model, Map<String, ?> arguments) { if (!isSupported(input, output)) { throw new IllegalArgumentException("Unsupported input/output types."); } QATranslator translator = PtBertQATranslator.builder(arguments).build(); if (input == Input.class && output == Output.class) { return (Translator<I, O>) new QaServingTranslator(translator); } return (Translator<I, O>) translator; } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/qa/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains classes for the {@link ai.djl.Application.NLP#QUESTION_ANSWER} models in the {@link * ai.djl.pytorch.zoo.PtModelZoo}. */ package ai.djl.pytorch.zoo.nlp.qa;
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/sentimentanalysis/PtDistilBertTranslator.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo.nlp.sentimentanalysis; import ai.djl.Model; import ai.djl.modality.Classifications; import ai.djl.modality.nlp.DefaultVocabulary; import ai.djl.modality.nlp.Vocabulary; import ai.djl.modality.nlp.bert.BertTokenizer; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorContext; import java.io.IOException; import java.net.URL; import java.util.Arrays; import java.util.List; /** The {@link ai.djl.translate.Translator} for PyTorch Sentiment Analysis model. */ public class PtDistilBertTranslator implements Translator<String, Classifications> { private Vocabulary vocabulary; private BertTokenizer tokenizer; /** {@inheritDoc} */ @Override public void prepare(TranslatorContext ctx) throws IOException { Model model = ctx.getModel(); URL url = model.getArtifact("distilbert-base-uncased-finetuned-sst-2-english-vocab.txt"); vocabulary = DefaultVocabulary.builder().addFromTextFile(url).optUnknownToken("[UNK]").build(); tokenizer = new BertTokenizer(); } /** {@inheritDoc} */ @Override public Classifications processOutput(TranslatorContext ctx, NDList list) { NDArray raw = list.singletonOrThrow(); NDArray computed = raw.exp().div(raw.exp().sum(new int[] {0}, true)); return new Classifications(Arrays.asList("Negative", "Positive"), computed); } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, String input) { List<String> tokens = tokenizer.tokenize(input); long[] indices = tokens.stream().mapToLong(vocabulary::getIndex).toArray(); long[] attentionMask = new long[tokens.size()]; Arrays.fill(attentionMask, 1); NDManager manager = ctx.getNDManager(); NDArray indicesArray = manager.create(indices); NDArray attentionMaskArray = manager.create(attentionMask); return new NDList(indicesArray, attentionMaskArray); } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/sentimentanalysis/PtDistilBertTranslatorFactory.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo.nlp.sentimentanalysis; import ai.djl.Model; import ai.djl.modality.Classifications; import ai.djl.modality.Input; import ai.djl.modality.Output; import ai.djl.modality.nlp.translator.TextClassificationServingTranslator; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import ai.djl.util.Pair; import java.lang.reflect.Type; import java.util.HashSet; import java.util.Map; import java.util.Set; /** An {@link TranslatorFactory} that creates a {@link PtDistilBertTranslator} instance. */ public class PtDistilBertTranslatorFactory implements TranslatorFactory { private static final Set<Pair<Type, Type>> SUPPORTED_TYPES = new HashSet<>(); static { SUPPORTED_TYPES.add(new Pair<>(String.class, Classifications.class)); SUPPORTED_TYPES.add(new Pair<>(Input.class, Output.class)); } /** {@inheritDoc} */ @Override public Set<Pair<Type, Type>> getSupportedTypes() { return SUPPORTED_TYPES; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <I, O> Translator<I, O> newInstance( Class<I> input, Class<O> output, Model model, Map<String, ?> arguments) { if (!isSupported(input, output)) { throw new IllegalArgumentException("Unsupported input/output types."); } Translator<String, Classifications> translator = new PtDistilBertTranslator(); if (input == Input.class && output == Output.class) { return (Translator<I, O>) new TextClassificationServingTranslator(translator); } return (Translator<I, O>) translator; } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/sentimentanalysis/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains classes for the {@link ai.djl.Application.NLP#SENTIMENT_ANALYSIS} models in the {@link * ai.djl.pytorch.zoo.PtModelZoo}. */ package ai.djl.pytorch.zoo.nlp.sentimentanalysis;
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/textgeneration/PtGptTranslator.java
/* * Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo.nlp.textgeneration; import ai.djl.modality.nlp.generate.CausalLMOutput; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.index.NDIndex; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.translate.NoBatchifyTranslator; import ai.djl.translate.TranslatorContext; import java.util.stream.Collectors; /** The {@link ai.djl.translate.Translator} for PyTorch GPT2 model. */ public class PtGptTranslator implements NoBatchifyTranslator<NDList, CausalLMOutput> { private long kvDim; private int numAttentionHeads; private int numLayers; private String tupleName; /** * Constructs a new instance of {@code PtGptTranslator}. * * @param kvDim the kv dimension * @param numAttentionHeads the number of attention heads * @param numLayers the number of layers */ public PtGptTranslator(long kvDim, int numAttentionHeads, int numLayers) { this.kvDim = kvDim; this.numAttentionHeads = numAttentionHeads; this.numLayers = numLayers; tupleName = "past_key_values(" + numLayers + ',' + 2 + ')'; } /** {@inheritDoc} */ @Override public NDList processInput(TranslatorContext ctx, NDList input) throws Exception { // input = [inputIds, posIds, attnMask] NDManager manager = ctx.getNDManager(); if (input.size() == 3) { // In this case, input has null pastKeyValues. We prefix-append a dummy pastKeyValues, // which is treated as prefix padding, and set the corresponding attnMask to be zero. No // need to shift the position ids, since the starting position id, which is 0, won't // change after appending the dummy kv_cache. ctx.setAttachment("useDummyPastKeyValues", Boolean.TRUE); // Pad the null pastKeyValues with dummy values initialDummyPastKeyValues(input.get(0), manager, input); // Append zero to the attentionMask from left, corresponding to the padding long batchSize = input.get(0).getShape().get(0); NDArray attentionMask = manager.zeros(new Shape(batchSize, 1), DataType.INT64).concat(input.get(2), -1); input.set(2, attentionMask); } for (int i = 3; i < numLayers * 2 + 3; ++i) { input.get(i).setName(tupleName); } return input; } /** {@inheritDoc} */ @Override public CausalLMOutput processOutput(TranslatorContext ctx, NDList output) throws Exception { NDArray logitsOutput = output.get(0); NDManager manager = output.getManager(); NDList pastKeyValuesOutput = output.subNDList(1, numLayers * 2 + 1); NDArray hiddenStatesOutput; if (output.size() > numLayers * 2 + 1) { hiddenStatesOutput = output.get(numLayers * 2 + 1); } else { // Here is reached only if the language model doesn't output hiddenStates, which is // needed only in contrastive search. We can also throw a warning here. hiddenStatesOutput = manager.zeros(new Shape(1)); } if (ctx.getAttachment("useDummyPastKeyValues") != null) { NDIndex index2 = new NDIndex(":, :, 1:, ..."); pastKeyValuesOutput = new NDList( pastKeyValuesOutput.stream() .map(object -> object.get(index2)) .collect(Collectors.toList())); } for (NDArray array : pastKeyValuesOutput) { array.setName(tupleName); } return new CausalLMOutput(logitsOutput, hiddenStatesOutput, pastKeyValuesOutput); } private void initialDummyPastKeyValues(NDArray inputIds, NDManager manager, NDList list) { long numBatch = inputIds.getShape().get(0); for (int i = 0; i < numLayers * 2; ++i) { NDArray array = manager.zeros(new Shape(numBatch, numAttentionHeads, 1, kvDim)); list.add(array); } } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/textgeneration/PtGptTranslatorFactory.java
/* * Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.zoo.nlp.textgeneration; import ai.djl.Model; import ai.djl.modality.nlp.generate.CausalLMOutput; import ai.djl.ndarray.NDList; import ai.djl.translate.ArgumentsUtil; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import ai.djl.util.Pair; import java.lang.reflect.Type; import java.util.HashSet; import java.util.Map; import java.util.Set; /** An {@link TranslatorFactory} that creates a {@link PtGptTranslator} instance. */ public class PtGptTranslatorFactory implements TranslatorFactory { private static final Set<Pair<Type, Type>> SUPPORTED_TYPES = new HashSet<>(); static { SUPPORTED_TYPES.add(new Pair<>(NDList.class, CausalLMOutput.class)); } /** {@inheritDoc} */ @Override public Set<Pair<Type, Type>> getSupportedTypes() { return SUPPORTED_TYPES; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <I, O> Translator<I, O> newInstance( Class<I> input, Class<O> output, Model model, Map<String, ?> arguments) { if (!isSupported(input, output)) { throw new IllegalArgumentException("Unsupported input/output types."); } long kvDim = ArgumentsUtil.longValue(arguments, "kvDim", 64); int numAttentionHeads = ArgumentsUtil.intValue(arguments, "numAttentionHeads", 12); int numLayers = ArgumentsUtil.intValue(arguments, "numLayers", 12); return (Translator<I, O>) (new PtGptTranslator(kvDim, numAttentionHeads, numLayers)); } }
0
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp
java-sources/ai/djl/pytorch/pytorch-model-zoo/0.34.0/ai/djl/pytorch/zoo/nlp/textgeneration/package-info.java
/* * Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains classes for the {@link ai.djl.Application.NLP#TEXT_GENERATION} models. */ package ai.djl.pytorch.zoo.nlp.textgeneration;
0
java-sources/ai/djl/pytorch/pytorch-native-auto/1.9.1/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-native-auto/1.9.1/ai/djl/pytorch/jni/NativeHelper.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.pytorch.jni; /** A helper class allows engine shared library to be loaded from different class loader. */ public final class NativeHelper { private NativeHelper() {} /** * Load native shared library from file. * * @param path the file to load */ public static void load(String path) { System.load(path); // NOPMD } }
0
java-sources/ai/djl/pytorch/pytorch-native-auto/1.9.1/ai/djl/pytorch
java-sources/ai/djl/pytorch/pytorch-native-auto/1.9.1/ai/djl/pytorch/jni/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains helper class to load native shared library. */ package ai.djl.pytorch.jni;
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/AbstractRepository.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import ai.djl.util.Progress; import ai.djl.util.Utils; import java.io.IOException; import java.io.InputStream; import java.net.URI; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.nio.file.StandardCopyOption; import java.security.DigestInputStream; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.util.Map; import java.util.zip.GZIPInputStream; import java.util.zip.ZipInputStream; /** * The {@code AbstractRepository} is the shared base for implementers of the {@link Repository} * interface. * * @see Repository */ public abstract class AbstractRepository implements Repository { /** {@inheritDoc} */ @Override public InputStream openStream(Artifact.Item item, String path) throws IOException { return Files.newInputStream(Paths.get(resolvePath(item, path))); } /** {@inheritDoc} */ @Override public String[] listDirectory(Artifact.Item item, String path) throws IOException { return Paths.get(resolvePath(item, path)).toFile().list(); } /** {@inheritDoc} */ @Override public Path getFile(Artifact.Item item, String path) throws IOException { return Paths.get(resolvePath(item, path)).toAbsolutePath(); } protected URI resolvePath(Artifact.Item item, String path) throws IOException { Artifact artifact = item.getArtifact(); URI artifactUri = artifact.getResourceUri(); String itemUri = item.getUri(); // Resolve cached item if (itemUri != null && URI.create(itemUri).isAbsolute() || isRemote()) { Path cacheDir = getCacheDirectory(); Path resourceDir = cacheDir.resolve(artifactUri.getPath()); String type = item.getType(); String fileName = item.getName(); Path cachedFile; if ("dir".equals(type)) { if (!fileName.isEmpty()) { cachedFile = resourceDir.resolve(fileName); } else { cachedFile = resourceDir; } return cachedFile.resolve(path).toUri(); } else { return resourceDir.resolve(fileName).toUri(); } } // Resolve metadata item String uriSuffix = itemUri != null ? itemUri : item.getName(); return getBaseUri().resolve(artifactUri.resolve(uriSuffix)); } /** {@inheritDoc} */ @Override public void prepare(Artifact artifact, Progress progress) throws IOException { Path cacheDir = getCacheDirectory(); URI resourceUri = artifact.getResourceUri(); Path resourceDir = cacheDir.resolve(resourceUri.getPath()); if (Files.exists(resourceDir)) { // files have been downloaded already. return; } Metadata metadata = artifact.getMetadata(); URI baseUri = metadata.getRepositoryUri(); Map<String, Artifact.Item> files = artifact.getFiles(); Path parentDir = resourceDir.toAbsolutePath().getParent(); if (parentDir == null) { throw new AssertionError("Parent path should never be null: " + resourceDir.toString()); } Files.createDirectories(parentDir); Path tmp = Files.createTempDirectory(parentDir, resourceDir.toFile().getName()); if (progress != null) { long totalSize = 0; for (Artifact.Item item : files.values()) { totalSize += item.getSize(); } progress.reset("Downloading", totalSize); } try { for (Artifact.Item item : files.values()) { download(tmp, baseUri, item, progress); } Files.move(tmp, resourceDir, StandardCopyOption.ATOMIC_MOVE); } finally { Utils.deleteQuietly(tmp); if (progress != null) { progress.end(); } } } /** {@inheritDoc} */ @Override public Path getCacheDirectory() throws IOException { String cacheDir = System.getProperty("DJL_CACHE_DIR"); if (cacheDir == null || cacheDir.isEmpty()) { cacheDir = System.getenv("DJL_CACHE_DIR"); if (cacheDir == null || cacheDir.isEmpty()) { String userHome = System.getProperty("user.home"); cacheDir = userHome + "/.djl.ai/cache"; } } Path dir = Paths.get(cacheDir, "repo"); if (Files.notExists(dir)) { Files.createDirectories(dir); } else if (!Files.isDirectory(dir)) { throw new IOException("Failed initialize cache directory: " + dir.toString()); } return dir; } private void download(Path tmp, URI baseUri, Artifact.Item item, Progress progress) throws IOException { URI fileUri = URI.create(item.getUri()); if (!fileUri.isAbsolute()) { fileUri = getBaseUri().resolve(baseUri).resolve(fileUri); } try (InputStream is = fileUri.toURL().openStream()) { ProgressInputStream pis = new ProgressInputStream(is, progress); String fileName = item.getName(); String extension = item.getExtension(); if ("dir".equals(item.getType())) { Path dir; if (!fileName.isEmpty()) { // honer the name set in metadata.json dir = tmp.resolve(fileName); Files.createDirectories(dir); } else { dir = tmp; } if (!"zip".equals(extension)) { throw new IOException("File type is not supported: " + extension); } ZipUtils.unzip(pis, dir); } else { Path file = tmp.resolve(fileName); if ("zip".equals(extension)) { ZipInputStream zis = new ZipInputStream(pis); zis.getNextEntry(); Files.copy(zis, file); } else if ("gzip".equals(extension)) { Files.copy(new GZIPInputStream(pis), file); } else if (extension.isEmpty()) { Files.copy(pis, file); } else { throw new IOException("File type is not supported: " + extension); } } pis.validateChecksum(item); } } /** * A {@code ProgressInputStream} is a wrapper around an {@link InputStream} that also uses * {@link Progress}. */ private static final class ProgressInputStream extends InputStream { private DigestInputStream dis; private Progress progress; /** * Constructs a new ProgressInputStream with an input stream and progress. * * @param is the input stream * @param progress the (optionally null) progress tracker */ public ProgressInputStream(InputStream is, Progress progress) { MessageDigest md; try { md = MessageDigest.getInstance("SHA1"); } catch (NoSuchAlgorithmException e) { throw new AssertionError("SHA1 algorithm not found.", e); } dis = new DigestInputStream(is, md); this.progress = progress; } /** {@inheritDoc} */ @Override public int read() throws IOException { int ret = dis.read(); if (progress != null) { if (ret >= 0) { progress.increment(1); } else { progress.end(); } } return ret; } /** {@inheritDoc} */ @Override public int read(byte[] b, int off, int len) throws IOException { int size = dis.read(b, off, len); if (progress != null) { progress.increment(size); } return size; } private void validateChecksum(Artifact.Item item) throws IOException { // drain InputSteam to get correct sha1 hash Utils.toByteArray(dis); String sha1 = Hex.toHexString(dis.getMessageDigest().digest()); if (!sha1.equalsIgnoreCase(item.getSha1Hash())) { throw new IOException( "Checksum error: " + item.getName() + ", expected sha1: " + item.getSha1Hash() + ", actual sha1: " + sha1); } } /** {@inheritDoc} */ @Override public void close() throws IOException { dis.close(); } } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/Anchor.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; /** * An {@code Anchor} represents a multi-level category of {@link Metadata} in a {@link MRL}. * * <p>The paths can have subpaths separated by slashes such as "dataset/cv" and "dataset/nlp". The * anchors translate to directories. Directories sharing a path prefix can be used to organize a * multi-level hierarchy of categories. * * @see MRL */ class Anchor { public static final Anchor MODEL = new Anchor("model"); public static final Anchor DATASET = new Anchor("dataset"); private String[] path; /** * Constructs an anchor from a split path. * * @param path a split path where each element in the path corresponds to a directory */ public Anchor(String... path) { this.path = path; } /** * Creates an anchor from a file path string. * * @param anchor the string containing each level separated by "/" * @return the new anchor */ public static Anchor parse(String anchor) { String[] tokens = anchor.split("[:/]"); return new Anchor(tokens); } /** * Splits path elements that contain multiple levels into separate components of the path. * * <p>For example, it will convert path("a/b","c","d/e/f") to path("a", "b", "c", "d", "e", * "f"). * * @return a new split anchor */ public Anchor normalize() { List<String> parts = new ArrayList<>(); for (String s : path) { String[] tokens = s.split("/"); Collections.addAll(parts, tokens); } return new Anchor(parts.toArray(new String[0])); } /** * Returns the path element at the given index. * * @param index the index to retrieve * @return the path element at the given index */ public String get(int index) { return path[index]; } /** * Returns the path as a single "/" separated string. * * @return the path as a single "/" separated string */ public String getPath() { return String.join("/", path); } /** * Returns the parent {@code Anchor} of this anchor. * * @return the parent {@code Anchor} of this anchor */ public Anchor getParent() { String[] parent = Arrays.copyOfRange(path, 0, path.length - 1); return new Anchor(parent); } /** * Joins two anchors together. * * <p>When joined, this this.path is the prefix and other.path is the suffix of the resulting * path. * * @param other the path to append * @return the joined path */ public Anchor resolve(Anchor other) { String[] newPath = new String[path.length + other.path.length]; System.arraycopy(path, 0, newPath, 0, path.length); System.arraycopy(other.path, 0, newPath, path.length, other.path.length); return new Anchor(newPath); } /** * Appends path items to the anchor. * * @param others the path elements to append * @return this anchor */ public Anchor resolve(String... others) { Anchor anchor = this; for (String other : others) { anchor = anchor.resolve(Anchor.parse(other)); } return anchor; } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/Artifact.