index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/domain/DictionaryItemDocument.java
package ai.driftkit.context.spring.domain; import ai.driftkit.common.domain.DictionaryItem; import org.springframework.data.annotation.Id; import org.springframework.data.mongodb.core.mapping.Document; import org.springframework.data.mongodb.core.index.Indexed; @Document(collection = "dictionary_items") public class DictionaryItemDocument extends DictionaryItem { @Id @Override public String getId() { return super.getId(); } @Override public String getGroupId() { return super.getGroupId(); } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/repository/PromptRepository.java
package ai.driftkit.context.spring.repository; import ai.driftkit.common.domain.Prompt; import ai.driftkit.common.domain.Language; import org.springframework.data.mongodb.repository.MongoRepository; import org.springframework.stereotype.Repository; import java.util.List; import java.util.Optional; @Repository public interface PromptRepository extends MongoRepository<Prompt, String> { List<Prompt> findByMethod(String method); List<Prompt> findByMethodIsIn(List<String> method); List<Prompt> findByMethodIsInAndState(List<String> method, Prompt.State state); List<Prompt> findByState(Prompt.State state); List<Prompt> findByMethodAndState(String method, Prompt.State state); Optional<Prompt> findByMethodAndLanguageAndState(String method, Language language, Prompt.State state); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/repository/SpringDictionaryGroupRepository.java
package ai.driftkit.context.spring.repository; import ai.driftkit.common.domain.DictionaryGroup; import ai.driftkit.common.domain.Language; import ai.driftkit.context.core.service.DictionaryGroupRepository; import ai.driftkit.context.spring.domain.DictionaryGroupDocument; import org.springframework.data.mongodb.repository.MongoRepository; import org.springframework.stereotype.Repository; import java.util.List; @Repository public interface SpringDictionaryGroupRepository extends MongoRepository<DictionaryGroupDocument, String>, DictionaryGroupRepository<DictionaryGroupDocument> { @Override List<DictionaryGroupDocument> findDictionaryGroupsByLanguage(Language language); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/repository/SpringDictionaryItemRepository.java
package ai.driftkit.context.spring.repository; import ai.driftkit.common.domain.Language; import ai.driftkit.context.core.service.DictionaryItemRepository; import ai.driftkit.context.spring.domain.DictionaryItemDocument; import org.springframework.data.mongodb.repository.MongoRepository; import org.springframework.stereotype.Repository; import java.util.List; @Repository public interface SpringDictionaryItemRepository extends MongoRepository<DictionaryItemDocument, String>, DictionaryItemRepository<DictionaryItemDocument> { @Override List<DictionaryItemDocument> findDictionaryItemsByLanguage(Language language); @Override List<DictionaryItemDocument> findDictionaryItemsByGroupId(String groupId); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/service/FolderService.java
package ai.driftkit.context.spring.service; import ai.driftkit.context.spring.testsuite.domain.Folder; import ai.driftkit.context.spring.testsuite.domain.FolderType; import ai.driftkit.context.spring.testsuite.domain.TestSet; import ai.driftkit.context.spring.testsuite.repository.FolderRepository; import ai.driftkit.context.spring.testsuite.repository.TestSetRepository; import lombok.Data; import lombok.RequiredArgsConstructor; import org.springframework.stereotype.Service; import java.util.List; import java.util.Optional; @Service @RequiredArgsConstructor public class FolderService { private final FolderRepository folderRepository; private final TestSetRepository testSetRepository; public List<Folder> getAllFolders() { return folderRepository.findAllByOrderByCreatedAtDesc(); } public List<Folder> getFoldersByType(FolderType type) { return folderRepository.findByTypeOrderByCreatedAtDesc(type); } public Optional<Folder> getFolderById(String id) { return folderRepository.findById(id); } public Folder createFolder(Folder folder) { folder.setId(null); folder.setCreatedAt(System.currentTimeMillis()); return folderRepository.save(folder); } public Optional<Folder> updateFolder(String id, Folder folder) { if (!folderRepository.existsById(id)) { return Optional.empty(); } folder.setId(id); return Optional.of(folderRepository.save(folder)); } public boolean deleteFolder(String id) { if (!folderRepository.existsById(id)) { return false; } // Remove folder reference from all test sets in this folder List<TestSet> testSets = testSetRepository.findAll(); for (TestSet testSet : testSets) { if (id.equals(testSet.getFolderId())) { testSet.setFolderId(null); testSetRepository.save(testSet); } } folderRepository.deleteById(id); return true; } // This method has been moved to TestSetService for better service separation // Method removed }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/service/MongodbPromptService.java
package ai.driftkit.context.spring.service; import ai.driftkit.common.domain.Prompt; import ai.driftkit.common.domain.Prompt.State; import ai.driftkit.common.domain.Language; import ai.driftkit.context.core.service.PromptServiceBase; import ai.driftkit.context.spring.config.ApplicationContextProvider; import ai.driftkit.context.spring.repository.PromptRepository; import lombok.extern.slf4j.Slf4j; import java.util.List; import java.util.Map; import java.util.Optional; import java.util.UUID; @Slf4j public class MongodbPromptService implements PromptServiceBase { private PromptRepository promptRepository; @Override public void configure(Map<String, String> config) { getPromptRepository(); } @Override public boolean supportsName(String name) { return "mongodb".equals(name); } private PromptRepository getPromptRepository() { if (this.promptRepository == null) { if (ApplicationContextProvider.getApplicationContext() != null) { this.promptRepository = ApplicationContextProvider.getApplicationContext().getBean(PromptRepository.class); } else { throw new IllegalStateException("ApplicationContext is not initialized yet."); } } return this.promptRepository; } @Override public Optional<Prompt> getPromptById(String id) { return getPromptRepository().findById(id); } @Override public List<Prompt> getPromptsByIds(List<String> ids) { return getPromptRepository().findAllById(ids); } @Override public List<Prompt> getPromptsByMethods(List<String> methods) { return getPromptRepository().findByMethodIsIn(methods); } @Override public List<Prompt> getPromptsByMethodsAndState(List<String> methods, State state) { return getPromptRepository().findByMethodIsInAndState(methods, state); } @Override public List<Prompt> getPrompts() { return getPromptRepository().findAll(); } @Override public Prompt savePrompt(Prompt prompt) { Optional<Prompt> currentPromptOpt = getCurrentPrompt(prompt.getMethod(), prompt.getLanguage()); if (currentPromptOpt.isEmpty() || prompt.getId() == null) { prompt.setId(UUID.randomUUID().toString()); prompt.setCreatedTime(System.currentTimeMillis()); } if (currentPromptOpt.isPresent()) { Prompt currentPrompt = currentPromptOpt.get(); if (prompt.getMessage().equals(currentPrompt.getMessage())) { prompt.setId(currentPrompt.getId()); } else { currentPrompt.setState(State.REPLACED); getPromptRepository().save(currentPrompt); } } if (prompt.getState() == null) { prompt.setState(State.CURRENT); } prompt.setUpdatedTime(System.currentTimeMillis()); return getPromptRepository().save(prompt); } @Override public Prompt deletePrompt(String id) { Optional<Prompt> prompt = getPromptById(id); getPromptRepository().deleteById(id); return prompt.orElse(null); } @Override public boolean isConfigured() { return promptRepository != null; } public Optional<Prompt> getCurrentPrompt(String method, Language language) { return getPromptRepository().findByMethodAndLanguageAndState(method, language, State.CURRENT); } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/service/PromptServiceSpringAdapter.java
package ai.driftkit.context.spring.service; import ai.driftkit.config.EtlConfig; import ai.driftkit.config.EtlConfig.PromptServiceConfig; import ai.driftkit.common.domain.Prompt; import ai.driftkit.context.core.service.DictionaryItemService; import ai.driftkit.context.core.service.PromptService; import ai.driftkit.context.core.service.PromptServiceBase; import ai.driftkit.context.core.service.PromptServiceFactory; import lombok.SneakyThrows; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.context.event.ApplicationReadyEvent; import org.springframework.context.annotation.Primary; import org.springframework.context.event.EventListener; import org.springframework.stereotype.Service; import java.util.Collections; import java.util.List; import java.util.Map; import java.util.Optional; @Slf4j @Service @Primary public class PromptServiceSpringAdapter extends PromptService { @Autowired private EtlConfig etlConfig; private volatile boolean initialized = false; public PromptServiceSpringAdapter(@Autowired DictionaryItemService dictionaryItemService) { super(new PlaceholderPromptService(), dictionaryItemService); } @SneakyThrows @EventListener(ApplicationReadyEvent.class) public void init() { if (!initialized) { PromptServiceConfig promptServiceConfig = etlConfig.getPromptService(); PromptServiceBase actualPromptService = PromptServiceFactory.fromName( promptServiceConfig.getName(), promptServiceConfig.getConfig() ); this.promptService = actualPromptService; initialized = true; } } private static class PlaceholderPromptService implements PromptServiceBase { @Override public void configure(Map<String, String> config) {} @Override public boolean supportsName(String name) { return false; } @Override public Optional<Prompt> getPromptById(String id) { return Optional.empty(); } @Override public List<Prompt> getPromptsByIds(List<String> ids) { return Collections.emptyList(); } @Override public List<Prompt> getPromptsByMethods(List<String> methods) { return Collections.emptyList(); } @Override public List<Prompt> getPromptsByMethodsAndState(List<String> methods, Prompt.State state) { return Collections.emptyList(); } @Override public List<Prompt> getPrompts() { return Collections.emptyList(); } @Override public Prompt savePrompt(Prompt prompt) { return prompt; } @Override public Prompt deletePrompt(String id) { return null; } @Override public boolean isConfigured() { return false; } } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/service/SpringDictionaryGroupService.java
package ai.driftkit.context.spring.service; import ai.driftkit.common.domain.DictionaryGroup; import ai.driftkit.common.domain.Language; import ai.driftkit.context.core.service.DictionaryGroupService; import ai.driftkit.context.spring.domain.DictionaryGroupDocument; import ai.driftkit.context.spring.repository.SpringDictionaryGroupRepository; import lombok.RequiredArgsConstructor; import org.springframework.stereotype.Service; import java.util.List; import java.util.Optional; import java.util.stream.Collectors; /** * Spring implementation of DictionaryGroupService. * This service acts as an adapter between the core business layer * and the Spring Data MongoDB repository layer. */ @Service @RequiredArgsConstructor public class SpringDictionaryGroupService implements DictionaryGroupService { private final SpringDictionaryGroupRepository repository; @Override public Optional<DictionaryGroup> findById(String id) { return repository.findById(id).map(doc -> (DictionaryGroup) doc); } @Override public List<DictionaryGroup> findByLanguage(Language language) { return repository.findDictionaryGroupsByLanguage(language) .stream() .map(doc -> (DictionaryGroup) doc) .collect(Collectors.toList()); } @Override public DictionaryGroup save(DictionaryGroup group) { DictionaryGroupDocument document = convertToDocument(group); DictionaryGroupDocument saved = repository.save(document); return saved; } @Override public List<DictionaryGroup> saveAll(List<DictionaryGroup> groups) { List<DictionaryGroupDocument> documents = groups.stream() .map(this::convertToDocument) .collect(Collectors.toList()); List<DictionaryGroupDocument> saved = repository.saveAll(documents); return saved.stream() .map(doc -> (DictionaryGroup) doc) .collect(Collectors.toList()); } @Override public void deleteById(String id) { repository.deleteById(id); } @Override public boolean existsById(String id) { return repository.existsById(id); } @Override public List<DictionaryGroup> findAll() { return repository.findAll() .stream() .map(doc -> (DictionaryGroup) doc) .collect(Collectors.toList()); } private DictionaryGroupDocument convertToDocument(DictionaryGroup group) { if (group instanceof DictionaryGroupDocument) { return (DictionaryGroupDocument) group; } // If it's a plain DictionaryGroup, we need to convert it to a document DictionaryGroupDocument document = new DictionaryGroupDocument(); document.setId(group.getId()); document.setName(group.getName()); document.setLanguage(group.getLanguage()); document.setCreatedAt(group.getCreatedAt()); document.setUpdatedAt(group.getUpdatedAt()); return document; } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/service/SpringDictionaryItemService.java
package ai.driftkit.context.spring.service; import ai.driftkit.common.domain.DictionaryItem; import ai.driftkit.common.domain.Language; import ai.driftkit.context.core.service.DictionaryItemService; import ai.driftkit.context.spring.domain.DictionaryItemDocument; import ai.driftkit.context.spring.repository.SpringDictionaryItemRepository; import lombok.RequiredArgsConstructor; import org.springframework.stereotype.Service; import java.util.List; import java.util.Optional; import java.util.stream.Collectors; /** * Spring implementation of DictionaryItemService. * This service acts as an adapter between the core business layer * and the Spring Data MongoDB repository layer. */ @Service @RequiredArgsConstructor public class SpringDictionaryItemService implements DictionaryItemService { private final SpringDictionaryItemRepository repository; @Override public Optional<DictionaryItem> findById(String id) { return repository.findById(id).map(doc -> (DictionaryItem) doc); } @Override public List<DictionaryItem> findByLanguage(Language language) { return repository.findDictionaryItemsByLanguage(language) .stream() .map(doc -> (DictionaryItem) doc) .collect(Collectors.toList()); } @Override public List<DictionaryItem> findByGroupId(String groupId) { return repository.findDictionaryItemsByGroupId(groupId) .stream() .map(doc -> (DictionaryItem) doc) .collect(Collectors.toList()); } @Override public DictionaryItem save(DictionaryItem item) { DictionaryItemDocument document = convertToDocument(item); DictionaryItemDocument saved = repository.save(document); return saved; } @Override public List<DictionaryItem> saveAll(List<DictionaryItem> items) { List<DictionaryItemDocument> documents = items.stream() .map(this::convertToDocument) .collect(Collectors.toList()); List<DictionaryItemDocument> saved = repository.saveAll(documents); return saved.stream() .map(doc -> (DictionaryItem) doc) .collect(Collectors.toList()); } @Override public void deleteById(String id) { repository.deleteById(id); } @Override public boolean existsById(String id) { return repository.existsById(id); } @Override public List<DictionaryItem> findAll() { return repository.findAll() .stream() .map(doc -> (DictionaryItem) doc) .collect(Collectors.toList()); } private DictionaryItemDocument convertToDocument(DictionaryItem item) { if (item instanceof DictionaryItemDocument) { return (DictionaryItemDocument) item; } // If it's a plain DictionaryItem, we need to convert it to a document DictionaryItemDocument document = new DictionaryItemDocument(); document.setId(item.getId()); document.setGroupId(item.getGroupId()); document.setLanguage(item.getLanguage()); document.setSamples(item.getSamples()); document.setMarkers(item.getMarkers()); document.setCreatedAt(item.getCreatedAt()); document.setUpdatedAt(item.getUpdatedAt()); return document; } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/controller/EvaluationController.java
package ai.driftkit.context.spring.testsuite.controller; import ai.driftkit.common.domain.RestResponse; import ai.driftkit.context.spring.testsuite.domain.Evaluation; import ai.driftkit.context.spring.testsuite.domain.EvaluationResult; import ai.driftkit.context.spring.testsuite.domain.EvaluationRun; import ai.driftkit.context.spring.testsuite.service.EvaluationService; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils; import org.springframework.web.bind.annotation.*; import java.util.List; import java.util.Optional; /** * Controller for managing evaluations */ @Slf4j @RestController @RequiredArgsConstructor @RequestMapping("/data/v1.0/admin") public class EvaluationController { private final EvaluationService evaluationService; /** * Get all global evaluations (not tied to a specific test set) */ @GetMapping("/evaluations/global") public RestResponse<List<Evaluation>> getGlobalEvaluations() { List<Evaluation> evaluations = evaluationService.getGlobalEvaluations(); return new RestResponse<>(true, evaluations); } /** * Create a new global evaluation */ @PostMapping("/evaluations/global") public RestResponse<Evaluation> createGlobalEvaluation(@RequestBody Evaluation evaluation) { try { log.info("Received global evaluation create request: {}", evaluation); // Ensure testSetId is null for global evaluations evaluation.setTestSetId(null); Evaluation created = evaluationService.createEvaluation(evaluation); return new RestResponse<>(true, created); } catch (Exception e) { log.error("Error creating global evaluation: {}", e.getMessage(), e); return new RestResponse<>(false, null, "Error creating global evaluation: " + e.getMessage()); } } /** * Add a global evaluation to a test set (creates a copy) */ @PostMapping("/test-sets/{testSetId}/evaluations/add/{evaluationId}") public RestResponse<Evaluation> addEvaluationToTestSet( @PathVariable String testSetId, @PathVariable String evaluationId) { try { log.info("Adding evaluation {} to test set {}", evaluationId, testSetId); Evaluation added = evaluationService.copyEvaluation(evaluationId, testSetId); return new RestResponse<>(true, added); } catch (Exception e) { log.error("Error adding evaluation to test set: {}", e.getMessage(), e); return new RestResponse<>(false, null, "Error adding evaluation: " + e.getMessage()); } } /** * Get all evaluations for a test set */ @GetMapping("/test-sets/{testSetId}/evaluations") public RestResponse<List<Evaluation>> getEvaluationsForTestSet(@PathVariable String testSetId) { List<Evaluation> evaluations = evaluationService.getEvaluationsForTestSet(testSetId); return new RestResponse<>(true, evaluations); } /** * Get a specific evaluation */ @GetMapping("/evaluations/{id}") public RestResponse<Evaluation> getEvaluation(@PathVariable String id) { Optional<Evaluation> evaluation = evaluationService.getEvaluation(id); return evaluation.map(value -> new RestResponse<Evaluation>(true, value)) .orElseGet(() -> new RestResponse<Evaluation>(false, null, "Evaluation not found")); } /** * Create a new evaluation */ @PostMapping("/test-sets/{testSetId}/evaluations") public RestResponse<Evaluation> createEvaluation(@PathVariable String testSetId, @RequestBody Evaluation evaluation) { try { log.info("Received evaluation create request: {}", evaluation); evaluation.setTestSetId(testSetId); Evaluation created = evaluationService.createEvaluation(evaluation); return new RestResponse<>(true, created); } catch (Exception e) { log.error("Error creating evaluation: {}", e.getMessage(), e); return new RestResponse<Evaluation>(false, null, "Error creating evaluation: " + e.getMessage()); } } /** * Copy an evaluation to another test set */ @PostMapping("/test-sets/{targetTestSetId}/evaluations/copy/{evaluationId}") public RestResponse<Evaluation> copyEvaluation(@PathVariable String targetTestSetId, @PathVariable String evaluationId) { try { log.info("Copying evaluation {} to test set {}", evaluationId, targetTestSetId); Evaluation copied = evaluationService.copyEvaluation(evaluationId, targetTestSetId); return new RestResponse<>(true, copied); } catch (Exception e) { log.error("Error copying evaluation: {}", e.getMessage(), e); return new RestResponse<Evaluation>(false, null, "Error copying evaluation: " + e.getMessage()); } } /** * Update an evaluation */ @PutMapping("/evaluations/{id}") public RestResponse<Evaluation> updateEvaluation(@PathVariable String id, @RequestBody Evaluation evaluation) { try { Evaluation updated = evaluationService.updateEvaluation(id, evaluation); return new RestResponse<>(true, updated); } catch (IllegalArgumentException e) { return new RestResponse<Evaluation>(false, null, e.getMessage()); } } /** * Update a test set evaluation */ @PutMapping("/test-sets/{testSetId}/evaluations/{id}") public RestResponse<Evaluation> updateTestSetEvaluation( @PathVariable String testSetId, @PathVariable String id, @RequestBody Evaluation evaluation) { try { log.info("Updating evaluation {} for test set {}", id, testSetId); // Ensure we maintain the test set association evaluation.setTestSetId(testSetId); Evaluation updated = evaluationService.updateEvaluation(id, evaluation); return new RestResponse<>(true, updated); } catch (IllegalArgumentException e) { return new RestResponse<Evaluation>(false, null, e.getMessage()); } catch (Exception e) { log.error("Error updating test set evaluation: {}", e.getMessage(), e); return new RestResponse<Evaluation>(false, null, "Error updating evaluation: " + e.getMessage()); } } /** * Delete an evaluation */ @DeleteMapping("/evaluations/{id}") public RestResponse<Void> deleteEvaluation(@PathVariable String id) { evaluationService.deleteEvaluation(id); return new RestResponse<>(true, null); } /** * Get all runs for a test set */ @GetMapping("/test-sets/{testSetId}/runs") public RestResponse<List<EvaluationRun>> getRunsForTestSet(@PathVariable String testSetId) { List<EvaluationRun> runs = evaluationService.getRunsForTestSet(testSetId); return new RestResponse<>(true, runs); } /** * Get a specific run */ @GetMapping("/runs/{id}") public RestResponse<EvaluationRun> getRun(@PathVariable String id) { Optional<EvaluationRun> run = evaluationService.getRun(id); return run.map(value -> new RestResponse<EvaluationRun>(true, value)) .orElseGet(() -> new RestResponse<EvaluationRun>(false, null, "Run not found")); } /** * Create a new run */ @PostMapping("/test-sets/{testSetId}/runs") public RestResponse<EvaluationRun> createRun(@PathVariable String testSetId, @RequestBody EvaluationRun run) { try { log.info("Creating evaluation run for test set {}: {}", testSetId, run); // Validate the request parameters if (StringUtils.isNotBlank(run.getModelId()) && StringUtils.isNotBlank(run.getWorkflow())) { return new RestResponse<>(false, null, "Cannot specify both modelId and workflow. Choose one execution method."); } run.setTestSetId(testSetId); EvaluationRun created = evaluationService.createEvaluationRun(run); return new RestResponse<>(true, created); } catch (IllegalArgumentException e) { log.warn("Invalid run configuration: {}", e.getMessage()); return new RestResponse<>(false, null, e.getMessage()); } catch (Exception e) { log.error("Error creating evaluation run: {}", e.getMessage(), e); return new RestResponse<>(false, null, "Error creating run: " + e.getMessage()); } } /** * Delete a run */ @DeleteMapping("/test-sets/runs/{id}") public RestResponse<Void> deleteRun(@PathVariable String id) { evaluationService.deleteRun(id); return new RestResponse<>(true, null); } /** * Get all results for a run */ @GetMapping("/test-sets/runs/{runId}/results") public RestResponse<List<EvaluationResult>> getResultsForRun(@PathVariable String runId) { List<EvaluationResult> results = evaluationService.getResultsForRun(runId); return new RestResponse<>(true, results); } /** * Start a run */ @PostMapping("/test-sets/runs/{runId}/start") public RestResponse<Void> startRun(@PathVariable String runId) { evaluationService.executeEvaluationRun(runId); return new RestResponse<Void>(true, null, "Run started"); } /** * Quick run - create and start a new run for a test set */ @PostMapping("/test-sets/{testSetId}/quick-run") public RestResponse<EvaluationRun> quickRun(@PathVariable String testSetId) { try { EvaluationRun run = evaluationService.createAndExecuteRun(testSetId); return new RestResponse<>(true, run, "Run created and started"); } catch (Exception e) { log.error("Error creating quick run: {}", e.getMessage(), e); return new RestResponse<EvaluationRun>(false, null, "Error creating run: " + e.getMessage()); } } /** * Get all runs across all test sets */ @GetMapping("/test-sets/all-runs") public RestResponse<List<EvaluationRun>> getAllRuns() { try { List<EvaluationRun> runs = evaluationService.getAllRuns(); return new RestResponse<>(true, runs); } catch (Exception e) { log.error("Error fetching all runs: {}", e.getMessage(), e); return new RestResponse<List<EvaluationRun>>(false, null, "Error fetching runs: " + e.getMessage()); } } /** * Update the status of a manual evaluation result */ @PostMapping("/evaluation-results/{resultId}/manual-review") public RestResponse<EvaluationResult> updateManualEvaluationStatus( @PathVariable String resultId, @RequestBody ManualReviewRequest request) { try { EvaluationResult result = evaluationService.updateManualEvaluationStatus( resultId, request.isPassed(), request.getFeedback()); return new RestResponse<>(true, result); } catch (IllegalArgumentException e) { log.warn("Invalid manual review update: {}", e.getMessage()); return new RestResponse<>(false, null, e.getMessage()); } catch (Exception e) { log.error("Error updating manual evaluation status: {}", e.getMessage(), e); return new RestResponse<>(false, null, "Error updating status: " + e.getMessage()); } } /** * Request body for manual review updates */ @lombok.Data @lombok.NoArgsConstructor @lombok.AllArgsConstructor public static class ManualReviewRequest { private boolean passed; private String feedback; } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/controller/TestSetController.java