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import java.io.Serializable; import java.net.URI; import java.util.Collections; import java.util.Comparator; import java.util.LinkedHashMap; import java.util.Map; /** * An {@code Artifact} is a set of data files such as a model or dataset. * * @see Repository */ @SuppressWarnings("PMD.LooseCoupling") public class Artifact { private transient String metadataVersion; private String version; private boolean snapshot; private String name; private LinkedHashMap<String, String> properties; private LinkedHashMap<String, Object> arguments; private Map<String, Item> files; private transient Metadata metadata; private transient Version cache; /** * Returns the metadata format version. * * @return the metadata format version */ public String getMetadataVersion() { return metadataVersion; } /** * Sets the metadata format version. * * @param metadataVersion the new version */ public void setMetadataVersion(String metadataVersion) { this.metadataVersion = metadataVersion; } /** * Returns the artifact version. * * @return the artifact version * @see Version */ public String getVersion() { return version; } /** * Sets the artifact version. * * @param version the new version * @see Version */ public void setVersion(String version) { this.version = version; } /** * Returns true if the artifact is a snapshot. * * @return true if the artifact is a snapshot * @see Version */ public boolean isSnapshot() { return snapshot; } /** * Sets if the artifact is a snapshot. * * @param snapshot true to make the artifact a snapshot * @see Version */ public void setSnapshot(boolean snapshot) { this.snapshot = snapshot; } /** * Returns the artifact name. * * @return the artifact name */ public String getName() { return name; } /** * Sets the artifact name. * * @param name the new name */ public void setName(String name) { this.name = name; } /** * Returns the artifact properties. * * @return the artifact properties * @see Repository */ public Map<String, String> getProperties() { if (properties == null) { return Collections.emptyMap(); } return properties; } /** * Sets the artifact properties. * * @param properties the new properties * @see Repository */ public void setProperties(LinkedHashMap<String, String> properties) { this.properties = properties; } /** * Returns the artifact arguments. * * @param override the override configurations to the default arguments * @return the artifact arguments * @see Repository */ @SuppressWarnings("unchecked") public Map<String, Object> getArguments(Map<String, Object> override) { if (arguments == null) { if (override != null) { return override; } return Collections.emptyMap(); } if (override != null) { ((Map<String, Object>) arguments.clone()).putAll(override); } return arguments; } /** * Sets the artifact arguments. * * @param arguments the new arguments * @see Repository */ public void setArguments(LinkedHashMap<String, Object> arguments) { this.arguments = arguments; } /** * Returns the metadata containing this artifact. * * @return the metadata containing this artifact * @see Repository */ public Metadata getMetadata() { return metadata; } /** * Sets the associated metadata. * * @param metadata the new metadata * @see Repository */ public void setMetadata(Metadata metadata) { this.metadata = metadata; } /** * Returns the location of the resource directory. * * @return the location of the resource directory */ public URI getResourceUri() { URI uri = metadata.getRepositoryUri(); if (properties != null) { for (String values : properties.values()) { uri = uri.resolve(values + '/'); } } if (version == null) { return uri; } return uri.resolve(version + '/'); } /** * Returns all the file items in the artifact. * * @return all the file items in the artifact */ public Map<String, Item> getFiles() { if (files == null) { return Collections.emptyMap(); } for (Map.Entry<String, Item> file : files.entrySet()) { file.getValue().setArtifact(this); if (file.getValue().name == null && "dir".equals(file.getValue().getType())) { file.getValue().name = file.getKey(); } } return files; } /** * Sets the file items. * * @param files the replacement file items */ public void setFiles(Map<String, Item> files) { this.files = files; } /** * Returns true if every filter matches the corresponding property. * * @param filter the values to check against the properties * @return true if every filter matches the corresponding property * @see Repository */ public boolean hasProperties(Map<String, String> filter) { if (filter == null || filter.isEmpty()) { return true; } if (properties == null || properties.isEmpty()) { return false; } for (Map.Entry<String, String> entry : filter.entrySet()) { String key = entry.getKey(); String value = entry.getValue(); if (!value.equals(properties.get(key))) { return false; } } return true; } /** * Returns the artifact version as a {@link Version}. * * @return the artifact version as a {@link Version} * @see Version */ public Version getParsedVersion() { if (cache == null) { cache = new Version(version); } return cache; } /** {@inheritDoc} */ @Override public String toString() { StringBuilder sb = new StringBuilder(100); if (metadata != null) { sb.append(metadata.getGroupId()) .append(':') .append(metadata.getArtifactId()) .append(':'); } else { sb.append(name).append(':'); } sb.append(version).append(" {"); if (properties != null) { boolean first = true; for (Map.Entry<String, String> entry : properties.entrySet()) { if (first) { first = false; } else { sb.append(','); } sb.append('"') .append(entry.getKey()) .append("\":\"") .append(entry.getValue()) .append('"'); } } sb.append('}'); return sb.toString(); } /** A file (possibly compressed) within an {@link Artifact}. */ public static final class Item { private String uri; private String sha1Hash; private String name; private String type; private long size; private String extension; private Artifact artifact; /** * Returns the URI of the item. * * @return the URI of the item */ public String getUri() { return uri; } /** * Sets the URI of the item. * * @param uri the new URI */ public void setUri(String uri) { this.uri = uri; } /** * Returns the hash of the item. * * <p>This value is from the metadata, but should be checked when the item is downloaded. * * @return the sha1 hash */ public String getSha1Hash() { return sha1Hash; } /** * Sets the sha1hash of the item. * * @param sha1Hash the new hash */ public void setSha1Hash(String sha1Hash) { this.sha1Hash = sha1Hash; } /** * Sets the type of the item. * * <p>The valid types are: * * <ul> * <li>"file" - used for single files and gzip compressed files * <li>"dir" - used for extracted zip folders * </ul> * * @return the type string */ public String getType() { if (type == null) { getExtension(); if ("zip".equals(extension)) { type = "dir"; } else { type = "file"; } } return type; } /** * Sets the type of the item. * * @param type the type * @see Item#getType() */ public void setType(String type) { this.type = type; } /** * Returns the file size. * * @return the file size in bytes */ public long getSize() { return size; } /** * Sets the file size. * * @param size the new size in bytes */ public void setSize(long size) { this.size = size; } /** * Returns the item name. * * @return the item name */ public String getName() { if (name == null) { if ("dir".equals(getType())) { name = ""; } else { int pos = uri.lastIndexOf('/'); if (pos >= 0) { name = uri.substring(pos + 1); } else { name = uri; } if (name.endsWith(".z") || name.endsWith(".gz") || name.endsWith(".zip")) { pos = name.lastIndexOf('.'); if (pos > 0) { name = name.substring(0, pos); } } } } return name; } /** * Sets the item name. * * @param name the new name */ public void setName(String name) { this.name = name; } /** * Returns the type of file extension. * * @return the type as "zip", "gzip", or "" for other */ public String getExtension() { if (extension == null) { if (uri.endsWith(".zip")) { extension = "zip"; } else if (uri.endsWith(".gz") || uri.endsWith(".z")) { extension = "gzip"; } else { extension = ""; } } return extension; } /** * Sets the file extension. * * @param extension the new extension */ public void setExtension(String extension) { this.extension = extension; } /** * Returns the artifact associated with this item. * * @return the artifact */ public Artifact getArtifact() { return artifact; } /** * Sets the artifact associated with this item. * * @param artifact the new artifact */ public void setArtifact(Artifact artifact) { this.artifact = artifact; } } /** A {@link Comparator} to compare artifacts based on their version numbers. */ public static final class VersionComparator implements Comparator<Artifact>, Serializable { private static final long serialVersionUID = 1L; /** {@inheritDoc} */ @Override public int compare(Artifact o1, Artifact o2) { return o1.getParsedVersion().compareTo(o2.getParsedVersion()); } } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/Hex.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; /** {@code Hex} is a set of utilities for working with Hexadecimal Strings. */ public final class Hex { private static final char[] HEX_CHARS = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; private Hex() {} /** * Converts a byte array to a hex string. * * @param block the bytes to convert * @return the converted hex String */ public static String toHexString(byte[] block) { if (block == null) { return null; } StringBuilder buf = new StringBuilder(); for (byte aBlock : block) { int high = ((aBlock & 0xf0) >> 4); int low = (aBlock & 0x0f); buf.append(HEX_CHARS[high]); buf.append(HEX_CHARS[low]); } return buf.toString(); } /** * Converts a hex string to a byte array. * * @param s the string to convert * @return the converted byte array */ public static byte[] toByteArray(String s) { int len = s.length(); if ((len % 2) != 0) { throw new NumberFormatException("Invalid Hex String"); } byte[] ret = new byte[len / 2]; for (int i = 0; i < len / 2; i++) { ret[i] = (byte) Integer.parseInt(s.substring(i * 2, i * 2 + 2), 16); } return ret; } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/LocalRepository.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import java.io.IOException; import java.io.Reader; import java.net.URI; import java.nio.file.Files; import java.nio.file.Path; import java.util.List; import java.util.Map; /** * A {@code LocalRepository} is a {@link Repository} located in a filesystem directory. * * @see Repository */ public class LocalRepository extends AbstractRepository { private String name; private Path path; /** * (Internal) Constructs a {@code LocalRepository} from the path with inferred name. * * <p>Use {@link Repository#newInstance(String, String)}. * * @param path the path to the repository */ public LocalRepository(Path path) { this(path.toFile().getName(), path); } /** * (Internal) Constructs a {@code LocalRepository} from the path with inferred name. * * <p>Use {@link Repository#newInstance(String, String)}. * * @param name the name of the repository * @param path the path to the repository */ public LocalRepository(String name, Path path) { this.name = name; this.path = path; } /** {@inheritDoc} */ @Override public boolean isRemote() { return false; } /** {@inheritDoc} */ @Override public String getName() { return name; } /** {@inheritDoc} */ @Override public URI getBaseUri() { return path.toUri(); } /** {@inheritDoc} */ @Override public Metadata locate(MRL mrl) throws IOException { URI uri = mrl.toURI(); Path base = path.resolve(uri.getPath()); Path file = base.resolve("metadata.json"); if (!Files.isRegularFile(file)) { return null; } try (Reader reader = Files.newBufferedReader(file)) { Metadata metadata = GSON.fromJson(reader, Metadata.class); metadata.setRepositoryUri(uri); return metadata; } } /** {@inheritDoc} */ @Override public Artifact resolve(MRL mrl, String version, Map<String, String> filter) throws IOException { Metadata metadata = locate(mrl); VersionRange range = VersionRange.parse(version); List<Artifact> artifacts = metadata.search(range, filter); if (artifacts.isEmpty()) { return null; } // TODO: find highest version. return artifacts.get(0); } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/MRL.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import ai.djl.Application; import java.net.URI; /** * The {@code MRL} (Machine learning Resource Locator) is a pointer to a {@link Metadata} "resource" * on a machine learning {@link Repository}. * * <p>Each mrl references a single metadata file (parsed to {@link Metadata} and the collection of * artifacts located within it. Those artifacts all share the same groupId and artifactId, but can * differ based on the name and properties. * * <p>The mrl consists of three different properties: * * <ul> * <li>baseAnchor - The base anchor is used to organize metadata and artifacts into (multi-level) * categories (See {@link Anchor}). * <li>groupId - The group id identifies the group publishing the artifacts using a reverse domain * name system. * <li>artifactId - The artifact id identifies the different artifacts published by a single * group. * </ul> */ public class MRL { private Anchor baseAnchor; private String groupId; private String artifactId; /** * Constructs an MRL. * * @param baseAnchor the desired anchor * @param groupId the desired groupId * @param artifactId the desired artifactId */ MRL(Anchor baseAnchor, String groupId, String artifactId) { this.baseAnchor = baseAnchor; this.groupId = groupId; this.artifactId = artifactId; } /** * Creates a model {@code MRL} with specified application. * * @param application the desired application * @param groupId the desired groupId * @param artifactId the desired artifactId * @return a model {@code MRL} */ public static MRL model(Application application, String groupId, String artifactId) { Anchor baseAnchor = Anchor.MODEL.resolve(application.getPath()); return new MRL(baseAnchor, groupId, artifactId); } /** * Creates a dataset {@code MRL} with specified application. * * @param application the desired application * @param groupId the desired groupId * @param artifactId the desired artifactId * @return a dataset {@code MRL} */ public static MRL dataset(Application application, String groupId, String artifactId) { Anchor baseAnchor = Anchor.DATASET.resolve(application.getPath()).getParent(); return new MRL(baseAnchor, groupId, artifactId); } /** * Returns the URI to the metadata location (used for {@link Repository} implementations). * * @return the URI to the metadata location */ public URI toURI() { String groupIdPath = groupId.replace('.', '/'); Anchor anchor = baseAnchor.resolve(groupIdPath, artifactId); return URI.create(anchor.getPath() + '/'); } /** * Returns the base anchor. * * @return the base anchor */ public Anchor getBaseAnchor() { return baseAnchor; } /** * Sets the base anchor. * * @param baseAnchor the new base anchor */ public void setBaseAnchor(Anchor baseAnchor) { this.baseAnchor = baseAnchor; } /** * Returns the groupId. * * @return the groupId */ public String getGroupId() { return groupId; } /** * Sets the groupId. * * @param groupId the new groupId */ public void setGroupId(String groupId) { this.groupId = groupId; } /** * Returns the artifactId. * * @return the artifactId */ public String getArtifactId() { return artifactId; } /** * Sets the artifactId. * * @param artifactId the new artifactId */ public void setArtifactId(String artifactId) { this.artifactId = artifactId; } /** {@inheritDoc} */ @Override public String toString() { return toURI().toString(); } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/Metadata.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import java.net.URI; import java.util.Date; import java.util.List; import java.util.Map; import java.util.stream.Collectors; /** * A {@code Metadata} is a collection of {@link Artifact}s with unified metadata (including {@link * MRL}) that are stored in the same "metadata.json" file. * * <p>All of the artifacts located within the metadata share the data defined at the metadata level * such as name, description, and website. The key difference between the artifacts within the same * metadata are the properties. * * @see Repository */ public class Metadata { private String metadataVersion; private String groupId; private String artifactId; private String name; private String description; private String website; private List<Artifact> artifacts; private String checksum; private Date lastUpdated; private transient URI repositoryUri; /** * Returns the artifacts matching the version and property requirements. * * @param versionRange the version range for the artifact * @param filter the property filter * @return the matching artifacts */ public List<Artifact> search(VersionRange versionRange, Map<String, String> filter) { List<Artifact> results = versionRange.matches(artifacts); if (filter == null) { return results; } return results.stream().filter(a -> a.hasProperties(filter)).collect(Collectors.toList()); } /** * Returns the metadata format version. * * @return the metadata format version */ public String getMetadataVersion() { return metadataVersion; } /** * Sets the metadata format version. * * @param metadataVersion the new version */ public void setMetadataVersion(String metadataVersion) { this.metadataVersion = metadataVersion; } /** * Returns the groupId. * * @return the groupId */ public String getGroupId() { return groupId; } /** * Sets the groupId. * * @param groupId the new groupId */ public void setGroupId(String groupId) { this.groupId = groupId; } /** * Returns the artifactId. * * @return the artifactId */ public String getArtifactId() { return artifactId; } /** * Sets the artifactId. * * @param artifactId the new artifactId */ public void setArtifactId(String artifactId) { this.artifactId = artifactId; } /** * Returns the metadata-level name. * * @return the metadata-level name */ public String getName() { return name; } /** * Sets the metadata-level name. * * @param name the new metadata-level name */ public void setName(String name) { this.name = name; } /** * Returns the description. * * @return the description */ public String getDescription() { return description; } /** * Sets the description. * * @param description the description */ public void setDescription(String description) { this.description = description; } /** * Returns the website. * * @return the website */ public String getWebsite() { return website; } /** * Sets the website. * * @param website the website */ public void setWebsite(String website) { this.website = website; } /** * Returns all the artifacts in the metadata. * * @return the artifacts in the metadata */ public List<Artifact> getArtifacts() { return artifacts; } /** * Sets the artifacts for the metadata. * * @param artifacts the new artifacts */ public void setArtifacts(List<Artifact> artifacts) { this.artifacts = artifacts; } /** * Returns the metadata checksum. * * @return the checksum */ public String getChecksum() { return checksum; } /** * Sets the metadata checksum. * * @param checksum the new checksum */ public void setChecksum(String checksum) { this.checksum = checksum; } /** * Returns the last update date for the metadata. * * @return the last update date */ public Date getLastUpdated() { return lastUpdated; } /** * Sets the last update date for the metadata. * * @param lastUpdated the new last update date */ public void setLastUpdated(Date lastUpdated) { this.lastUpdated = lastUpdated; } /** * Returns the URI to the repository storing the metadata. * * @return the URI to the repository storing the metadata */ public URI getRepositoryUri() { return repositoryUri; } /** * Sets the repository URI. * * @param repositoryUri the new URI */ public void setRepositoryUri(URI repositoryUri) { this.repositoryUri = repositoryUri; if (artifacts != null) { for (Artifact artifact : artifacts) { artifact.setMetadata(this); } } } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/RemoteRepository.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import ai.djl.util.Utils; import java.io.IOException; import java.io.InputStream; import java.io.Reader; import java.io.Writer; import java.net.URI; import java.nio.file.Files; import java.nio.file.Path; import java.time.Duration; import java.util.Date; import java.util.List; import java.util.Map; /** * A {@code RemoteRepository} is a {@link Repository} located on a remote web server. * * @see Repository */ public class RemoteRepository extends AbstractRepository { private static final long ONE_DAY = Duration.ofDays(1).toMillis(); private String name; private URI uri; /** * (Internal) Constructs a remote repository. * * <p>Use {@link Repository#newInstance(String, String)}. * * @param name the repository name * @param uri the repository location */ public RemoteRepository(String name, URI uri) { this.name = name; this.uri = uri; } /** {@inheritDoc} */ @Override public boolean isRemote() { return true; } /** {@inheritDoc} */ @Override public String getName() { return name; } /** {@inheritDoc} */ @Override public URI getBaseUri() { return uri; } /** {@inheritDoc} */ @Override public Metadata locate(MRL mrl) throws IOException { URI mrlUri = mrl.toURI(); URI file = uri.resolve(mrlUri.getPath() + "/metadata.json"); Path cacheDir = getCacheDirectory().resolve(mrlUri.getPath()); if (!Files.exists(cacheDir)) { Files.createDirectories(cacheDir); } Path cacheFile = cacheDir.resolve("metadata.json"); if (Files.exists(cacheFile)) { try (Reader reader = Files.newBufferedReader(cacheFile)) { Metadata metadata = GSON.fromJson(reader, Metadata.class); Date lastUpdated = metadata.getLastUpdated(); if (Boolean.getBoolean("offline") || System.currentTimeMillis() - lastUpdated.getTime() < ONE_DAY) { metadata.setRepositoryUri(mrlUri); return metadata; } } } try (InputStream is = file.toURL().openStream()) { String json = Utils.toString(is); Metadata metadata = GSON.fromJson(json, Metadata.class); metadata.setLastUpdated(new Date()); try (Writer writer = Files.newBufferedWriter(cacheFile)) { writer.write(GSON.toJson(metadata)); } metadata.setRepositoryUri(mrlUri); return metadata; } } /** {@inheritDoc} */ @Override public Artifact resolve(MRL mrl, String version, Map<String, String> filter) throws IOException { Metadata metadata = locate(mrl); VersionRange range = VersionRange.parse(version); List<Artifact> artifacts = metadata.search(range, filter); if (artifacts.isEmpty()) { return null; } // TODO: find highest version. return artifacts.get(0); } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/Repository.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import ai.djl.util.Progress; import com.google.gson.Gson; import com.google.gson.GsonBuilder; import java.io.IOException; import java.io.InputStream; import java.net.URI; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.util.Map; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * {@code Repository} is a format for storing data {@link Artifact}s for various uses including deep * learning models and datasets. * * <p>This repository format is based off of the design of the Maven Repository format (See <a * href="https://maven.apache.org/guides/introduction/introduction-to-repositories.html">maven</a>). * Unlike in Maven, the data doesn't need to be located within the repository. Instead, the * repository only stores metadata including the URL and checksum of the actual data. When the * artifact is prepared, the data is downloaded, checked, and then stored in the {@code * ~/.djo-ai/cache} folder. * * <p>The artifacts are first divided into a number of {@link Metadata} files that can each have * multiple artifacts. The metadata files are identified by an {@link MRL} which contains: * * <ul> * <li>{@link Anchor} - The anchor is used to organize metadata and artifacts into multi-level * categories (See {@link Anchor}). * <li>Group Id - The group id identifies the group publishing the artifacts using a reverse * domain name system. * <li>Artifact Id - The artifact id identifies the different artifacts published by a single * group. * </ul> * * <p>Within each metadata are a number of artifacts that share the same groupId, artifactId, name, * description, website, and update date. The artifacts within the metadata differ primarily based * on name and properties. Note that there is a metadata name and a separate artifact name. The * properties are a map with string property names and string property values that can be used to * represent key differentiators between artifacts such as dataset, flavors, and image sizes. For * example, you might have a ResNet metadata file with different artifacts to represent different * hyperparameters and datasets used for training the ResNet. * * <p>Each artifact contains a {@link Version} number (which can be a snapshot version). The data in * the artifacts are represented by files in the format of an {@link Artifact.Item} and a parsed * JSON object of arguments. The files can either by a single file, an automatically extracted gzip * file, or an automatically extracted zip file that will be treated as a directory. These can be * used to store data such as the dataset, model parameters, and synset files. The arguments can be * used to store data about the model used for initialization. For example, it can store the image * size which can be used by the model loader for both initializing the block and setting up * resizing in the translator. * * <p>There are three kinds of repositories: a {@link LocalRepository}, {@link RemoteRepository}, * and {@link SimpleRepository}. For all three kinds, new repositories should be created by calling * {@link Repository#newInstance(String, String)} with the location of the repository. */ public interface Repository { Gson GSON = new GsonBuilder() .setDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'") .setPrettyPrinting() .create(); /** * Creates a new instance of a repository with a name and url. * * @param name the repository name * @param url the repository location * @return the new repository */ static Repository newInstance(String name, String url) { final Logger logger = LoggerFactory.getLogger(Repository.class); URI uri = URI.create(url); Path path = null; if (!uri.isAbsolute()) { path = Paths.get(url); } String scheme = uri.getScheme(); if ("file".equalsIgnoreCase(scheme)) { path = Paths.get(uri.getPath()); } if (path != null) { boolean isLocal; try { isLocal = Files.walk(path) .anyMatch( f -> "metadata.json".equals(f.toFile().getName()) && f.toFile().isFile()); } catch (IOException e) { isLocal = false; logger.warn( "Failed determining if local or naked repository. Defaulting to naked", e); } if (isLocal) { return new LocalRepository(name, path); } else { return new SimpleRepository(name, path); } } else { return new RemoteRepository(name, uri); } } /** * Returns whether the repository is remote repository. * * @return whether the repository is remote repository */ boolean isRemote(); /** * Returns the repository name. * * @return the repository name */ String getName(); /** * Returns the URI to the base of the repository. * * @return the URI */ URI getBaseUri(); /** * Returns the metadata at a mrl. * * @param mrl the mrl of the metadata to retrieve * @return the metadata * @throws IOException if it failed to load the metadata */ Metadata locate(MRL mrl) throws IOException; /** * Returns the artifact matching a mrl, version, and property filter. * * @param mrl the mrl to match the artifact against * @param version the version of the artifact * @param filter the property filter * @return the matched artifact * @throws IOException if it failed to load the artifact */ Artifact resolve(MRL mrl, String version, Map<String, String> filter) throws IOException; /** * Returns an {@link InputStream} for an item in a repository. * * @param item the item to open * @param path the path to a file if the item is a zipped directory. Otherwise, pass null * @return the file stream * @throws IOException if it failed to open the stream */ InputStream openStream(Artifact.Item item, String path) throws IOException; /** * Returns the path to a file for the item. * * @param item the item to find the path for * @param path the path to a file if the item is a zipped directory. Otherwise, pass null * @return the file path * @throws IOException if it failed to find the path */ Path getFile(Artifact.Item item, String path) throws IOException; /** * Returns the list of files directly within a specified directory in a zipped directory item. * * @param item the zipped directory item * @param path the path within the zip directory * @return the list of files/directories * @throws IOException if it failed to list the directory */ String[] listDirectory(Artifact.Item item, String path) throws IOException; /** * Prepares the artifact for use. * * @param artifact the artifact to prepare * @throws IOException if it failed to prepare */ default void prepare(Artifact artifact) throws IOException { prepare(artifact, null); } /** * Prepares the artifact for use with progress tracking. * * @param artifact the artifact to prepare * @param progress the progress tracker * @throws IOException if it failed to prepare */ void prepare(Artifact artifact, Progress progress) throws IOException; /** * Returns the cache directory for the repository. * * @return the cache directory path * @throws IOException if it failed to ensure the creation of the cache directory */ Path getCacheDirectory() throws IOException; }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/SimpleRepository.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import ai.djl.repository.Artifact.Item; import ai.djl.util.Progress; import java.io.File; import java.io.IOException; import java.net.URI; import java.nio.file.Path; import java.util.Collections; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; /** * A {@code SimpleRepository} is a {@link Repository} containing only a single artifact without * requiring a "metadata.json" file. * * @see Repository */ public class SimpleRepository extends AbstractRepository { private String name; private Path path; /** * (Internal) Constructs a SimpleRepository. * * <p>Use {@link Repository#newInstance(String, String)}. * * @param path the path to the repository */ public SimpleRepository(Path path) { this(path.toFile().getName(), path); } /** * (Internal) Constructs a SimpleRepository. * * <p>Use {@link Repository#newInstance(String, String)}. * * @param name the name of the repository * @param path the path to the repository */ public SimpleRepository(String name, Path path) { this.name = name; this.path = path; } /** {@inheritDoc} */ @Override public boolean isRemote() { return false; } /** {@inheritDoc} */ @Override public String getName() { return name; } /** {@inheritDoc} */ @Override public URI getBaseUri() { return path.toUri(); } /** {@inheritDoc} */ @Override public Metadata locate(MRL mrl) throws IOException { Metadata metadata = new Metadata(); metadata.setRepositoryUri(URI.create("")); Artifact artifact = new Artifact(); artifact.setMetadata(metadata); metadata.setArtifacts(Collections.singletonList(artifact)); artifact.setName(name); Map<String, Item> files = new ConcurrentHashMap<>(); File[] fileList = path.toFile().listFiles(); if (fileList == null) { throw new IllegalArgumentException("No files found in SimpleRepository"); } for (File file : fileList) { Item item = new Item(); item.setName(file.getName()); item.setSize(file.length()); item.setArtifact(artifact); files.put(file.getName(), item); } artifact.setFiles(files); return metadata; } /** {@inheritDoc} */ @Override public Artifact resolve(MRL mrl, String version, Map<String, String> filter) throws IOException { return locate(mrl).getArtifacts().get(0); } /** {@inheritDoc} */ @Override public void prepare(Artifact artifact, Progress progress) { // Do nothing } /** {@inheritDoc} */ @Override public Path getCacheDirectory() { return path; } /** {@inheritDoc} */ @Override protected URI resolvePath(Item item, String path) throws IOException { return this.path.resolve(item.getName()).toUri(); } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/VersionRange.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; import java.util.List; import java.util.stream.Collectors; /** * A {@code VersionRange} is a set of {@link Restriction}s that match some {@link Version}s. * * <p>A {@code VersionRange} should be constructed using {@link VersionRange#parse(String)}. The * format used by the version ranges matches the <a * href="https://cwiki.apache.org/confluence/display/MAVENOLD/Dependency+Mediation+and+Conflict+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges">maven * version range syntax</a>. */ public final class VersionRange { private static final VersionRange ANY = new VersionRange(null, Collections.emptyList()); private Version recommendedVersion; private List<Restriction> restrictions; private VersionRange(Version recommendedVersion, List<Restriction> restrictions) { this.recommendedVersion = recommendedVersion; this.restrictions = restrictions; } /** * Returns the recommended version in the range. * * @return the recommended version in the range */ public Version getRecommendedVersion() { return recommendedVersion; } /** * Returns the restrictions that compose the range. * * @return the restrictions that compose the range */ public List<Restriction> getRestrictions() { return restrictions; } /** * Creates a new version range from a string version range. * * @param spec the string version range * @return the {@link VersionRange} */ public static VersionRange parse(String spec) { if (spec == null || spec.isEmpty()) { return ANY; } List<Restriction> restrictions = new ArrayList<>(); String process = spec; Version version = null; Version upperBound = null; Version lowerBound = null; while (process.startsWith("[") || process.startsWith("(")) { int index1 = process.indexOf(')'); int index2 = process.indexOf(']'); int index = index2; if (index2 < 0 || index1 < index2) { if (index1 >= 0) { index = index1; } } if (index < 0) { throw new IllegalArgumentException("Unbounded range: " + spec); } Restriction restriction = parseRestriction(process.substring(0, index + 1)); if (lowerBound == null) { lowerBound = restriction.getLowerBound(); } if (upperBound != null) { if (restriction.getLowerBound() == null || restriction.getLowerBound().compareTo(upperBound) < 0) { throw new IllegalArgumentException("Ranges overlap: " + spec); } } restrictions.add(restriction); upperBound = restriction.getUpperBound(); process = process.substring(index + 1).trim(); if (process.length() > 0 && process.startsWith(",")) { process = process.substring(1).trim(); } } if (process.length() > 0) { if (!restrictions.isEmpty()) { throw new IllegalArgumentException( "Only fully-qualified sets allowed in multiple set scenario: " + spec); } version = new Version(process); restrictions.add(Restriction.EVERYTHING); } return new VersionRange(version, restrictions); } private static Restriction parseRestriction(String spec) { boolean lowerBoundInclusive = spec.startsWith("["); boolean upperBoundInclusive = spec.endsWith("]"); String process = spec.substring(1, spec.length() - 1).trim(); Restriction restriction; int index = process.indexOf(','); if (index < 0) { if (!lowerBoundInclusive || !upperBoundInclusive) { throw new IllegalArgumentException( "Single version must be surrounded by []: " + spec); } Version version = new Version(process); restriction = new Restriction(version, true, version, true); } else { String lowerBound = process.substring(0, index).trim(); String upperBound = process.substring(index + 1).trim(); if (lowerBound.equals(upperBound)) { throw new IllegalArgumentException( "Range cannot have identical boundaries: " + spec); } Version lowerVersion = null; if (lowerBound.length() > 0) { lowerVersion = new Version(lowerBound); } Version upperVersion = null; if (upperBound.length() > 0) { upperVersion = new Version(upperBound); } if (upperVersion != null && lowerVersion != null && upperVersion.compareTo(lowerVersion) < 0) { throw new IllegalArgumentException("Range defies version ordering: " + spec); } restriction = new Restriction( lowerVersion, lowerBoundInclusive, upperVersion, upperBoundInclusive); } return restriction; } /** * Filters the provided artifacts to those that match the version range. * * @param artifacts the artifacts to filter * @return the filtered artifacts */ public List<Artifact> matches(List<Artifact> artifacts) { return artifacts.stream().filter(this::contains).collect(Collectors.toList()); } /** * Returns true if a version falls within this range. * * @param version the version to test * @return true if the version falls within this range */ public boolean contains(Version version) { if (recommendedVersion != null) { return recommendedVersion.equals(version); } for (Restriction restriction : restrictions) { if (restriction.containsVersion(version)) { return true; } } return false; } /** * Returns true if the artifact's version falls within this range. * * @param artifact the artifact to test * @return true if the artifact's version falls within this range */ public boolean contains(Artifact artifact) { return artifact.getVersion() == null || contains(artifact.getParsedVersion()); } /** {@inheritDoc} */ @Override public String toString() { if (recommendedVersion != null) { return recommendedVersion.toString(); } StringBuilder buf = new StringBuilder(); for (Iterator<Restriction> i = restrictions.iterator(); i.hasNext(); ) { Restriction r = i.next(); buf.append(r.toString()); if (i.hasNext()) { buf.append(','); } } return buf.toString(); } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/ZipUtils.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository; import java.io.IOException; import java.io.InputStream; import java.nio.file.Files; import java.nio.file.Path; import java.util.zip.ZipEntry; import java.util.zip.ZipInputStream; /** Utilities for working with zip files. */ public final class ZipUtils { private ZipUtils() {} /** * Unzips an input stream to a given path. * * @param is the input stream to unzip * @param dest the path to store the unzipped files * @throws IOException for failures to unzip the input stream and create files in the dest path */ public static void unzip(InputStream is, Path dest) throws IOException { ZipInputStream zis = new ZipInputStream(is); ZipEntry entry; while ((entry = zis.getNextEntry()) != null) { String name = entry.getName(); Path file = dest.resolve(name).toAbsolutePath(); if (entry.isDirectory()) { Files.createDirectories(file); } else { Path parentFile = file.getParent(); if (parentFile == null) { throw new AssertionError( "Parent path should never be null: " + file.toString()); } Files.createDirectories(parentFile); Files.copy(zis, file); } } } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/package-info.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains a Maven-based Repository format for creating repositories of artifacts such as datasets * and model zoos. * * <p>There are also helper classes for Datasets ({@link ai.djl.repository.dataset}) and Model Zoos * ({@link ai.djl.repository.zoo}) as well. * * @see ai.djl.repository.Repository */ package ai.djl.repository;
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/dataset/PreparedDataset.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.dataset; import ai.djl.util.Progress; import java.io.IOException; /** * A {@code PreparedDataset} is a {@link ai.djl.training.dataset.Dataset} that requires an * additional preparation step before use. * * <p>The preparation steps can be run by calling {@link PreparedDataset#prepare()}. */ public interface PreparedDataset { /** * Prepares the dataset for use. * * @throws IOException for various exceptions depending on the dataset */ default void prepare() throws IOException { prepare(null); } /** * Prepares the dataset for use with tracked progress. * * @param progress the progress tracker * @throws IOException for various exceptions depending on the dataset */ void prepare(Progress progress) throws IOException; }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/dataset/ZooDataset.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.dataset; import ai.djl.repository.Artifact; import ai.djl.repository.MRL; import ai.djl.repository.Repository; import ai.djl.training.dataset.Dataset; import ai.djl.util.Progress; import java.io.IOException; /** * A {@link Dataset} whose data is found in the dataset zoo of a {@link Repository}. * * <p>The {@code ZooDataset}s are all {@link PreparedDataset}s. */ public interface ZooDataset extends Dataset, PreparedDataset { /** * Returns the {@link MRL} of the dataset. * * @return the {@link MRL} of the dataset */ MRL getMrl(); /** * Returns the {@link Repository} the dataset is found in. * * @return the {@link Repository} the dataset is found in */ Repository getRepository(); /** * Returns the {@link Artifact} the dataset is found in. * * @return the {@link Artifact} the dataset is found in */ Artifact getArtifact(); /** * Returns the {@link ai.djl.training.dataset.Dataset.Usage} of the dataset. * * @return the {@link ai.djl.training.dataset.Dataset.Usage} of the dataset */ Usage getUsage(); /** * Returns whether the dataset has been prepared. * * @return true if the dataset has been prepared */ boolean isPrepared(); /** * Sets if the dataset has been prepared. * * @param prepared true if the dataset has been prepared */ void setPrepared(boolean prepared); /** * Sets the artifact to the default one. * * <p>The default artifact is usually found by searching within the repository with a default * mrl, version, and filter. * * @throws IOException for various exceptions depending on the specific dataset */ void useDefaultArtifact() throws IOException; /** * Prepares the {@link ZooDataset} with the dataset specific behavior. * * <p>This method is called only when the dataset is not prepared, has an artifact set, and the * repository artifact has already been prepared. {@link ZooDataset#setPrepared(boolean)} does * not need to be called within this method and will be called after. * * @param usage the usage to prepare * @throws IOException for various exceptions depending on the specific dataset */ void prepareData(Usage usage) throws IOException; /** {@inheritDoc} */ @Override default void prepare(Progress progress) throws IOException { if (!isPrepared()) { if (getArtifact() == null) { useDefaultArtifact(); if (getArtifact() == null) { throw new IOException(getMrl() + " dataset not found."); } } getRepository().prepare(getArtifact(), progress); prepareData(getUsage()); setPrepared(true); } } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/dataset/package-info.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** * Contains interfaces for datasets in repositories. * * @see ai.djl.Model * @see ai.djl.Device */ package ai.djl.repository.dataset;