package ai.driftkit.context.spring.testsuite.controller; import ai.driftkit.context.spring.testsuite.domain.TestSet; import ai.driftkit.context.spring.testsuite.domain.TestSetItem; import ai.driftkit.context.spring.testsuite.service.TestSetService; import ai.driftkit.workflows.spring.domain.ModelRequestTrace; import lombok.Data; import lombok.RequiredArgsConstructor; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.*; import java.util.List; import java.util.Optional; @RestController @RequestMapping("/data/v1.0/admin/test-sets") @RequiredArgsConstructor public class TestSetController { private final TestSetService testSetService; @GetMapping public ResponseEntity<List<TestSet>> getAllTestSets() { List<TestSet> testSets = testSetService.getAllTestSets(); return ResponseEntity.ok(testSets); } @GetMapping("/folder/{folderId}") public ResponseEntity<List<TestSet>> getTestSetsByFolder(@PathVariable String folderId) { List<TestSet> testSets = testSetService.getTestSetsByFolder(folderId); return ResponseEntity.ok(testSets); } @GetMapping("/folder") public ResponseEntity<List<TestSet>> getTestSetsWithoutFolder() { List<TestSet> testSets = testSetService.getTestSetsByFolder(null); return ResponseEntity.ok(testSets); } @GetMapping("/{id}") public ResponseEntity<TestSet> getTestSetById(@PathVariable String id) { Optional<TestSet> testSet = testSetService.getTestSetById(id); return testSet.map(ResponseEntity::ok) .orElse(ResponseEntity.notFound().build()); } @GetMapping("/{id}/items") public ResponseEntity<List<TestSetItem>> getTestSetItems(@PathVariable String id) { List<TestSetItem> items = testSetService.getTestSetItems(id); return ResponseEntity.ok(items); } @PostMapping public ResponseEntity<TestSet> createTestSet(@RequestBody TestSet testSet) { TestSet created = testSetService.createTestSet(testSet); return ResponseEntity.ok(created); } @PutMapping("/{id}") public ResponseEntity<TestSet> updateTestSet(@PathVariable String id, @RequestBody TestSet testSet) { Optional<TestSet> updated = testSetService.updateTestSet(id, testSet); return updated.map(ResponseEntity::ok) .orElse(ResponseEntity.notFound().build()); } @DeleteMapping("/{id}") public ResponseEntity<Void> deleteTestSet(@PathVariable String id) { if (testSetService.deleteTestSet(id)) { return ResponseEntity.noContent().build(); } return ResponseEntity.notFound().build(); } @PostMapping("/{id}/items") public ResponseEntity<TestSetService.AddItemsResult> addItemsToTestSet( @PathVariable String id, @RequestBody AddItemsRequest request) { TestSetService.AddItemsResult result = testSetService.addItemsToTestSet( request.getMessageTaskIds(), request.getTraceSteps() != null ? request.getTraceSteps().stream() .map(step -> { TestSetService.TraceStep traceStep = new TestSetService.TraceStep(); traceStep.setTraceId(step.getTraceId()); return traceStep; }).toList() : null, request.getImageTaskIds(), id ); return ResponseEntity.ok(result); } @DeleteMapping("/{testSetId}/items/{itemId}") public ResponseEntity<Void> deleteTestSetItem( @PathVariable String testSetId, @PathVariable String itemId) { if (testSetService.deleteTestSetItem(testSetId, itemId)) { return ResponseEntity.noContent().build(); } return ResponseEntity.notFound().build(); } @PostMapping("/move-to-folder") public ResponseEntity<String> moveTestSetsToFolder(@RequestBody MoveToFolderRequest request) { boolean success = testSetService.moveTestSetsToFolder(request.getTestSetIds(), request.getFolderId()); if (success) { return ResponseEntity.ok("TestSets moved successfully"); } else { return ResponseEntity.badRequest().body("Failed to move TestSets"); } } @Data public static class AddItemsRequest { private List<String> messageTaskIds; private List<TraceStep> traceSteps; private List<String> imageTaskIds; } @Data public static class TraceStep { private String traceId; } @Data public static class MoveToFolderRequest { private List<String> testSetIds; private String folderId; } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/ArrayLengthEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.ObjectMapper; import com.jayway.jsonpath.JsonPath; import com.jayway.jsonpath.PathNotFoundException; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import lombok.extern.slf4j.Slf4j; import java.util.List; /** * Configuration for evaluations that check array length in JSON responses */ @Slf4j @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) public class ArrayLengthEvalConfig extends EvaluationConfig { /** * JSON path to the array (e.g., "$.results", "$.data.items") */ private String jsonPath; /** * Minimum length required */ private Integer minLength; /** * Maximum length allowed */ private Integer maxLength; /** * Exact length required (overrides min/max if specified) */ private Integer exactLength; /** * Result of array length evaluation */ @Data @Builder public static class ArrayLengthEvalResult { private boolean passed; private String message; private Integer length; private String jsonPath; private Integer minLength; private Integer maxLength; private Integer exactLength; private String error; } @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { String result = context.getActualResult(); // Check if JSON path is empty if (jsonPath == null || jsonPath.isEmpty()) { ArrayLengthEvalResult evalResult = ArrayLengthEvalResult.builder() .passed(false) .message("No JSON path specified for array length check") .jsonPath(jsonPath) .minLength(minLength) .maxLength(maxLength) .exactLength(exactLength) .build(); return createOutputFromResult(evalResult); } try { // First, check if the result is valid JSON if (!isValidJson(result)) { ArrayLengthEvalResult evalResult = ArrayLengthEvalResult.builder() .passed(false) .message("Response is not valid JSON") .jsonPath(jsonPath) .minLength(minLength) .maxLength(maxLength) .exactLength(exactLength) .error("Invalid JSON") .build(); return createOutputFromResult(evalResult); } // Extract the array try { Object array = JsonPath.read(result, jsonPath); if (!(array instanceof List)) { ArrayLengthEvalResult evalResult = ArrayLengthEvalResult.builder() .passed(false) .message("JSON path does not point to an array") .jsonPath(jsonPath) .minLength(minLength) .maxLength(maxLength) .exactLength(exactLength) .error("Not an array") .build(); return createOutputFromResult(evalResult); } List<?> list = (List<?>) array; int length = list.size(); // Check against exact length first if (exactLength != null) { boolean passed = length == exactLength; String message = passed ? "Array length is exactly " + length : "Array length is " + length + ", expected exactly " + exactLength; ArrayLengthEvalResult evalResult = ArrayLengthEvalResult.builder() .passed(passed) .message(message) .length(length) .jsonPath(jsonPath) .minLength(minLength) .maxLength(maxLength) .exactLength(exactLength) .build(); return createOutputFromResult(evalResult); } // Otherwise check against min/max boolean passedMin = minLength == null || length >= minLength; boolean passedMax = maxLength == null || length <= maxLength; boolean passed = passedMin && passedMax; // Build message StringBuilder message = new StringBuilder(); message.append("Array length is ").append(length); if (!passed) { message.append(" - "); if (!passedMin) { message.append("expected at least ").append(minLength); } if (!passedMin && !passedMax) { message.append(" and "); } if (!passedMax) { message.append("expected at most ").append(maxLength); } } ArrayLengthEvalResult evalResult = ArrayLengthEvalResult.builder() .passed(passed) .message(message.toString()) .length(length) .jsonPath(jsonPath) .minLength(minLength) .maxLength(maxLength) .exactLength(exactLength) .build(); return createOutputFromResult(evalResult); } catch (PathNotFoundException e) { ArrayLengthEvalResult evalResult = ArrayLengthEvalResult.builder() .passed(false) .message("JSON path not found: " + jsonPath) .jsonPath(jsonPath) .minLength(minLength) .maxLength(maxLength) .exactLength(exactLength) .error("Path not found") .build(); return createOutputFromResult(evalResult); } } catch (Exception e) { log.error("Error evaluating array length: {}", e.getMessage(), e); ArrayLengthEvalResult evalResult = ArrayLengthEvalResult.builder() .passed(false) .message("Error evaluating array length: " + e.getMessage()) .jsonPath(jsonPath) .minLength(minLength) .maxLength(maxLength) .exactLength(exactLength) .error(e.getMessage()) .build(); return createOutputFromResult(evalResult); } } private boolean isValidJson(String json) { try { new ObjectMapper().readTree(json); return true; } catch (JsonProcessingException e) { return false; } } private EvaluationResult.EvaluationOutput createOutputFromResult(ArrayLengthEvalResult evalResult) { EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(evalResult.isPassed() ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(evalResult.getMessage()) .details(evalResult) .build(); return applyNegation(output); } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/ContainsKeywordsEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import lombok.extern.slf4j.Slf4j; import java.util.ArrayList; import java.util.List; /** * Configuration for evaluations that check for keywords in responses */ @Slf4j @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) public class ContainsKeywordsEvalConfig extends EvaluationConfig { /** * List of keywords to check for in the response */ private List<String> keywords; /** * Match type for keywords */ private MatchType matchType; /** * If true, matching is case-sensitive */ private boolean caseSensitive; /** * Different types of keyword matching */ public enum MatchType { ALL, // All keywords must be present ANY, // At least one keyword must be present EXACTLY, // Exactly all these keywords must be present, no more, no less NONE, // None of the keywords should be present MAJORITY // More than half of the keywords must be present } /** * Result of keywords evaluation */ @Data @Builder public static class KeywordsEvalResult { private boolean passed; private String message; private List<String> foundKeywords; private List<String> missingKeywords; private MatchType matchType; } @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { String result = context.getActualResult(); List<String> foundKeywords = new ArrayList<>(); List<String> missingKeywords = new ArrayList<>(); // Check if keywords list is empty if (keywords == null || keywords.isEmpty()) { KeywordsEvalResult evalResult = KeywordsEvalResult.builder() .passed(false) .message("No keywords specified for evaluation") .foundKeywords(foundKeywords) .missingKeywords(missingKeywords) .matchType(matchType) .build(); return createOutputFromResult(evalResult); } // Search for each keyword for (String keyword : keywords) { String searchKeyword = keyword; String searchResult = result; // Apply case-sensitivity settings if (!isCaseSensitive()) { searchKeyword = searchKeyword.toLowerCase(); searchResult = searchResult.toLowerCase(); } if (searchResult.contains(searchKeyword)) { foundKeywords.add(keyword); } else { missingKeywords.add(keyword); } } // Apply match type logic boolean passed = false; String message; switch (matchType) { case ALL: passed = missingKeywords.isEmpty(); message = passed ? "All keywords found" : "Missing keywords: " + String.join(", ", missingKeywords); break; case ANY: passed = !foundKeywords.isEmpty(); message = passed ? "Found keywords: " + String.join(", ", foundKeywords) : "No keywords found"; break; case EXACTLY: passed = missingKeywords.isEmpty() && foundKeywords.size() == keywords.size(); message = passed ? "Found exactly all keywords" : missingKeywords.isEmpty() ? "Found additional keywords" : "Missing keywords: " + String.join(", ", missingKeywords); break; case NONE: passed = foundKeywords.isEmpty(); message = passed ? "No keywords found (as expected)" : "Found unexpected keywords: " + String.join(", ", foundKeywords); break; case MAJORITY: passed = foundKeywords.size() > keywords.size() / 2; message = passed ? "Found majority of keywords (" + foundKeywords.size() + "/" + keywords.size() + ")" : "Found only " + foundKeywords.size() + " of " + keywords.size() + " keywords"; break; default: message = "Unknown match type: " + matchType; passed = false; } KeywordsEvalResult evalResult = KeywordsEvalResult.builder() .passed(passed) .message(message) .foundKeywords(foundKeywords) .missingKeywords(missingKeywords) .matchType(matchType) .build(); return createOutputFromResult(evalResult); } private EvaluationResult.EvaluationOutput createOutputFromResult(KeywordsEvalResult evalResult) { EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(evalResult.isPassed() ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(evalResult.getMessage()) .details(evalResult) .build(); return applyNegation(output); } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/Evaluation.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import com.fasterxml.jackson.annotation.JsonSubTypes; import com.fasterxml.jackson.annotation.JsonTypeInfo; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import org.springframework.data.annotation.Id; import org.springframework.data.mongodb.core.mapping.Document; /** * Base Evaluation class for TestSets * Defines the common properties for all types of evaluations */ @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @JsonInclude(JsonInclude.Include.NON_NULL) @Document(collection = "evaluations") public class Evaluation { @Id private String id; private String testSetId; private String name; private String description; private EvaluationType type; private Long createdAt; private Long updatedAt; @JsonTypeInfo( use = JsonTypeInfo.Id.NAME, include = JsonTypeInfo.As.PROPERTY, property = "configType") @JsonSubTypes({ @JsonSubTypes.Type(value = JsonSchemaEvalConfig.class, name = "JSON_SCHEMA"), @JsonSubTypes.Type(value = ContainsKeywordsEvalConfig.class, name = "CONTAINS_KEYWORDS"), @JsonSubTypes.Type(value = ExactMatchEvalConfig.class, name = "EXACT_MATCH"), @JsonSubTypes.Type(value = LlmEvalConfig.class, name = "LLM_EVALUATION"), @JsonSubTypes.Type(value = WordCountEvalConfig.class, name = "WORD_COUNT"), @JsonSubTypes.Type(value = ArrayLengthEvalConfig.class, name = "ARRAY_LENGTH"), @JsonSubTypes.Type(value = FieldValueEvalConfig.class, name = "FIELD_VALUE_CHECK"), @JsonSubTypes.Type(value = RegexMatchEvalConfig.class, name = "REGEX_MATCH"), @JsonSubTypes.Type(value = ManualEvalConfig.class, name = "MANUAL_EVALUATION") }) private EvaluationConfig config; /** * Types of evaluations that can be applied to test sets */ public enum EvaluationType { JSON_SCHEMA, // Validate response against a JSON schema CONTAINS_KEYWORDS, // Check for specific keywords in response EXACT_MATCH, // Exact string matching LLM_EVALUATION, // Use an LLM to evaluate the response WORD_COUNT, // Count occurrences of words ARRAY_LENGTH, // Check array length in JSON FIELD_VALUE_CHECK, // Check specific field value in JSON REGEX_MATCH, // Match response against a regex pattern MANUAL_EVALUATION // Manual review by a human evaluator } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/EvaluationConfig.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import com.fasterxml.jackson.annotation.JsonSubTypes; import com.fasterxml.jackson.annotation.JsonTypeInfo; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; /** * Base configuration class for evaluations */ @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @JsonInclude(JsonInclude.Include.NON_NULL) @JsonTypeInfo( use = JsonTypeInfo.Id.NAME, include = JsonTypeInfo.As.PROPERTY, property = "configType") @JsonSubTypes({ @JsonSubTypes.Type(value = JsonSchemaEvalConfig.class, name = "JSON_SCHEMA"), @JsonSubTypes.Type(value = ContainsKeywordsEvalConfig.class, name = "CONTAINS_KEYWORDS"), @JsonSubTypes.Type(value = ExactMatchEvalConfig.class, name = "EXACT_MATCH"), @JsonSubTypes.Type(value = LlmEvalConfig.class, name = "LLM_EVALUATION"), @JsonSubTypes.Type(value = WordCountEvalConfig.class, name = "WORD_COUNT"), @JsonSubTypes.Type(value = ArrayLengthEvalConfig.class, name = "ARRAY_LENGTH"), @JsonSubTypes.Type(value = FieldValueEvalConfig.class, name = "FIELD_VALUE_CHECK"), @JsonSubTypes.Type(value = RegexMatchEvalConfig.class, name = "REGEX_MATCH"), @JsonSubTypes.Type(value = ImageEvalConfig.class, name = "IMAGE_EVALUATION"), @JsonSubTypes.Type(value = ManualEvalConfig.class, name = "MANUAL_EVALUATION") }) public abstract class EvaluationConfig { // Common properties for all eval configs private boolean negateResult; // If true, negates the evaluation result (PASS becomes FAIL and vice versa) /** * Evaluate a result against this configuration * * @param context The evaluation context containing test set item, original and actual result * @return The evaluation result */ public abstract EvaluationResult.EvaluationOutput evaluate(EvaluationContext context); protected EvaluationResult.EvaluationOutput applyNegation(EvaluationResult.EvaluationOutput output) { if (isNegateResult() && output != null) { // Flip pass/fail status but keep the same message EvaluationResult.EvaluationStatus newStatus = output.getStatus() == EvaluationResult.EvaluationStatus.PASSED ? EvaluationResult.EvaluationStatus.FAILED : output.getStatus() == EvaluationResult.EvaluationStatus.FAILED ? EvaluationResult.EvaluationStatus.PASSED : output.getStatus(); return EvaluationResult.EvaluationOutput.builder() .status(newStatus) .message("Negated: " + output.getMessage()) .details(output.getDetails()) .build(); } return output; } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/EvaluationContext.java
package ai.driftkit.context.spring.testsuite.domain; import ai.driftkit.context.spring.testsuite.domain.TestSetItem; import ai.driftkit.workflows.spring.service.AIService; import lombok.Builder; import lombok.Data; /** * Context for evaluation execution */ @Data @Builder public class EvaluationContext { /** * The test set item being evaluated */ private TestSetItem testSetItem; /** * The original result from the test set item */ private String originalResult; /** * The actual result to evaluate (may be different if using alternative prompt) */ private String actualResult; /** * The AIService instance (for LLM evaluations) */ private AIService aiService; /** * Additional context data for evaluation (if needed) */ private Object additionalContext; }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/EvaluationResult.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import org.springframework.data.annotation.Id; import org.springframework.data.mongodb.core.mapping.Document; /** * Results of evaluation runs */ @Data @Builder @NoArgsConstructor @AllArgsConstructor @JsonInclude(JsonInclude.Include.NON_NULL) @Document(collection = "evaluation_results") public class EvaluationResult { @Id private String id; private String evaluationId; private String testSetItemId; private String runId; // To group results from the same run private EvaluationStatus status; private String message; private Object details; // Additional details specific to evaluation type private Long createdAt; // Enhanced data for better debugging and analysis private String originalPrompt; // The prompt used for the request private String modelResult; // The actual model response private Object promptVariables; // Variables used in the prompt private Long processingTimeMs; // Time taken to process this evaluation private String errorDetails; // Detailed error information if available /** * Status of the evaluation result */ public enum EvaluationStatus { PASSED, FAILED, ERROR, SKIPPED, PENDING // Used for manual evaluations awaiting human review } /** * Output of an evaluation, to be stored in the result */ @Data @Builder @NoArgsConstructor @AllArgsConstructor @JsonInclude(JsonInclude.Include.NON_NULL) public static class EvaluationOutput { private EvaluationStatus status; private String message; private Object details; private String originalPrompt; private String modelResult; private Object promptVariables; private Long processingTimeMs; private String errorDetails; } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/EvaluationRun.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import org.springframework.data.annotation.Id; import org.springframework.data.mongodb.core.mapping.Document; import java.util.Map; /** * Represents a test run for evaluations, optionally with an alternative prompt */ @Data @Builder @NoArgsConstructor @AllArgsConstructor @JsonInclude(JsonInclude.Include.NON_NULL) @Document(collection = "evaluation_runs") public class EvaluationRun { @Id private String id; private String testSetId; private String name; private String description; // If specified, this prompt will be used instead of the original one private String alternativePromptId; private String alternativePromptTemplate; // Either modelId OR workflow should be specified, not both private String modelId; // Direct model ID (like "gpt-4-turbo") private String workflow; // Workflow ID for more advanced processing private Double temperature; // Run status private RunStatus status; private Long startedAt; private Long completedAt; // Image Test Settings @Builder.Default private boolean regenerateImages = true; // If true, will regenerate images instead of using existing ones // Statistics private Map<String, Integer> statusCounts; // Map of status -> count /** * Status of the evaluation run */ public enum RunStatus { QUEUED, RUNNING, COMPLETED, FAILED, CANCELLED, PENDING // Used when manual evaluations are waiting for human review } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/ExactMatchEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import lombok.extern.slf4j.Slf4j; /** * Configuration for exact text matching evaluations */ @Slf4j @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) public class ExactMatchEvalConfig extends EvaluationConfig { /** * The exact text to match against */ private String expectedText; /** * If true, matching is case-sensitive */ private boolean caseSensitive; /** * If true, ignores whitespace differences */ private boolean ignoreWhitespace; /** * Result of exact match evaluation */ @Data @Builder public static class ExactMatchEvalResult { private boolean passed; private String message; private String expectedText; private String actualText; private boolean caseSensitive; private boolean ignoreWhitespace; } @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { String result = context.getActualResult(); // Check if expected text is empty if (expectedText == null || expectedText.isEmpty()) { ExactMatchEvalResult evalResult = ExactMatchEvalResult.builder() .passed(false) .message("No expected text specified for evaluation") .expectedText(expectedText) .actualText(result) .caseSensitive(caseSensitive) .ignoreWhitespace(ignoreWhitespace) .build(); return createOutputFromResult(evalResult); } String processedExpected = expectedText; String processedResult = result; // Apply case sensitivity if (!caseSensitive) { processedExpected = processedExpected.toLowerCase(); processedResult = processedResult.toLowerCase(); } // Apply whitespace handling if (ignoreWhitespace) { processedExpected = processedExpected.replaceAll("\\s+", " ").trim(); processedResult = processedResult.replaceAll("\\s+", " ").trim(); } boolean matches = processedResult.equals(processedExpected); String message = matches ? "Result matches expected text exactly" : "Result does not match expected text"; ExactMatchEvalResult evalResult = ExactMatchEvalResult.builder() .passed(matches) .message(message) .expectedText(expectedText) .actualText(result) .caseSensitive(caseSensitive) .ignoreWhitespace(ignoreWhitespace) .build(); return createOutputFromResult(evalResult); } private EvaluationResult.EvaluationOutput createOutputFromResult(ExactMatchEvalResult evalResult) { EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(evalResult.isPassed() ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(evalResult.getMessage()) .details(evalResult) .build(); return applyNegation(output); } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/FieldValueEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.ObjectMapper; import com.jayway.jsonpath.JsonPath; import com.jayway.jsonpath.PathNotFoundException; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import lombok.extern.slf4j.Slf4j; import java.util.List; import java.util.Map; /** * Configuration for evaluations that check specific field values in JSON responses */ @Slf4j @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) public class FieldValueEvalConfig extends EvaluationConfig { /** * JSON path to the field (e.g., "$.name", "$.user.email") */ private String jsonPath; /** * Expected value of the field */ private String expectedValue; /** * Type of expected value */ private ValueType valueType; /** * Comparison operator to use */ private ComparisonOperator operator; /** * Types of values that can be compared */ public enum ValueType { STRING, NUMBER, BOOLEAN, NULL, ARRAY, OBJECT } /** * Comparison operators */ public enum ComparisonOperator { EQUALS, // == NOT_EQUALS, // != GREATER_THAN, // > LESS_THAN, // < GREATER_THAN_EQUALS, // >= LESS_THAN_EQUALS, // <= CONTAINS, // contains STARTS_WITH, // starts with ENDS_WITH, // ends with MATCHES_REGEX, // matches regex EXISTS // field exists } /** * Result of field value evaluation */ @Data @Builder public static class FieldValueEvalResult { private boolean passed; private String message; private String jsonPath; private Object actualValue; private String expectedValue; private ValueType valueType; private ComparisonOperator operator; private String error; } @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { String result = context.getActualResult(); // Check if JSON path is empty if (jsonPath == null || jsonPath.isEmpty()) { FieldValueEvalResult evalResult = FieldValueEvalResult.builder() .passed(false) .message("No JSON path specified for field value check") .jsonPath(jsonPath) .expectedValue(expectedValue) .valueType(valueType) .operator(operator) .error("Missing JSON path") .build(); return createOutputFromResult(evalResult); } try { // First, check if the result is valid JSON if (!isValidJson(result)) { FieldValueEvalResult evalResult = FieldValueEvalResult.builder() .passed(false) .message("Response is not valid JSON") .jsonPath(jsonPath) .expectedValue(expectedValue) .valueType(valueType) .operator(operator) .error("Invalid JSON") .build(); return createOutputFromResult(evalResult); } // For EXISTS operator, just check if the path exists if (operator == ComparisonOperator.EXISTS) { try { JsonPath.read(result, jsonPath); FieldValueEvalResult evalResult = FieldValueEvalResult.builder() .passed(true) .message("Field exists: " + jsonPath) .jsonPath(jsonPath) .operator(operator) .build(); return createOutputFromResult(evalResult); } catch (PathNotFoundException e) { FieldValueEvalResult evalResult = FieldValueEvalResult.builder() .passed(false) .message("Field does not exist: " + jsonPath) .jsonPath(jsonPath) .operator(operator) .error("Path not found") .build(); return createOutputFromResult(evalResult); } } // For all other operators, we need expected value and value type if (expectedValue == null && operator != ComparisonOperator.EXISTS) { FieldValueEvalResult evalResult = FieldValueEvalResult.builder() .passed(false) .message("No expected value specified for field value check") .jsonPath(jsonPath) .expectedValue(expectedValue) .valueType(valueType) .operator(operator) .error("Missing expected value") .build(); return createOutputFromResult(evalResult); } if (valueType == null && operator != ComparisonOperator.EXISTS) { FieldValueEvalResult evalResult = FieldValueEvalResult.builder() .passed(false) .message("No value type specified for field value check") .jsonPath(jsonPath) .expectedValue(expectedValue) .operator(operator) .error("Missing value type") .build(); return createOutputFromResult(evalResult); } // Extract the field value try { Object actualValue = JsonPath.read(result, jsonPath); // Compare values based on type and operator boolean passed = compareValues(actualValue, expectedValue, valueType, operator); String message = passed ? "Field value matches expectation" : "Field value does not match expectation"; FieldValueEvalResult evalResult = FieldValueEvalResult.builder() .passed(passed) .message(message) .jsonPath(jsonPath) .actualValue(actualValue) .expectedValue(expectedValue) .valueType(valueType) .operator(operator) .build(); return createOutputFromResult(evalResult); } catch (PathNotFoundException e) { FieldValueEvalResult evalResult = FieldValueEvalResult.builder() .passed(false) .message("JSON path not found: " + jsonPath) .jsonPath(jsonPath) .expectedValue(expectedValue) .valueType(valueType) .operator(operator) .error("Path not found") .build(); return createOutputFromResult(evalResult); } } catch (Exception e) { log.error("Error evaluating field value: {}", e.getMessage(), e); FieldValueEvalResult evalResult = FieldValueEvalResult.builder() .passed(false) .message("Error evaluating field value: " + e.getMessage()) .jsonPath(jsonPath) .expectedValue(expectedValue) .valueType(valueType) .operator(operator) .error(e.getMessage()) .build(); return createOutputFromResult(evalResult); } } private boolean isValidJson(String json) { try { new ObjectMapper().readTree(json); return true; } catch (JsonProcessingException e) { return false; } } /** * Compare values based on type and operator */ private boolean compareValues(Object actual, String expected, ValueType valueType, ComparisonOperator operator) { if (actual == null) { return valueType == ValueType.NULL; } switch (valueType) { case STRING: return compareStringValues(actual.toString(), expected, operator); case NUMBER: try { double actualNum = Double.parseDouble(actual.toString()); double expectedNum = Double.parseDouble(expected); return compareNumberValues(actualNum, expectedNum, operator); } catch (NumberFormatException e) { return false; } case BOOLEAN: boolean actualBool = Boolean.parseBoolean(actual.toString()); boolean expectedBool = Boolean.parseBoolean(expected); return actualBool == expectedBool; case NULL: return actual == null; case ARRAY: if (!(actual instanceof List)) { return false; } // For arrays, we only support EQUALS and NOT_EQUALS if (operator == ComparisonOperator.EQUALS) { return actual.toString().equals(expected); } else if (operator == ComparisonOperator.NOT_EQUALS) { return !actual.toString().equals(expected); } return false; case OBJECT: if (!(actual instanceof Map)) { return false; } // For objects, we only support EQUALS and NOT_EQUALS if (operator == ComparisonOperator.EQUALS) { return actual.toString().equals(expected); } else if (operator == ComparisonOperator.NOT_EQUALS) { return !actual.toString().equals(expected); } return false; default: return false; } } /** * Compare string values */ private boolean compareStringValues(String actual, String expected, ComparisonOperator operator) { switch (operator) { case EQUALS: return actual.equals(expected); case NOT_EQUALS: return !actual.equals(expected); case CONTAINS: return actual.contains(expected); case STARTS_WITH: return actual.startsWith(expected); case ENDS_WITH: return actual.endsWith(expected); case MATCHES_REGEX: return actual.matches(expected); default: return false; } } /** * Compare number values */ private boolean compareNumberValues(double actual, double expected, ComparisonOperator operator) { switch (operator) { case EQUALS: return actual == expected; case NOT_EQUALS: return actual != expected; case GREATER_THAN: return actual > expected; case LESS_THAN: return actual < expected; case GREATER_THAN_EQUALS: return actual >= expected; case LESS_THAN_EQUALS: return actual <= expected; default: return false; } } private EvaluationResult.EvaluationOutput createOutputFromResult(FieldValueEvalResult evalResult) { EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(evalResult.isPassed() ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(evalResult.getMessage()) .details(evalResult) .build(); return applyNegation(output); } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/Folder.java
package ai.driftkit.context.spring.testsuite.domain; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import org.springframework.data.annotation.Id; import org.springframework.data.mongodb.core.mapping.Document; @Data @Builder @NoArgsConstructor @AllArgsConstructor @Document(collection = "folders") public class Folder { @Id private String id; private String name; private String description; private long createdAt; @Builder.Default private FolderType type = FolderType.TEST_SET; }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/FolderType.java
package ai.driftkit.context.spring.testsuite.domain; public enum FolderType { TEST_SET, TEST_SET_RUNS }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/ImageEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import ai.driftkit.common.domain.ImageMessageTask; import ai.driftkit.context.spring.testsuite.domain.EvaluationResult.EvaluationStatus; import com.fasterxml.jackson.annotation.JsonInclude; import lombok.AllArgsConstructor; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import org.springframework.util.StringUtils; /** * Configuration for evaluating image generation */ @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) public class ImageEvalConfig extends EvaluationConfig { /** * The criteria to evaluate (what aspect of the image to check) */ private ImageEvaluationCriteria criteria; /** * Expected number of images to be generated */ private Integer expectedImageCount; /** * Expected minimum file size in bytes */ private Long minImageSize; /** * Expected maximum file size in bytes */ private Long maxImageSize; /** * Expected image aspect ratio (width/height, e.g. 1.0 for square) * Allows for some tolerance (+/- 0.1) */ private Double expectedAspectRatio; /** * Whether to check that revised prompt is provided */ private Boolean hasRevisedPrompt; @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { // For image evaluation, we need the ImageMessageTask from additionalContext if (context.getAdditionalContext() == null || !(context.getAdditionalContext() instanceof ImageMessageTask)) { return EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.ERROR) .message("Image task not available in evaluation context") .build(); } ImageMessageTask imageTask = (ImageMessageTask) context.getAdditionalContext(); if (imageTask.getImages() == null || imageTask.getImages().isEmpty()) { return EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.FAILED) .message("No images generated") .build(); } // Evaluate based on the specified criteria switch (criteria) { case IMAGE_COUNT: return evaluateImageCount(imageTask); case IMAGE_SIZE: return evaluateImageSize(imageTask); case ASPECT_RATIO: return evaluateAspectRatio(imageTask); case REVISED_PROMPT: return evaluateRevisedPrompt(imageTask); case BASIC_VALIDATION: default: return evaluateBasicValidation(imageTask); } } private EvaluationResult.EvaluationOutput evaluateImageCount(ImageMessageTask imageTask) { int actualCount = imageTask.getImages().size(); if (expectedImageCount != null && actualCount != expectedImageCount) { return applyNegation(EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.FAILED) .message("Expected " + expectedImageCount + " images but got " + actualCount) .build()); } return applyNegation(EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.PASSED) .message("Image count: " + actualCount) .build()); } private EvaluationResult.EvaluationOutput evaluateImageSize(ImageMessageTask imageTask) { boolean allValid = true; StringBuilder message = new StringBuilder("Image sizes: "); for (int i = 0; i < imageTask.getImages().size(); i++) { ImageMessageTask.GeneratedImage img = imageTask.getImages().get(i); if (img.getData() == null) { message.append("Image #").append(i + 1).append(" has no data. "); allValid = false; continue; } long size = img.getData().length; message.append(size).append(" bytes"); if (minImageSize != null && size < minImageSize) { message.append(" (too small, min: ").append(minImageSize).append(")"); allValid = false; } if (maxImageSize != null && size > maxImageSize) { message.append(" (too large, max: ").append(maxImageSize).append(")"); allValid = false; } if (i < imageTask.getImages().size() - 1) { message.append(", "); } } return applyNegation(EvaluationResult.EvaluationOutput.builder() .status(allValid ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(message.toString()) .build()); } private EvaluationResult.EvaluationOutput evaluateAspectRatio(ImageMessageTask imageTask) { // Note: This would require image metadata extraction, which isn't available in the current code // A placeholder implementation that would need to be enhanced with actual image dimension reading return applyNegation(EvaluationResult.EvaluationOutput.builder() .status(EvaluationStatus.ERROR) .message("Aspect ratio evaluation requires image dimension extraction, which is not implemented") .build()); } private EvaluationResult.EvaluationOutput evaluateRevisedPrompt(ImageMessageTask imageTask) { boolean allHaveRevised = true; StringBuilder message = new StringBuilder("Revised prompts: "); for (int i = 0; i < imageTask.getImages().size(); i++) { ImageMessageTask.GeneratedImage img = imageTask.getImages().get(i); boolean hasRevised = StringUtils.hasText(img.getRevisedPrompt()); if (!hasRevised) { allHaveRevised = false; message.append("Image #").append(i + 1).append(" has no revised prompt. "); } else { message.append("Image #").append(i + 1).append(" has revised prompt. "); } } boolean passed = hasRevisedPrompt == null || allHaveRevised == hasRevisedPrompt; return applyNegation(EvaluationResult.EvaluationOutput.builder() .status(passed ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(message.toString()) .build()); } private EvaluationResult.EvaluationOutput evaluateBasicValidation(ImageMessageTask imageTask) { boolean valid = true; StringBuilder message = new StringBuilder("Image validation: "); // Check that all images have data or URLs for (int i = 0; i < imageTask.getImages().size(); i++) { ImageMessageTask.GeneratedImage img = imageTask.getImages().get(i); boolean hasData = img.getData() != null && img.getData().length > 0; boolean hasUrl = StringUtils.hasText(img.getUrl()); if (!hasData && !hasUrl) { valid = false; message.append("Image #").append(i + 1).append(" has no data or URL. "); } } if (valid) { message.append("All images have valid data or URLs."); } return applyNegation(EvaluationResult.EvaluationOutput.builder() .status(valid ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(message.toString()) .build()); } public enum ImageEvaluationCriteria { BASIC_VALIDATION, // Check that images exist and have basic data IMAGE_COUNT, // Check number of images generated IMAGE_SIZE, // Check image file size ASPECT_RATIO, // Check image dimensions/ratio REVISED_PROMPT // Check if revised prompts are provided } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/JsonSchemaEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import com.networknt.schema.JsonSchema; import com.networknt.schema.JsonSchemaFactory; import com.networknt.schema.SpecVersion; import com.networknt.schema.ValidationMessage; import lombok.*; import lombok.experimental.SuperBuilder; import lombok.extern.slf4j.Slf4j; import java.util.Set; import java.util.stream.Collectors; /** * Configuration for JSON Schema validation evaluations */ @Slf4j @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) public class JsonSchemaEvalConfig extends EvaluationConfig { /** * The JSON schema to validate against, in standard JSON Schema format. * Example: * { * "$schema": "http://json-schema.org/draft-07/schema#", * "type": "object", * "properties": { * "name": { "type": "string" }, * "age": { "type": "integer", "minimum": 0 } * }, * "required": ["name"] * } */ private String jsonSchema; /** * If true, only validates that the response is valid JSON, ignoring the schema */ private boolean validateJsonOnly; /** * Result of JSON Schema validation */ @Data @Builder public static class JsonSchemaEvalResult { private boolean passed; private String message; private Set<String> validationErrors; private boolean isValidJson; } @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { String result = context.getActualResult(); JsonSchemaEvalResult evalResult; try { ObjectMapper objectMapper = new ObjectMapper(); // Check if result is valid JSON boolean isValidJson = isValidJson(result, objectMapper); if (!isValidJson) { evalResult = JsonSchemaEvalResult.builder() .passed(false) .isValidJson(false) .message("Response is not valid JSON") .build(); } // If we only need to validate JSON format else if (isValidateJsonOnly() || getJsonSchema() == null || getJsonSchema().trim().isEmpty()) { evalResult = JsonSchemaEvalResult.builder() .passed(true) .isValidJson(true) .message("Response is valid JSON") .build(); } // Validate against schema else { // Parse the actual JSON and schema JsonNode jsonNode = objectMapper.readTree(result); JsonSchemaFactory factory = JsonSchemaFactory.getInstance(SpecVersion.VersionFlag.V7); // Use a minimal schema if the provided one is empty or invalid String schemaToUse = getJsonSchema(); if (schemaToUse == null || schemaToUse.trim().isEmpty()) { schemaToUse = "{\"type\": \"object\"}"; } JsonSchema schema = factory.getSchema(schemaToUse); // Validate against the schema Set<ValidationMessage> validationMessages = schema.validate(jsonNode); boolean passed = validationMessages.isEmpty(); Set<String> errorMessages = validationMessages.stream() .map(ValidationMessage::getMessage) .collect(Collectors.toSet()); evalResult = JsonSchemaEvalResult.builder() .passed(passed) .isValidJson(true) .message(passed ? "JSON schema validation passed" : "JSON schema validation failed") .validationErrors(errorMessages) .build(); } } catch (Exception e) { log.error("Error in JSON schema validation: {}", e.getMessage(), e); evalResult = JsonSchemaEvalResult.builder() .passed(false) .message("JSON schema validation error: " + e.getMessage()) .build(); } // Create result output and apply negation if configured EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(evalResult.isPassed() ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(evalResult.getMessage()) .details(evalResult) .build(); return applyNegation(output); } /** * Check if a string is valid JSON */ private boolean isValidJson(String json, ObjectMapper objectMapper) { try { JsonNode jsonNode = objectMapper.readTree(json); return jsonNode.isArray() || jsonNode.isObject(); } catch (Exception e) { return false; } } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/LlmEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import ai.driftkit.common.domain.ImageMessageTask; import ai.driftkit.common.domain.Language; import ai.driftkit.common.domain.MessageTask; import ai.driftkit.common.domain.client.ModelImageResponse.ModelContentMessage; import ai.driftkit.common.domain.client.ModelTextResponse; import ai.driftkit.context.spring.testsuite.service.EvaluationService; import ai.driftkit.workflows.spring.domain.ModelRequestTrace; import ai.driftkit.workflows.spring.service.AIService; import ai.driftkit.workflows.spring.service.ModelRequestContext; import com.fasterxml.jackson.annotation.JsonInclude; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import lombok.extern.slf4j.Slf4j; import java.util.*; /** * Configuration for evaluations that use an LLM to evaluate responses */ @Slf4j @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) public class LlmEvalConfig extends EvaluationConfig { /** * The evaluation prompt to use * Available placeholders: * {{task}} - The original task/prompt * {{actual}} - The actual model response * {{expected}} - The reference/expected result from TestSetItem */ private String evaluationPrompt; /** * Model to use for evaluation (if null, uses the default model) */ private String modelId; /** * If true, returns detailed feedback in addition to pass/fail */ private boolean generateFeedback; /** * Temperature setting for the LLM evaluation */ private Double temperature; /** * Result of LLM evaluation */ @Data @Builder public static class LlmEvalResult { private boolean passed; private String message; private String feedback; private String prompt; } @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { try { String task = context.getTestSetItem().getMessage(); String actual = context.getActualResult(); String expected = context.getOriginalResult(); AIService aiService = context.getAiService(); // Check if AI service is available if (aiService == null) { log.error("AIService not provided in evaluation context"); return EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.ERROR) .message("AIService not available for LLM evaluation") .build(); } // Handle image evaluation if this is an image test item and we have image context if (context.getTestSetItem().isImageTask() && context.getAdditionalContext() instanceof ImageMessageTask) { return evaluateImages(context, aiService); } // Standard text evaluation // Prepare the evaluation prompt String prompt = getEvaluationPrompt(); prompt = prompt.replace("{{task}}", task) .replace("{{actual}}", String.valueOf(actual)) .replace("{{expected}}", String.valueOf(expected)); // Prepare the message task with all necessary properties MessageTask messageTask = new MessageTask(); messageTask.setMessageId(UUID.randomUUID().toString()); messageTask.setMessage(prompt); // Use original workflow from test set item String workflow = context.getTestSetItem().getWorkflow(); if (workflow != null) { messageTask.setWorkflow(workflow); } // Copy system message from test set item String systemMessage = context.getTestSetItem().getSystemMessage(); if (systemMessage != null) { messageTask.setSystemMessage(systemMessage); } // Copy variables from test set item messageTask.setVariables(context.getTestSetItem().getVariablesAsObjectMap()); // Set language from test set item (use GENERAL as default if not specified) messageTask.setLanguage(Optional.ofNullable(context.getTestSetItem().getLanguage()).orElse(Language.GENERAL)); // Set JSON request/response flags messageTask.setJsonRequest(context.getTestSetItem().isJsonRequest()); messageTask.setJsonResponse(context.getTestSetItem().isJsonResponse()); // Set purpose to indicate this request is from test pipeline messageTask.setPurpose(EvaluationService.QA_TEST_PIPELINE_PURPOSE); // Copy log probability settings if available if (context.getTestSetItem().getLogprobs() != null) { messageTask.setLogprobs(context.getTestSetItem().getLogprobs() > 0); } if (context.getTestSetItem().getTopLogprobs() != null) { messageTask.setTopLogprobs(context.getTestSetItem().getTopLogprobs()); } // Set model parameters if specified in the evaluation config if (getModelId() != null) { messageTask.setModelId(getModelId()); } else { messageTask.setModelId(context.getTestSetItem().getModel()); } if (getTemperature() != null) { messageTask.setTemperature(getTemperature()); } else { messageTask.setTemperature(context.getTestSetItem().getTemperature()); } // Run the evaluation using AIService.chat to ensure workflow support MessageTask response = aiService.chat(messageTask); String responseText = response.getResult(); // Parse the response to determine pass/fail // Assuming the LLM returns a response with PASS/FAIL at the beginning boolean passed = responseText.toLowerCase().contains("pass") && !responseText.toLowerCase().contains("fail"); LlmEvalResult evalResult = LlmEvalResult.builder() .passed(passed) .message(passed ? "LLM evaluation passed" : "LLM evaluation failed") .feedback(responseText) .prompt(prompt) .build(); // Create result output and apply negation if configured EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(evalResult.isPassed() ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(evalResult.getMessage()) .details(evalResult) .build(); return applyNegation(output); } catch (Exception e) { log.error("Error in LLM evaluation: {}", e.getMessage(), e); return EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.ERROR) .message("LLM evaluation error: " + e.getMessage()) .build(); } } /** * Evaluates image content using LLM to compare the prompt with the generated image * This method creates a multimodal request that sends both the image and the prompt to the LLM */ private EvaluationResult.EvaluationOutput evaluateImages(EvaluationContext context, AIService aiService) { try { // Get the image task from the additional context ImageMessageTask imageTask = (ImageMessageTask) context.getAdditionalContext(); if (imageTask.getImages() == null || imageTask.getImages().isEmpty()) { return EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.FAILED) .message("No images available for evaluation") .build(); } // Prepare image data to send to the model ImageMessageTask.GeneratedImage generatedImage = imageTask.getImages().get(0); if (generatedImage.getData() == null || generatedImage.getData().length == 0) { return EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.FAILED) .message("Image data not available for evaluation") .build(); } // Get the original prompt that was used to generate the image String imagePrompt = context.getTestSetItem().getMessage(); // Create a specialized prompt for LLM to evaluate image-text matching String evaluationPrompt = getEvaluationPrompt(); if (evaluationPrompt == null || evaluationPrompt.isEmpty()) { // If no custom evaluation prompt was provided, use a default one evaluationPrompt = "I'm going to show you an image that was generated based on the following prompt:\n\n" + "\"{{task}}\"\n\n" + "Please carefully analyze the image and evaluate if it matches what was requested in the prompt.\n" + "Consider elements like subjects, style, composition, colors, and overall faithfulness to the prompt.\n\n" + "Respond with either PASS if the image properly represents the prompt, or FAIL if it doesn't match.\n" + "Then provide a detailed explanation of your assessment, discussing specific elements that match or don't match."; } // Replace placeholders in the evaluation prompt evaluationPrompt = evaluationPrompt.replace("{{task}}", imagePrompt); // Create message task for evaluation MessageTask messageTask = new MessageTask(); messageTask.setMessageId(UUID.randomUUID().toString()); // Configure model parameters String workflow = context.getTestSetItem().getWorkflow(); String modelId = getModelId() != null ? getModelId() : context.getTestSetItem().getModel(); Double temperature = getTemperature() != null ? getTemperature() : context.getTestSetItem().getTemperature(); // Create a request context for sending through ModelRequestService ModelRequestContext requestContext = ModelRequestContext.builder() .contextId(messageTask.getMessageId()) .contextType(ModelRequestTrace.ContextType.MESSAGE_TASK) .requestType(ModelRequestTrace.RequestType.IMAGE_TO_TEXT) .promptText(evaluationPrompt) .messageTask(messageTask) .imageData(List.of(new ModelContentMessage.ModelContentElement.ImageData( generatedImage.getData(), generatedImage.getMimeType() != null ? generatedImage.getMimeType() : "image/png" ))) .purpose("image_evaluation_test") .model(modelId) // Ensure model ID is set here .build(); // Set system message requesting visual analysis capabilities messageTask.setSystemMessage( "You are a specialist in analyzing and evaluating images. " + "You have excellent visual perception and can accurately describe and assess images. " + "Focus on whether the image faithfully represents what was requested in the prompt. " + "Be specific in your assessment, referencing visual elements, subjects, composition, style, etc." ); // Set parameters messageTask.setMessage(evaluationPrompt); messageTask.setWorkflow(workflow); messageTask.setModelId(modelId); messageTask.setTemperature(temperature); messageTask.setPurpose("image_evaluation_test"); // Send the evaluation request to the AI service // Using direct call to ModelRequestService ModelTextResponse modelResponse = aiService.getModelRequestService().imageToText( aiService.getModelClient(), requestContext ); String responseText = modelResponse.getResponse(); messageTask.setResult(responseText); messageTask.setResponseTime(System.currentTimeMillis()); // Parse the response to determine pass/fail String lowerCaseResponse = responseText.toLowerCase(); boolean passed = lowerCaseResponse.contains("pass") && !lowerCaseResponse.contains("fail"); LlmEvalResult evalResult = LlmEvalResult.builder() .passed(passed) .message(passed ? "Image evaluation passed" : "Image evaluation failed") .feedback(responseText) .prompt(evaluationPrompt) .build(); // Create result output and apply negation if configured EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(evalResult.isPassed() ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(evalResult.getMessage()) .details(evalResult) .build(); return applyNegation(output); } catch (Exception e) { log.error("Error in LLM image evaluation: {}", e.getMessage(), e); return EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.ERROR) .message("LLM image evaluation error: " + e.getMessage()) .build(); } } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/ManualEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import com.fasterxml.jackson.annotation.JsonTypeName; import lombok.AllArgsConstructor; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import lombok.extern.slf4j.Slf4j; /** * Configuration for evaluations that require manual user inspection and verification * These evaluations will initially be marked as PENDING until a human reviewer * manually marks them as PASSED or FAILED */ @Slf4j @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) @JsonTypeName("MANUAL_EVALUATION") public class ManualEvalConfig extends EvaluationConfig { /** * Optional instructions for the human reviewer */ private String reviewInstructions; @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { // Manual evaluations start in PENDING status and require human intervention EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(EvaluationResult.EvaluationStatus.PENDING) .message("Awaiting manual review") .details(new ManualEvalDetails(getReviewInstructions())) .build(); // We don't apply negation to PENDING evaluations return output; } /** * Details of the manual evaluation */ @Data @NoArgsConstructor @AllArgsConstructor public static class ManualEvalDetails { private String reviewInstructions; } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/RegexMatchEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import