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/zoo/BaseModelLoader.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.zoo; import ai.djl.Device; import ai.djl.MalformedModelException; import ai.djl.Model; import ai.djl.ndarray.NDList; import ai.djl.repository.Artifact; import ai.djl.repository.MRL; import ai.djl.repository.Metadata; import ai.djl.repository.Repository; import ai.djl.repository.VersionRange; import ai.djl.translate.NoopTranslator; import ai.djl.translate.Translator; import ai.djl.translate.TranslatorFactory; import ai.djl.util.Pair; import ai.djl.util.Progress; import java.io.IOException; import java.lang.reflect.Type; import java.nio.file.Path; import java.util.List; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; import java.util.stream.Collectors; /** Shared code for the {@link ModelLoader} implementations. */ public abstract class BaseModelLoader<I, O> implements ModelLoader<I, O> { protected Repository repository; protected MRL mrl; protected String version; protected Map<Pair<Type, Type>, TranslatorFactory<?, ?>> factories; private Metadata metadata; /** * Constructs a {@link ModelLoader} given the repository, mrl, and version. * * @param repository the repository to load the model from * @param mrl the mrl of the model to load * @param version the version of the model to load */ protected BaseModelLoader(Repository repository, MRL mrl, String version) { this.repository = repository; this.mrl = mrl; this.version = version; factories = new ConcurrentHashMap<>(); factories.put( new Pair<>(NDList.class, NDList.class), (TranslatorFactory<NDList, NDList>) arguments -> new NoopTranslator()); } /** {@inheritDoc} */ @Override public String getArtifactId() { return mrl.getArtifactId(); } /** {@inheritDoc} */ @Override public <S, T> ZooModel<S, T> loadModel(Criteria<S, T> criteria) throws IOException, ModelNotFoundException, MalformedModelException { Artifact artifact = match(criteria.getFilters()); if (artifact == null) { throw new ModelNotFoundException("Model not found."); } Map<String, Object> override = criteria.getArguments(); Progress progress = criteria.getProgress(); Map<String, Object> arguments = artifact.getArguments(override); try { Translator<S, T> translator = criteria.getTranslator(); if (translator == null) { TranslatorFactory<S, T> factory = getTranslatorFactory(criteria); if (factory == null) { throw new ModelNotFoundException("No matching default translator found."); } translator = factory.newInstance(arguments); } repository.prepare(artifact, progress); if (progress != null) { progress.reset("Loading", 2); progress.update(1); } Path dir = repository.getCacheDirectory(); String relativePath = artifact.getResourceUri().getPath(); Path modelPath = dir.resolve(relativePath); Model model = createModel(criteria.getDevice(), artifact, arguments); model.load(modelPath, artifact.getName()); return new ZooModel<>(model, translator); } finally { if (progress != null) { progress.end(); } } } /** {@inheritDoc} */ @Override public List<Artifact> listModels() throws IOException, ModelNotFoundException { List<Artifact> list = getMetadata().getArtifacts(); return list.stream() .filter(a -> version.equals(a.getVersion())) .collect(Collectors.toList()); } protected Model createModel(Device device, Artifact artifact, Map<String, Object> arguments) throws IOException { return Model.newInstance(device); } /** * Returns the first artifact that matches a given criteria. * * @param criteria the criteria to match against * @return the first artifact that matches the criteria. Null will be returned if no artifact * matches * @throws IOException for errors while loading the model * @throws ModelNotFoundException if the metadata to get artifacts from is not found */ protected Artifact match(Map<String, String> criteria) throws IOException, ModelNotFoundException { List<Artifact> list = search(criteria); if (list.isEmpty()) { return null; } return list.get(0); } /** * Returns all the artifacts that match a given criteria. * * @param criteria the criteria to match against * @return all the artifacts that match a given criteria * @throws IOException for errors while loading the model * @throws ModelNotFoundException if the metadata to get artifacts from is not found */ private List<Artifact> search(Map<String, String> criteria) throws IOException, ModelNotFoundException { return getMetadata().search(VersionRange.parse(version), criteria); } private Metadata getMetadata() throws IOException, ModelNotFoundException { if (metadata == null) { metadata = repository.locate(mrl); if (metadata == null) { throw new ModelNotFoundException(mrl.getArtifactId() + " Models not found."); } } return metadata; } /** {@inheritDoc} */ @Override public String toString() { StringBuilder sb = new StringBuilder(200); sb.append(repository.getName()) .append(':') .append(mrl.getGroupId()) .append(':') .append(mrl.getArtifactId()) .append(" [\n"); try { for (Artifact artifact : listModels()) { sb.append('\t').append(artifact).append('\n'); } } catch (IOException | ModelNotFoundException e) { sb.append("\tFailed load metadata."); } sb.append("\n]"); return sb.toString(); } @SuppressWarnings("unchecked") private <S, T> TranslatorFactory<S, T> getTranslatorFactory(Criteria<S, T> criteria) { return (TranslatorFactory<S, T>) factories.get(new Pair<>(criteria.getInputClass(), criteria.getOutputClass())); } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/zoo/Criteria.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.zoo; import ai.djl.Application; import ai.djl.Device; import ai.djl.engine.Engine; import ai.djl.translate.Translator; import ai.djl.util.Progress; import java.util.HashMap; import java.util.Map; /** * The {@code Criteria} class contains search criteria to look up a {@link ZooModel}. * * @param <I> the model input type * @param <O> the model output type */ public class Criteria<I, O> { private Application application; private Class<I> inputClass; private Class<O> outputClass; private String engine; private Device device; private String groupId; private String artifactId; private Map<String, String> filters; private Map<String, Object> arguments; private Translator<I, O> translator; private Progress progress; Criteria(Builder<I, O> builder) { this.application = builder.application; this.inputClass = builder.inputClass; this.outputClass = builder.outputClass; this.engine = builder.engine; this.device = builder.device; this.groupId = builder.groupId; this.artifactId = builder.artifactId; this.filters = builder.filters; this.arguments = builder.arguments; this.translator = builder.translator; this.progress = builder.progress; } /** * Returns the application of the model. * * @return the application of the model */ public Application getApplication() { return application; } /** * Returns the input data type. * * @return the input data type */ public Class<I> getInputClass() { return inputClass; } /** * Returns the output data type. * * @return the output data type */ public Class<O> getOutputClass() { return outputClass; } /** * Returns the engine name. * * @return the engine name */ public String getEngine() { return engine; } /** * Returns the {@link Device} of the model to be loaded on. * * @return the {@link Device} of the model to be loaded on */ public Device getDevice() { return device; } /** * Returns the groupId of the {@link ModelZoo} to be searched. * * @return the groupId of the {@link ModelZoo} to be searched */ public String getGroupId() { return groupId; } /** * Returns the artifactId of the {@link ModelLoader} to be searched. * * @return the artifactIds of the {@link ModelLoader} to be searched */ public String getArtifactId() { return artifactId; } /** * Returns the search filters that must match the properties of the model. * * @return the search filters that must match the properties of the model. */ public Map<String, String> getFilters() { return filters; } /** * Returns the override configurations of the model loading arguments. * * @return the override configurations of the model loading arguments */ public Map<String, Object> getArguments() { return arguments; } /** * Returns the optional {@link Translator} to be used for {@link ZooModel}. * * @return the optional {@link Translator} to be used for {@link ZooModel} */ public Translator<I, O> getTranslator() { return translator; } /** * Returns the optional {@link Progress} for the model loading. * * @return the optional {@link Progress} for the model loading */ public Progress getProgress() { return progress; } /** * Creates a builder to build a {@code Criteria}. * * @return a new builder */ public static Builder<?, ?> builder() { return new Builder<>(); } /** A Builder to construct a {@code Criteria}. */ public static final class Builder<I, O> { Application application; Class<I> inputClass; Class<O> outputClass; String engine; Device device; String groupId; String artifactId; Map<String, String> filters; Map<String, Object> arguments; Translator<I, O> translator; Progress progress; Builder() { engine = Engine.getInstance().getEngineName(); } private Builder(Class<I> inputClass, Class<O> outputClass, Builder<?, ?> parent) { this.inputClass = inputClass; this.outputClass = outputClass; application = parent.application; engine = parent.engine; device = parent.device; groupId = parent.groupId; filters = parent.filters; arguments = parent.arguments; progress = parent.progress; } /** * Creates a new @{code Builder} class with the specified input and output data type. * * @param <P> the input data type * @param <Q> the output data type * @param inputClass the input class * @param outputClass the output class * @return a new @{code Builder} class with the specified input and output data type */ public <P, Q> Builder<P, Q> setTypes(Class<P> inputClass, Class<Q> outputClass) { return new Builder<>(inputClass, outputClass, this); } /** * Sets the model application for this criteria. * * @param application the model application * @return this {@code Builder} */ public Builder<I, O> optApplication(Application application) { this.application = application; return this; } /** * Sets the engine name for this criteria. * * @param engine the engine name * @return this {@code Builder} */ public Builder<I, O> optEngine(String engine) { this.engine = engine; return this; } /** * Sets the {@link Device} for this criteria. * * @param device the {@link Device} for the criteria * @return this {@code Builder} */ public Builder<I, O> optDevice(Device device) { this.device = device; return this; } /** * Sets optional groupId of the {@link ModelZoo} for this criteria. * * @param groupId the groupId of the {@link ModelZoo} * @return this {@code Builder} */ public Builder<I, O> optGroupId(String groupId) { this.groupId = groupId; return this; } /** * Sets optional artifactId of the {@link ModelLoader} for this criteria. * * @param artifactId the artifactId of the {@link ModelLoader} * @return this {@code Builder} */ public Builder<I, O> optArtifactId(String artifactId) { if (artifactId.contains(":")) { String[] tokens = artifactId.split(":"); groupId = tokens[0]; this.artifactId = tokens[1]; } else { this.artifactId = artifactId; } return this; } /** * Sets the extra search filters for this criteria. * * @param filters the extra search filters * @return this {@code Builder} */ public Builder<I, O> optFilters(Map<String, String> filters) { this.filters = filters; return this; } /** * Sets an extra search filter for this criteria. * * @param key the search key * @param value the search value * @return this {@code Builder} */ public Builder<I, O> optFilter(String key, String value) { if (filters == null) { filters = new HashMap<>(); } filters.put(key, value); return this; } /** * Sets an extra model loading argument for this criteria. * * @param arguments optional model loading arguments * @return this {@code Builder} */ public Builder<I, O> optArguments(Map<String, Object> arguments) { this.arguments = arguments; return this; } /** * Sets the optional model loading argument for this criteria. * * @param key the model loading argument key * @param value the model loading argument value * @return this {@code Builder} */ public Builder<I, O> optArgument(String key, Object value) { if (arguments == null) { arguments = new HashMap<>(); } arguments.put(key, value); return this; } /** * Sets the optional {@link Translator} to override default {@code Translator}. * * @param translator the override {@code Translator} * @return this {@code Builder} */ public Builder<I, O> optTranslator(Translator<I, O> translator) { this.translator = translator; return this; } /** * Set the optional {@link Progress}. * * @param progress the {@code Progress} * @return this {@code Builder} */ public Builder<I, O> optProgress(Progress progress) { this.progress = progress; return this; } /** * Builds a {@link Criteria} instance. * * @return the {@link Criteria} instance */ public Criteria<I, O> build() { return new Criteria<>(this); } } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/zoo/LocalModelLoader.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.zoo; import ai.djl.Application; import ai.djl.Device; import ai.djl.MalformedModelException; import ai.djl.Model; import ai.djl.ndarray.NDList; import ai.djl.repository.Artifact; import ai.djl.repository.Repository; import ai.djl.translate.NoopTranslator; import ai.djl.translate.Translator; import ai.djl.util.Progress; import java.io.IOException; import java.nio.file.Path; import java.util.Collections; import java.util.List; import java.util.Map; /** A {@link ModelLoader} loads a particular {@link ZooModel} from a local folder. */ public class LocalModelLoader implements ModelLoader<NDList, NDList> { private Repository repository; /** * Creates the model loader from the given repository. * * @param repository the repository to load the model from */ public LocalModelLoader(Repository repository) { this.repository = repository; } /** {@inheritDoc} */ @Override public String getArtifactId() { return repository.getName(); } /** {@inheritDoc} */ @Override public Application getApplication() { return null; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public <S, T> ZooModel<S, T> loadModel(Criteria<S, T> criteria) throws IOException, ModelNotFoundException, MalformedModelException { Progress progress = criteria.getProgress(); try { Translator<S, T> translator = criteria.getTranslator(); if (translator == null) { translator = (Translator<S, T>) new NoopTranslator(); } if (progress != null) { progress.reset("Loading", 2); progress.update(1); } Path dir = repository.getCacheDirectory(); Model model = Model.newInstance(criteria.getDevice()); model.load(dir); return new ZooModel<>(model, translator); } finally { if (progress != null) { progress.end(); } } } /** {@inheritDoc} */ @Override public ZooModel<NDList, NDList> loadModel( Map<String, String> filters, Device device, Progress progress) throws IOException, ModelNotFoundException, MalformedModelException { Criteria<NDList, NDList> criteria = Criteria.builder() .setTypes(NDList.class, NDList.class) .optFilters(filters) .optDevice(device) .optProgress(progress) .build(); return loadModel(criteria); } /** {@inheritDoc} */ @Override public List<Artifact> listModels() { return Collections.emptyList(); } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/zoo/LocalModelZoo.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.zoo; import ai.djl.engine.Engine; import ai.djl.repository.SimpleRepository; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Path; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Set; import java.util.stream.Collectors; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** A {@link ModelZoo} that contains models in local directory. */ public class LocalModelZoo implements ModelZoo { private static final Logger logger = LoggerFactory.getLogger(LocalModelZoo.class); public static final String GROUP_ID = "ai.djl.localmodelzoo"; private Path folder; /** * Creates the {@code LocalModelZoo} instance from the given directory. * * @param folder the directory to load models from */ public LocalModelZoo(Path folder) { this.folder = folder; } /** {@inheritDoc} */ @Override public List<ModelLoader<?, ?>> getModelLoaders() { try { List<Path> dirs = Files.list(folder) .filter(p -> Files.isDirectory(p)) .collect(Collectors.toList()); if (dirs.isEmpty()) { LocalModelLoader loader = new LocalModelLoader(new SimpleRepository(folder)); return Collections.singletonList(loader); } List<ModelLoader<?, ?>> loaders = new ArrayList<>(); for (Path p : dirs) { loaders.add(new LocalModelLoader(new SimpleRepository(p))); } return loaders; } catch (IOException e) { logger.error("Failed list files.", e); } return Collections.emptyList(); } /** {@inheritDoc} */ @Override public String getGroupId() { return GROUP_ID; } /** {@inheritDoc} */ @Override public Set<String> getSupportedEngines() { return Collections.singleton(Engine.getInstance().getEngineName()); } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/zoo/LocalZooProvider.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.zoo; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; /** An {@link ZooProvider} implementation can load models from local directory. */ public class LocalZooProvider implements ZooProvider { /** {@inheritDoc} */ @Override public ModelZoo getModelZoo() { String localRepoPath = System.getProperty("ai.djl.repository.zoo.location"); if (localRepoPath != null) { Path path = Paths.get(localRepoPath); if (Files.isDirectory(path)) { return new LocalModelZoo(path); } } return null; } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/zoo/ModelLoader.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.zoo; import ai.djl.Application; import ai.djl.Device; import ai.djl.MalformedModelException; import ai.djl.repository.Artifact; import ai.djl.util.Progress; import java.io.IOException; import java.util.List; import java.util.Map; /** * A ModelLoader loads a particular {@link ZooModel} from a Repository for a model zoo. * * @param <I> the input data type * @param <O> the output data type */ public interface ModelLoader<I, O> { /** * Returns the artifact ID of the {@code ModelLoader}. * * @return the artifact ID of the {@code ModelLoader} */ String getArtifactId(); /** * Returns the application of the {@code ModelLoader}. * * @return the application of the {@code ModelLoader} */ Application getApplication(); /** * Loads the model with the given criteria. * * @param <S> the input data type * @param <T> the output data type * @param criteria the criteria to match against the loaded model * @return the loaded model * @throws IOException for various exceptions loading data from the repository * @throws ModelNotFoundException if no model with the specified criteria is found * @throws MalformedModelException if the model data is malformed */ <S, T> ZooModel<S, T> loadModel(Criteria<S, T> criteria) throws IOException, ModelNotFoundException, MalformedModelException; /** * Loads the model. * * @return the loaded model * @throws IOException for various exceptions loading data from the repository * @throws ModelNotFoundException if no model with the specified criteria is found * @throws MalformedModelException if the model data is malformed */ default ZooModel<I, O> loadModel() throws MalformedModelException, ModelNotFoundException, IOException { return loadModel(null, null, null); } /** * Loads the model. * * @param progress the progress tracker to update while loading the model * @return the loaded model * @throws IOException for various exceptions loading data from the repository * @throws ModelNotFoundException if no model with the specified criteria is found * @throws MalformedModelException if the model data is malformed */ default ZooModel<I, O> loadModel(Progress progress) throws MalformedModelException, ModelNotFoundException, IOException { return loadModel(null, null, progress); } /** * Loads the model with the given search filters. * * @param filters the search filters to match against the loaded model * @return the loaded model * @throws IOException for various exceptions loading data from the repository * @throws ModelNotFoundException if no model with the specified criteria is found * @throws MalformedModelException if the model data is malformed */ default ZooModel<I, O> loadModel(Map<String, String> filters) throws MalformedModelException, ModelNotFoundException, IOException { return loadModel(filters, null, null); } /** * Loads the model with the given search filters. * * @param filters the search filters to match against the loaded model * @param progress the progress tracker to update while loading the model * @return the loaded model * @throws IOException for various exceptions loading data from the repository * @throws ModelNotFoundException if no model with the specified criteria is found * @throws MalformedModelException if the model data is malformed */ default ZooModel<I, O> loadModel(Map<String, String> filters, Progress progress) throws MalformedModelException, ModelNotFoundException, IOException { return loadModel(filters, null, progress); } /** * Loads the model with the given search filters. * * @param filters the search filters to match against the loaded model * @param device the device the loaded model should use * @param progress the progress tracker to update while loading the model * @return the loaded model * @throws IOException for various exceptions loading data from the repository * @throws ModelNotFoundException if no model with the specified criteria is found * @throws MalformedModelException if the model data is malformed */ ZooModel<I, O> loadModel(Map<String, String> filters, Device device, Progress progress) throws IOException, ModelNotFoundException, MalformedModelException; /** * Returns a list of the available artifacts that can be loaded. * * @return a list of the available artifacts that can be loaded * @throws IOException for errors reading the artifact list * @throws ModelNotFoundException if models with the mrl defined within this loader are found */ List<Artifact> listModels() throws IOException, ModelNotFoundException; }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/zoo/ModelNotFoundException.