lombok.extern.slf4j.Slf4j; import java.util.ArrayList; import java.util.List; import java.util.regex.Matcher; import java.util.regex.Pattern; import java.util.regex.PatternSyntaxException; /** * Configuration for evaluations that use regex pattern matching */ @Slf4j @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) public class RegexMatchEvalConfig extends EvaluationConfig { /** * Regular expression pattern to match against */ private String pattern; /** * If true, the regex should NOT match for the test to pass */ private boolean shouldNotMatch; /** * Minimum number of matches required */ private Integer minMatches; /** * Maximum number of matches allowed */ private Integer maxMatches; /** * Result of regex match evaluation */ @Data @Builder public static class RegexMatchEvalResult { private boolean passed; private String message; private String pattern; private int matchCount; private boolean shouldNotMatch; private Integer minMatches; private Integer maxMatches; private List<String> matches; private String error; } @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { String result = context.getActualResult(); // Check if pattern is empty if (pattern == null || pattern.isEmpty()) { RegexMatchEvalResult evalResult = RegexMatchEvalResult.builder() .passed(false) .message("No regex pattern specified for matching") .pattern(pattern) .matchCount(0) .shouldNotMatch(shouldNotMatch) .minMatches(minMatches) .maxMatches(maxMatches) .matches(new ArrayList<>()) .error("Missing pattern") .build(); return createOutputFromResult(evalResult); } try { // Compile and use the regex pattern Pattern regex = Pattern.compile(pattern); Matcher matcher = regex.matcher(result); // Count all matches and collect them int count = 0; List<String> matches = new ArrayList<>(); while (matcher.find()) { count++; matches.add(matcher.group()); } // If shouldNotMatch is true, we expect no matches if (shouldNotMatch) { boolean passed = count == 0; String message = passed ? "No regex matches found (as expected)" : "Found " + count + " regex matches (expected none)"; RegexMatchEvalResult evalResult = RegexMatchEvalResult.builder() .passed(passed) .message(message) .pattern(pattern) .matchCount(count) .shouldNotMatch(shouldNotMatch) .minMatches(minMatches) .maxMatches(maxMatches) .matches(matches) .build(); return createOutputFromResult(evalResult); } // Otherwise check against min/max boolean passedMin = minMatches == null || count >= minMatches; boolean passedMax = maxMatches == null || count <= maxMatches; boolean passed = passedMin && passedMax; // Build message StringBuilder message = new StringBuilder(); message.append("Found ").append(count).append(" regex matches"); if (!passed) { message.append(" - "); if (!passedMin) { message.append("expected at least ").append(minMatches); } if (!passedMin && !passedMax) { message.append(" and "); } if (!passedMax) { message.append("expected at most ").append(maxMatches); } } RegexMatchEvalResult evalResult = RegexMatchEvalResult.builder() .passed(passed) .message(message.toString()) .pattern(pattern) .matchCount(count) .shouldNotMatch(shouldNotMatch) .minMatches(minMatches) .maxMatches(maxMatches) .matches(matches) .build(); return createOutputFromResult(evalResult); } catch (PatternSyntaxException e) { log.error("Invalid regex pattern: {}", e.getMessage(), e); RegexMatchEvalResult evalResult = RegexMatchEvalResult.builder() .passed(false) .message("Invalid regex pattern: " + e.getMessage()) .pattern(pattern) .matchCount(0) .shouldNotMatch(shouldNotMatch) .minMatches(minMatches) .maxMatches(maxMatches) .matches(new ArrayList<>()) .error("Invalid pattern: " + e.getMessage()) .build(); return createOutputFromResult(evalResult); } catch (Exception e) { log.error("Error evaluating regex match: {}", e.getMessage(), e); RegexMatchEvalResult evalResult = RegexMatchEvalResult.builder() .passed(false) .message("Error evaluating regex match: " + e.getMessage()) .pattern(pattern) .matchCount(0) .shouldNotMatch(shouldNotMatch) .minMatches(minMatches) .maxMatches(maxMatches) .matches(new ArrayList<>()) .error(e.getMessage()) .build(); return createOutputFromResult(evalResult); } } private EvaluationResult.EvaluationOutput createOutputFromResult(RegexMatchEvalResult evalResult) { EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(evalResult.isPassed() ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(evalResult.getMessage()) .details(evalResult) .build(); return applyNegation(output); } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/TestSet.java
package ai.driftkit.context.spring.testsuite.domain; import lombok.Data; import org.springframework.data.annotation.Id; import org.springframework.data.mongodb.core.mapping.Document; @Data @Document(collection = "testsets") public class TestSet { @Id private String id; private String name; private String description; private String folderId; private Long createdAt; private Long updatedAt; }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/TestSetItem.java
package ai.driftkit.context.spring.testsuite.domain; import ai.driftkit.common.domain.Language; import java.util.Map; /** * Interface for test set items */ public interface TestSetItem { String getId(); String getTestSetId(); String getMessage(); String getSystemMessage(); Language getLanguage(); String getWorkflowType(); String getWorkflow(); boolean isJsonRequest(); boolean isJsonResponse(); Integer getLogprobs(); Integer getTopLogprobs(); Double getTemperature(); String getModel(); Map<String, Object> getVariablesAsObjectMap(); String getResult(); boolean isImageTask(); String getOriginalImageTaskId(); Long getCreatedAt(); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/WordCountEvalConfig.java
package ai.driftkit.context.spring.testsuite.domain; import com.fasterxml.jackson.annotation.JsonInclude; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.experimental.SuperBuilder; import lombok.extern.slf4j.Slf4j; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * Configuration for evaluations that count word occurrences */ @Slf4j @Data @SuperBuilder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode(callSuper = true) @JsonInclude(JsonInclude.Include.NON_NULL) public class WordCountEvalConfig extends EvaluationConfig { /** * The word or phrase to count */ private String word; /** * Minimum occurrences required */ private Integer minOccurrences; /** * Maximum occurrences allowed */ private Integer maxOccurrences; /** * If true, matching is case-sensitive */ private boolean caseSensitive; /** * If true, matches only whole words (not parts of words) */ private boolean wholeWordsOnly; /** * Result of word count evaluation */ @Data @Builder public static class WordCountEvalResult { private boolean passed; private String message; private int count; private String word; private Integer minOccurrences; private Integer maxOccurrences; private boolean caseSensitive; private boolean wholeWordsOnly; } @Override public EvaluationResult.EvaluationOutput evaluate(EvaluationContext context) { String result = context.getActualResult(); // Check if word is empty if (word == null || word.isEmpty()) { WordCountEvalResult evalResult = WordCountEvalResult.builder() .passed(false) .message("No word specified for counting") .count(0) .word(word) .minOccurrences(minOccurrences) .maxOccurrences(maxOccurrences) .caseSensitive(caseSensitive) .wholeWordsOnly(wholeWordsOnly) .build(); return createOutputFromResult(evalResult); } // Count occurrences int count; if (wholeWordsOnly) { // Count whole words only String regex = caseSensitive ? "\\b" + Pattern.quote(word) + "\\b" : "(?i)\\b" + Pattern.quote(word) + "\\b"; Pattern pattern = Pattern.compile(regex); Matcher matcher = pattern.matcher(result); count = 0; while (matcher.find()) { count++; } } else { // Count all occurrences String searchWord = word; String searchResult = result; // Apply case-sensitivity settings if (!caseSensitive) { searchWord = searchWord.toLowerCase(); searchResult = searchResult.toLowerCase(); } count = 0; int index = 0; while ((index = searchResult.indexOf(searchWord, index)) != -1) { count++; index += searchWord.length(); } } // Check against min/max boolean passedMin = minOccurrences == null || count >= minOccurrences; boolean passedMax = maxOccurrences == null || count <= maxOccurrences; boolean passed = passedMin && passedMax; // Build message StringBuilder message = new StringBuilder(); message.append("Found ").append(count).append(" occurrences of '").append(word).append("'"); if (!passed) { message.append(" - "); if (!passedMin) { message.append("expected at least ").append(minOccurrences); } if (!passedMin && !passedMax) { message.append(" and "); } if (!passedMax) { message.append("expected at most ").append(maxOccurrences); } } WordCountEvalResult evalResult = WordCountEvalResult.builder() .passed(passed) .message(message.toString()) .count(count) .word(word) .minOccurrences(minOccurrences) .maxOccurrences(maxOccurrences) .caseSensitive(caseSensitive) .wholeWordsOnly(wholeWordsOnly) .build(); return createOutputFromResult(evalResult); } private EvaluationResult.EvaluationOutput createOutputFromResult(WordCountEvalResult evalResult) { EvaluationResult.EvaluationOutput output = EvaluationResult.EvaluationOutput.builder() .status(evalResult.isPassed() ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED) .message(evalResult.getMessage()) .details(evalResult) .build(); return applyNegation(output); } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/domain/archive/TestSetItemImpl.java
package ai.driftkit.context.spring.testsuite.domain.archive; import ai.driftkit.context.spring.testsuite.domain.TestSetItem; import ai.driftkit.common.domain.Language; import lombok.Builder; import lombok.Data; import org.springframework.data.annotation.Id; import org.springframework.data.mongodb.core.mapping.Document; import java.util.HashMap; import java.util.Map; @Data @Builder @Document(collection = "testsetitems") public class TestSetItemImpl implements TestSetItem { @Id private String id; private String testSetId; private String message; private String systemMessage; private Language language; private String workflowType; private String workflow; private boolean jsonRequest; private boolean jsonResponse; private Integer logprobs; private Integer topLogprobs; private Double temperature; private String model; private Map<String, String> variables; private String result; private boolean isImageTask; private String originalImageTaskId; private String originalMessageTaskId; private String originalTraceId; private String promptId; private Long createdAt; private Long updatedAt; @Override public Map<String, Object> getVariablesAsObjectMap() { return variables != null ? new HashMap<>(variables) : null; } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/repository/EvaluationRepository.java
package ai.driftkit.context.spring.testsuite.repository; import ai.driftkit.context.spring.testsuite.domain.Evaluation; import org.springframework.data.mongodb.repository.MongoRepository; import org.springframework.stereotype.Repository; import java.util.List; @Repository public interface EvaluationRepository extends MongoRepository<Evaluation, String> { /** * Find all evaluations for a test set */ List<Evaluation> findByTestSetId(String testSetId); /** * Find all global evaluations (where testSetId is null) */ List<Evaluation> findByTestSetIdIsNull(); /** * Delete all evaluations for a test set */ void deleteByTestSetId(String testSetId); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/repository/EvaluationResultRepository.java
package ai.driftkit.context.spring.testsuite.repository; import ai.driftkit.context.spring.testsuite.domain.EvaluationResult; import org.springframework.data.mongodb.repository.MongoRepository; import org.springframework.stereotype.Repository; import java.util.List; @Repository public interface EvaluationResultRepository extends MongoRepository<EvaluationResult, String> { /** * Find all results for a specific evaluation */ List<EvaluationResult> findByEvaluationId(String evaluationId); /** * Find all results for a specific test set item */ List<EvaluationResult> findByTestSetItemId(String testSetItemId); /** * Find all results for a specific run */ List<EvaluationResult> findByRunId(String runId); /** * Find all results for a specific evaluation and run */ List<EvaluationResult> findByEvaluationIdAndRunId(String evaluationId, String runId); /** * Delete all results for a specific evaluation */ void deleteByEvaluationId(String evaluationId); /** * Delete all results for a specific run */ void deleteByRunId(String runId); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/repository/EvaluationRunRepository.java
package ai.driftkit.context.spring.testsuite.repository; import ai.driftkit.context.spring.testsuite.domain.EvaluationRun; import org.springframework.data.mongodb.repository.MongoRepository; import org.springframework.stereotype.Repository; import java.util.List; @Repository public interface EvaluationRunRepository extends MongoRepository<EvaluationRun, String> { /** * Find all runs for a test set */ List<EvaluationRun> findByTestSetId(String testSetId); /** * Find all runs with a specific status */ List<EvaluationRun> findByStatus(EvaluationRun.RunStatus status); /** * Delete all runs for a test set */ void deleteByTestSetId(String testSetId); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/repository/FolderRepository.java
package ai.driftkit.context.spring.testsuite.repository; import ai.driftkit.context.spring.testsuite.domain.Folder; import ai.driftkit.context.spring.testsuite.domain.FolderType; import org.springframework.data.mongodb.repository.MongoRepository; import org.springframework.stereotype.Repository; import java.util.List; @Repository public interface FolderRepository extends MongoRepository<Folder, String> { List<Folder> findByTypeOrderByCreatedAtDesc(FolderType type); List<Folder> findAllByOrderByCreatedAtDesc(); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/repository/TestSetItemRepository.java
package ai.driftkit.context.spring.testsuite.repository; import ai.driftkit.context.spring.testsuite.domain.archive.TestSetItemImpl; import org.springframework.data.mongodb.repository.MongoRepository; import org.springframework.stereotype.Repository; import java.util.List; @Repository public interface TestSetItemRepository extends MongoRepository<TestSetItemImpl, String> { List<TestSetItemImpl> findByTestSetId(String testSetId); List<TestSetItemImpl> findByTestSetIdOrderByCreatedAtDesc(String testSetId); void deleteByTestSetId(String testSetId); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/repository/TestSetRepository.java
package ai.driftkit.context.spring.testsuite.repository; import ai.driftkit.context.spring.testsuite.domain.TestSet; import org.springframework.data.mongodb.repository.MongoRepository; import org.springframework.stereotype.Repository; import java.util.List; @Repository public interface TestSetRepository extends MongoRepository<TestSet, String> { List<TestSet> findAllByOrderByCreatedAtDesc(); List<TestSet> findByFolderIdOrderByCreatedAtDesc(String folderId); List<TestSet> findByFolderIdIsNullOrderByCreatedAtDesc(); }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/service/EvaluationService.java
package ai.driftkit.context.spring.testsuite.service; import ai.driftkit.common.domain.ImageMessageTask; import ai.driftkit.common.domain.Language; import ai.driftkit.common.domain.MessageTask; import ai.driftkit.context.core.util.PromptUtils; import ai.driftkit.context.spring.testsuite.domain.*; import ai.driftkit.context.spring.testsuite.repository.*; import ai.driftkit.workflows.spring.domain.ImageMessageTaskEntity; import ai.driftkit.workflows.spring.repository.ImageTaskRepository; import ai.driftkit.workflows.spring.service.ImageModelService; import ai.driftkit.workflows.spring.service.AIService; import lombok.Data; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils; import org.springframework.stereotype.Service; import java.io.PrintWriter; import java.io.StringWriter; import java.text.SimpleDateFormat; import java.util.*; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; /** * Service for managing evaluations for test sets */ @Slf4j @Service @RequiredArgsConstructor public class EvaluationService { private static final SimpleDateFormat DATE_FORMAT = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); public static final String QA_TEST_PIPELINE_PURPOSE = "qa_test_pipeline"; private ExecutorService testExecutor = Executors.newFixedThreadPool( Math.max(2, Runtime.getRuntime().availableProcessors()) ); private final EvaluationRepository evaluationRepository; private final EvaluationResultRepository resultRepository; private final EvaluationRunRepository runRepository; private final TestSetItemRepository testSetItemRepository; private final TestSetRepository testSetRepository; private final AIService aiService; private final ImageModelService imageModelService; private final ImageTaskRepository imageTaskRepository; /** * Create a new evaluation */ public Evaluation createEvaluation(Evaluation evaluation) { evaluation.setCreatedAt(System.currentTimeMillis()); evaluation.setUpdatedAt(System.currentTimeMillis()); return evaluationRepository.save(evaluation); } /** * Copy an evaluation to another test set */ public Evaluation copyEvaluation(String evaluationId, String targetTestSetId) { Optional<Evaluation> existingOpt = evaluationRepository.findById(evaluationId); if (existingOpt.isEmpty()) { throw new IllegalArgumentException("Evaluation not found: " + evaluationId); } Evaluation existing = existingOpt.get(); Evaluation copy = new Evaluation(); copy.setName(existing.getName() + " (Copy)"); copy.setDescription(existing.getDescription()); copy.setTestSetId(targetTestSetId); copy.setType(existing.getType()); copy.setConfig(existing.getConfig()); copy.setCreatedAt(System.currentTimeMillis()); copy.setUpdatedAt(System.currentTimeMillis()); return evaluationRepository.save(copy); } /** * Get all evaluations for a test set */ public List<Evaluation> getEvaluationsForTestSet(String testSetId) { return evaluationRepository.findByTestSetId(testSetId); } /** * Get all global evaluations (not tied to a specific test set) */ public List<Evaluation> getGlobalEvaluations() { return evaluationRepository.findByTestSetIdIsNull(); } /** * Get a specific evaluation */ public Optional<Evaluation> getEvaluation(String id) { return evaluationRepository.findById(id); } /** * Update an evaluation */ public Evaluation updateEvaluation(String id, Evaluation evaluation) { Optional<Evaluation> existing = evaluationRepository.findById(id); if (existing.isEmpty()) { throw new IllegalArgumentException("Evaluation not found: " + id); } evaluation.setId(id); evaluation.setCreatedAt(existing.get().getCreatedAt()); evaluation.setUpdatedAt(System.currentTimeMillis()); return evaluationRepository.save(evaluation); } /** * Delete an evaluation */ public void deleteEvaluation(String id) { resultRepository.deleteByEvaluationId(id); evaluationRepository.deleteById(id); } /** * Create a new evaluation run */ public EvaluationRun createEvaluationRun(EvaluationRun run) { if (StringUtils.isNotBlank(run.getModelId()) && StringUtils.isNotBlank(run.getWorkflow())) { throw new IllegalArgumentException("Cannot specify both modelId and workflow. Choose one execution method."); } run.setStatus(EvaluationRun.RunStatus.QUEUED); run.setStartedAt(System.currentTimeMillis()); return runRepository.save(run); } /** * Get all runs for a test set */ public List<EvaluationRun> getRunsForTestSet(String testSetId) { return runRepository.findByTestSetId(testSetId); } /** * Get all runs across all test sets */ public List<EvaluationRun> getAllRuns() { return runRepository.findAll(); } /** * Get a specific run */ public Optional<EvaluationRun> getRun(String id) { return runRepository.findById(id); } /** * Delete a run and all its results */ public void deleteRun(String id) { resultRepository.deleteByRunId(id); runRepository.deleteById(id); } /** * Get all results for a run */ public List<EvaluationResult> getResultsForRun(String runId) { return resultRepository.findByRunId(runId); } /** * Create a new evaluation run for a test set and immediately execute it */ public EvaluationRun createAndExecuteRun(String testSetId) { EvaluationRun run = EvaluationRun.builder() .testSetId(testSetId) .name("Run " + DATE_FORMAT.format(new Date())) .description("Automatic run") .status(EvaluationRun.RunStatus.QUEUED) .startedAt(System.currentTimeMillis()) .build(); EvaluationRun savedRun = runRepository.save(run); final String runId = savedRun.getId(); testExecutor.submit(() -> { try { Optional<EvaluationRun> optionalRun = runRepository.findById(runId); if (optionalRun.isEmpty()) { log.error("Run not found: {}", runId); return; } EvaluationRun runToExecute = optionalRun.get(); executeRun(runToExecute); } catch (Exception e) { log.error("Error in background execution of run {}: {}", runId, e.getMessage(), e); } }); return savedRun; } /** * Create and execute runs for all test sets in a folder */ public List<EvaluationRun> createAndExecuteRunsForFolder(String folderId, String modelId, String workflow) { return createAndExecuteRunsForFolder(folderId, modelId, workflow, false); } /** * Create and execute runs for all test sets in a folder */ public List<EvaluationRun> createAndExecuteRunsForFolder(String folderId, String modelId, String workflow, boolean regenerateImages) { log.info("Creating and executing runs for all test sets in folder: {}", folderId); log.info("Options: modelId={}, workflow={}, regenerateImages={}", modelId, workflow, regenerateImages); List<TestSet> testSets = testSetRepository.findByFolderIdOrderByCreatedAtDesc(folderId); if (testSets.isEmpty()) { log.warn("No test sets found in folder: {}", folderId); return Collections.emptyList(); } List<EvaluationRun> runs = new ArrayList<>(); for (TestSet testSet : testSets) { EvaluationRun run = EvaluationRun.builder() .testSetId(testSet.getId()) .name("Folder Run " + DATE_FORMAT.format(new Date())) .description("Run as part of folder execution") .status(EvaluationRun.RunStatus.QUEUED) .startedAt(System.currentTimeMillis()) .regenerateImages(regenerateImages) .build(); if (StringUtils.isNotBlank(modelId)) { run.setModelId(modelId); } if (StringUtils.isNotBlank(workflow)) { run.setWorkflow(workflow); } runs.add(run); } for (EvaluationRun run : runs) { try { executeRun(run); } catch (Exception e) { log.error("Error in background execution of run {}: {}", run.getId(), e.getMessage(), e); } } return runs; } /** * Start the evaluation process */ public void executeEvaluationRun(String runId) { Optional<EvaluationRun> optionalRun = runRepository.findById(runId); if (optionalRun.isEmpty()) { log.error("Run not found: {}", runId); return; } EvaluationRun run = optionalRun.get(); executeRun(run); } private Future<EvaluationRun> executeRun(EvaluationRun run) { return testExecutor.submit(() -> { run.setStatus(EvaluationRun.RunStatus.RUNNING); runRepository.save(run); try { List<TestSetItem> items = testSetItemRepository.findByTestSetId(run.getTestSetId()).stream() .map(TestSetItem.class::cast) .toList(); if (items.isEmpty()) { log.warn("No items found for test set: {}", run.getTestSetId()); completeRunWithStatus(run, EvaluationRun.RunStatus.COMPLETED); return run; } List<Evaluation> evaluations = evaluationRepository.findByTestSetId(run.getTestSetId()); if (evaluations.isEmpty()) { log.warn("No evaluations found for test set: {}", run.getTestSetId()); completeRunWithStatus(run, EvaluationRun.RunStatus.COMPLETED); return run; } Map<String, Integer> statusCounts = new HashMap<>(); for (TestSetItem item : items) { String actualResult; ProcessingResult processingResult = null; if (item.isImageTask()) { processingResult = processImageTask(item, run); } else { processingResult = processWithAlternativePrompt(item, run); } actualResult = processingResult.getModelResult(); for (Evaluation evaluation : evaluations) { EvaluationResult result; if (processingResult != null) { result = evaluateResult(item, actualResult, evaluation, run.getId(), processingResult); } else { result = evaluateResult(item, actualResult, evaluation, run.getId()); } String statusKey = result.getStatus().toString(); statusCounts.put(statusKey, statusCounts.getOrDefault(statusKey, 0) + 1); } } run.setStatusCounts(statusCounts); int pendingCount = statusCounts.getOrDefault("PENDING", 0); if (pendingCount > 0) { completeRunWithStatus(run, EvaluationRun.RunStatus.PENDING); log.info("Run {} set to PENDING status due to {} pending manual evaluations", run.getId(), pendingCount); } else if (statusCounts.getOrDefault("FAILED", 0) > 0 || statusCounts.getOrDefault("ERROR", 0) > 0) { completeRunWithStatus(run, EvaluationRun.RunStatus.FAILED); log.info("Run {} completed with FAILED status due to failed tests", run.getId()); } else { completeRunWithStatus(run, EvaluationRun.RunStatus.COMPLETED); log.info("Run {} completed with COMPLETED status, all tests passed", run.getId()); } } catch (Exception e) { log.error("Error executing evaluation run: {}", e.getMessage(), e); completeRunWithStatus(run, EvaluationRun.RunStatus.FAILED); } return run; }); } private void completeRunWithStatus(EvaluationRun run, EvaluationRun.RunStatus status) { run.setStatus(status); run.setCompletedAt(System.currentTimeMillis()); runRepository.save(run); } /** * Process a test set item with alternative prompt and track execution metrics */ private ProcessingResult processWithAlternativePrompt(TestSetItem item, EvaluationRun run) { ProcessingResult result = new ProcessingResult(); long startTime = System.currentTimeMillis(); try { log.info("Processing test item with ID: {} for run: {}", item.getId(), run.getId()); MessageTask messageTask = new MessageTask(); messageTask.setMessageId(UUID.randomUUID().toString()); log.debug("Created message task with ID: {}", messageTask.getMessageId()); String prompt; if (run.getAlternativePromptTemplate() != null) { prompt = run.getAlternativePromptTemplate(); log.debug("Using alternative prompt template: {}", prompt); } else { prompt = item.getMessage(); log.debug("Using original message from test item: {}", prompt); } messageTask.setMessage(prompt); result.setOriginalPrompt(prompt); if (run.getAlternativePromptId() != null) { log.debug("Setting alternative prompt ID: {}", run.getAlternativePromptId()); if (messageTask.getPromptIds() == null) { messageTask.setPromptIds(new ArrayList<>()); } messageTask.getPromptIds().add(run.getAlternativePromptId()); } Map<String, Object> variables = item.getVariablesAsObjectMap(); messageTask.setVariables(variables); result.setPromptVariables(variables); log.debug("Set {} variables from test item", variables != null ? variables.size() : 0); messageTask.setSystemMessage(item.getSystemMessage()); Language language = Optional.ofNullable(item.getLanguage()).orElse(Language.GENERAL); messageTask.setLanguage(language); log.debug("Using language: {}", language); messageTask.setWorkflow(item.getWorkflowType()); log.debug("Set workflow: {}", item.getWorkflow()); messageTask.setJsonRequest(item.isJsonRequest()); messageTask.setJsonResponse(item.isJsonResponse()); messageTask.setPurpose(QA_TEST_PIPELINE_PURPOSE); if (item.getLogprobs() != null) { messageTask.setLogprobs(item.getLogprobs() > 0); } if (item.getTopLogprobs() != null) { messageTask.setTopLogprobs(item.getTopLogprobs()); } if (run.getTemperature() != null) { messageTask.setTemperature(run.getTemperature()); log.debug("Using temperature from run: {}", run.getTemperature()); } else if (item.getTemperature() != null) { messageTask.setTemperature(item.getTemperature()); log.debug("Using temperature from test item: {}", item.getTemperature()); } if (messageTask.getWorkflow() == null && messageTask.getModelId() == null) { String modelId; if (run.getModelId() != null) { modelId = run.getModelId(); log.debug("Using model ID from run: {}", modelId); } else { modelId = item.getModel(); log.debug("Using model ID from test item: {}", modelId); } messageTask.setModelId(modelId); } log.info("Sending request to AI service with message task: {}", messageTask.getMessageId()); MessageTask response = aiService.chat(messageTask); if (response == null) { throw new IllegalStateException("AI service returned null response"); } String responseText = response.getResult(); log.info("Received response from AI service: {}", responseText != null ? "success" : "null"); if (responseText == null || responseText.trim().isEmpty()) { log.warn("Empty response received from AI service for message task: {}", messageTask.getMessageId()); result.setSuccess(false); result.setModelResult("ERROR: Empty response from model"); result.setErrorDetails("The model returned an empty response. Check model configuration and permissions."); return result; } result.setModelResult(responseText); result.setSuccess(true); return result; } catch (Exception e) { log.error("Error processing with alternative prompt for test item {}: {}", item.getId(), e.getMessage(), e); result.setSuccess(false); result.setModelResult("ERROR: " + e.getMessage()); result.setErrorDetails(e.getMessage() + "\n" + getStackTraceAsString(e)); return result; } finally { long endTime = System.currentTimeMillis(); long duration = endTime - startTime; result.setProcessingTimeMs(duration); log.info("Finished processing test item in {}ms", duration); } } /** * Process an image test set item */ private ProcessingResult processImageTask(TestSetItem item, EvaluationRun run) { ProcessingResult result = new ProcessingResult(); long startTime = System.currentTimeMillis(); try { log.info("Processing image test item with ID: {} for run: {}", item.getId(), run.getId()); if (StringUtils.isBlank(item.getOriginalImageTaskId())) { throw new IllegalArgumentException("No original image task ID found for test item: " + item.getId()); } String imageTaskId = item.getOriginalImageTaskId(); Optional<ImageMessageTaskEntity> originalImageTask = imageTaskRepository.findById(imageTaskId); if (originalImageTask.isEmpty()) { throw new IllegalArgumentException("Original image task not found: " + imageTaskId); } ImageMessageTask imageTask = originalImageTask.get(); result.setOriginalPrompt(imageTask.getMessage()); if (run.isRegenerateImages()) { log.info("Regenerating image for test item {} (run configuration has regenerateImages=true)", item.getId()); MessageTask messageTask = new MessageTask(); messageTask.setMessageId(UUID.randomUUID().toString()); messageTask.setChatId(imageTask.getChatId()); String alternativePromptTemplate = run.getAlternativePromptTemplate(); if (StringUtils.isNotBlank(alternativePromptTemplate)) { messageTask.setMessage(PromptUtils.applyVariables(alternativePromptTemplate, item.getVariablesAsObjectMap())); imageTask.setMessage(messageTask.getMessage()); } else { messageTask.setPromptIds(imageTask.getPromptIds()); } messageTask.setSystemMessage(imageTask.getSystemMessage()); messageTask.setPurpose(QA_TEST_PIPELINE_PURPOSE); if (StringUtils.isNotBlank(run.getWorkflow())) { messageTask.setWorkflow(run.getWorkflow()); } else { messageTask.setWorkflow(imageTask.getWorkflow()); } int numImages = imageTask.getImages() != null ? imageTask.getImages().size() : 1; ImageMessageTask newImageTask = imageModelService.addTaskSync( messageTask, imageTask.getMessage(), numImages ); result.setSuccess(true); result.setModelResult(String.format("Regenerated %d image(s)", newImageTask.getImages() != null ? newImageTask.getImages().size() : 0)); result.setAdditionalContext(newImageTask); } else { log.info("Using existing image for test item {}", item.getId()); result.setSuccess(true); result.setModelResult(String.format("Using existing image(s) (%d)", imageTask.getImages() != null ? imageTask.getImages().size() : 0)); result.setAdditionalContext(imageTask); } return result; } catch (Exception e) { log.error("Error processing image task for test item {}: {}", item.getId(), e.getMessage(), e); result.setSuccess(false); result.setModelResult("ERROR: " + e.getMessage()); result.setErrorDetails(e.getMessage() + "\n" + getStackTraceAsString(e)); return result; } finally { long endTime = System.currentTimeMillis(); long duration = endTime - startTime; result.setProcessingTimeMs(duration); log.info("Finished processing image test item in {}ms", duration); } } /** * Helper class to store processing result and metadata */ @Data private static class ProcessingResult { private boolean success; private String modelResult; private String originalPrompt; private Object promptVariables; private Long processingTimeMs; private String errorDetails; private Object additionalContext; } /** * Helper method to convert stack trace to string */ private String getStackTraceAsString(Exception e) { StringWriter sw = new StringWriter(); PrintWriter pw = new PrintWriter(sw); e.printStackTrace(pw); return sw.toString(); } /** * Evaluate a result against an evaluation */ private EvaluationResult evaluateResult(TestSetItem item, String actualResult, Evaluation evaluation, String runId) { return evaluateResult(item, actualResult, evaluation, runId, null); } private EvaluationResult evaluateResult(TestSetItem item, String actualResult, Evaluation evaluation, String runId, ProcessingResult processingResult) { try { EvaluationContext.EvaluationContextBuilder contextBuilder = EvaluationContext.builder() .testSetItem(item) .originalResult(item.getResult()) .actualResult(actualResult) .aiService(aiService); if (processingResult != null && processingResult.getAdditionalContext() != null) { contextBuilder.additionalContext(processingResult.getAdditionalContext()); } EvaluationContext context = contextBuilder.build(); boolean isImageEvaluation = item.isImageTask() && evaluation.getConfig() instanceof ImageEvalConfig; EvaluationResult.EvaluationOutput output = evaluation.getConfig().evaluate(context); EvaluationResult.EvaluationResultBuilder resultBuilder = EvaluationResult.builder() .evaluationId(evaluation.getId()) .testSetItemId(item.getId()) .runId(runId) .status(output.getStatus()) .message(output.getMessage()) .details(output.getDetails()) .createdAt(System.currentTimeMillis()); if (processingResult != null) { resultBuilder .originalPrompt(processingResult.getOriginalPrompt()) .modelResult(processingResult.getModelResult()) .promptVariables(processingResult.getPromptVariables()) .processingTimeMs(processingResult.getProcessingTimeMs()) .errorDetails(processingResult.getErrorDetails()); if (processingResult.getAdditionalContext() instanceof ImageMessageTask) { ImageMessageTask imageTask = (ImageMessageTask) processingResult.getAdditionalContext(); Map<String, Object> details = new HashMap<>(); details.put("imageTaskId", imageTask.getMessageId()); if (output.getDetails() != null) { if (output.getDetails() instanceof Map) { ((Map) details).putAll((Map) output.getDetails()); } } resultBuilder.details(details); } } else if (output.getOriginalPrompt() != null) { resultBuilder .originalPrompt(output.getOriginalPrompt()) .modelResult(output.getModelResult()) .promptVariables(output.getPromptVariables()) .processingTimeMs(output.getProcessingTimeMs()) .errorDetails(output.getErrorDetails()); } return resultRepository.save(resultBuilder.build()); } catch (Exception e) { log.error("Error evaluating result: {}", e.getMessage(), e); EvaluationResult.EvaluationResultBuilder resultBuilder = EvaluationResult.builder() .evaluationId(evaluation.getId()) .testSetItemId(item.getId()) .runId(runId) .status(EvaluationResult.EvaluationStatus.ERROR) .message("Evaluation error: " + e.getMessage()) .errorDetails(getStackTraceAsString(e)) .createdAt(System.currentTimeMillis()); if (processingResult != null) { resultBuilder .originalPrompt(processingResult.getOriginalPrompt()) .modelResult(processingResult.getModelResult()) .promptVariables(processingResult.getPromptVariables()) .processingTimeMs(processingResult.getProcessingTimeMs()); } return resultRepository.save(resultBuilder.build()); } } /** * Update the status of a manual evaluation result */ public EvaluationResult updateManualEvaluationStatus(String resultId, boolean passed, String feedback) { Optional<EvaluationResult> optionalResult = resultRepository.findById(resultId); if (optionalResult.isEmpty()) { throw new IllegalArgumentException("Evaluation result not found: " + resultId); } EvaluationResult result = optionalResult.get(); if (result.getStatus() != EvaluationResult.EvaluationStatus.PENDING) { throw new IllegalArgumentException("Cannot update status for non-manual evaluation or evaluation that has already been reviewed"); } result.setStatus(passed ? EvaluationResult.EvaluationStatus.PASSED : EvaluationResult.EvaluationStatus.FAILED); result.setMessage(feedback); EvaluationResult savedResult = resultRepository.save(result); checkAndUpdateRunStatus(result.getRunId()); return savedResult; } /** * Check if all manual evaluations in a run have been completed, and update run status if needed */ private void checkAndUpdateRunStatus(String runId) { Optional<EvaluationRun> optionalRun = runRepository.findById(runId); if (optionalRun.isEmpty()) { log.warn("Couldn't find run with ID {} when checking manual evaluations", runId); return; } EvaluationRun run = optionalRun.get(); if (run.getStatus() != EvaluationRun.RunStatus.PENDING) { return; } List<EvaluationResult> allResults = resultRepository.findByRunId(runId); long pendingCount = allResults.stream() .filter(r -> r.getStatus() == EvaluationResult.EvaluationStatus.PENDING) .count(); if (pendingCount == 0) { log.info("All manual evaluations completed for run {}, updating status", runId); long failedCount = allResults.stream() .filter(r -> r.getStatus() == EvaluationResult.EvaluationStatus.FAILED || r.getStatus() == EvaluationResult.EvaluationStatus.ERROR) .count(); if (failedCount > 0) { completeRunWithStatus(run, EvaluationRun.RunStatus.FAILED); log.info("Run {} completed with FAILED status after manual review", runId); } else { completeRunWithStatus(run, EvaluationRun.RunStatus.COMPLETED); log.info("Run {} completed with COMPLETED status after manual review", runId); } Map<String, Integer> statusCounts = new HashMap<>(); for (EvaluationResult result : allResults) { String statusKey = result.getStatus().toString(); statusCounts.put(statusKey, statusCounts.getOrDefault(statusKey, 0) + 1); } run.setStatusCounts(statusCounts); runRepository.save(run); } } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/context/spring/testsuite/service/TestSetService.java
package ai.driftkit.context.spring.testsuite.service; import ai.driftkit.common.domain.ImageMessageTask; import ai.driftkit.common.domain.MessageTask; import ai.driftkit.context.core.util.PromptUtils; import ai.driftkit.context.spring.testsuite.domain.TestSet; import ai.driftkit.context.spring.testsuite.domain.TestSetItem; import ai.driftkit.context.spring.testsuite.domain.archive.TestSetItemImpl; import ai.driftkit.context.spring.testsuite.repository.TestSetItemRepository; import ai.driftkit.context.spring.testsuite.repository.TestSetRepository; import ai.driftkit.workflows.spring.domain.ImageMessageTaskEntity; import ai.driftkit.workflows.spring.domain.MessageTaskEntity; import ai.driftkit.workflows.spring.domain.ModelRequestTrace; import ai.driftkit.workflows.spring.repository.ImageTaskRepository; import ai.driftkit.workflows.spring.repository.MessageTaskRepositoryV1; import ai.driftkit.workflows.spring.repository.ModelRequestTraceRepository; import lombok.Data; import lombok.RequiredArgsConstructor; import org.springframework.stereotype.Service; import java.util.ArrayList; import java.util.List; import java.util.Optional; @Service @RequiredArgsConstructor public class TestSetService { private final TestSetRepository testSetRepository; private final TestSetItemRepository testSetItemRepository; private final MessageTaskRepositoryV1 messageTaskRepository; private final ModelRequestTraceRepository modelRequestTraceRepository; private final ImageTaskRepository imageTaskRepository; public List<TestSet> getAllTestSets() { return testSetRepository.findAllByOrderByCreatedAtDesc(); } public List<TestSet> getTestSetsByFolder(String folderId) { if (folderId == null) { return testSetRepository.findByFolderIdIsNullOrderByCreatedAtDesc(); } return testSetRepository.findByFolderIdOrderByCreatedAtDesc(folderId); } public Optional<TestSet> getTestSetById(String id) { return testSetRepository.findById(id); } public List<TestSetItem> getTestSetItems(String testSetId) { return testSetItemRepository.findByTestSetIdOrderByCreatedAtDesc(testSetId).stream() .map(TestSetItem.class::cast) .toList(); } public TestSet createTestSet(TestSet testSet) { testSet.setId(null); testSet.setCreatedAt(System.currentTimeMillis()); testSet.setUpdatedAt(System.currentTimeMillis()); return testSetRepository.save(testSet); } public Optional<TestSet> updateTestSet(String id, TestSet testSet) { if (!testSetRepository.existsById(id)) { return Optional.empty(); } testSet.setId(id); testSet.setUpdatedAt(System.currentTimeMillis()); return Optional.of(testSetRepository.save(testSet)); } public boolean deleteTestSet(String id) { if (!testSetRepository.existsById(id)) { return false; } testSetItemRepository.deleteByTestSetId(id); testSetRepository.deleteById(id); return true; } public AddItemsResult addItemsToTestSet( List<String> messageTaskIds, List<TraceStep> traceSteps, List<String> imageTaskIds, String testSetId) { Optional<TestSet> testSetOpt = testSetRepository.findById(testSetId).map(TestSet.class::cast); if (testSetOpt.isEmpty()) { return new AddItemsResult(Status.TEST_SET_NOT_FOUND, null, 0); } TestSet testSet = testSetOpt.get(); List<TestSetItemImpl> testSetItems = new ArrayList<>(); // Process message tasks if provided if (messageTaskIds != null && !messageTaskIds.isEmpty()) { List<MessageTask> messageTasks = messageTaskRepository.findAllById(messageTaskIds) .stream() .map(MessageTaskEntity::toMessageTask) .collect(java.util.stream.Collectors.toList()); for (MessageTask messageTask : messageTasks) { boolean isImageMessage = messageTask.getMessage() != null && messageTask.getMessage().toLowerCase().startsWith("image:"); boolean hasImageTaskId = messageTask.getImageTaskId() != null; TestSetItemImpl.TestSetItemImplBuilder builder = TestSetItemImpl.builder() .testSetId(testSet.getId()) .originalMessageTaskId(messageTask.getMessageId()) .message(messageTask.getMessage()) .result(messageTask.getResult()) .variables(messageTask.getVariables() != null ? PromptUtils.convertVariables(messageTask.getVariables()) : null ) .model(messageTask.getModelId()) .temperature(messageTask.getTemperature()) .workflowType(messageTask.getWorkflow()) .promptId(messageTask.getPromptIds() != null && !messageTask.getPromptIds().isEmpty() ? messageTask.getPromptIds().get(0) : null) .isImageTask(isImageMessage || hasImageTaskId) .createdAt(System.currentTimeMillis()); if (hasImageTaskId) { builder.originalImageTaskId(messageTask.getImageTaskId()); } TestSetItemImpl testSetItem = builder.build(); testSetItems.add(testSetItem); } } // Process image tasks if provided if (imageTaskIds != null && !imageTaskIds.isEmpty()) { List<ImageMessageTaskEntity> imageTasks = imageTaskRepository.findAllById(imageTaskIds); for (ImageMessageTask imageTask : imageTasks) { TestSetItemImpl testSetItem = TestSetItemImpl.builder() .testSetId(testSet.getId()) .originalImageTaskId(imageTask.getMessageId()) .message(imageTask.getMessage()) .result(String.format("Generated %d image(s)", imageTask.getImages() != null ? imageTask.getImages().size() : 0)) .variables(imageTask.getVariables() != null ? PromptUtils.convertVariables(imageTask.getVariables()) : null ) .model(null) .workflowType(imageTask.getWorkflow()) .isImageTask(true) .createdAt(System.currentTimeMillis()) .build(); testSetItems.add(testSetItem); } } // Process trace steps if provided if (traceSteps != null && !traceSteps.isEmpty()) { for (TraceStep step : traceSteps) { Optional<ModelRequestTrace> traceOpt = modelRequestTraceRepository.findById(step.getTraceId()); if (traceOpt.isPresent()) { ModelRequestTrace trace = traceOpt.get(); boolean isImageGeneration = trace.getRequestType() == ModelRequestTrace.RequestType.TEXT_TO_IMAGE; boolean isImageMessage = trace.getPromptTemplate() != null && trace.getPromptTemplate().toLowerCase().startsWith("image:"); boolean isImageTaskContext = trace.getContextType() == ModelRequestTrace.ContextType.IMAGE_TASK; boolean isImageTask = isImageGeneration || isImageMessage || isImageTaskContext; TestSetItemImpl.TestSetItemImplBuilder builder = TestSetItemImpl.builder() .testSetId(testSet.getId()) .originalTraceId(trace.getId()) .message(trace.getPromptTemplate()) .result(trace.getResponse()) .variables(trace.getVariables()) .model(trace.getModelId()) .promptId(trace.getPromptId()) .workflowType(trace.getWorkflowInfo() != null ? trace.getWorkflowInfo().getWorkflowType() : null) .isImageTask(isImageTask) .createdAt(System.currentTimeMillis()); if (isImageTask && trace.getContextId() != null) { builder.originalImageTaskId(trace.getContextId()); } TestSetItemImpl testSetItem = builder.build(); testSetItems.add(testSetItem); } } } if (testSetItems.isEmpty()) { return new AddItemsResult(Status.NO_ITEMS_FOUND, testSet, 0); } testSetItemRepository.saveAll(testSetItems); return new AddItemsResult(Status.SUCCESS, testSet, testSetItems.size()); } public boolean deleteTestSetItem(String testSetId, String itemId) { Optional<TestSetItemImpl> itemOpt = testSetItemRepository.findById(itemId).map(TestSetItemImpl.class::cast); if (itemOpt.isEmpty() || !itemOpt.get().getTestSetId().equals(testSetId)) { return false; } testSetItemRepository.deleteById(itemId); return true; } public boolean moveTestSetsToFolder(List<String> testSetIds, String folderId) { if (testSetIds == null || testSetIds.isEmpty()) { return false; } List<TestSet> testSets = testSetRepository.findAllById(testSetIds).stream() .map(TestSet.class::cast) .toList(); if (testSets.isEmpty()) { return false; } for (TestSet testSet : testSets) { testSet.setFolderId(folderId); testSet.setUpdatedAt(System.currentTimeMillis()); } testSetRepository.saveAll(testSets); return true; } @Data public static class TraceStep { private String traceId; } public enum Status { SUCCESS, TEST_SET_NOT_FOUND, NO_MESSAGE_TASKS_FOUND, NO_ITEMS_FOUND } @Data public static class AddItemsResult { private final Status status; private final TestSet testSet; private final int itemsAdded; private final String message; public AddItemsResult(Status status, TestSet testSet, int itemsAdded) { this.status = status; this.testSet = testSet; this.itemsAdded = itemsAdded; this.message = switch (status) { case SUCCESS -> "Added " + itemsAdded + " items to TestSet"; case TEST_SET_NOT_FOUND -> "TestSet not found"; case NO_MESSAGE_TASKS_FOUND -> "No valid message tasks found"; case NO_ITEMS_FOUND -> "No valid items found"; }; } } }
0
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/contextengineering
java-sources/ai/driftkit/driftkit-context-engineering-spring-boot-starter/0.8.1/ai/driftkit/contextengineering/autoconfigure/WebMvcConfiguration.java
package ai.driftkit.contextengineering.autoconfigure; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.web.servlet.config.annotation.ResourceHandlerRegistry; import org.springframework.web.servlet.config.annotation.WebMvcConfigurer; @Configuration public class WebMvcConfiguration { @Bean public WebMvcConfigurer webMvcConfigurer() { return new WebMvcConfigurer() { @Override public void addResourceHandlers(ResourceHandlerRegistry registry) { // Explicitly configure static resource handling for frontend registry.addResourceHandler("/prompt-engineering/**") .addResourceLocations("classpath:/static/prompt-engineering/") .setCachePeriod(3600); } }; } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/cohere/CohereApiClient.java
package ai.driftkit.embedding.core.cohere;// CohereApiClient.java import feign.Headers; import feign.RequestLine; public interface CohereApiClient { @RequestLine("POST /embed") @Headers("Content-Type: application/json") CohereEmbeddingResponse getEmbeddings(CohereEmbeddingRequest request); }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/cohere/CohereAuthInterceptor.java
package ai.driftkit.embedding.core.cohere;// CohereAuthInterceptor.java import feign.RequestInterceptor; import feign.RequestTemplate; public class CohereAuthInterceptor implements RequestInterceptor { private final String apiKey; public CohereAuthInterceptor(String apiKey) { this.apiKey = apiKey; } @Override public void apply(RequestTemplate template) { template.header("Authorization", "Bearer " + apiKey); template.header("Content-Type", "application/json"); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/cohere/CohereEmbeddingModel.java
package ai.driftkit.embedding.core.cohere; import ai.driftkit.config.EtlConfig.EmbeddingServiceConfig; import ai.driftkit.embedding.core.domain.Embedding; import ai.driftkit.embedding.core.domain.TextSegment; import ai.driftkit.embedding.core.local.AIOnnxBertBiEncoder; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.embedding.core.domain.Response; import ai.driftkit.embedding.core.domain.TokenUsage; import java.util.ArrayList; import java.util.List; public class CohereEmbeddingModel implements EmbeddingModel { private final CohereApiClient apiClient; public CohereEmbeddingModel(CohereApiClient apiClient) { this.apiClient = apiClient; } @Override public boolean supportsName(String name) { return "cohere".equals(name); } @Override public AIOnnxBertBiEncoder model() { throw new UnsupportedOperationException("Not supported in CohereEmbeddingModel"); } @Override public void configure(EmbeddingServiceConfig config) { } @Override public Response<List<Embedding>> embedAll(List<TextSegment> segments) { List<String> texts = new ArrayList<>(); for (TextSegment segment : segments) { texts.add(segment.text()); } CohereEmbeddingRequest request = new CohereEmbeddingRequest(); request.setTexts(texts); CohereEmbeddingResponse response = apiClient.getEmbeddings(request); List<Embedding> embeddings = new ArrayList<>(); for (List<Double> embeddingValues : response.getEmbeddings()) { double[] embeddingArray = embeddingValues.stream().mapToDouble(Double::doubleValue).toArray(); embeddings.add(Embedding.from(embeddingArray)); } // Cohere API may not provide token usage; set to zero or estimate if possible return Response.from(embeddings, new TokenUsage(0)); } @Override public int estimateTokenCount(String text) { // Implement token estimation logic or return an approximate value return text.length() / 5; // Approximate estimation } public Response<Embedding> embed(TextSegment segment) { List<TextSegment> segments = new ArrayList<>(); segments.add(segment); Response<List<Embedding>> responseList = embedAll(segments); Embedding embedding = responseList.content().get(0); TokenUsage tokenUsage = responseList.tokenUsage(); return Response.from(embedding, tokenUsage); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/cohere/CohereEmbeddingModelUsage.java
package ai.driftkit.embedding.core.cohere;// CohereEmbeddingModelUsage.java import ai.driftkit.embedding.core.domain.Embedding; import ai.driftkit.embedding.core.domain.TextSegment; import ai.driftkit.embedding.core.domain.Response; import feign.Feign; import feign.jackson.JacksonDecoder; import feign.jackson.JacksonEncoder; public class CohereEmbeddingModelUsage { public static void main(String[] args) { String apiKey = "YOUR_COHERE_API_KEY"; CohereApiClient apiClient = Feign.builder() .encoder(new JacksonEncoder()) .decoder(new JacksonDecoder()) .requestInterceptor(new CohereAuthInterceptor(apiKey)) .target(CohereApiClient.class, "https://api.cohere.ai"); CohereEmbeddingModel embeddingModel = new CohereEmbeddingModel(apiClient); TextSegment segment = TextSegment.from("Your text here"); Response<Embedding> response = embeddingModel.embed(segment); Embedding embedding = response.content(); System.out.println("Embedding Vector: " + embedding); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/cohere/CohereEmbeddingRequest.java
package ai.driftkit.embedding.core.cohere;// CohereEmbeddingRequest.java import lombok.Data; import java.util.List; @Data public class CohereEmbeddingRequest { private List<String> texts; }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/cohere/CohereEmbeddingResponse.java
package ai.driftkit.embedding.core.cohere;// CohereEmbeddingResponse.java import lombok.Data; import com.fasterxml.jackson.annotation.JsonProperty; import java.util.List; @Data public class CohereEmbeddingResponse { private List<List<Double>> embeddings; private String model; private String apiVersion; }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/Embedding.java
package ai.driftkit.embedding.core.domain; import lombok.AllArgsConstructor; import lombok.Data; import java.util.ArrayList; import java.util.Arrays; import java.util.List; @Data @AllArgsConstructor public class Embedding { private final float[] vector; public static Embedding from(double[] embeddingArray) { return new Embedding(toFloatArray(embeddingArray)); } public float[] vector() { return vector; } public List<Float> vectorAsList() { List<Float> list = new ArrayList<>(vector.length); for (float f : vector) { list.add(f); } return list; } /** * Normalize vector */ public void normalize() { double norm = 0.0; for (float f : vector) { norm += f * f; } norm = Math.sqrt(norm); for (int i = 0; i < vector.length; i++) { vector[i] /= norm; } } public int dimension() { return vector.length; } public static Embedding from(float[] vector) { return new Embedding(vector); } public static Embedding from(List<Float> vector) { float[] array = new float[vector.size()]; for (int i = 0; i < vector.size(); i++) { array[i] = vector.get(i); } return new Embedding(array); } public static float[] toFloatArray(double[] src) { float[] dst = new float[src.length]; for (int i = 0; i < src.length; i++) { dst[i] = (float) src[i]; } return dst; } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/EmbeddingData.java
package ai.driftkit.embedding.core.domain;// EmbeddingData.java import lombok.Data; import com.fasterxml.jackson.annotation.JsonProperty; import java.util.List; @Data public class EmbeddingData { private String object; private int index; private float[] embedding; }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/EmbeddingRequest.java
package ai.driftkit.embedding.core.domain;// EmbeddingRequest.java import lombok.Data; import com.fasterxml.jackson.annotation.JsonProperty; import java.util.List; @Data public class EmbeddingRequest { private String model; private List<String> input; }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/EmbeddingResponse.java
package ai.driftkit.embedding.core.domain;// EmbeddingResponse.java import lombok.Data; import com.fasterxml.jackson.annotation.JsonProperty; import java.util.List; @Data public class EmbeddingResponse { private String object; private List<EmbeddingData> data; private Usage usage; }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/Metadata.java
package ai.driftkit.embedding.core.domain; import java.util.*; import static ai.driftkit.embedding.core.util.DriftKitExceptions.illegalArgument; import static ai.driftkit.embedding.core.util.DriftKitExceptions.runtime; import static ai.driftkit.embedding.core.util.ValidationUtils.ensureNotBlank; import static ai.driftkit.embedding.core.util.ValidationUtils.ensureNotNull; public class Metadata { private static final Set<Class<?>> SUPPORTED_VALUE_TYPES = new LinkedHashSet<>(); static { SUPPORTED_VALUE_TYPES.add(String.class); SUPPORTED_VALUE_TYPES.add(UUID.class); SUPPORTED_VALUE_TYPES.add(int.class); SUPPORTED_VALUE_TYPES.add(Integer.class); SUPPORTED_VALUE_TYPES.add(long.class); SUPPORTED_VALUE_TYPES.add(Long.class); SUPPORTED_VALUE_TYPES.add(float.class); SUPPORTED_VALUE_TYPES.add(Float.class); SUPPORTED_VALUE_TYPES.add(double.class); SUPPORTED_VALUE_TYPES.add(Double.class); } private final Map<String, Object> metadata; /** * Construct a Metadata object with an empty map of key-value pairs. */ public Metadata() { this.metadata = new HashMap<>(); } /** * Constructs a Metadata object from a map of key-value pairs. * * @param metadata the map of key-value pairs; must not be {@code null}. {@code null} values are not permitted. * Supported value types: {@link String}, {@link Integer}, {@link Long}, {@link Float}, {@link Double} */ public Metadata(Map<String, ?> metadata) { ensureNotNull(metadata, "metadata").forEach((key, value) -> { validate(key, value); if (!SUPPORTED_VALUE_TYPES.contains(value.getClass())) { throw illegalArgument("The metadata key '%s' has the value '%s', which is of the unsupported type '%s'. " + "Currently, the supported types are: %s", key, value, value.getClass().getName(), SUPPORTED_VALUE_TYPES ); } }); this.metadata = new HashMap<>(metadata); } private static void validate(String key, Object value) { ensureNotBlank(key, "The metadata key with the value '" + value + "'"); ensureNotNull(value, "The metadata value for the key '" + key + "'"); } /** * Returns the value associated with the given key. * * @param key the key * @return the value associated with the given key, or {@code null} if the key is not present. * @deprecated as of 0.31.0, use {@link #getString(String)}, {@link #getInteger(String)}, {@link #getLong(String)}, * {@link #getFloat(String)}, {@link #getDouble(String)} instead. */ @Deprecated public String get(String key) { Object value = metadata.get(key); if (value != null) { return value.toString(); } else { return null; } } /** * Returns the {@code String} value associated with the given key. * * @param key the key * @return the {@code String} value associated with the given key, or {@code null} if the key is not present. * @throws RuntimeException if the value is not of type String */ public String getString(String key) { if (!containsKey(key)) { return null; } Object value = metadata.get(key); if (value instanceof String) { return (String) value; } throw runtime("Metadata entry with the key '%s' has a value of '%s' and type '%s'. " + "It cannot be returned as a String.", key, value, value.getClass().getName()); } /** * Returns the {@code UUID} value associated with the given key. * * @param key the key * @return the {@code UUID} value associated with the given key, or {@code null} if the key is not present. * @throws RuntimeException if the value is not of type String */ public UUID getUUID(String key) { if (!containsKey(key)) { return null; } Object value = metadata.get(key); if (value instanceof UUID) { return (UUID) value; } if (value instanceof String) { return UUID.fromString((String)value); } throw runtime("Metadata entry with the key '%s' has a value of '%s' and type '%s'. " + "It cannot be returned as a UUID.", key, value, value.getClass().getName()); } /** * Returns the {@code Integer} value associated with the given key. * <br> * Some embedding store implementations (still) store {@code Metadata} values as {@code String}s. * In this case, the {@code String} value will be parsed into an {@code Integer} when this method is called. * <br> * Some embedding store implementations store {@code Metadata} key-value pairs as JSON. * In this case, type information is lost when serializing to JSON and then deserializing back from JSON. * JSON libraries can, for example, serialize an {@code Integer} and then deserialize it as a {@code Long}. * Or serialize a {@code Float} and then deserialize it as a {@code Double}, and so on. * In such cases, the actual value will be cast to an {@code Integer} when this method is called. * * @param key the key * @return the {@link Integer} value associated with the given key, or {@code null} if the key is not present. * @throws RuntimeException if the value is not {@link Number} */ public Integer getInteger(String key) { if (!containsKey(key)) { return null; } Object value = metadata.get(key); if (value instanceof String) { return Integer.parseInt(value.toString()); } else if (value instanceof Number) { return ((Number) value).intValue(); } throw runtime("Metadata entry with the key '%s' has a value of '%s' and type '%s'. " + "It cannot be returned as an Integer.", key, value, value.getClass().getName()); } /** * Returns the {@code Long} value associated with the given key. * <br> * Some embedding store implementations (still) store {@code Metadata} values as {@code String}s. * In this case, the {@code String} value will be parsed into an {@code Long} when this method is called. * <br> * Some embedding store implementations store {@code Metadata} key-value pairs as JSON. * In this case, type information is lost when serializing to JSON and then deserializing back from JSON. * JSON libraries can, for example, serialize an {@code Integer} and then deserialize it as a {@code Long}. * Or serialize a {@code Float} and then deserialize it as a {@code Double}, and so on. * In such cases, the actual value will be cast to a {@code Long} when this method is called. * * @param key the key * @return the {@code Long} value associated with the given key, or {@code null} if the key is not present. * @throws RuntimeException if the value is not {@link Number} */ public Long getLong(String key) { if (!containsKey(key)) { return null; } Object value = metadata.get(key); if (value instanceof String) { return Long.parseLong(value.toString()); } else if (value instanceof Number) { return ((Number) value).longValue(); } throw runtime("Metadata entry with the key '%s' has a value of '%s' and type '%s'. " + "It cannot be returned as a Long.", key, value, value.getClass().getName()); } /** * Returns the {@code Float} value associated with the given key. * <br> * Some embedding store implementations (still) store {@code Metadata} values as {@code String}s. * In this case, the {@code String} value will be parsed into a {@code Float} when this method is called. * <br> * Some embedding store implementations store {@code Metadata} key-value pairs as JSON. * In this case, type information is lost when serializing to JSON and then deserializing back from JSON. * JSON libraries can, for example, serialize an {@code Integer} and then deserialize it as a {@code Long}. * Or serialize a {@code Float} and then deserialize it as a {@code Double}, and so on. * In such cases, the actual value will be cast to a {@code Float} when this method is called. * * @param key the key * @return the {@code Float} value associated with the given key, or {@code null} if the key is not present. * @throws RuntimeException if the value is not {@link Number} */ public Float getFloat(String key) { if (!containsKey(key)) { return null; } Object value = metadata.get(key); if (value instanceof String) { return Float.parseFloat(value.toString()); } else if (value instanceof Number) { return ((Number) value).floatValue(); } throw runtime("Metadata entry with the key '%s' has a value of '%s' and type '%s'. " + "It cannot be returned as a Float.", key, value, value.getClass().getName()); } /** * Returns the {@code Double} value associated with the given key. * <br> * Some embedding store implementations (still) store {@code Metadata} values as {@code String}s. * In this case, the {@code String} value will be parsed into a {@code Double} when this method is called. * <br> * Some embedding store implementations store {@code Metadata} key-value pairs as JSON. * In this case, type information is lost when serializing to JSON and then deserializing back from JSON. * JSON libraries can, for example, serialize an {@code Integer} and then deserialize it as a {@code Long}. * Or serialize a {@code Float} and then deserialize it as a {@code Double}, and so on. * In such cases, the actual value will be cast to a {@code Double} when this method is called. * * @param key the key * @return the {@code Double} value associated with the given key, or {@code null} if the key is not present. * @throws RuntimeException if the value is not {@link Number} */ public Double getDouble(String key) { if (!containsKey(key)) { return null; } Object value = metadata.get(key); if (value instanceof String) { return Double.parseDouble(value.toString()); } else if (value instanceof Number) { return ((Number) value).doubleValue(); } throw runtime("Metadata entry with the key '%s' has a value of '%s' and type '%s'. " + "It cannot be returned as a Double.", key, value, value.getClass().getName()); } /** * Check whether this {@code Metadata} contains a given key. * * @param key the key * @return {@code true} if this metadata contains a given key; {@code false} otherwise. */ public boolean containsKey(String key) { return metadata.containsKey(key); } /** * Adds a key-value pair to the metadata. * * @param key the key * @param value the value * @return {@code this} * @deprecated as of 0.31.0, use {@link #put(String, String)}, {@link #put(String, int)}, {@link #put(String, long)}, * {@link #put(String, float)}, {@link #put(String, double)} instead. */ @Deprecated public Metadata add(String key, Object value) { return put(key, value.toString()); } /** * Adds a key-value pair to the metadata. * * @param key the key * @param value the value * @return {@code this} * @deprecated as of 0.31.0, use {@link #put(String, String)}, {@link #put(String, int)}, {@link #put(String, long)}, * {@link #put(String, float)}, {@link #put(String, double)} instead. */ @Deprecated public Metadata add(String key, String value) { validate(key, value); this.metadata.put(key, value); return this; } /** * Adds a key-value pair to the metadata. * * @param key the key * @param value the value * @return {@code this} */ public Metadata put(String key, String value) { validate(key, value); this.metadata.put(key, value); return this; } /** * Adds a key-value pair to the metadata. * * @param key the key * @param value the value * @return {@code this} */ public Metadata put(String key, UUID value) { validate(key, value); this.metadata.put(key, value); return this; } /** * Adds a key-value pair to the metadata. * * @param key the key * @param value the value * @return {@code this} */ public Metadata put(String key, int value) { validate(key, value); this.metadata.put(key, value); return this; } /** * Adds a key-value pair to the metadata. * * @param key the key * @param value the value * @return {@code this} */ public Metadata put(String key, long value) { validate(key, value); this.metadata.put(key, value); return this; } /** * Adds a key-value pair to the metadata. * * @param key the key * @param value the value * @return {@code this} */ public Metadata put(String key, float value) { validate(key, value); this.metadata.put(key, value); return this; } /** * Adds a key-value pair to the metadata. * * @param key the key * @param value the value * @return {@code this} */ public Metadata put(String key, double value) { validate(key, value); this.metadata.put(key, value); return this; } /** * Removes the given key from the metadata. * * @param key the key * @return {@code this} */ public Metadata remove(String key) { this.metadata.remove(key); return this; } /** * Copies the metadata. * * @return a copy of this Metadata object. */ public Metadata copy() { return new Metadata(metadata); } /** * Get a copy of the metadata as a map of key-value pairs. * * @return the metadata as a map of key-value pairs. * @deprecated as of 0.31.0, use {@link #toMap()} instead. */ @Deprecated public Map<String, String> asMap() { Map<String, String> map = new HashMap<>(); for (Map.Entry<String, Object> entry : metadata.entrySet()) { map.put(entry.getKey(), String.valueOf(entry.getValue())); } return map; } /** * Get a copy of the metadata as a map of key-value pairs. * * @return the metadata as a map of key-value pairs. */ public Map<String, Object> toMap() { return new HashMap<>(metadata); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Metadata that = (Metadata) o; return Objects.equals(this.metadata, that.metadata); } @Override public int hashCode() { return Objects.hash(metadata); } @Override public String toString() { return "Metadata {" + " metadata = " + metadata + " }"; } /** * Constructs a Metadata object from a single key-value pair. * * @param key the key * @param value the value * @return a Metadata object */ public static Metadata from(String key, String value) { return new Metadata().put(key, value); } /** * @param key the key * @param value the value * @return a Metadata object * @deprecated Use {@link #from(String, String)} instead */ @Deprecated public static Metadata from(String key, Object value) { return new Metadata().add(key, value); } /** * Constructs a Metadata object from a map of key-value pairs. * * @param metadata the map of key-value pairs * @return a Metadata object */ public static Metadata from(Map<String, ?> metadata) { return new Metadata(metadata); } /** * Constructs a Metadata object from a single key-value pair. * * @param key the key * @param value the value * @return a Metadata object */ public static Metadata metadata(String key, String value) { return from(key, value); } /** * @param key the key * @param value the value * @return a Metadata object * @deprecated Use {@link #metadata(String, String)} instead */ @Deprecated public static Metadata metadata(String key, Object value) { return from(key, value); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/PoolingMode.java
package ai.driftkit.embedding.core.domain; /** * Pooling mode for BERT embeddings. * Determines how to aggregate token embeddings into a single vector. */ public enum PoolingMode { /** * Use the CLS token embedding as the sentence embedding. * The CLS token is the first token and is trained to represent the entire sequence. */ CLS, /** * Average all token embeddings to create the sentence embedding. * This often provides better results than CLS for similarity tasks. */ MEAN, /** * Take the maximum value for each dimension across all token embeddings. */ MAX }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/Response.java
package ai.driftkit.embedding.core.domain; import lombok.AllArgsConstructor; import lombok.Getter; import lombok.NoArgsConstructor; import lombok.experimental.Accessors; /** * Response wrapper for embedding operations. * Contains the result and optional token usage information. * * @param <T> the type of content in the response */ @Getter @Accessors(fluent = true) @NoArgsConstructor @AllArgsConstructor public class Response<T> { private T content; private TokenUsage tokenUsage; private String finishReason; /** * Creates a response with content only. * * @param content the content * @param <T> the type of content * @return the response */ public static <T> Response<T> from(T content) { return new Response<>(content, null, null); } /** * Creates a response with content and token usage. * * @param content the content * @param tokenUsage the token usage information * @param <T> the type of content * @return the response */ public static <T> Response<T> from(T content, TokenUsage tokenUsage) { return new Response<>(content, tokenUsage, null); } /** * Creates a response with content, token usage, and finish reason. * * @param content the content * @param tokenUsage the token usage information * @param finishReason the reason why the operation finished * @param <T> the type of content * @return the response */ public static <T> Response<T> from(T content, TokenUsage tokenUsage, String finishReason) { return new Response<>(content, tokenUsage, finishReason); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/TextSegment.java
package ai.driftkit.embedding.core.domain; import lombok.AllArgsConstructor; import lombok.Data; @Data @AllArgsConstructor public class TextSegment { private final String text; private final Metadata metadata; public static TextSegment from(String text) { return new TextSegment(text, new Metadata()); } public static TextSegment from(String text, Metadata metadata) { return new TextSegment(text, metadata); } public String text() { return text; } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/TokenUsage.java
package ai.driftkit.embedding.core.domain; import lombok.AllArgsConstructor; import lombok.Getter; import lombok.NoArgsConstructor; import lombok.experimental.Accessors; /** * Token usage information for API calls. * Tracks the number of tokens used in input, output, and total. */ @Getter @Accessors(fluent = true) @NoArgsConstructor @AllArgsConstructor public class TokenUsage { private Integer inputTokenCount; private Integer outputTokenCount; private Integer totalTokenCount; /** * Creates token usage with input count only. * * @param inputTokenCount the input token count */ public TokenUsage(Integer inputTokenCount) { this.inputTokenCount = inputTokenCount; this.outputTokenCount = null; this.totalTokenCount = inputTokenCount; } /** * Creates token usage with input and output counts. * * @param inputTokenCount the input token count * @param outputTokenCount the output token count */ public TokenUsage(Integer inputTokenCount, Integer outputTokenCount) { this.inputTokenCount = inputTokenCount; this.outputTokenCount = outputTokenCount; this.totalTokenCount = (inputTokenCount != null ? inputTokenCount : 0) + (outputTokenCount != null ? outputTokenCount : 0); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/domain/Usage.java
package ai.driftkit.embedding.core.domain;// Usage.java import lombok.Data; import com.fasterxml.jackson.annotation.JsonProperty; @Data public class Usage { @JsonProperty("prompt_tokens") private int promptTokens; @JsonProperty("total_tokens") private int totalTokens; }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/local/AIOnnxBertBiEncoder.java
package ai.driftkit.embedding.core.local; import ai.djl.huggingface.tokenizers.Encoding; import ai.djl.huggingface.tokenizers.HuggingFaceTokenizer; import ai.onnxruntime.OnnxTensor; import ai.onnxruntime.OrtEnvironment; import ai.onnxruntime.OrtException; import ai.onnxruntime.OrtSession; import ai.onnxruntime.OrtSession.Result; import ai.driftkit.embedding.core.domain.PoolingMode; import ai.driftkit.embedding.core.util.DriftKitExceptions; import ai.driftkit.embedding.core.util.ValidationUtils; import lombok.AllArgsConstructor; import lombok.Getter; import lombok.NoArgsConstructor; import lombok.RequiredArgsConstructor; import lombok.experimental.Accessors; import java.nio.LongBuffer; import java.nio.file.Path; import java.util.*; import java.util.stream.Collectors; public class AIOnnxBertBiEncoder { private static final int MAX_SEQUENCE_LENGTH = 510; // 512 - 2 (special tokens [CLS] and [SEP]) public static final String CLS = "[CLS]"; public static final String SEP = "[SEP]"; private final OrtEnvironment environment; private final OrtSession session; private final Set<String> expectedInputs; private final HuggingFaceTokenizer tokenizer; private final PoolingMode poolingMode; private final boolean addCls; public AIOnnxBertBiEncoder(String modelPath, String tokenizerPath, PoolingMode poolingMode, boolean addCls) { this.addCls = addCls; try { this.environment = OrtEnvironment.getEnvironment(); this.session = environment.createSession(modelPath); this.expectedInputs = session.getInputNames(); this.tokenizer = HuggingFaceTokenizer.builder().optTokenizerPath(Path.of(tokenizerPath)) .optPadding(false) .optAddSpecialTokens(addCls) //.optWithOverflowingTokens(true) .optTruncation(true) .build(); this.poolingMode = ValidationUtils.ensureNotNull(poolingMode, "poolingMode"); } catch (Exception e) { throw new RuntimeException(e); } } public EmbeddingAndTokenCount embed(String text) { List<String> tokens = tokenizer.tokenize(text); List<List<String>> partitions = partition(tokens, MAX_SEQUENCE_LENGTH); List<float[]> embeddings = new ArrayList<>(); for (List<String> partition : partitions) { try (Result result = encode(partition)) { float[] embedding = toEmbedding(result); embeddings.add(embedding); } catch (OrtException e) { throw new RuntimeException(e); } } List<Integer> weights = partitions.stream() .map(List::size) .collect(Collectors.toList()); float[] embedding = normalize(weightedAverage(embeddings, weights)); return new EmbeddingAndTokenCount(embedding, tokens.size()); } private List<List<String>> partition(List<String> tokens, int partitionSize) { List<List<String>> partitions = new ArrayList<>(); int startIdx = 0; int lastIdx = 0; if (tokens.size() > 2 && tokens.get(0).equals(CLS) && tokens.get(tokens.size() - 1).equals(SEP)) { startIdx = 1; lastIdx = -1; } for (int from = startIdx; from < tokens.size() - 1; from += partitionSize) { int to = Math.min(tokens.size() + lastIdx, from + partitionSize); List<String> partition = new ArrayList<>(tokens.subList(from, to)); if (addCls && partition.size() < 2 || !partition.get(0).equals("CLS") || !partition.get(tokens.size() - 1).equals("SEP")) { partition.addFirst("CLS"); partition.addLast("SEP"); } partitions.add(partition); } return partitions; } private Result encode(List<String> tokens) throws OrtException { Encoding encoding = tokenizer.encode(toText(tokens), true, false); long[] inputIds = encoding.getIds(); long[] attentionMask = encoding.getAttentionMask(); long[] tokenTypeIds = encoding.getTypeIds(); long[] shape = {1, inputIds.length}; try ( OnnxTensor inputIdsTensor = OnnxTensor.createTensor(environment, LongBuffer.wrap(inputIds), shape); OnnxTensor attentionMaskTensor = OnnxTensor.createTensor(environment, LongBuffer.wrap(attentionMask), shape); OnnxTensor tokenTypeIdsTensor = OnnxTensor.createTensor(environment, LongBuffer.wrap(tokenTypeIds), shape) ) { Map<String, OnnxTensor> inputs = new HashMap<>(); inputs.put("input_ids", inputIdsTensor); inputs.put("attention_mask", attentionMaskTensor); if (expectedInputs.contains("token_type_ids")) { inputs.put("token_type_ids", tokenTypeIdsTensor); } return session.run(inputs); } } private String toText(List<String> tokens) { String text = tokenizer.buildSentence(tokens); List<String> tokenized = tokenizer.tokenize(text); List<String> tokenizedWithoutSpecialTokens = new LinkedList<>(tokenized); if (addCls) { tokenizedWithoutSpecialTokens.remove(0); tokenizedWithoutSpecialTokens.remove(tokenizedWithoutSpecialTokens.size() - 1); } if (tokenizedWithoutSpecialTokens.equals(tokens)) { return text; } else { return String.join("", tokens); } } private float[] toEmbedding(Result result) throws OrtException { float[][] vectors = ((float[][][]) result.get(0).getValue())[0]; return pool(vectors); } private float[] pool(float[][] vectors) { switch (poolingMode) { case CLS: return clsPool(vectors); case MEAN: return meanPool(vectors); default: throw DriftKitExceptions.illegalArgument("Unknown pooling mode: " + poolingMode); } } private static float[] clsPool(float[][] vectors) { return vectors[0]; } private static float[] meanPool(float[][] vectors) { int numVectors = vectors.length; int vectorLength = vectors[0].length; float[] averagedVector = new float[vectorLength]; for (float[] vector : vectors) { for (int j = 0; j < vectorLength; j++) { averagedVector[j] += vector[j]; } } for (int j = 0; j < vectorLength; j++) { averagedVector[j] /= numVectors; } return averagedVector; } private float[] weightedAverage(List<float[]> embeddings, List<Integer> weights) { if (embeddings.size() == 1) { return embeddings.get(0); } int dimensions = embeddings.get(0).length; float[] averagedEmbedding = new float[dimensions]; int totalWeight = 0; for (int i = 0; i < embeddings.size(); i++) { int weight = weights.get(i); totalWeight += weight; for (int j = 0; j < dimensions; j++) { averagedEmbedding[j] += embeddings.get(i)[j] * weight; } } for (int j = 0; j < dimensions; j++) { averagedEmbedding[j] /= totalWeight; } return averagedEmbedding; } private static float[] normalize(float[] vector) { float sumSquare = 0; for (float v : vector) { sumSquare += v * v; } float norm = (float) Math.sqrt(sumSquare); float[] normalizedVector = new float[vector.length]; for (int i = 0; i < vector.length; i++) { normalizedVector[i] = vector[i] / norm; } return normalizedVector; } public int countTokens(String text) { return tokenizer.tokenize(text).size(); } @Getter @Accessors(fluent = true) @NoArgsConstructor @AllArgsConstructor public static class EmbeddingAndTokenCount { float[] embedding; int tokenCount; } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/local/BertGenericEmbeddingModel.java