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.zoo; import ai.djl.ModelException; /** /** Thrown when an application tries to load a model from repository search path. */ public class ModelNotFoundException extends ModelException { private static final long serialVersionUID = 1L; /** * Constructs a new exception with the specified detail message. The cause is not initialized, * and may subsequently be initialized by a call to {@link #initCause}. * * @param message the detail message. The detail message is saved for later retrieval by the * {@link #getMessage()} method. */ public ModelNotFoundException(String message) { super(message); } /** * Constructs a new exception with the specified detail message and cause. * * <p>Note that the detail message associated with {@code cause} is <i>not</i> automatically * incorporated in this exception's detail message. * * @param message the detail message (which is saved for later retrieval by the {@link * #getMessage()} method). * @param cause the cause (which is saved for later retrieval by the {@link #getCause()} * method). (A {@code null} value is permitted, and indicates that the cause is nonexistent * or unknown.) */ public ModelNotFoundException(String message, Throwable cause) { super(message, cause); } /** * Constructs a new exception with the specified cause and a detail message of {@code * (cause==null ? null : cause.toString())} (which typically contains the class and detail * message of {@code cause}). This constructor is useful for exceptions that are little more * than wrappers for other throwables (for example, {@link * java.security.PrivilegedActionException}). * * @param cause the cause (which is saved for later retrieval by the {@link #getCause()} * method). (A {@code null} value is permitted, and indicates that the cause is nonexistent * or unknown.) */ public ModelNotFoundException(Throwable cause) { super(cause); } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/zoo/ModelZoo.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.zoo; import ai.djl.Application; import ai.djl.MalformedModelException; import ai.djl.repository.Artifact; import java.io.IOException; import java.lang.reflect.Field; import java.util.ArrayList; import java.util.Comparator; import java.util.List; import java.util.Map; import java.util.ServiceLoader; import java.util.Set; import java.util.TreeMap; /** An interface represents a collection of models. */ public interface ModelZoo { /** * Returns the global unique identifier of the {@code ModelZoo}. * * <p>We recommend to use reverse DNS name as your model zoo group ID to make sure it's not * conflict with other ModelZoos. * * @return the global unique identifier of the {@code ModelZoo} */ String getGroupId(); /** * Lists the available model families in the ModelZoo. * * @return the list of all available model families */ default List<ModelLoader<?, ?>> getModelLoaders() { List<ModelLoader<?, ?>> list = new ArrayList<>(); try { Field[] fields = getClass().getDeclaredFields(); for (Field field : fields) { if (ModelLoader.class.isAssignableFrom(field.getType())) { list.add((ModelLoader<?, ?>) field.get(null)); } } } catch (ReflectiveOperationException e) { // ignore } return list; } /** * Returns the {@link ModelLoader} based on the model name. * * @param name the name of the model * @return the {@link ModelLoader} of the model */ default ModelLoader<?, ?> getModelLoader(String name) { for (ModelLoader<?, ?> loader : getModelLoaders()) { if (name.equals(loader.getArtifactId())) { return loader; } } return null; } /** * Returns all supported engine names. * * @return all supported engine names */ Set<String> getSupportedEngines(); /** * Gets the {@link ModelLoader} based on the model name. * * @param criteria the name of the model * @param <I> the input data type for preprocessing * @param <O> the output data type after postprocessing * @return the model that matches the criteria * @throws IOException for various exceptions loading data from the repository * @throws ModelNotFoundException if no model with the specified criteria is found * @throws MalformedModelException if the model data is malformed */ static <I, O> ZooModel<I, O> loadModel(Criteria<I, O> criteria) throws IOException, ModelNotFoundException, MalformedModelException { String groupId = criteria.getGroupId(); ServiceLoader<ZooProvider> providers = ServiceLoader.load(ZooProvider.class); for (ZooProvider provider : providers) { ModelZoo zoo = provider.getModelZoo(); if (zoo == null) { continue; } if (groupId != null && !zoo.getGroupId().equals(groupId)) { // filter out ModelZoo by groupId continue; } Set<String> supportedEngine = zoo.getSupportedEngines(); if (!supportedEngine.contains(criteria.getEngine())) { continue; } Application application = criteria.getApplication(); String artifactId = criteria.getArtifactId(); for (ModelLoader<?, ?> loader : zoo.getModelLoaders()) { if (artifactId != null && !artifactId.equals(loader.getArtifactId())) { // filter out by model loader artifactId continue; } Application app = loader.getApplication(); if (application != null && app != null && !app.equals(application)) { // filter out ModelLoader by application continue; } try { return loader.loadModel(criteria); } catch (ModelNotFoundException e) { // ignore } } } throw new ModelNotFoundException( "No matching model with specified Input/Output type found."); } /** * Returns the available {@link Application} and their model artifact metadata. * * @return the available {@link Application} and their model artifact metadata * @throws IOException if failed to download to repository metadata * @throws ModelNotFoundException if failed to parse repository metadata */ static Map<Application, List<Artifact>> listModels() throws IOException, ModelNotFoundException { @SuppressWarnings("PMD.UseConcurrentHashMap") Map<Application, List<Artifact>> models = new TreeMap<>(Comparator.comparing(Application::getPath)); ServiceLoader<ZooProvider> providers = ServiceLoader.load(ZooProvider.class); for (ZooProvider provider : providers) { ModelZoo zoo = provider.getModelZoo(); if (zoo == null) { continue; } List<ModelLoader<?, ?>> list = zoo.getModelLoaders(); for (ModelLoader<?, ?> loader : list) { Application app = loader.getApplication(); final List<Artifact> artifacts = loader.listModels(); models.compute( app, (key, val) -> { if (val == null) { val = new ArrayList<>(); } val.addAll(artifacts); return val; }); } } return models; } }
0
java-sources/ai/djl/repository/0.4.1/ai/djl/repository
java-sources/ai/djl/repository/0.4.1/ai/djl/repository/zoo/ZooModel.java
/* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.repository.zoo; import ai.djl.Model; import ai.djl.inference.Predictor; import ai.djl.ndarray.NDManager; import ai.djl.ndarray.types.DataType; import ai.djl.ndarray.types.Shape; import ai.djl.nn.Block; import ai.djl.training.Trainer; import ai.djl.training.TrainingConfig; import ai.djl.translate.Translator; import ai.djl.util.PairList; import java.io.IOException; import java.io.InputStream; import java.net.URL; import java.nio.file.Path; import java.util.Map; import java.util.function.Function; /** * A {@code ZooModel} is a {@link Model} loaded from a model zoo and includes a default {@link * Translator}. * * @param <I> the model input type * @param <O> the model output type */ public class ZooModel<I, O> implements Model { private Model model; private Translator<I, O> translator; /** * Constructs a {@code ZooModel} given the model and translator. * * @param model the model to wrap * @param translator the translator */ public ZooModel(Model model, Translator<I, O> translator) { this.model = model; this.translator = translator; } /** {@inheritDoc} */ @Override public void load(Path modelPath, String modelName, Map<String, String> options) { throw new IllegalArgumentException("ZooModel should not be re-loaded."); } /** {@inheritDoc} */ @Override public void save(Path modelPath, String modelName) throws IOException { model.save(modelPath, modelName); } /** {@inheritDoc} */ @Override public Block getBlock() { return model.getBlock(); } /** {@inheritDoc} */ @Override public void setBlock(Block block) { model.setBlock(block); } /** {@inheritDoc} */ @Override public String getName() { return model.getName(); } /** {@inheritDoc} */ @Override public String getProperty(String key) { return model.getProperty(key); } /** {@inheritDoc} */ @Override public void setProperty(String key, String value) { model.setProperty(key, value); } /** {@inheritDoc} */ @Override public Trainer newTrainer(TrainingConfig trainingConfig) { return model.newTrainer(trainingConfig); } /** * Creates a new Predictor based on the model with the default translator. * * @return an instance of {@code Predictor} */ public Predictor<I, O> newPredictor() { return newPredictor(translator); } /** {@inheritDoc} */ @Override public <P, Q> Predictor<P, Q> newPredictor(Translator<P, Q> translator) { return model.newPredictor(translator); } /** * Returns the default translator. * * @return the default translator */ public Translator<I, O> getTranslator() { return translator; } /** {@inheritDoc} */ @Override public PairList<String, Shape> describeInput() { return model.describeInput(); } /** {@inheritDoc} */ @Override public PairList<String, Shape> describeOutput() { return model.describeOutput(); } /** {@inheritDoc} */ @Override public String[] getArtifactNames() { return model.getArtifactNames(); } /** {@inheritDoc} */ @Override public <T> T getArtifact(String name, Function<InputStream, T> function) throws IOException { return model.getArtifact(name, function); } /** {@inheritDoc} */ @Override public URL getArtifact(String name) throws IOException { return model.getArtifact(name); } /** {@inheritDoc} */ @Override public InputStream getArtifactAsStream(String name) throws IOException { return model.getArtifactAsStream(name); } /** {@inheritDoc} */ @Override public NDManager getNDManager() { return model.getNDManager(); } /** {@inheritDoc} */ @Override public void setDataType(DataType dataType) { model.setDataType(dataType); } /** {@inheritDoc} */ @Override public DataType getDataType() { return model.getDataType(); } /** {@inheritDoc} */ @Override public void cast(DataType dataType) { model.cast(dataType); } /** {@inheritDoc} */ @Override public void close() { model.close(); } }
0
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece/SpProcessor.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.sentencepiece; import ai.djl.sentencepiece.jni.LibUtils; import ai.djl.sentencepiece.jni.SentencePieceLibrary; import ai.djl.util.Ec2Utils; import ai.djl.util.NativeResource; import ai.djl.util.Platform; /** The processor holder for SentencePiece. */ public final class SpProcessor extends NativeResource<Long> { private static RuntimeException libraryStatus; static { try { LibUtils.loadLibrary(); } catch (RuntimeException e) { libraryStatus = e; } } private SpProcessor() { super(SentencePieceLibrary.LIB.createSentencePieceProcessor()); } static SpProcessor newInstance() { if (libraryStatus != null) { throw libraryStatus; } Ec2Utils.callHome("SentencePiece"); return new SpProcessor(); } /** * Returns the version of the sentencepiece. * * @return the version number of the sentencepiece */ public String getVersion() { Platform platform = Platform.detectPlatform("sentencepiece"); return platform.getVersion(); } void loadModel(String path) { SentencePieceLibrary.LIB.loadModel(getHandle(), path); } void loadModelFromBytes(byte[] serializedProto) { SentencePieceLibrary.LIB.loadModelFromBytes(getHandle(), serializedProto); } /** * Tokenize a sentence into array of tokens. * * @param input sentence * @return tokens */ public String[] tokenize(String input) { return SentencePieceLibrary.LIB.tokenize(getHandle(), input); } /** * Build sentence from tokens. * * @param tokens input * @return recovered sentence */ public String buildSentence(String[] tokens) { return SentencePieceLibrary.LIB.detokenize(getHandle(), tokens); } /** * Get tokens from ID. * * @param id the index of token * @return recovered token */ public String getToken(int id) { return SentencePieceLibrary.LIB.idToPiece(getHandle(), id); } /** * Get ID from token. * * @param token token that ready to map * @return id from token */ public int getId(String token) { return SentencePieceLibrary.LIB.pieceToId(getHandle(), token); } /** * Encode sentence into indices. * * @param sentence input sentence * @return indices */ public int[] encode(String sentence) { return SentencePieceLibrary.LIB.encode(getHandle(), sentence); } /** * Decode indices into sentence. * * @param ids the indices * @return recovered sentence */ public String decode(int[] ids) { return SentencePieceLibrary.LIB.decode(getHandle(), ids); } /** {@inheritDoc} */ @Override public void close() { Long pointer = handle.get(); if (pointer != null) { SentencePieceLibrary.LIB.deleteSentencePieceProcessor(pointer); } } }
0
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece/SpTextEmbedding.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.sentencepiece; import ai.djl.modality.nlp.embedding.TextEmbedding; import ai.djl.ndarray.NDArray; import java.util.Arrays; import java.util.Collections; import java.util.List; /** * A {@link TextEmbedding} in SentencePiece that do sentence tokenization and map tokens into * indices. */ public final class SpTextEmbedding implements TextEmbedding { private SpProcessor processor; private SpTextEmbedding(SpProcessor processor) { this.processor = processor; } /** * Get SentencePiece TextEmbeeding from {@link SpTokenizer}. * * @param tokenizer the {@link SpTokenizer} * @return {@link SpTextEmbedding} */ public static SpTextEmbedding from(SpTokenizer tokenizer) { return new SpTextEmbedding(tokenizer.getProcessor()); } /** {@inheritDoc} */ @Override public long[] preprocessTextToEmbed(List<String> text) { if (text.size() != 1) { throw new IllegalArgumentException( "SentencePiece require one single sentence to be passed as text"); } int[] indices = processor.encode(text.get(0)); return Arrays.stream(indices).asLongStream().toArray(); } /** {@inheritDoc} */ @Override public NDArray embedText(NDArray textIndices) { return textIndices; } /** {@inheritDoc} */ @Override public List<String> unembedText(NDArray textEmbedding) { long[] indices = textEmbedding.toLongArray(); String result = processor.decode(Arrays.stream(indices).mapToInt(i -> (int) i).toArray()); return Collections.singletonList(result); } }
0
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece/SpTokenizer.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.sentencepiece; import ai.djl.modality.nlp.preprocess.Tokenizer; import ai.djl.util.Utils; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStream; import java.nio.file.Files; import java.nio.file.Path; import java.util.Arrays; import java.util.List; /** * {@code SpTokenizer} is a SentencePiece implementation of the {@link Tokenizer} interface that * converts sentences into token. */ public class SpTokenizer implements Tokenizer, AutoCloseable { private SpProcessor processor; /** * Create a SentencePiece Tokenizer from existing models. * * @param modelPath the directory or file path of the model location * @throws IOException when IO operation fails in loading a resource */ public SpTokenizer(Path modelPath) throws IOException { this(modelPath, null); } /** * Create a SentencePiece Tokenizer from existing models. * * @param modelPath the directory or file path of the model location * @param prefix the model file name or path prefix * @throws IOException when IO operation fails in loading a resource */ public SpTokenizer(Path modelPath, String prefix) throws IOException { this.processor = SpProcessor.newInstance(); loadModel(modelPath, prefix); } /** * Creates a SentencePiece Tokenizer from byte array. * * @param serializedModel the serialized model */ public SpTokenizer(byte[] serializedModel) { this.processor = SpProcessor.newInstance(); processor.loadModelFromBytes(serializedModel); } /** * Creates a SentencePiece Tokenizer from inputStream. * * @param is {@link InputStream} of the serialized model * @throws IOException when IO operation fails in loading a resource */ public SpTokenizer(InputStream is) throws IOException { this.processor = SpProcessor.newInstance(); processor.loadModelFromBytes(Utils.toByteArray(is)); } /** {@inheritDoc} */ @Override public List<String> tokenize(String sentence) { return Arrays.asList(processor.tokenize(sentence)); } /** {@inheritDoc} */ @Override public String buildSentence(List<String> tokens) { return processor.buildSentence(tokens.toArray(Utils.EMPTY_ARRAY)); } /** {@inheritDoc} */ @Override public void close() { processor.close(); } /** * Get SentencePiece processor. * * @return {@link SpProcessor} */ public SpProcessor getProcessor() { return processor; } private void loadModel(Path modelPath, String prefix) throws IOException { if (Files.notExists(modelPath)) { throw new FileNotFoundException( "Model path doesn't exist: " + modelPath.toAbsolutePath()); } Path modelDir = modelPath.toAbsolutePath(); if (prefix == null || prefix.isEmpty()) { prefix = modelDir.toFile().getName(); } Path modelFile = findModelFile(modelDir, prefix); if (modelFile == null) { // TODO: support proto and IOStream model throw new FileNotFoundException("No .model found in : " + modelPath); } String modelFilePath = modelFile.toString(); processor.loadModel(modelFilePath); } private Path findModelFile(Path modelPath, String prefix) { if (Files.isRegularFile(modelPath)) { return modelPath; } Path modelFile = modelPath.resolve(prefix); if (Files.notExists(modelFile) || !Files.isRegularFile(modelFile)) { if (prefix.endsWith(".model")) { return null; } modelFile = modelPath.resolve(prefix + ".model"); if (Files.notExists(modelFile) || !Files.isRegularFile(modelFile)) { return null; } } return modelFile; } }
0
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece/SpVocabulary.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.sentencepiece; import ai.djl.modality.nlp.Vocabulary; /** {@link SpVocabulary} is a SentencePiece implementation of {@link Vocabulary}. */ public final class SpVocabulary implements Vocabulary { private SpProcessor processor; // TODO: Support direct Vocabulary loading private SpVocabulary(SpProcessor processor) { this.processor = processor; } /** * Get Vocabulary from {@link SpTokenizer}. * * @param tokenizer the {@link SpTokenizer} * @return {@link SpVocabulary} */ public static SpVocabulary from(SpTokenizer tokenizer) { return new SpVocabulary(tokenizer.getProcessor()); } /** {@inheritDoc} */ @Override public String getToken(long index) { return processor.getToken((int) index); } /** {@inheritDoc} */ @Override public boolean contains(String token) { throw new UnsupportedOperationException("Not supported for Sentence Piece"); } /** {@inheritDoc} */ @Override public long getIndex(String token) { return processor.getId(token); } /** {@inheritDoc} */ @Override public long size() { throw new UnsupportedOperationException("Not supported for Sentence Piece"); } }
0
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains classes to interface with the underlying SentencePiece. */ package ai.djl.sentencepiece;
0
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece/jni/LibUtils.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.sentencepiece.jni; import ai.djl.util.ClassLoaderUtils; import ai.djl.util.Platform; import ai.djl.util.Utils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.IOException; import java.io.InputStream; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.StandardCopyOption; /** * Utilities for finding the SentencePiece binary on the System. * * <p>The binary will be searched for in a variety of locations in the following order: * * <ol> * <li>In the path specified by the SENTENCEPIECE_LIBRARY_PATH environment variable * <li>In a jar file location in the classpath. These jars can be created with the pytorch-native * module. * </ol> */ @SuppressWarnings("MissingJavadocMethod") public final class LibUtils { private static final Logger logger = LoggerFactory.getLogger(LibUtils.class); private static final String LIB_NAME = "sentencepiece_native"; private LibUtils() {} public static void loadLibrary() { String libName = copyJniLibraryFromClasspath(); logger.debug("Loading sentencepiece library from: {}", libName); System.load(libName); // NOPMD } private static String copyJniLibraryFromClasspath() { String name = System.mapLibraryName(LIB_NAME); Path nativeDir = Utils.getEngineCacheDir("sentencepiece"); Platform platform = Platform.detectPlatform("sentencepiece"); String classifier = platform.getClassifier(); String version = platform.getVersion(); Path path = nativeDir.resolve(version).resolve(name); if (Files.exists(path)) { return path.toAbsolutePath().toString(); } Path tmp = null; String libPath = "native/lib/" + classifier + "/" + name; logger.info("Extracting {} to cache ...", libPath); try (InputStream is = ClassLoaderUtils.getResourceAsStream(libPath)) { Files.createDirectories(nativeDir.resolve(version)); tmp = Files.createTempFile(nativeDir, "jni", "tmp"); Files.copy(is, tmp, StandardCopyOption.REPLACE_EXISTING); Utils.moveQuietly(tmp, path); return path.toAbsolutePath().toString(); } catch (IOException e) { throw new IllegalStateException("Cannot copy jni files", e); } finally { if (tmp != null) { Utils.deleteQuietly(tmp); } } } }
0
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece/jni/SentencePieceLibrary.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.sentencepiece.jni; /** A class containing utilities to interact with the SentencePiece Engine's JNI layer. */ @SuppressWarnings("MissingJavadocMethod") public final class SentencePieceLibrary { public static final SentencePieceLibrary LIB = new SentencePieceLibrary(); private SentencePieceLibrary() {} public native long createSentencePieceProcessor(); public native void loadModel(long handle, String filePath); public native void loadModelFromBytes(long handle, byte[] bytes); public native void deleteSentencePieceProcessor(long handle); public native String[] tokenize(long handle, String text); public native int[] encode(long handle, String text); public native String detokenize(long handle, String[] tokens); public native String decode(long handle, int[] ids); public native String idToPiece(long handle, int id); public native int pieceToId(long handle, String piece); }
0
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece
java-sources/ai/djl/sentencepiece/sentencepiece/0.34.0/ai/djl/sentencepiece/jni/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains classes to interface with the underlying SentencePiece Engine. */ package ai.djl.sentencepiece.jni;
0
java-sources/ai/djl/serving/0.12.0/ai/djl
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/Arguments.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving; import ai.djl.serving.util.ConfigManager; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import org.apache.commons.cli.CommandLine; import org.apache.commons.cli.Option; import org.apache.commons.cli.Options; /** A class represents parsed command line arguments. */ public final class Arguments { private String configFile; private String modelStore; private String[] models; private boolean help; /** * Constructs a new {@code Arguments} instance. * * @param cmd a parsed {@code CommandLine} */ public Arguments(CommandLine cmd) { configFile = cmd.getOptionValue("config-file"); modelStore = cmd.getOptionValue("model-store"); models = cmd.getOptionValues("models"); help = cmd.hasOption("help"); } /** * Builds the command line options. * * @return the command line options */ public static Options getOptions() { Options options = new Options(); options.addOption( Option.builder("h").longOpt("help").hasArg(false).desc("Print this help.").build()); options.addOption( Option.builder("f") .longOpt("config-file") .hasArg() .argName("CONFIG-FILE") .desc("Path to the configuration properties file.") .build()); options.addOption( Option.builder("m") .longOpt("models") .hasArgs() .argName("MODELS") .desc("Models to be loaded at startup.") .build()); options.addOption( Option.builder("s") .longOpt("model-store") .hasArg() .argName("MODELS-STORE") .desc("Model store location where models can be loaded.") .build()); return options; } /** * Returns the configuration file path. * * @return the configuration file path */ public Path getConfigFile() { if (configFile == null) { configFile = System.getProperty("ai.djl.conf", null); } if (configFile != null) { Path file = Paths.get(configFile); if (!Files.isRegularFile(file)) { throw new IllegalArgumentException("Configuration file not found: " + configFile); } return file; } Path modelServerHome = Paths.get(ConfigManager.getModelServerHome()); Path file = modelServerHome.resolve("conf/config.properties"); if (Files.isRegularFile(file)) { return file; } file = modelServerHome.resolve("config.properties"); if (Files.isRegularFile(file)) { return file; } return null; } /** * Returns the model store location. * * @return the model store location */ public String getModelStore() { return modelStore; } /** * Returns the model urls that specified in command line. * * @return the model urls that specified in command line */ public String[] getModels() { return models; } /** * Returns if the command line has help option. * * @return {@code true} if the command line has help option */ public boolean hasHelp() { return help; } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/ModelServer.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving; import ai.djl.repository.FilenameUtils; import ai.djl.serving.plugins.FolderScanPluginManager; import ai.djl.serving.util.ConfigManager; import ai.djl.serving.util.Connector; import ai.djl.serving.util.ServerGroups; import ai.djl.serving.wlm.ModelInfo; import ai.djl.serving.wlm.ModelManager; import io.netty.bootstrap.ServerBootstrap; import io.netty.channel.ChannelFuture; import io.netty.channel.ChannelFutureListener; import io.netty.channel.ChannelOption; import io.netty.channel.EventLoopGroup; import io.netty.channel.ServerChannel; import io.netty.handler.ssl.SslContext; import io.netty.util.internal.logging.InternalLoggerFactory; import io.netty.util.internal.logging.Slf4JLoggerFactory; import java.io.IOException; import java.net.MalformedURLException; import java.nio.file.Files; import java.nio.file.Path; import java.security.GeneralSecurityException; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Set; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.atomic.AtomicBoolean; import java.util.regex.Matcher; import java.util.regex.Pattern; import java.util.stream.Collectors; import org.apache.commons.cli.CommandLine; import org.apache.commons.cli.DefaultParser; import org.apache.commons.cli.HelpFormatter; import org.apache.commons.cli.Options; import org.apache.commons.cli.ParseException; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** The main entry point for model server. */ public class ModelServer { private static final Logger logger = LoggerFactory.getLogger(ModelServer.class); private static final Pattern MODEL_STORE_PATTERN = Pattern.compile("(\\[(.+)]=)?(.+)"); private ServerGroups serverGroups; private List<ChannelFuture> futures = new ArrayList<>(2); private AtomicBoolean stopped = new AtomicBoolean(false); private ConfigManager configManager; private FolderScanPluginManager pluginManager; /** * Creates a new {@code ModelServer} instance. * * @param configManager the model server configuration */ public ModelServer(ConfigManager configManager) { this.configManager = configManager; this.pluginManager = new FolderScanPluginManager(configManager); serverGroups = new ServerGroups(configManager); } /** * The entry point for the model server. * * @param args the command line arguments */ public static void main(String[] args) { Options options = Arguments.getOptions(); try { DefaultParser parser = new DefaultParser(); CommandLine cmd = parser.parse(options, args, null, false); Arguments arguments = new Arguments(cmd); if (arguments.hasHelp()) { printHelp("model-server [OPTIONS]", options); return; } ConfigManager.init(arguments); ConfigManager configManager = ConfigManager.getInstance(); InternalLoggerFactory.setDefaultFactory(Slf4JLoggerFactory.INSTANCE); new ModelServer(configManager).startAndWait(); } catch (IllegalArgumentException e) { logger.error("Invalid configuration: " + e.getMessage()); System.exit(1); // NOPMD } catch (ParseException e) { printHelp(e.getMessage(), options); System.exit(1); // NOPMD } catch (Throwable t) { logger.error("Unexpected error", t); System.exit(1); // NOPMD } } /** * Starts the model server and block until server stops. * * @throws InterruptedException if interrupted * @throws IOException if failed to start socket listener * @throws GeneralSecurityException if failed to read SSL certificate */ public void startAndWait() throws InterruptedException, IOException, GeneralSecurityException { try { List<ChannelFuture> channelFutures = start(); logger.info("Model server started."); channelFutures.get(0).sync(); } finally { serverGroups.shutdown(true); logger.info("Model server stopped."); } } /** * Main Method that prepares the future for the channel and sets up the ServerBootstrap. * * @return a list of ChannelFuture object * @throws InterruptedException if interrupted * @throws IOException if failed to start socket listener * @throws GeneralSecurityException if failed to read SSL certificate */ public List<ChannelFuture> start() throws InterruptedException, IOException, GeneralSecurityException { stopped.set(false); logger.info(configManager.dumpConfigurations()); initModelStore(); pluginManager.loadPlugins(); Connector inferenceConnector = configManager.getConnector(Connector.ConnectorType.INFERENCE); Connector managementConnector = configManager.getConnector(Connector.ConnectorType.MANAGEMENT); inferenceConnector.clean(); managementConnector.clean(); EventLoopGroup serverGroup = serverGroups.getServerGroup(); EventLoopGroup workerGroup = serverGroups.getChildGroup(); futures.clear(); if (inferenceConnector.equals(managementConnector)) { Connector both = configManager.getConnector(Connector.ConnectorType.BOTH); futures.add(initializeServer(both, serverGroup, workerGroup)); } else { futures.add(initializeServer(inferenceConnector, serverGroup, workerGroup)); futures.add(initializeServer(managementConnector, serverGroup, workerGroup)); } return futures; } /** * Return if the server is running. * * @return {@code true} if the server is running */ public boolean isRunning() { return !stopped.get(); } /** Stops the model server. */ public void stop() { if (stopped.get()) { return; } stopped.set(true); for (ChannelFuture future : futures) { future.channel().close(); } serverGroups.shutdown(true); serverGroups.reset(); } private ChannelFuture initializeServer( Connector connector, EventLoopGroup serverGroup, EventLoopGroup workerGroup) throws InterruptedException, IOException, GeneralSecurityException { Class<? extends ServerChannel> channelClass = connector.getServerChannel(); logger.info( "Initialize {} server with: {}.", connector.getType(), channelClass.getSimpleName()); ServerBootstrap b = new ServerBootstrap(); b.option(ChannelOption.SO_BACKLOG, 1024) .channel(channelClass) .childOption(ChannelOption.SO_LINGER, 0) .childOption(ChannelOption.SO_REUSEADDR, true) .childOption(ChannelOption.SO_KEEPALIVE, true); b.group(serverGroup, workerGroup); SslContext sslCtx = null; if (connector.isSsl()) { sslCtx = configManager.getSslContext(); } b.childHandler(new ServerInitializer(sslCtx, connector.getType(), pluginManager)); ChannelFuture future; try { future = b.bind(connector.getSocketAddress()).sync(); } catch (Exception e) { // https://github.com/netty/netty/issues/2597 if (e instanceof IOException) { throw new IOException("Failed to bind to address: " + connector, e); } throw e; } future.addListener( (ChannelFutureListener) f -> { if (!f.isSuccess()) { try { f.get(); } catch (InterruptedException | ExecutionException e) { logger.error("", e); } System.exit(2); // NOPMD } serverGroups.registerChannel(f.channel()); }); future.sync(); ChannelFuture f = future.channel().closeFuture(); f.addListener( (ChannelFutureListener) listener -> logger.info("{} model server stopped.", connector.getType())); logger.info("{} API bind to: {}", connector.getType(), connector); return f; } private void initModelStore() throws IOException { ModelManager.init(configManager); Set<String> startupModels = ModelManager.getInstance().getStartupModels(); String loadModels = configManager.getLoadModels(); if (loadModels == null || loadModels.isEmpty()) { return; } ModelManager modelManager = ModelManager.getInstance(); List<String> urls; if ("ALL".equalsIgnoreCase(loadModels)) { Path modelStore = configManager.getModelStore(); if (modelStore == null) { logger.warn("Model store is not configured."); return; } if (!Files.isDirectory(modelStore)) { logger.warn("Model store path is not found: {}", modelStore); return; } // Check folders to see if they can be models as well urls = Files.list(modelStore) .filter( p -> { logger.info("Found file in model_store: {}", p); try { return !Files.isHidden(p) && Files.isDirectory(p) || FilenameUtils.isArchiveFile(p.toString()); } catch (IOException e) { logger.warn("Failed to access file: " + p, e); return false; } }) .map( p -> { try { return p.toUri().toURL().toString(); } catch (MalformedURLException e) { throw new AssertionError("Invalid path: " + p, e); } }) .collect(Collectors.toList()); } else { String[] modelsUrls = loadModels.split("[, ]+"); urls = Arrays.asList(modelsUrls); } for (String url : urls) { logger.info("Initializing model: {}", url); Matcher matcher = MODEL_STORE_PATTERN.matcher(url); if (!matcher.matches()) { throw new AssertionError("Invalid model store url: " + url); } String endpoint = matcher.group(2); String modelUrl = matcher.group(3); String version = null; String engine = null; int gpuId = -1; String modelName; if (endpoint != null) { String[] tokens = endpoint.split(":", -1); modelName = tokens[0]; if (tokens.length > 1) { version = tokens[1].isEmpty() ? null : tokens[1]; } if (tokens.length > 2) { engine = tokens[2].isEmpty() ? null : tokens[2]; } if (tokens.length > 3) { gpuId = tokens[3].isEmpty() ? -1 : Integer.parseInt(tokens[3]); } } else { modelName = ModelInfo.inferModelNameFromUrl(modelUrl); } int workers = configManager.getDefaultWorkers(); CompletableFuture<ModelInfo> future = modelManager.registerModel( modelName, version, modelUrl, engine, gpuId, configManager.getBatchSize(), configManager.getMaxBatchDelay(), configManager.getMaxIdleTime()); ModelInfo modelInfo = future.join(); modelManager.triggerModelUpdated(modelInfo.scaleWorkers(workers, workers)); startupModels.add(modelName); } } private static void printHelp(String msg, Options options) { HelpFormatter formatter = new HelpFormatter(); formatter.setLeftPadding(1); formatter.setWidth(120); formatter.printHelp(msg, options); } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/ServerInitializer.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving; import ai.djl.serving.http.ConfigurableHttpRequestHandler; import ai.djl.serving.http.InferenceRequestHandler; import ai.djl.serving.http.InvalidRequestHandler; import ai.djl.serving.http.ManagementRequestHandler; import ai.djl.serving.plugins.FolderScanPluginManager; import ai.djl.serving.util.ConfigManager; import ai.djl.serving.util.Connector; import io.netty.channel.Channel; import io.netty.channel.ChannelInitializer; import io.netty.channel.ChannelPipeline; import io.netty.handler.codec.http.HttpObjectAggregator; import io.netty.handler.codec.http.HttpServerCodec; import io.netty.handler.ssl.SslContext; import io.netty.handler.stream.ChunkedWriteHandler; /** * A special {@link io.netty.channel.ChannelInboundHandler} which offers an easy way to initialize a * {@link io.netty.channel.Channel} once it was registered to its {@link * io.netty.channel.EventLoop}. */ public class ServerInitializer extends ChannelInitializer<Channel> { private Connector.ConnectorType connectorType; private SslContext sslCtx; private FolderScanPluginManager pluginManager; /** * Creates a new {@code HttpRequestHandler} instance. * * @param sslCtx null if SSL is not enabled * @param connectorType type of {@link Connector} * @param pluginManager a pluginManager instance. */ public ServerInitializer( SslContext sslCtx, Connector.ConnectorType connectorType, FolderScanPluginManager pluginManager) { this.sslCtx = sslCtx; this.connectorType = connectorType; this.pluginManager = pluginManager; } /** {@inheritDoc} */ @Override public void initChannel(Channel ch) { ChannelPipeline pipeline = ch.pipeline(); int maxRequestSize = ConfigManager.getInstance().getMaxRequestSize(); if (sslCtx != null) { pipeline.addLast("ssl", sslCtx.newHandler(ch.alloc())); } pipeline.addLast("http", new HttpServerCodec()); pipeline.addLast("aggregator", new HttpObjectAggregator(maxRequestSize, true)); pipeline.addLast(new ChunkedWriteHandler()); switch (connectorType) { case MANAGEMENT: pipeline.addLast(new ConfigurableHttpRequestHandler(pluginManager)); pipeline.addLast("management", new ManagementRequestHandler()); break; case INFERENCE: pipeline.addLast("inference", new InferenceRequestHandler()); break; case BOTH: default: pipeline.addLast("inference", new InferenceRequestHandler()); pipeline.addLast(new ConfigurableHttpRequestHandler(pluginManager)); pipeline.addLast("management", new ManagementRequestHandler()); break; } pipeline.addLast("badRequest", new InvalidRequestHandler()); } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains a model server implementation. */ package ai.djl.serving;