package ai.driftkit.embedding.core.local; import ai.driftkit.config.EtlConfig; import ai.driftkit.config.EtlConfig.EmbeddingServiceConfig; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.embedding.core.domain.Embedding; import ai.driftkit.embedding.core.domain.TextSegment; import ai.driftkit.embedding.core.domain.PoolingMode; import ai.driftkit.embedding.core.domain.Response; import lombok.NoArgsConstructor; import lombok.Setter; import java.util.Arrays; import java.util.List; @NoArgsConstructor public class BertGenericEmbeddingModel implements EmbeddingModel { @Setter private AIOnnxBertBiEncoder encoder; @Override public boolean supportsName(String name) { return "local".equals(name); } @Override public AIOnnxBertBiEncoder model() { return encoder; } @Override public void configure(EmbeddingServiceConfig config) { this.encoder = new AIOnnxBertBiEncoder( config.get(EtlConfig.MODEL_PATH), config.get(EtlConfig.TOKENIZER_PATH), PoolingMode.MEAN, false ); } public Response<Embedding> embed(TextSegment segment) { List<Embedding> content = embedAll(Arrays.asList(segment)).content(); return Response.from(content.get(0)); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/openai/EmbeddingOpenAIApiClient.java
package ai.driftkit.embedding.core.openai;// OpenAIApiClient.java import ai.driftkit.embedding.core.domain.EmbeddingRequest; import ai.driftkit.embedding.core.domain.EmbeddingResponse; import feign.Headers; import feign.RequestLine; public interface EmbeddingOpenAIApiClient { @RequestLine("POST /v1/embeddings") @Headers("Content-Type: application/json") EmbeddingResponse getEmbeddings(EmbeddingRequest request); }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/openai/OpenAIAuthInterceptor.java
package ai.driftkit.embedding.core.openai;// OpenAIAuthInterceptor.java import feign.RequestInterceptor; import feign.RequestTemplate; public class OpenAIAuthInterceptor implements RequestInterceptor { private final String apiKey; public OpenAIAuthInterceptor(String apiKey) { this.apiKey = apiKey; } @Override public void apply(RequestTemplate template) { template.header("Authorization", "Bearer " + apiKey); template.header("Content-Type", "application/json"); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/openai/OpenAIEmbeddingModel.java
package ai.driftkit.embedding.core.openai; import ai.driftkit.config.EtlConfig; import ai.driftkit.config.EtlConfig.EmbeddingServiceConfig; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.embedding.core.domain.*; import ai.driftkit.embedding.core.local.AIOnnxBertBiEncoder; import ai.driftkit.embedding.core.domain.Response; import ai.driftkit.embedding.core.domain.TokenUsage; import feign.Feign; import feign.jackson.JacksonDecoder; import feign.jackson.JacksonEncoder; import lombok.NoArgsConstructor; import java.util.ArrayList; import java.util.List; @NoArgsConstructor public class OpenAIEmbeddingModel implements EmbeddingModel { private EmbeddingOpenAIApiClient apiClient; private String modelName; public OpenAIEmbeddingModel(EmbeddingOpenAIApiClient apiClient, String modelName) { this.apiClient = apiClient; this.modelName = modelName; } @Override public boolean supportsName(String name) { return "openai".equals(name); } @Override public AIOnnxBertBiEncoder model() { throw new UnsupportedOperationException("Not supported in OpenAIEmbeddingModel"); } @Override public void configure(EmbeddingServiceConfig config) { this.modelName = config.getConfig().get(EtlConfig.MODEL_NAME); this.apiClient = Feign.builder() .encoder(new JacksonEncoder()) .decoder(new JacksonDecoder()) .requestInterceptor(new OpenAIAuthInterceptor(config.get(EtlConfig.API_KEY))) .target(EmbeddingOpenAIApiClient.class, config.get(EtlConfig.HOST, "https://api.openai.com")); } @Override public Response<List<Embedding>> embedAll(List<TextSegment> segments) { List<String> texts = new ArrayList<>(); for (TextSegment segment : segments) { texts.add(segment.text()); } EmbeddingRequest request = new EmbeddingRequest(); request.setModel(modelName); request.setInput(texts); EmbeddingResponse response = apiClient.getEmbeddings(request); List<Embedding> embeddings = new ArrayList<>(); for (EmbeddingData data : response.getData()) { float[] embeddingValues = data.getEmbedding(); embeddings.add(Embedding.from(embeddingValues)); } int inputTokenCount = response.getUsage().getTotalTokens(); return Response.from(embeddings, new TokenUsage(inputTokenCount)); } @Override public int estimateTokenCount(String text) { // OpenAI provides approximate token counts // For more accurate counts, integrate with a tokenizer return text.length() / 4; // Approximate estimation } public Response<Embedding> embed(TextSegment segment) { List<TextSegment> segments = new ArrayList<>(); segments.add(segment); Response<List<Embedding>> responseList = embedAll(segments); Embedding embedding = responseList.content().get(0); TokenUsage tokenUsage = responseList.tokenUsage(); return Response.from(embedding, tokenUsage); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/service/EmbeddingFactory.java
package ai.driftkit.embedding.core.service; import ai.driftkit.config.EtlConfig.EmbeddingServiceConfig; import org.apache.commons.lang3.StringUtils; import java.util.Map; import java.util.ServiceLoader; public class EmbeddingFactory { public static EmbeddingModel fromName(String name, Map<String, String> config) throws Exception { if (StringUtils.isBlank(name)) { throw new IllegalArgumentException("Name must not be null"); } ServiceLoader<EmbeddingModel> loader = ServiceLoader.load(EmbeddingModel.class); for (EmbeddingModel store : loader) { if (store.supportsName(name)) { store.configure(new EmbeddingServiceConfig(name, config)); return store; } } throw new IllegalArgumentException("Unknown or unavailable prompt service: " + name); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/service/EmbeddingModel.java
package ai.driftkit.embedding.core.service; import ai.driftkit.config.EtlConfig.EmbeddingServiceConfig; import ai.driftkit.embedding.core.domain.Embedding; import ai.driftkit.embedding.core.domain.TextSegment; import ai.driftkit.embedding.core.local.AIOnnxBertBiEncoder; import ai.driftkit.embedding.core.local.AIOnnxBertBiEncoder.EmbeddingAndTokenCount; import ai.driftkit.embedding.core.domain.Response; import ai.driftkit.embedding.core.domain.TokenUsage; import org.apache.commons.collections4.CollectionUtils; import java.util.ArrayList; import java.util.List; public interface EmbeddingModel { boolean supportsName(String name); AIOnnxBertBiEncoder model(); void configure(EmbeddingServiceConfig config); default Response<Embedding> embed(TextSegment segment) { Response<List<Embedding>> resp = embedAll(List.of(segment)); List<Embedding> content = resp.content(); if (CollectionUtils.isEmpty(content)) { return null; } return Response.from(content.get(0), resp.tokenUsage(), resp.finishReason()); } default Response<List<Embedding>> embedAll(List<TextSegment> segments) { int inputTokenCount = 0; List<Embedding> embeddings = new ArrayList<>(); for (TextSegment segment : segments) { EmbeddingAndTokenCount embeddingAndTokenCount = model().embed(segment.text()); embeddings.add(Embedding.from(embeddingAndTokenCount.embedding())); inputTokenCount += embeddingAndTokenCount.tokenCount(); } return Response.from(embeddings, new TokenUsage(inputTokenCount)); } default int estimateTokenCount(String text) { return model().countTokens(text); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/util/DriftKitExceptions.java
package ai.driftkit.embedding.core.util; /** * Utility class for exception handling. */ public final class DriftKitExceptions { private DriftKitExceptions() { // Utility class } /** * Creates an IllegalArgumentException with the given message. * * @param message the exception message * @return the exception */ public static IllegalArgumentException illegalArgument(String message) { return new IllegalArgumentException(message); } /** * Creates an IllegalArgumentException with a formatted message. * * @param format the format string * @param args the arguments * @return the exception */ public static IllegalArgumentException illegalArgument(String format, Object... args) { return new IllegalArgumentException(String.format(format, args)); } /** * Creates an IllegalArgumentException with the given message and cause. * * @param message the exception message * @param cause the cause * @return the exception */ public static IllegalArgumentException illegalArgument(String message, Throwable cause) { return new IllegalArgumentException(message, cause); } /** * Creates an IllegalStateException with the given message. * * @param message the exception message * @return the exception */ public static IllegalStateException illegalState(String message) { return new IllegalStateException(message); } /** * Creates a RuntimeException with the given message. * * @param message the exception message * @return the exception */ public static RuntimeException runtime(String message) { return new RuntimeException(message); } /** * Creates a RuntimeException with a formatted message. * * @param format the format string * @param args the arguments * @return the exception */ public static RuntimeException runtime(String format, Object... args) { return new RuntimeException(String.format(format, args)); } /** * Creates a RuntimeException with the given message and cause. * * @param message the exception message * @param cause the cause * @return the exception */ public static RuntimeException runtime(String message, Throwable cause) { return new RuntimeException(message, cause); } }
0
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core
java-sources/ai/driftkit/driftkit-embedding-core/0.8.1/ai/driftkit/embedding/core/util/ValidationUtils.java
package ai.driftkit.embedding.core.util; /** * Utility class for validation operations. */ public final class ValidationUtils { private ValidationUtils() { // Utility class } /** * Ensures that the given object is not null. * * @param object the object to check * @param parameterName the name of the parameter (for error messages) * @param <T> the type of the object * @return the object if not null * @throws IllegalArgumentException if the object is null */ public static <T> T ensureNotNull(T object, String parameterName) { if (object == null) { throw new IllegalArgumentException(parameterName + " cannot be null"); } return object; } /** * Ensures that the given string is not null or empty. * * @param string the string to check * @param parameterName the name of the parameter (for error messages) * @return the string if not null or empty * @throws IllegalArgumentException if the string is null or empty */ public static String ensureNotBlank(String string, String parameterName) { if (string == null || string.trim().isEmpty()) { throw new IllegalArgumentException(parameterName + " cannot be null or empty"); } return string; } }
0
java-sources/ai/driftkit/driftkit-embedding-spring-ai/0.8.1/ai/driftkit/embedding
java-sources/ai/driftkit/driftkit-embedding-spring-ai/0.8.1/ai/driftkit/embedding/springai/SpringAiEmbeddingAdapter.java
package ai.driftkit.embedding.springai; import ai.djl.modality.nlp.preprocess.SimpleTokenizer; import ai.driftkit.common.service.TextTokenizer; import ai.driftkit.config.EtlConfig.EmbeddingServiceConfig; import ai.driftkit.embedding.core.domain.Embedding; import ai.driftkit.embedding.core.domain.TextSegment; import ai.driftkit.embedding.core.local.AIOnnxBertBiEncoder; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.embedding.core.domain.Response; import ai.driftkit.embedding.core.domain.TokenUsage; import lombok.extern.slf4j.Slf4j; import org.apache.commons.collections4.CollectionUtils; import org.apache.commons.lang3.StringUtils; import org.springframework.ai.embedding.EmbeddingRequest; import org.springframework.ai.embedding.EmbeddingResponse; import java.util.ArrayList; import java.util.Collections; import java.util.List; /** * Adapter that bridges Spring AI EmbeddingModel with DriftKit EmbeddingModel interface. * This allows using any Spring AI embedding model implementation within the DriftKit framework. */ @Slf4j public class SpringAiEmbeddingAdapter implements EmbeddingModel { private final org.springframework.ai.embedding.EmbeddingModel springAiEmbeddingModel; private final String modelName; private final SimpleTokenizer tokenizer = new SimpleTokenizer(); public SpringAiEmbeddingAdapter(org.springframework.ai.embedding.EmbeddingModel springAiEmbeddingModel, String modelName) { if (springAiEmbeddingModel == null) { throw new IllegalArgumentException("Spring AI EmbeddingModel cannot be null"); } if (StringUtils.isBlank(modelName)) { throw new IllegalArgumentException("Model name cannot be blank"); } this.springAiEmbeddingModel = springAiEmbeddingModel; this.modelName = modelName; } @Override public boolean supportsName(String name) { return this.modelName.equalsIgnoreCase(name); } @Override public AIOnnxBertBiEncoder model() { throw new UnsupportedOperationException( "SpringAiEmbeddingAdapter does not support local ONNX models. " + "It uses remote embedding services through Spring AI providers." ); } @Override public void configure(EmbeddingServiceConfig config) { // Configuration is handled by Spring AI itself log.info("Configured Spring AI Embedding adapter with model name: {}", modelName); } @Override public Response<List<Embedding>> embedAll(List<TextSegment> segments) { if (CollectionUtils.isEmpty(segments)) { log.debug("Empty segments provided, returning empty embeddings"); return Response.from(Collections.emptyList()); } // Extract texts and estimate tokens List<String> texts = new ArrayList<>(); int totalEstimatedTokens = 0; for (TextSegment segment : segments) { if (segment == null || StringUtils.isEmpty(segment.text())) { log.warn("Skipping null or empty segment"); continue; } texts.add(segment.text()); totalEstimatedTokens += estimateTokenCount(segment.text()); } if (texts.isEmpty()) { log.debug("No valid texts to embed, returning empty embeddings"); return Response.from(Collections.emptyList()); } try { log.debug("Embedding {} text segments", texts.size()); // Create embedding request EmbeddingRequest request = new EmbeddingRequest(texts, null); // Call Spring AI model EmbeddingResponse springAiResponse = springAiEmbeddingModel.embedForResponse(texts); if (springAiResponse == null || springAiResponse.getResults() == null) { throw new RuntimeException("Received null response from Spring AI embedding model"); } // Convert Spring AI embeddings to DriftKit embeddings List<Embedding> embeddings = new ArrayList<>(); for (org.springframework.ai.embedding.Embedding springAiEmbedding : springAiResponse.getResults()) { if (springAiEmbedding == null || springAiEmbedding.getOutput() == null) { log.warn("Received null embedding from Spring AI, skipping"); continue; } float[] floatArray = springAiEmbedding.getOutput(); embeddings.add(Embedding.from(floatArray)); } // Extract token usage if available TokenUsage tokenUsage = extractTokenUsage(springAiResponse, totalEstimatedTokens); log.debug("Successfully embedded {} segments", embeddings.size()); return Response.from(embeddings, tokenUsage); } catch (Exception e) { log.error("Failed to generate embeddings", e); throw new RuntimeException("Failed to generate embeddings: " + e.getMessage(), e); } } @Override public Response<Embedding> embed(TextSegment segment) { if (segment == null) { throw new IllegalArgumentException("TextSegment cannot be null"); } Response<List<Embedding>> response = embedAll(List.of(segment)); List<Embedding> embeddings = response.content(); if (CollectionUtils.isEmpty(embeddings)) { log.warn("No embeddings generated for segment"); return null; } return Response.from(embeddings.get(0), response.tokenUsage()); } @Override public int estimateTokenCount(String text) { if (StringUtils.isEmpty(text)) { return 0; } // Use SimpleTokenizer's logic for consistent token estimation return (int) (text.length() * TextTokenizer.DEFAULT_TOKEN_COST); } /** * Extracts token usage from Spring AI response. * * @param response the Spring AI embedding response * @param estimatedTokens the estimated token count * @return TokenUsage object */ private TokenUsage extractTokenUsage(EmbeddingResponse response, int estimatedTokens) { try { if (response.getMetadata() != null && response.getMetadata().getUsage() != null) { Integer totalTokens = response.getMetadata().getUsage().getTotalTokens(); if (totalTokens != null && totalTokens > 0) { return new TokenUsage(totalTokens); } } } catch (Exception e) { log.debug("Could not extract token usage from response, using estimated count", e); } // Fall back to estimated tokens return new TokenUsage(estimatedTokens); } }
0
java-sources/ai/driftkit/driftkit-embedding-spring-ai-starter/0.8.1/ai/driftkit/embedding/springai
java-sources/ai/driftkit/driftkit-embedding-spring-ai-starter/0.8.1/ai/driftkit/embedding/springai/autoconfigure/SpringAiEmbeddingAutoConfiguration.java
package ai.driftkit.embedding.springai.autoconfigure; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.embedding.springai.SpringAiEmbeddingAdapter; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.ObjectProvider; import org.springframework.boot.autoconfigure.AutoConfiguration; import org.springframework.boot.autoconfigure.condition.ConditionalOnBean; import org.springframework.boot.autoconfigure.condition.ConditionalOnClass; import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean; import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty; import org.springframework.boot.context.properties.EnableConfigurationProperties; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; /** * Spring Boot auto-configuration for Spring AI embedding model integration. * This configuration automatically creates DriftKit EmbeddingModel adapters * for any Spring AI EmbeddingModel beans found in the application context. */ @Slf4j @AutoConfiguration @ConditionalOnClass({org.springframework.ai.embedding.EmbeddingModel.class, EmbeddingModel.class}) @EnableConfigurationProperties(SpringAiEmbeddingProperties.class) public class SpringAiEmbeddingAutoConfiguration { /** * Creates a DriftKit EmbeddingModel adapter for Spring AI EmbeddingModel bean. * The adapter allows using Spring AI embedding models through the DriftKit interface. */ @Configuration @ConditionalOnProperty(prefix = "driftkit.embedding.spring-ai", name = "enabled", havingValue = "true", matchIfMissing = true) public static class SpringAiEmbeddingAdapterConfiguration { /** * Creates a default DriftKit EmbeddingModel bean if configured. * This allows @Autowired EmbeddingModel to work when only Spring AI is configured. */ @Bean @ConditionalOnBean(org.springframework.ai.embedding.EmbeddingModel.class) @ConditionalOnMissingBean(EmbeddingModel.class) @ConditionalOnProperty(prefix = "driftkit.embedding.spring-ai", name = "auto-create-adapter", havingValue = "true", matchIfMissing = true) public EmbeddingModel springAiEmbeddingAdapter( org.springframework.ai.embedding.EmbeddingModel springAiModel, SpringAiEmbeddingProperties properties) { String modelName = properties.getModelName(); if (modelName == null) { throw new IllegalArgumentException("modelName is required"); } log.info("Creating Spring AI embedding adapter with name: {}", modelName); return new SpringAiEmbeddingAdapter(springAiModel, modelName); } } }
0
java-sources/ai/driftkit/driftkit-embedding-spring-ai-starter/0.8.1/ai/driftkit/embedding/springai
java-sources/ai/driftkit/driftkit-embedding-spring-ai-starter/0.8.1/ai/driftkit/embedding/springai/autoconfigure/SpringAiEmbeddingProperties.java
package ai.driftkit.embedding.springai.autoconfigure; import lombok.Data; import org.springframework.boot.context.properties.ConfigurationProperties; /** * Configuration properties for Spring AI embedding integration. */ @Data @ConfigurationProperties(prefix = "driftkit.embedding.spring-ai") public class SpringAiEmbeddingProperties { /** * Whether Spring AI embedding integration is enabled. */ private boolean enabled = true; /** * The name to use for the Spring AI embedding model adapter. * This name will be used when creating the adapter and for model lookup. */ private String modelName = "spring-ai-default"; /** * Whether to automatically create a default DriftKit EmbeddingModel bean * when a Spring AI EmbeddingModel is detected. */ private boolean autoCreateAdapter = true; }
0
java-sources/ai/driftkit/driftkit-embedding-spring-boot-starter/0.8.1/ai/driftkit/embedding
java-sources/ai/driftkit/driftkit-embedding-spring-boot-starter/0.8.1/ai/driftkit/embedding/autoconfigure/EmbeddingAutoConfiguration.java
package ai.driftkit.embedding.autoconfigure; import ai.driftkit.config.EtlConfig; import ai.driftkit.config.EtlConfig.EmbeddingServiceConfig; import ai.driftkit.embedding.core.service.EmbeddingFactory; import ai.driftkit.embedding.core.service.EmbeddingModel; import lombok.extern.slf4j.Slf4j; import org.springframework.boot.autoconfigure.AutoConfiguration; import org.springframework.boot.autoconfigure.condition.ConditionalOnBean; import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean; import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty; import org.springframework.context.annotation.Bean; /** * Auto-configuration for embedding services. * * This configuration automatically creates an EmbeddingModel bean * from the EtlConfig.embedding configuration when available. */ @Slf4j @AutoConfiguration @ConditionalOnBean(EtlConfig.class) @ConditionalOnProperty(name = "driftkit.embedding.name") public class EmbeddingAutoConfiguration { @Bean @ConditionalOnMissingBean(EmbeddingModel.class) public EmbeddingModel embeddingModel(EtlConfig config) { try { EmbeddingServiceConfig embeddingConfig = config.getEmbedding(); if (embeddingConfig == null) { log.warn("No embedding configuration found in EtlConfig"); return null; } log.info("Initializing embedding service: {}", embeddingConfig.getName()); EmbeddingModel embeddingModel = EmbeddingFactory.fromName( embeddingConfig.getName(), embeddingConfig.getConfig() ); log.info("Successfully initialized embedding service: {}", embeddingConfig.getName()); return embeddingModel; } catch (Exception e) { log.error("Failed to initialize embedding service from configuration", e); throw new RuntimeException("Failed to initialize embedding service", e); } } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/domain/LoadedDocument.java
package ai.driftkit.rag.core.domain; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import java.util.HashMap; import java.util.Map; /** * Represents a document loaded from a source before processing. * Contains raw content and metadata about the document. */ @Data @Builder @NoArgsConstructor @AllArgsConstructor public class LoadedDocument { /** * Document loading state */ public enum State { PENDING, // Document is queued for loading IN_PROGRESS, // Document is currently being loaded LOADED, // Document loaded successfully ERROR // Document failed to load } /** * Unique identifier for the document */ private String id; /** * Current state of the document */ @Builder.Default private State state = State.LOADED; /** * Raw content of the document */ private String content; /** * Source of the document (e.g., file path, URL) */ private String source; /** * MIME type of the document */ private String mimeType; /** * Additional metadata about the document */ @Builder.Default private Map<String, Object> metadata = new HashMap<>(); /** * Add metadata entry */ public LoadedDocument withMetadata(String key, Object value) { if (metadata == null) { metadata = new HashMap<>(); } metadata.put(key, value); return this; } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/loader/DocumentLoader.java
package ai.driftkit.rag.core.loader; import ai.driftkit.rag.core.domain.LoadedDocument; import java.util.List; import java.util.stream.Stream; /** * Interface for loading documents from various sources. * Implementations should handle specific document sources like file systems, URLs, databases, etc. */ public interface DocumentLoader { /** * Load all documents from the configured source. * * @return List of loaded documents * @throws Exception if loading fails */ List<LoadedDocument> load() throws Exception; /** * Load documents as a stream for memory-efficient processing. * * @return Stream of loaded documents * @throws Exception if loading fails */ default Stream<LoadedDocument> loadStream() throws Exception { return load().stream(); } /** * Check if the loader supports lazy loading via streams. * * @return true if streaming is supported */ default boolean supportsStreaming() { return false; } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/loader/FileSystemLoader.java