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/BadRequestException.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; /** Thrown when a bad HTTP request is received. */ public class BadRequestException extends IllegalArgumentException { static final long serialVersionUID = 1L; /** * Constructs an {@code BadRequestException} with the specified detail message. * * @param message The detail message (which is saved for later retrieval by the {@link * #getMessage()} method) */ public BadRequestException(String message) { super(message); } /** * Constructs an {@code BadRequestException} with the specified detail message and a root cause. * * @param message The detail message (which is saved for later retrieval by the {@link * #getMessage()} method) * @param cause root cause */ public BadRequestException(String message, Throwable cause) { super(message, cause); } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/ConfigurableHttpRequestHandler.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; import ai.djl.ModelException; import ai.djl.serving.plugins.FolderScanPluginManager; import ai.djl.serving.plugins.RequestHandler; import ai.djl.serving.util.NettyUtils; import io.netty.channel.ChannelHandlerContext; import io.netty.handler.codec.http.FullHttpRequest; import io.netty.handler.codec.http.QueryStringDecoder; import java.util.Optional; import java.util.concurrent.CompletableFuture; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * HttpRequestHandler that tries to process a http-request using the configured RequestHandlers. * * <p>RequestHandlers are configured by the PluginManager. * * @author erik.bamberg@web.de */ public class ConfigurableHttpRequestHandler extends HttpRequestHandler { private static final Logger logger = LoggerFactory.getLogger(ConfigurableHttpRequestHandler.class); private FolderScanPluginManager pluginManager; /** * constructing a ConfigurableHttpRequestHandler. * * @param pluginManager a pluginManager instance used to search for available plug-ins to * process a request. */ public ConfigurableHttpRequestHandler(FolderScanPluginManager pluginManager) { this.pluginManager = pluginManager; } /** {@inheritDoc} */ @SuppressWarnings("unchecked") @Override protected void handleRequest( ChannelHandlerContext ctx, FullHttpRequest req, QueryStringDecoder decoder, String[] segments) throws ModelException { RequestHandler<?> requestHandler = findRequestHandler(req) .orElseThrow( () -> new BadRequestException("request handler no longer valid")); logger.debug( "request handler {} processes request ", requestHandler.getClass().getSimpleName()); try { Object result = requestHandler.handleRequest(ctx, req, decoder, segments); if (result != null) { if (result instanceof CompletableFuture) { ((CompletableFuture<Object>) result) .handle( (response, error) -> { if (error != null) { NettyUtils.sendError(ctx, error); } else { NettyUtils.sendJsonResponse(ctx, response); } return response; }); } else { NettyUtils.sendJsonResponse(ctx, result); } } } catch (Exception ex) { NettyUtils.sendError(ctx, ex); } } /** * findRequestHandler. * * @param req the full Http Request. * @return an optional RequestHandler. */ @SuppressWarnings("rawtypes") private Optional<RequestHandler> findRequestHandler(FullHttpRequest req) { return pluginManager .findImplementations(RequestHandler.class) .stream() .filter(h -> h.acceptInboundMessage(req)) .findFirst(); } /** {@inheritDoc} */ @Override public boolean acceptInboundMessage(Object msg) throws Exception { if (msg instanceof FullHttpRequest) { return findRequestHandler((FullHttpRequest) msg).isPresent(); } else { return false; } } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/DescribeModelResponse.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; import java.util.ArrayList; import java.util.Date; import java.util.List; /** A class that holds information about model status. */ public class DescribeModelResponse { private String modelName; private String modelUrl; private int minWorkers; private int maxWorkers; private int batchSize; private int maxBatchDelay; private int maxIdleTime; private String status; private boolean loadedAtStartup; private List<Worker> workers; /** Constructs a {@code DescribeModelResponse} instance. */ public DescribeModelResponse() { workers = new ArrayList<>(); } /** * Returns the model name. * * @return the model name */ public String getModelName() { return modelName; } /** * Sets the model name. * * @param modelName the model name */ public void setModelName(String modelName) { this.modelName = modelName; } /** * Returns if the models was loaded at startup. * * @return {@code true} if the models was loaded at startup */ public boolean isLoadedAtStartup() { return loadedAtStartup; } /** * Sets the load at startup status. * * @param loadedAtStartup {@code true} if the models was loaded at startup */ public void setLoadedAtStartup(boolean loadedAtStartup) { this.loadedAtStartup = loadedAtStartup; } /** * Returns the model URL. * * @return the model URL */ public String getModelUrl() { return modelUrl; } /** * Sets the model URL. * * @param modelUrl the model URL */ public void setModelUrl(String modelUrl) { this.modelUrl = modelUrl; } /** * Returns the desired minimum number of workers. * * @return the desired minimum number of workers */ public int getMinWorkers() { return minWorkers; } /** * Sets the desired minimum number of workers. * * @param minWorkers the desired minimum number of workers */ public void setMinWorkers(int minWorkers) { this.minWorkers = minWorkers; } /** * Returns the desired maximum number of workers. * * @return the desired maximum number of workers */ public int getMaxWorkers() { return maxWorkers; } /** * Sets the desired maximum number of workers. * * @param maxWorkers the desired maximum number of workers */ public void setMaxWorkers(int maxWorkers) { this.maxWorkers = maxWorkers; } /** * Returns the batch size. * * @return the batch size */ public int getBatchSize() { return batchSize; } /** * Sets the batch size. * * @param batchSize the batch size */ public void setBatchSize(int batchSize) { this.batchSize = batchSize; } /** * Returns the maximum delay in milliseconds to aggregate a batch. * * @return the maximum delay in milliseconds to aggregate a batch */ public int getMaxBatchDelay() { return maxBatchDelay; } /** * Sets the maximum delay in milliseconds to aggregate a batch. * * @param maxBatchDelay the maximum delay in milliseconds to aggregate a batch */ public void setMaxBatchDelay(int maxBatchDelay) { this.maxBatchDelay = maxBatchDelay; } /** * Returns the model's status. * * @return the model's status */ public String getStatus() { return status; } /** * Sets the model's status. * * @param status the model's status */ public void setStatus(String status) { this.status = status; } /** * Sets the max idle time for worker threads. * * @param maxIdleTime the time a worker thread can be idle before scaling down. */ public void setMaxIdleTime(int maxIdleTime) { this.maxIdleTime = maxIdleTime; } /** * Returns the maximum idle time for worker threads. * * @return the maxIdleTime */ public int getMaxIdleTime() { return maxIdleTime; } /** * Returns all workers information of the model. * * @return all workers information of the model */ public List<Worker> getWorkers() { return workers; } /** * Adds worker to the worker list. * * @param id the worker's ID * @param startTime the worker's start time * @param isRunning {@code true} if worker is running * @param gpuId the GPU id assigned to the worker, -1 for CPU */ public void addWorker(int id, long startTime, boolean isRunning, int gpuId) { Worker worker = new Worker(); worker.setId(id); worker.setStartTime(new Date(startTime)); worker.setStatus(isRunning ? "READY" : "UNLOADING"); worker.setGpu(gpuId >= 0); workers.add(worker); } /** A class that holds workers information. */ public static final class Worker { private int id; private Date startTime; private String status; private boolean gpu; /** * Returns the worker's ID. * * @return the worker's ID */ public int getId() { return id; } /** * Sets the worker's ID. * * @param id the workers ID */ public void setId(int id) { this.id = id; } /** * Returns the worker's start time. * * @return the worker's start time */ public Date getStartTime() { return startTime; } /** * Sets the worker's start time. * * @param startTime the worker's start time */ public void setStartTime(Date startTime) { this.startTime = startTime; } /** * Returns the worker's status. * * @return the worker's status */ public String getStatus() { return status; } /** * Sets the worker's status. * * @param status the worker's status */ public void setStatus(String status) { this.status = status; } /** * Return if the worker using GPU. * * @return {@code true} if the worker using GPU */ public boolean isGpu() { return gpu; } /** * Sets if the worker using GPU. * * @param gpu if the worker using GPU */ public void setGpu(boolean gpu) { this.gpu = gpu; } } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/ErrorResponse.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; /** A class that holds error message. */ public class ErrorResponse { private int code; private String type; private String message; /** * Constructs a {@code ErrorResponse} instance with code, type and message. * * @param code the error code * @param type the error type * @param message the error message */ public ErrorResponse(int code, String type, String message) { this.code = code; this.type = type; this.message = message; } /** * Returns the error code. * * @return the error code */ public int getCode() { return code; } /** * Returns the error type. * * @return the error type */ public String getType() { return type; } /** * Returns the error message. * * @return the error message */ public String getMessage() { return message; } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/HttpRequestHandler.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; import ai.djl.ModelException; import ai.djl.serving.util.NettyUtils; import io.netty.channel.ChannelHandlerContext; import io.netty.channel.SimpleChannelInboundHandler; import io.netty.handler.codec.http.FullHttpRequest; import io.netty.handler.codec.http.HttpMethod; import io.netty.handler.codec.http.QueryStringDecoder; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** A class handling inbound HTTP requests. */ public abstract class HttpRequestHandler extends SimpleChannelInboundHandler<FullHttpRequest> { private static final Logger logger = LoggerFactory.getLogger(HttpRequestHandler.class); /** {@inheritDoc} */ @Override protected void channelRead0(ChannelHandlerContext ctx, FullHttpRequest req) { try { NettyUtils.requestReceived(ctx.channel(), req); if (!req.decoderResult().isSuccess()) { throw new BadRequestException("Invalid HTTP message."); } QueryStringDecoder decoder = new QueryStringDecoder(req.uri()); String path = decoder.path(); if ("/".equals(path) && HttpMethod.OPTIONS.equals(req.method())) { handleApiDescription(ctx); return; } String[] segments = path.split("/"); handleRequest(ctx, req, decoder, segments); } catch (Throwable t) { NettyUtils.sendError(ctx, t); } } /** {@inheritDoc} */ @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { logger.error("", cause); ctx.close(); } protected abstract void handleRequest( ChannelHandlerContext ctx, FullHttpRequest req, QueryStringDecoder decoder, String[] segments) throws ModelException; private void handleApiDescription(ChannelHandlerContext ctx) { NettyUtils.sendJsonResponse(ctx, "{}"); } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/InferenceRequestHandler.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; import ai.djl.ModelException; import ai.djl.modality.Input; import ai.djl.repository.zoo.ModelNotFoundException; import ai.djl.serving.util.ConfigManager; import ai.djl.serving.util.NettyUtils; import ai.djl.serving.wlm.Job; import ai.djl.serving.wlm.ModelInfo; import ai.djl.serving.wlm.ModelManager; import io.netty.channel.ChannelHandlerContext; import io.netty.handler.codec.http.FullHttpRequest; import io.netty.handler.codec.http.HttpMethod; import io.netty.handler.codec.http.HttpResponseStatus; import io.netty.handler.codec.http.QueryStringDecoder; import java.nio.charset.StandardCharsets; import java.util.Set; import java.util.regex.Pattern; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** A class handling inbound HTTP requests for the management API. */ public class InferenceRequestHandler extends HttpRequestHandler { private static final Logger logger = LoggerFactory.getLogger(InferenceRequestHandler.class); private RequestParser requestParser; private static final Pattern PATTERN = Pattern.compile("^/(ping|invocations|predictions)([/?].*)?"); /** default constructor. */ public InferenceRequestHandler() { this.requestParser = new RequestParser(); } /** {@inheritDoc} */ @Override public boolean acceptInboundMessage(Object msg) throws Exception { if (super.acceptInboundMessage(msg)) { FullHttpRequest req = (FullHttpRequest) msg; return PATTERN.matcher(req.uri()).matches(); } return false; } /** {@inheritDoc} */ @Override protected void handleRequest( ChannelHandlerContext ctx, FullHttpRequest req, QueryStringDecoder decoder, String[] segments) throws ModelException { switch (segments[1]) { case "ping": // TODO: Check if its OK to send other 2xx errors to ALB for "Partial Healthy" // and "Unhealthy" ModelManager.getInstance() .workerStatus() .thenAccept( response -> NettyUtils.sendJsonResponse( ctx, new StatusResponse(response), HttpResponseStatus.OK)); break; case "invocations": handleInvocations(ctx, req, decoder); break; case "predictions": handlePredictions(ctx, req, decoder, segments); break; default: throw new AssertionError("Invalid request uri: " + req.uri()); } } private void handlePredictions( ChannelHandlerContext ctx, FullHttpRequest req, QueryStringDecoder decoder, String[] segments) throws ModelNotFoundException { if (segments.length < 3) { throw new ResourceNotFoundException(); } String modelName = segments[2]; String version; if (segments.length > 3) { version = segments[3].isEmpty() ? null : segments[3]; } else { version = null; } Input input = requestParser.parseRequest(ctx, req, decoder); predict(ctx, req, input, modelName, version); } private void handleInvocations( ChannelHandlerContext ctx, FullHttpRequest req, QueryStringDecoder decoder) throws ModelNotFoundException { Input input = requestParser.parseRequest(ctx, req, decoder); String modelName = NettyUtils.getParameter(decoder, "model_name", null); String version = NettyUtils.getParameter(decoder, "model_version", null); if ((modelName == null || modelName.isEmpty())) { modelName = input.getProperty("model_name", null); if (modelName == null) { byte[] buf = input.getContent().get("model_name"); if (buf != null) { modelName = new String(buf, StandardCharsets.UTF_8); } } } if (modelName == null) { Set<String> startModels = ModelManager.getInstance().getStartupModels(); if (startModels.size() == 1) { modelName = startModels.iterator().next(); } if (modelName == null) { throw new BadRequestException("Parameter model_name is required."); } } if (version == null) { version = input.getProperty("model_version", null); } predict(ctx, req, input, modelName, version); } private void predict( ChannelHandlerContext ctx, FullHttpRequest req, Input input, String modelName, String version) throws ModelNotFoundException { ModelManager modelManager = ModelManager.getInstance(); ModelInfo model = modelManager.getModel(modelName, version, true); if (model == null) { String regex = ConfigManager.getInstance().getModelUrlPattern(); if (regex == null) { throw new ModelNotFoundException("Model not found: " + modelName); } String modelUrl = input.getProperty("model_url", null); if (modelUrl == null) { byte[] buf = input.getContent().get("model_url"); if (buf == null) { throw new ModelNotFoundException("Parameter model_url is required."); } modelUrl = new String(buf, StandardCharsets.UTF_8); if (!modelUrl.matches(regex)) { throw new ModelNotFoundException("Permission denied: " + modelUrl); } } String engineName = input.getProperty("engine_name", null); int gpuId = Integer.parseInt(input.getProperty("gpu_id", "-1")); logger.info("Loading model {} from: {}", modelName, modelUrl); modelManager .registerModel( modelName, version, modelUrl, engineName, gpuId, ConfigManager.getInstance().getBatchSize(), ConfigManager.getInstance().getMaxBatchDelay(), ConfigManager.getInstance().getMaxIdleTime()) .thenApply(m -> modelManager.triggerModelUpdated(m.scaleWorkers(1, 1))) .thenAccept( m -> { try { if (!modelManager.addJob(new Job(ctx, m, input))) { throw new ServiceUnavailableException( "No worker is available to serve request: " + modelName); } } catch (ModelNotFoundException e) { logger.warn("Unexpected error", e); NettyUtils.sendError(ctx, e); } }) .exceptionally( t -> { logger.warn("Unexpected error", t); NettyUtils.sendError(ctx, t); return null; }); return; } if (HttpMethod.OPTIONS.equals(req.method())) { NettyUtils.sendJsonResponse(ctx, "{}"); return; } Job job = new Job(ctx, model, input); if (!modelManager.addJob(job)) { logger.error("unable to process prediction. no free worker available."); throw new ServiceUnavailableException( "No worker is available to serve request: " + modelName); } } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/InternalServerException.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; /** Thrown when an internal server failure occurs. */ public class InternalServerException extends RuntimeException { static final long serialVersionUID = 1L; /** * Constructs an {@code InternalServerException} with the specified detail message. * * @param message The detail message (which is saved for later retrieval by the {@link * #getMessage()} method) */ public InternalServerException(String message) { super(message); } /** * Constructs an {@code BadRequestException} with the specified detail message and cause. * * <p>Note that the detail message associated with {@code cause} is <i>not</i> automatically * incorporated into this exception's detail message. * * @param message The detail message (which is saved for later retrieval by the {@link * #getMessage()} method) * @param cause The cause (which is saved for later retrieval by the {@link #getCause()} * method). (A null value is permitted, and indicates that the cause is nonexistent or * unknown.) */ public InternalServerException(String message, Throwable cause) { super(message, cause); } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/InvalidRequestHandler.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; import io.netty.channel.ChannelHandlerContext; import io.netty.handler.codec.http.FullHttpRequest; import io.netty.handler.codec.http.QueryStringDecoder; /** A class handling unhandled inbound HTTP requests. */ public class InvalidRequestHandler extends HttpRequestHandler { /** {@inheritDoc} */ @Override protected void handleRequest( ChannelHandlerContext ctx, FullHttpRequest req, QueryStringDecoder decoder, String[] segments) { throw new ResourceNotFoundException(); } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/ListModelsResponse.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; import java.util.ArrayList; import java.util.List; /** A class that holds information about the current registered models. */ public class ListModelsResponse { private String nextPageToken; private List<ModelItem> models; /** Constructs a new {@code ListModelsResponse} instance. */ public ListModelsResponse() { models = new ArrayList<>(); } /** * Returns the next page token. * * @return the next page token */ public String getNextPageToken() { return nextPageToken; } /** * Sets the next page token. * * @param nextPageToken the next page token */ public void setNextPageToken(String nextPageToken) { this.nextPageToken = nextPageToken; } /** * Returns a list of models. * * @return a list of models */ public List<ModelItem> getModels() { return models; } /** * Adds the model tp the list. * * @param modelName the model name * @param modelUrl the model url */ public void addModel(String modelName, String modelUrl) { models.add(new ModelItem(modelName, modelUrl)); } /** A class that holds model name and url. */ public static final class ModelItem { private String modelName; private String modelUrl; /** Constructs a new {@code ModelItem} instance. */ public ModelItem() {} /** * Constructs a new {@code ModelItem} instance with model name and url. * * @param modelName the model name * @param modelUrl the model url */ public ModelItem(String modelName, String modelUrl) { this.modelName = modelName; this.modelUrl = modelUrl; } /** * Returns the model name. * * @return the model name */ public String getModelName() { return modelName; } /** * Returns the model url. * * @return the model url */ public String getModelUrl() { return modelUrl; } } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/ManagementRequestHandler.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; import ai.djl.ModelException; import ai.djl.repository.zoo.ModelNotFoundException; import ai.djl.serving.util.NettyUtils; import ai.djl.serving.wlm.Endpoint; import ai.djl.serving.wlm.ModelInfo; import ai.djl.serving.wlm.ModelManager; import io.netty.channel.ChannelHandlerContext; import io.netty.handler.codec.http.FullHttpRequest; import io.netty.handler.codec.http.HttpMethod; import io.netty.handler.codec.http.QueryStringDecoder; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map; import java.util.concurrent.CompletableFuture; import java.util.regex.Pattern; /** * A class handling inbound HTTP requests to the management API. * * <p>This class */ public class ManagementRequestHandler extends HttpRequestHandler { /** HTTP Parameter "synchronous". */ private static final String SYNCHRONOUS_PARAMETER = "synchronous"; /** HTTP Parameter "initial_workers". */ private static final String INITIAL_WORKERS_PARAMETER = "initial_workers"; /** HTTP Parameter "url". */ private static final String URL_PARAMETER = "url"; /** HTTP Parameter "batch_size". */ private static final String BATCH_SIZE_PARAMETER = "batch_size"; /** HTTP Parameter "model_name". */ private static final String MODEL_NAME_PARAMETER = "model_name"; /** HTTP Parameter "model_version". */ private static final String MODEL_VERSION_PARAMETER = "model_version"; /** HTTP Parameter "engine_name". */ private static final String ENGINE_NAME_PARAMETER = "engine_name"; /** HTTP Parameter "gpu_id". */ private static final String GPU_ID_PARAMETER = "gpu_id"; /** HTTP Parameter "max_batch_delay". */ private static final String MAX_BATCH_DELAY_PARAMETER = "max_batch_delay"; /** HTTP Parameter "max_idle_time". */ private static final String MAX_IDLE_TIME__PARAMETER = "max_idle_time"; /** HTTP Parameter "max_worker". */ private static final String MAX_WORKER_PARAMETER = "max_worker"; /** HTTP Parameter "min_worker". */ private static final String MIN_WORKER_PARAMETER = "min_worker"; private static final Pattern PATTERN = Pattern.compile("^/models([/?].*)?"); /** {@inheritDoc} */ @Override public boolean acceptInboundMessage(Object msg) throws Exception { if (super.acceptInboundMessage(msg)) { FullHttpRequest req = (FullHttpRequest) msg; return PATTERN.matcher(req.uri()).matches(); } return false; } /** {@inheritDoc} */ @Override protected void handleRequest( ChannelHandlerContext ctx, FullHttpRequest req, QueryStringDecoder decoder, String[] segments) throws ModelException { HttpMethod method = req.method(); if (segments.length < 3) { if (HttpMethod.GET.equals(method)) { handleListModels(ctx, decoder); return; } else if (HttpMethod.POST.equals(method)) { handleRegisterModel(ctx, decoder); return; } throw new MethodNotAllowedException(); } String modelName = segments[2]; String version = null; if (segments.length > 3) { version = segments[3]; } if (HttpMethod.GET.equals(method)) { handleDescribeModel(ctx, modelName, version); } else if (HttpMethod.PUT.equals(method)) { handleScaleModel(ctx, decoder, modelName, version); } else if (HttpMethod.DELETE.equals(method)) { handleUnregisterModel(ctx, modelName, version); } else { throw new MethodNotAllowedException(); } } private void handleListModels(ChannelHandlerContext ctx, QueryStringDecoder decoder) { int limit = NettyUtils.getIntParameter(decoder, "limit", 100); int pageToken = NettyUtils.getIntParameter(decoder, "next_page_token", 0); if (limit > 100 || limit < 0) { limit = 100; } if (pageToken < 0) { pageToken = 0; } ModelManager modelManager = ModelManager.getInstance(); Map<String, Endpoint> endpoints = modelManager.getEndpoints(); List<String> keys = new ArrayList<>(endpoints.keySet()); Collections.sort(keys); ListModelsResponse list = new ListModelsResponse(); int last = pageToken + limit; if (last > keys.size()) { last = keys.size(); } else { list.setNextPageToken(String.valueOf(last)); } for (int i = pageToken; i < last; ++i) { String modelName = keys.get(i); for (ModelInfo m : endpoints.get(modelName).getModels()) { list.addModel(modelName, m.getModelUrl()); } } NettyUtils.sendJsonResponse(ctx, list); } private void handleDescribeModel(ChannelHandlerContext ctx, String modelName, String version) throws ModelNotFoundException { ModelManager modelManager = ModelManager.getInstance(); DescribeModelResponse resp = modelManager.describeModel(modelName, version); NettyUtils.sendJsonResponse(ctx, resp); } private void handleRegisterModel(final ChannelHandlerContext ctx, QueryStringDecoder decoder) { String modelUrl = NettyUtils.getParameter(decoder, URL_PARAMETER, null); if (modelUrl == null) { throw new BadRequestException("Parameter url is required."); } String modelName = NettyUtils.getParameter(decoder, MODEL_NAME_PARAMETER, null); if (modelName == null || modelName.isEmpty()) { modelName = ModelInfo.inferModelNameFromUrl(modelUrl); } String version = NettyUtils.getParameter(decoder, MODEL_VERSION_PARAMETER, null); int gpuId = NettyUtils.getIntParameter(decoder, GPU_ID_PARAMETER, -1); String engineName = NettyUtils.getParameter(decoder, ENGINE_NAME_PARAMETER, null); int batchSize = NettyUtils.getIntParameter(decoder, BATCH_SIZE_PARAMETER, 1); int maxBatchDelay = NettyUtils.getIntParameter(decoder, MAX_BATCH_DELAY_PARAMETER, 100); int maxIdleTime = NettyUtils.getIntParameter(decoder, MAX_IDLE_TIME__PARAMETER, 60); final int initialWorkers = NettyUtils.getIntParameter(decoder, INITIAL_WORKERS_PARAMETER, 1); boolean synchronous = Boolean.parseBoolean( NettyUtils.getParameter(decoder, SYNCHRONOUS_PARAMETER, "true")); final ModelManager modelManager = ModelManager.getInstance(); CompletableFuture<ModelInfo> future = modelManager.registerModel( modelName, version, modelUrl, engineName, gpuId, batchSize, maxBatchDelay, maxIdleTime); CompletableFuture<Void> f = future.thenAccept( m -> modelManager.triggerModelUpdated( m.scaleWorkers(initialWorkers, initialWorkers) .configurePool(maxIdleTime, maxBatchDelay) .configureModelBatch(batchSize))); if (synchronous) { final String msg = "Model \"" + modelName + "\" registered."; f = f.thenAccept(m -> NettyUtils.sendJsonResponse(ctx, new StatusResponse(msg))); } else { String msg = "Model \"" + modelName + "\" registration scheduled."; NettyUtils.sendJsonResponse(ctx, new StatusResponse(msg)); } f.exceptionally( t -> { NettyUtils.sendError(ctx, t.getCause()); return null; }); } private void handleUnregisterModel(ChannelHandlerContext ctx, String modelName, String version) throws ModelNotFoundException { ModelManager modelManager = ModelManager.getInstance(); if (!modelManager.unregisterModel(modelName, version)) { throw new ModelNotFoundException("Model not found: " + modelName); } String msg = "Model \"" + modelName + "\" unregistered"; NettyUtils.sendJsonResponse(ctx, new StatusResponse(msg)); } private void handleScaleModel( ChannelHandlerContext ctx, QueryStringDecoder decoder, String modelName, String version) throws ModelNotFoundException { try { ModelManager modelManager = ModelManager.getInstance(); ModelInfo modelInfo = modelManager.getModel(modelName, version, false); if (modelInfo == null) { throw new ModelNotFoundException("Model not found: " + modelName); } int minWorkers = NettyUtils.getIntParameter( decoder, MIN_WORKER_PARAMETER, modelInfo.getMinWorkers()); int maxWorkers = NettyUtils.getIntParameter( decoder, MAX_WORKER_PARAMETER, modelInfo.getMaxWorkers()); if (maxWorkers < minWorkers) { throw new BadRequestException("max_worker cannot be less than min_worker."); } int maxIdleTime = NettyUtils.getIntParameter( decoder, MAX_IDLE_TIME__PARAMETER, modelInfo.getMaxIdleTime()); int maxBatchDelay = NettyUtils.getIntParameter( decoder, MAX_BATCH_DELAY_PARAMETER, modelInfo.getMaxBatchDelay()); modelInfo = modelInfo .scaleWorkers(minWorkers, maxWorkers) .configurePool(maxIdleTime, maxBatchDelay); modelManager.triggerModelUpdated(modelInfo); String msg = "Model \"" + modelName + "\" worker scaled. New Worker configuration min workers:" + minWorkers + " max workers:" + maxWorkers; NettyUtils.sendJsonResponse(ctx, new StatusResponse(msg)); } catch (NumberFormatException ex) { throw new BadRequestException("parameter is invalid number." + ex.getMessage(), ex); } } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/MethodNotAllowedException.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; /** Thrown when a HTTP request which method is not allowed. */ public class MethodNotAllowedException extends RuntimeException { static final long serialVersionUID = 1L; /** * Constructs an {@code MethodNotAllowedException} with {@code null} as its error detail * message. */ public MethodNotAllowedException() { super("Requested method is not allowed, please refer to API document."); } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/RequestParser.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; import ai.djl.modality.Input; import ai.djl.serving.util.NettyUtils; import io.netty.channel.ChannelHandlerContext; import io.netty.handler.codec.http.FullHttpRequest; import io.netty.handler.codec.http.HttpHeaderValues; import io.netty.handler.codec.http.HttpUtil; import io.netty.handler.codec.http.QueryStringDecoder; import io.netty.handler.codec.http.multipart.DefaultHttpDataFactory; import io.netty.handler.codec.http.multipart.HttpDataFactory; import io.netty.handler.codec.http.multipart.HttpPostRequestDecoder; import java.nio.charset.StandardCharsets; import java.util.List; import java.util.Map; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * a parser for inbound request. * * @author erik.bamberg@web.de */ public class RequestParser { private static final Logger logger = LoggerFactory.getLogger(RequestParser.class); /** * parsing a request. * * @param ctx the context. * @param req the full request. * @param decoder a decoder to decode the query string. * @return parsed input object. */ public Input parseRequest( ChannelHandlerContext ctx, FullHttpRequest req, QueryStringDecoder decoder) { String requestId = NettyUtils.getRequestId(ctx.channel()); Input input = new Input(requestId); if (decoder != null) { for (Map.Entry<String, List<String>> entry : decoder.parameters().entrySet()) { String key = entry.getKey(); for (String value : entry.getValue()) { input.addData(key, value.getBytes(StandardCharsets.UTF_8)); } } } CharSequence contentType = HttpUtil.getMimeType(req); for (Map.Entry<String, String> entry : req.headers().entries()) { input.addProperty(entry.getKey(), entry.getValue()); } if (HttpPostRequestDecoder.isMultipart(req) || HttpHeaderValues.APPLICATION_X_WWW_FORM_URLENCODED.contentEqualsIgnoreCase( contentType)) { HttpDataFactory factory = new DefaultHttpDataFactory(6553500); HttpPostRequestDecoder form = new HttpPostRequestDecoder(factory, req); try { while (form.hasNext()) { NettyUtils.addFormData(form.next(), input); } } catch (HttpPostRequestDecoder.EndOfDataDecoderException ignore) { logger.trace("End of multipart items."); } finally { form.cleanFiles(); form.destroy(); } } else { byte[] content = NettyUtils.getBytes(req.content()); input.addData("body", content); } return input; } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/ResourceNotFoundException.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; /** Thrown when a HTTP request what requested resource is not found. */ public class ResourceNotFoundException extends RuntimeException { static final long serialVersionUID = 1L; /** * Constructs an {@code ResourceNotFoundException} with {@code null} as its error detail * message. */ public ResourceNotFoundException() { super("Requested resource is not found, please refer to API document."); } /** * Constructs an {@code ResourceNotFoundException} with a root cause. * * @param cause the root cause */ public ResourceNotFoundException(Throwable cause) { super("Requested resource is not found, please refer to API document.", cause); } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/ServiceUnavailableException.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; /** Thrown when the server is unable to serve the HTTP request. */ public class ServiceUnavailableException extends RuntimeException { static final long serialVersionUID = 1L; /** * Constructs an {@code ServiceUnavailableException} with the specified detail message. * * @param message The detail message (which is saved for later retrieval by the {@link * #getMessage()} method) */ public ServiceUnavailableException(String message) { super(message); } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/Session.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; import io.netty.handler.codec.http.HttpRequest; import java.util.UUID; /** A class that holds HTTP session information. */ public class Session { private String requestId; private String remoteIp; private String method; private String uri; private String protocol; private int code; private long startTime; /** * Constructs a new {@code Session} instance. * * @param remoteIp the remote IP address * @param request the HTTP request */ public Session(String remoteIp, HttpRequest request) { this.remoteIp = remoteIp; this.uri = request.uri(); if (request.decoderResult().isSuccess()) { method = request.method().name(); protocol = request.protocolVersion().text(); } else { method = "GET"; protocol = "HTTP/1.1"; } requestId = UUID.randomUUID().toString(); startTime = System.currentTimeMillis(); } /** * Returns the request ID. * * @return the request ID */ public String getRequestId() { return requestId; } /** * Sets the HTTP response code. * * @param code the HTTP response code */ public void setCode(int code) { this.code = code; } /** {@inheritDoc} */ @Override public String toString() { long duration = System.currentTimeMillis() - startTime; return remoteIp + " \"" + method + " " + uri + ' ' + protocol + "\" " + code + ' ' + duration; } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/StatusResponse.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.http; /** A class that holds model server status. */ public class StatusResponse { private String status; /** Constructs a new {@code StatusResponse} instance. */ public StatusResponse() {} /** * Constructs a new {@code StatusResponse} instance with status line. * * @param status the status line */ public StatusResponse(String status) { this.status = status; } /** * Returns the status. * * @return the status */ public String getStatus() { return status; } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/http/package-info.java
/* * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ /** Contains classes that handles REST API calls. */ package ai.djl.serving.http;
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/plugins/FolderScanPluginManager.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.plugins; import ai.djl.serving.util.ConfigManager; import java.beans.BeanInfo; import java.beans.IntrospectionException; import java.beans.Introspector; import java.beans.PropertyDescriptor; import java.io.IOException; import java.lang.reflect.Method; import java.net.MalformedURLException; import java.net.URL; import java.net.URLClassLoader; import java.nio.file.Files; import java.nio.file.Path; import java.security.AccessController; import java.security.PrivilegedAction; import java.time.LocalDateTime; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.Map; import java.util.ServiceLoader; import java.util.Set; import java.util.concurrent.atomic.AtomicInteger; import java.util.stream.Collectors; import java.util.stream.Stream; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * The {@link PluginManager} is responsible to load and manage plugins from the file system. * * <p>The Plugin Folder configuration is received from the {@link ConfigManager} and usually * defaults to {workpath}/plugins. The plugins uses Java's SPI and have to implement interfaces from * serving-api. * * @author erik.bamberg@web.de */ public class FolderScanPluginManager implements PluginManager { private static final Logger logger = LoggerFactory.getLogger(FolderScanPluginManager.class); private static Class<?>[] pluginInterfaces = {RequestHandler.class}; private ConfigManager configManager; private Map<Class<?>, Set<Plugin<?>>> pluginsRegistry; /** * Constructs a {@code PluginManager} instance. * * @param configManager a instance of the configManager to lookup configuration like * plugin-folder. */ public FolderScanPluginManager(ConfigManager configManager) { this.configManager = configManager; this.pluginsRegistry = new HashMap<>(); } /** * Loads all plugins from the plugin folder and register them. * * @throws IOException when error during IO operation occurs. */ @SuppressWarnings("rawtypes") public void loadPlugins() throws IOException { logger.info("scanning for plugins..."); URL[] pluginUrls = listPluginJars(); ClassLoader ucl = AccessController.doPrivileged( (PrivilegedAction<ClassLoader>) () -> new URLClassLoader(pluginUrls)); AtomicInteger pluginsFound = new AtomicInteger(0); Arrays.stream(pluginInterfaces) .forEach( pluginInterface -> { logger.trace("looking for plugin of type {}", pluginInterface); ServiceLoader<?> sl = ServiceLoader.load(pluginInterface, ucl); for (Object service : sl) { pluginsFound.incrementAndGet(); logger.info("load plugin: {}", service.getClass().getSimpleName()); Plugin<?> plugin = new Plugin<>(service); // TODO add a plugin Lifecycle "INITIALIZING", "ACTIVE", "SHUTTING // DOWN" , so a plug-in // can be dependent on another plugin. if (initializePlugin(plugin)) { pluginsRegistry .computeIfAbsent(pluginInterface, k -> new HashSet<>()) .add(plugin); } } }); logger.info("{} plug-ins found.", pluginsFound.intValue()); } /** * Initializes a plugin by calling known setters to inject managers and other dependant plugins * into the plugins. * * @param plugin the plugin to get initialized * @return true if plugin could get initialized successfully false otherwise */ private boolean initializePlugin(Plugin<?> plugin) { Object component = plugin.getComponent(); try { BeanInfo beanInfo = Introspector.getBeanInfo(component.getClass()); for (PropertyDescriptor property : beanInfo.getPropertyDescriptors()) { // TODO introduce kind of ServiceRegistry and inject all known Managers and others // plug-ins if ("pluginManager".equals(property.getName())) { Method method = property.getWriteMethod(); if (method != null) { method.invoke(component, this); } else { logger.warn( "no accessible setter for pluginManager found in plugin {}. skipping injecting", plugin.getName()); } } } } catch (IntrospectionException | ReflectiveOperationException | IllegalArgumentException e) { logger.error( "plugin {} could not get loaded. Initialization failed", plugin.getName(), e); return false; } return true; } /** * returns a set of plug-in components implementing the specific service interface. * * <p>only active plug-ins are returned which are fully initialised at this point. * * <p>{@code Set<RequestHandler> * allActiveRequestHandler=findImplementations(RequestHandler.class)} * * @param <T> generic type of service interface * @param pluginInterface the specific service interface * @return a set of all plugin components implementing this service interface */ @Override public <T> Set<T> findImplementations(Class<T> pluginInterface) { return Collections.unmodifiableSet( pluginsRegistry .getOrDefault(pluginInterface, new HashSet<>()) .stream() .map(Plugin::getComponent) .map(pluginInterface::cast) .collect(Collectors.toSet())); } private URL[] listPluginJars() throws IOException { Path pluginsFolder = configManager.getPluginFolder(); if (pluginsFolder == null || !Files.isDirectory(pluginsFolder)) { logger.warn("scanning in plug-in folder :{}....folder does not exists", pluginsFolder); return new URL[0]; } logger.debug("scanning in plug-in folder :{}", pluginsFolder); try (Stream<Path> stream = Files.walk(pluginsFolder, Integer.MAX_VALUE)) { return stream.filter(file -> !Files.isDirectory(file)) .filter(file -> file.getFileName() != null) .filter(file -> file.getFileName().toString().toLowerCase().endsWith(".jar")) .map(Path::toUri) .map( t -> { try { return t.toURL(); } catch (MalformedURLException e) { logger.error(e.getMessage(), e); } return null; }) .toArray(URL[]::new); } } // TODO: maybe extract this to a public class in serving-api, so we can have functions like // "listPlugin" which return Plugin objects static class Plugin<T> { private T component; private LocalDateTime loadTime; public Plugin(T component) { this.component = component; this.loadTime = LocalDateTime.now(); } /** * Returns the value of component. * * @return the component value. */ public T getComponent() { return component; } /** * Returns the value of loadtime. * * @return the loadtime value. */ public LocalDateTime getLoadTime() { return loadTime; } /** * Returns the name of the plug-in. * * @return name of the plug-in. */ public String getName() { return component.getClass().getSimpleName(); } } }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/plugins/PluginManager.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.plugins; import java.util.Set; /** * The Plugin Manager is responsible to load and manage plugins from the filesystem. * * <p>The Plugin Folder configuration is received from the ConfigManager and usually defaults to * {workpath}/plugins. The plugins uses Java's SPI and have to implement interfaces from * serving-api. * * @author erik.bamberg@web.de */ public interface PluginManager { /** * Returns a set of plug-in components implementing the specific service interface. * * <p>only active plug-ins are returned which are fully initialised at this point. * * <p>{@code Set<RequestHandler> * allActiveRequestHandler=findImplementations(RequestHandler.class)} * * @param <T> generic type of service interface * @param pluginInterface the specific service interface * @return a set of all plugin components implementing this service interface */ <T> Set<T> findImplementations(Class<T> pluginInterface); }
0
java-sources/ai/djl/serving/0.12.0/ai/djl/serving
java-sources/ai/djl/serving/0.12.0/ai/djl/serving/plugins/RequestHandler.java
/* * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance * with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0/ * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package ai.djl.serving.plugins; import io.netty.channel.ChannelHandlerContext; import io.netty.handler.codec.http.FullHttpRequest; import io.netty.handler.codec.http.QueryStringDecoder; /** * Interface to be implemented by HtttpRequestHandler. * * <p>Classes implementing this interface and populated as service using the SPI service-manifest * are pickup by the serving plugin architectur and automatically registered as RequestHandler for * HTTP Requests. * * @author erik.bamberg@web.de */ public interface RequestHandler<T> { /** * Returns true if this handler can handle the incoming HTTP request. * * <p>The interface following the chain of responsibility pattern. * * @param msg the incoming HTTP message * @return true if this handler can handle the incoming HTTP request. false otherwise */ boolean acceptInboundMessage(Object msg); /** * The main method which handles request. * * <p>This method is called by the framework if {@code acceptInboundMessage} indicates that this * handler can handle the request. * * @param ctx the handler context. * @param req the full HttpRequest object. * @param decoder a query string decoder helps to parse the url query string. * @param segments array of splitted segments of the path. * @return a response or null. The response is returned to the client converting it to the * requested format by the server. */ T handleRequest( ChannelHandlerContext ctx, FullHttpRequest req, QueryStringDecoder decoder, String[] segments); }