package ai.driftkit.rag.core.loader; import ai.driftkit.rag.core.domain.LoadedDocument; import ai.driftkit.vector.spring.parser.UnifiedParser; import ai.driftkit.vector.spring.parser.UnifiedParser.ByteArrayParserInput; import ai.driftkit.vector.spring.domain.ContentType; import ai.driftkit.vector.spring.domain.ParsedContent; import lombok.Builder; import lombok.NonNull; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.apache.commons.io.FilenameUtils; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Path; import java.util.*; import java.util.stream.Stream; /** * Document loader that reads files from the file system. * Supports various file types including text, PDF, images, etc. via UnifiedParser. */ @Slf4j @Builder @RequiredArgsConstructor public class FileSystemLoader implements DocumentLoader { @NonNull private final Path rootPath; @NonNull private final UnifiedParser parser; @Builder.Default private final boolean recursive = true; @Builder.Default private final Set<String> extensions = Set.of( // Text formats "txt", "md", "json", "xml", "html", "csv", // Document formats "pdf", "doc", "docx", "odt", // Image formats "jpg", "jpeg", "png", "gif", "bmp", // Audio/Video formats (if transcription is needed) "mp3", "wav", "mp4", "avi" ); @Builder.Default private final Set<String> excludePatterns = Set.of(); @Builder.Default private final long maxFileSizeBytes = 50 * 1024 * 1024; // 50MB default @Builder.Default private final boolean includeHidden = false; /** * Map file extensions to ContentType. */ private static final Map<String, ContentType> EXTENSION_TO_CONTENT_TYPE = Map.ofEntries( // Text formats Map.entry("txt", ContentType.TEXT), Map.entry("md", ContentType.TEXT), Map.entry("json", ContentType.TEXT), Map.entry("xml", ContentType.XML), Map.entry("html", ContentType.HTML), Map.entry("csv", ContentType.TEXT), // Document formats Map.entry("pdf", ContentType.PDF), Map.entry("doc", ContentType.MICROSOFT_WORD), Map.entry("docx", ContentType.MICROSOFT_WORD), Map.entry("odt", ContentType.ODF_TEXT), // Image formats Map.entry("jpg", ContentType.JPG), Map.entry("jpeg", ContentType.JPG), Map.entry("png", ContentType.PNG), Map.entry("gif", ContentType.PNG), // UnifiedParser will handle as image Map.entry("bmp", ContentType.PNG) // UnifiedParser will handle as image ); /** * Load all documents from the file system. */ @Override public List<LoadedDocument> load() throws Exception { log.info("Loading documents from: {}", rootPath); List<LoadedDocument> documents = new ArrayList<>(); try (Stream<LoadedDocument> stream = loadStream()) { stream.forEach(documents::add); } log.info("Loaded {} documents", documents.size()); return documents; } /** * Load documents as a stream for memory-efficient processing. */ @Override public Stream<LoadedDocument> loadStream() throws Exception { if (!Files.exists(rootPath)) { throw new IOException("Path does not exist: " + rootPath); } if (Files.isRegularFile(rootPath)) { // Single file return Stream.of(loadFile(rootPath)); } else if (Files.isDirectory(rootPath)) { // Directory return loadDirectory(); } else { throw new IOException("Path is neither file nor directory: " + rootPath); } } /** * This loader supports streaming. */ @Override public boolean supportsStreaming() { return true; } /** * Load documents from a directory. */ private Stream<LoadedDocument> loadDirectory() throws IOException { int maxDepth = recursive ? Integer.MAX_VALUE : 1; return Files.walk(rootPath, maxDepth) .filter(Files::isRegularFile) .filter(this::shouldIncludeFile) .map(path -> { try { return loadFile(path); } catch (Exception e) { log.error("Failed to load file: {}", path, e); // Return error document instead of null return createErrorDocument(path, e); } }); } /** * Check if a file should be included based on filters. */ private boolean shouldIncludeFile(Path path) { String fileName = path.getFileName().toString(); // Check hidden files if (!includeHidden && fileName.startsWith(".")) { return false; } // Check extension String extension = FilenameUtils.getExtension(fileName).toLowerCase(); if (!extensions.isEmpty() && !extensions.contains(extension)) { return false; } // Check exclude patterns String pathStr = path.toString(); for (String pattern : excludePatterns) { if (pathStr.contains(pattern)) { return false; } } // Check file size try { long size = Files.size(path); if (size > maxFileSizeBytes) { log.warn("Skipping file {} - size {} exceeds limit {}", path, size, maxFileSizeBytes); return false; } } catch (IOException e) { log.warn("Failed to check file size: {}", path, e); return false; } return true; } /** * Load a single file using UnifiedParser. */ private LoadedDocument loadFile(Path path) throws IOException { log.trace("Loading file: {}", path); String fileName = path.getFileName().toString(); String extension = FilenameUtils.getExtension(fileName).toLowerCase(); // Determine content type ContentType contentType = EXTENSION_TO_CONTENT_TYPE.getOrDefault(extension, ContentType.TEXT); // Read file as bytes byte[] fileBytes = Files.readAllBytes(path); // Create parser input ByteArrayParserInput parserInput = new ByteArrayParserInput(fileBytes, fileName, contentType); // Parse using UnifiedParser ParsedContent parsed = parser.parse(parserInput); // Build metadata Map<String, Object> metadata = new HashMap<>(); metadata.put("fileName", fileName); metadata.put("filePath", path.toString()); metadata.put("fileSize", Files.size(path)); metadata.put("lastModified", Files.getLastModifiedTime(path).toMillis()); metadata.put("extension", extension); metadata.put("contentType", contentType.name()); // Add parsing metadata if available if (parsed.getMetadata() != null) { metadata.put("parsingMetadata", parsed.getMetadata()); } metadata.put("parsingTime", parsed.getParsingEndTime() - parsed.getParsingStatedTime()); return LoadedDocument.builder() .id(parsed.getId()) .content(parsed.getParsedContent()) .source(path.toString()) .mimeType(contentType.getMimeType()) .metadata(metadata) .state(LoadedDocument.State.LOADED) .build(); } /** * Create an error document when file loading fails. * This allows tracking which files failed to load and why. */ private LoadedDocument createErrorDocument(Path path, Exception error) { String fileName = path.getFileName().toString(); String extension = FilenameUtils.getExtension(fileName).toLowerCase(); Map<String, Object> metadata = new HashMap<>(); metadata.put("fileName", fileName); metadata.put("filePath", path.toString()); metadata.put("extension", extension); metadata.put("errorMessage", error.getMessage()); metadata.put("errorType", error.getClass().getName()); // Try to get file size if possible try { metadata.put("fileSize", Files.size(path)); metadata.put("lastModified", Files.getLastModifiedTime(path).toMillis()); } catch (IOException e) { log.trace("Could not get file attributes for error document: {}", path); } return LoadedDocument.builder() .id("error-" + path.toString().hashCode()) .content(null) // Empty content for error documents .source(path.toString()) .mimeType("application/octet-stream") // Unknown mime type .metadata(metadata) .state(LoadedDocument.State.ERROR) .build(); } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/loader/UrlLoader.java
package ai.driftkit.rag.core.loader; import ai.driftkit.rag.core.domain.LoadedDocument; import ai.driftkit.vector.spring.parser.UnifiedParser; import ai.driftkit.vector.spring.parser.UnifiedParser.ByteArrayParserInput; import ai.driftkit.vector.spring.parser.UnifiedParser.StringParserInput; import ai.driftkit.vector.spring.parser.UnifiedParser.ParserInput; import ai.driftkit.vector.spring.domain.ContentType; import ai.driftkit.vector.spring.domain.ParsedContent; import com.fasterxml.jackson.annotation.JsonTypeName; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import lombok.NonNull; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import java.io.IOException; import java.net.URI; import java.net.http.HttpClient; import java.net.http.HttpRequest; import java.net.http.HttpResponse; import java.time.Duration; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.concurrent.CompletableFuture; import java.util.stream.Stream; /** * Document loader that fetches content from URLs. * Supports web pages, PDFs, and other content accessible via HTTP/HTTPS. */ @Slf4j @Builder @RequiredArgsConstructor public class UrlLoader implements DocumentLoader { @NonNull private final List<String> urls; @NonNull private final UnifiedParser parser; @Builder.Default private final boolean followRedirects = true; @Builder.Default private final int timeoutSeconds = 30; @Builder.Default private final int maxContentSizeBytes = 50 * 1024 * 1024; // 50MB default @Builder.Default private final Map<String, String> headers = Map.of( "User-Agent", "DriftKit-RAG/1.0" ); // Thread-safe HttpClient private static final HttpClient httpClient = HttpClient.newBuilder() .connectTimeout(Duration.ofSeconds(10)) .followRedirects(HttpClient.Redirect.NORMAL) .build(); /** * Custom ParserInput for URLs */ @Data @NoArgsConstructor @JsonTypeName("URL") public static class UrlParserInput extends ParserInput<byte[]> { private String url; private String detectedMimeType; private Map<String, String> responseHeaders; public UrlParserInput(byte[] content, String url, ContentType contentType, String detectedMimeType, Map<String, String> responseHeaders) { super(content, contentType); this.url = url; this.detectedMimeType = detectedMimeType; this.responseHeaders = responseHeaders; } } /** * Load all documents from the configured URLs. */ @Override public List<LoadedDocument> load() throws Exception { log.info("Loading {} URLs", urls.size()); return urls.stream() .map(this::loadUrl) .toList(); } /** * Load documents as a stream for memory-efficient processing. */ @Override public Stream<LoadedDocument> loadStream() throws Exception { return urls.stream() .map(this::loadUrl); } /** * This loader supports streaming. */ @Override public boolean supportsStreaming() { return true; } /** * Load content from a single URL. */ private LoadedDocument loadUrl(String urlString) { try { log.debug("Loading URL: {}", urlString); // Build HTTP request HttpRequest.Builder requestBuilder = HttpRequest.newBuilder() .uri(URI.create(urlString)) .timeout(Duration.ofSeconds(timeoutSeconds)) .GET(); // Add custom headers headers.forEach(requestBuilder::header); HttpRequest request = requestBuilder.build(); // Send request HttpResponse<byte[]> response = httpClient.send(request, HttpResponse.BodyHandlers.ofByteArray()); if (response.statusCode() >= 200 && response.statusCode() < 300) { // Get content type from response String contentTypeHeader = response.headers().firstValue("Content-Type") .orElse("text/html"); // Extract MIME type (remove charset and other parameters) String mimeType = contentTypeHeader.split(";")[0].trim().toLowerCase(); // Map response headers Map<String, String> responseHeaders = new HashMap<>(); response.headers().map().forEach((key, values) -> { if (!values.isEmpty()) { responseHeaders.put(key, values.get(0)); } }); byte[] content = response.body(); // Check content size if (content.length > maxContentSizeBytes) { log.warn("Content from {} exceeds size limit: {} bytes", urlString, content.length); return createErrorDocument(urlString, response.statusCode(), new IOException("Content size exceeds limit: " + content.length + " bytes")); } // Determine ContentType enum based on MIME type ContentType contentType = determineContentType(mimeType); // Create appropriate parser input ParserInput<?> parserInput; if (contentType == ContentType.HTML || contentType == ContentType.TEXT || contentType == ContentType.XML) { // For text-based content, convert to string String textContent = new String(content, getCharset(contentTypeHeader)); parserInput = new StringParserInput(textContent, contentType); } else { // For binary content (PDF, images, etc.) parserInput = new ByteArrayParserInput(content, urlString, contentType); } // Parse using UnifiedParser ParsedContent parsed = parser.parse(parserInput); // Build metadata Map<String, Object> metadata = new HashMap<>(); metadata.put("url", urlString); metadata.put("httpStatus", response.statusCode()); metadata.put("contentLength", content.length); metadata.put("contentType", contentTypeHeader); metadata.put("mimeType", mimeType); metadata.put("responseHeaders", responseHeaders); // Add parsing metadata if available if (parsed.getMetadata() != null) { metadata.put("parsingMetadata", parsed.getMetadata()); } metadata.put("parsingTime", parsed.getParsingEndTime() - parsed.getParsingStatedTime()); return LoadedDocument.builder() .id(parsed.getId()) .content(parsed.getParsedContent()) .source(urlString) .mimeType(mimeType) .metadata(metadata) .state(LoadedDocument.State.LOADED) .build(); } else { log.error("Failed to load URL: {} - HTTP {}", urlString, response.statusCode()); return createErrorDocument(urlString, response.statusCode(), new IOException("HTTP error: " + response.statusCode())); } } catch (Exception e) { log.error("Failed to load URL: {}", urlString, e); return createErrorDocument(urlString, -1, e); } } /** * Determine ContentType enum from MIME type. */ private ContentType determineContentType(String mimeType) { return switch (mimeType) { case "text/html", "application/xhtml+xml" -> ContentType.HTML; case "text/plain" -> ContentType.TEXT; case "application/xml", "text/xml" -> ContentType.XML; case "application/pdf" -> ContentType.PDF; case "image/jpeg", "image/jpg" -> ContentType.JPG; case "image/png" -> ContentType.PNG; case "application/vnd.openxmlformats-officedocument.wordprocessingml.document", "application/msword" -> ContentType.MICROSOFT_WORD; case "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "application/vnd.ms-excel" -> ContentType.MICROSOFT_EXCEL; case "application/vnd.openxmlformats-officedocument.presentationml.presentation", "application/vnd.ms-powerpoint" -> ContentType.MICROSOFT_POWERPOINT; default -> ContentType.TEXT; // Default fallback }; } /** * Extract charset from Content-Type header. */ private String getCharset(String contentType) { String[] parts = contentType.split(";"); for (String part : parts) { String trimmed = part.trim(); if (trimmed.startsWith("charset=")) { return trimmed.substring(8).replace("\"", ""); } } return "UTF-8"; // Default charset } /** * Create a loader for a single URL. */ public static UrlLoader fromUrl(String url, UnifiedParser parser) { return UrlLoader.builder() .urls(List.of(url)) .parser(parser) .build(); } /** * Create a loader for multiple URLs. */ public static UrlLoader fromUrls(List<String> urls, UnifiedParser parser) { return UrlLoader.builder() .urls(urls) .parser(parser) .build(); } /** * Create an error document when URL loading fails. * This allows tracking which URLs failed to load and why. */ private LoadedDocument createErrorDocument(String urlString, int httpStatus, Exception error) { Map<String, Object> metadata = new HashMap<>(); metadata.put("url", urlString); if (httpStatus > 0) { metadata.put("httpStatus", httpStatus); } metadata.put("errorMessage", error.getMessage()); metadata.put("errorType", error.getClass().getName()); return LoadedDocument.builder() .id("error-" + urlString.hashCode()) .content(null) // No content for error documents .source(urlString) .mimeType("application/octet-stream") // Unknown mime type .metadata(metadata) .state(LoadedDocument.State.ERROR) .build(); } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/reranker/ModelBasedReranker.java
package ai.driftkit.rag.core.reranker; import ai.driftkit.common.domain.client.ModelClient; import ai.driftkit.common.domain.client.ModelTextRequest; import ai.driftkit.common.domain.client.ModelTextResponse; import ai.driftkit.common.domain.client.ResponseFormat; import ai.driftkit.common.domain.client.Role; import ai.driftkit.common.domain.client.ModelImageResponse.ModelContentMessage; import ai.driftkit.common.domain.client.ModelImageResponse.ModelContentMessage.ModelContentElement; import ai.driftkit.common.domain.client.ModelTextRequest.MessageType; import ai.driftkit.common.utils.JsonUtils; import ai.driftkit.context.core.util.DefaultPromptLoader; import ai.driftkit.common.domain.Prompt; import ai.driftkit.context.core.service.PromptService; import ai.driftkit.rag.core.retriever.Retriever.RetrievalResult; import com.fasterxml.jackson.annotation.JsonProperty; import com.fasterxml.jackson.annotation.JsonPropertyDescription; import lombok.Builder; import lombok.Data; import lombok.NonNull; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import java.util.*; /** * Reranker that uses a language model to rerank documents based on relevance. * Uses structured output for reliable parsing. */ @Slf4j @Builder @RequiredArgsConstructor public class ModelBasedReranker implements Reranker { @NonNull private final ModelClient modelClient; @NonNull private final PromptService promptService; @Builder.Default private final String promptId = "rag.rerank"; @Builder.Default private final String model = "gpt-4o"; @Builder.Default private final float temperature = 0.0f; /** * Structured output class for reranking scores. */ @Data public static class RerankingScores { @JsonProperty(value = "document_scores", required = true) @JsonPropertyDescription("Map of document IDs to relevance scores (0.0 to 1.0)") private Map<String, Float> documentScores; } /** * Rerank documents based on the query. */ @Override public List<RerankResult> rerank(String query, List<RetrievalResult> results, RerankConfig config) throws Exception { if (results.isEmpty()) { return List.of(); } log.debug("Reranking {} documents for query: {}", results.size(), query); // Prepare documents text for the prompt StringBuilder documentsText = new StringBuilder(); Map<String, RetrievalResult> resultMap = new HashMap<>(); int docIndex = 0; for (RetrievalResult result : results) { String docId = "doc" + docIndex++; documentsText.append("Document ID ").append(docId).append(":\n"); documentsText.append(result.document().getPageContent()).append("\n\n"); resultMap.put(docId, result); } // Prepare variables for prompt Map<String, Object> variables = new HashMap<>(); variables.put("query", query); variables.put("documents", documentsText.toString()); // Load prompt using DefaultPromptLoader String finalPrompt = DefaultPromptLoader.loadPrompt(promptId, variables); // Create request with structured output ModelTextRequest request = ModelTextRequest.builder() .messages(List.of( ModelContentMessage.builder() .role(Role.user) .content(List.of( ModelContentElement.builder() .type(MessageType.text) .text(finalPrompt) .build() )) .build() )) .model(model) .temperature((double) temperature) .responseFormat(ResponseFormat.jsonSchema(RerankingScores.class)) .build(); ModelTextResponse response = modelClient.textToText(request); // Parse the structured response String responseContent = response.getChoices().get(0).getMessage().getContent(); RerankingScores rerankingScores = JsonUtils.fromJson(responseContent, RerankingScores.class); if (rerankingScores == null || rerankingScores.getDocumentScores() == null) { log.error("Failed to parse reranking response: {}", responseContent); throw new RuntimeException("Invalid reranking response"); } Map<String, Float> scores = rerankingScores.getDocumentScores(); // Create reranked results List<RerankResult> rerankedResults = new ArrayList<>(); for (Map.Entry<String, Float> entry : scores.entrySet()) { RetrievalResult originalResult = resultMap.get(entry.getKey()); if (originalResult != null) { // Create RerankResult with both original and rerank scores RerankResult rerankedResult = RerankResult.from(originalResult, entry.getValue()); rerankedResults.add(rerankedResult); } } // Sort by rerank score descending rerankedResults.sort((a, b) -> Float.compare(b.rerankScore(), a.rerankScore())); // Apply topK limit from config int limit = config.topK() > 0 ? Math.min(config.topK(), rerankedResults.size()) : rerankedResults.size(); List<RerankResult> finalResults = rerankedResults.subList(0, limit); log.debug("Reranking complete. Returning {} documents", finalResults.size()); return finalResults; } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/reranker/Reranker.java
package ai.driftkit.rag.core.reranker; import ai.driftkit.rag.core.retriever.Retriever.RetrievalResult; import ai.driftkit.vector.core.domain.Document; import java.util.List; import java.util.Map; /** * Interface for reranking retrieved documents to improve relevance. * Implementations can use various reranking models and strategies. */ public interface Reranker { /** * Configuration for reranking operations. */ record RerankConfig( int topK, Map<String, Object> modelParams ) { public static RerankConfig defaultConfig() { return new RerankConfig(10, Map.of()); } } /** * Result of a reranking operation containing the document, * original retrieval score, and new rerank score. */ record RerankResult( Document document, float originalScore, float rerankScore, Map<String, Object> metadata ) { /** * Create a RerankResult from a RetrievalResult and new rerank score. */ public static RerankResult from(RetrievalResult retrieval, float rerankScore) { return new RerankResult( retrieval.document(), retrieval.score(), rerankScore, retrieval.metadata() ); } /** * Convert back to RetrievalResult using the rerank score. */ public RetrievalResult toRetrievalResult() { return new RetrievalResult(document, rerankScore, metadata); } } /** * Rerank a list of retrieved documents based on the original query. * * @param query The original search query * @param results The retrieved documents to rerank * @param config Reranking configuration * @return Reranked list of documents with both original and rerank scores * @throws Exception if reranking fails */ List<RerankResult> rerank(String query, List<RetrievalResult> results, RerankConfig config) throws Exception; /** * Rerank with default configuration. * * @param query The original search query * @param results The retrieved documents to rerank * @return Reranked list of documents with both original and rerank scores * @throws Exception if reranking fails */ default List<RerankResult> rerank(String query, List<RetrievalResult> results) throws Exception { return rerank(query, results, RerankConfig.defaultConfig()); } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/retriever/Retriever.java
package ai.driftkit.rag.core.retriever; import ai.driftkit.vector.core.domain.Document; import java.util.List; import java.util.Map; /** * Interface for retrieving relevant documents based on a query. * Implementations can use various retrieval strategies. */ public interface Retriever { /** * Configuration for retrieval operations. */ record RetrievalConfig( int topK, float minScore, Map<String, Object> filters ) { public static RetrievalConfig defaultConfig() { return new RetrievalConfig(10, 0.0f, Map.of()); } } /** * Result of a retrieval operation containing documents and their scores. */ record RetrievalResult( Document document, float score, Map<String, Object> metadata ) {} /** * Retrieve relevant documents based on the query. * * @param query The search query * @param index The index to search in * @param config Retrieval configuration * @return List of retrieved documents with scores * @throws Exception if retrieval fails */ List<RetrievalResult> retrieve(String query, String index, RetrievalConfig config) throws Exception; /** * Retrieve relevant documents with default configuration. * * @param query The search query * @param index The index to search in * @return List of retrieved documents with scores * @throws Exception if retrieval fails */ default List<RetrievalResult> retrieve(String query, String index) throws Exception { return retrieve(query, index, RetrievalConfig.defaultConfig()); } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/retriever/VectorStoreRetriever.java
package ai.driftkit.rag.core.retriever; import ai.driftkit.embedding.core.domain.Embedding; import ai.driftkit.embedding.core.domain.Response; import ai.driftkit.embedding.core.domain.TextSegment; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.vector.core.domain.BaseVectorStore; import ai.driftkit.vector.core.domain.Document; import ai.driftkit.vector.core.domain.DocumentsResult; import ai.driftkit.vector.core.domain.EmbeddingVectorStore; import ai.driftkit.vector.core.domain.TextVectorStore; import lombok.Builder; import lombok.NonNull; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; /** * Default retriever implementation that uses a vector store directly. */ @Slf4j @Builder @RequiredArgsConstructor public class VectorStoreRetriever implements Retriever { @NonNull private final BaseVectorStore vectorStore; private final EmbeddingModel embeddingModel; // Required only for EmbeddingVectorStore @Builder.Default private final String queryPrefix = ""; /** * Retrieve relevant documents from the vector store. */ @Override public List<RetrievalResult> retrieve(String query, String index, RetrievalConfig config) throws Exception { log.debug("Retrieving documents for query: {} from index: {}", query, index); String effectiveQuery = queryPrefix.isEmpty() ? query : queryPrefix + query; DocumentsResult results; if (vectorStore instanceof TextVectorStore textStore) { // TextVectorStore handles embedding internally log.trace("Using TextVectorStore for retrieval"); results = textStore.findRelevant(index, effectiveQuery, config.topK()); } else if (vectorStore instanceof EmbeddingVectorStore embeddingStore) { // We need to create embedding ourselves if (embeddingModel == null) { throw new IllegalStateException("EmbeddingModel is required for EmbeddingVectorStore"); } log.trace("Using EmbeddingVectorStore for retrieval"); // Generate query embedding Response<Embedding> response = embeddingModel.embed(TextSegment.from(effectiveQuery)); float[] queryVector = response.content().vector(); results = embeddingStore.findRelevant(index, queryVector, config.topK()); } else { throw new IllegalStateException("BaseVectorStore without text/embedding support is not suitable for retrieval"); } // Convert to RetrievalResult and apply filters List<RetrievalResult> retrievalResults = new ArrayList<>(); for (DocumentsResult.ResultEntry entry : results.getResult()) { Document doc = entry.getDocument(); Float score = entry.getValue(); // Apply score filter if (score < config.minScore()) { continue; } // Apply metadata filters if (!matchesFilters(doc, config.filters())) { continue; } Map<String, Object> metadata = new HashMap<>(); metadata.put("retrievalScore", score); metadata.put("index", index); retrievalResults.add(new RetrievalResult(doc, score, metadata)); } log.debug("Retrieved {} documents after filtering", retrievalResults.size()); return retrievalResults; } /** * Check if document matches all filter criteria. */ private boolean matchesFilters(Document doc, Map<String, Object> filters) { if (filters == null || filters.isEmpty()) { return true; } Map<String, Object> metadata = doc.getMetadata(); if (metadata == null) { return false; } for (Map.Entry<String, Object> filter : filters.entrySet()) { Object docValue = metadata.get(filter.getKey()); Object filterValue = filter.getValue(); if (docValue == null || !docValue.equals(filterValue)) { return false; } } return true; } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/splitter/RecursiveCharacterTextSplitter.java
package ai.driftkit.rag.core.splitter; import ai.driftkit.common.utils.DocumentSplitter; import ai.driftkit.rag.core.domain.LoadedDocument; import ai.driftkit.rag.core.domain.LoadedDocument.State; import ai.driftkit.vector.core.domain.Document; import lombok.Builder; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.UUID; /** * Text splitter that uses recursive character-based splitting with overlap. * Wraps the existing DocumentSplitter from driftkit-common. */ @Slf4j @Builder @RequiredArgsConstructor public class RecursiveCharacterTextSplitter implements TextSplitter { @Builder.Default private final int chunkSize = 512; @Builder.Default private final int chunkOverlap = 128; @Builder.Default private final boolean preserveMetadata = true; @Builder.Default private final boolean addChunkMetadata = true; /** * Split a loaded document into chunks. */ @Override public List<Document> split(LoadedDocument document) { if (StringUtils.isBlank(document.getContent()) || document.getState() != State.LOADED) { log.warn("Document {} has no content to split", document.getId()); return List.of(); } // Use existing DocumentSplitter List<String> chunks = DocumentSplitter.splitDocumentIntoShingles( document.getContent(), chunkSize, chunkOverlap ); log.debug("Split document {} into {} chunks", document.getId(), chunks.size()); List<Document> documents = new ArrayList<>(); for (int i = 0; i < chunks.size(); i++) { String chunk = chunks.get(i); String chunkId = document.getId() + "-chunk-" + i; // Create metadata for chunk Map<String, Object> metadata = new HashMap<>(); // Preserve original document metadata if requested if (preserveMetadata && document.getMetadata() != null) { metadata.putAll(document.getMetadata()); } // Add chunk-specific metadata if (addChunkMetadata) { metadata.put("sourceDocumentId", document.getId()); metadata.put("sourceDocumentSource", document.getSource()); metadata.put("chunkIndex", i); metadata.put("totalChunks", chunks.size()); metadata.put("chunkSize", chunk.length()); metadata.put("splitterType", "recursive_character"); metadata.put("splitterChunkSize", chunkSize); metadata.put("splitterOverlap", chunkOverlap); } Document doc = new Document( chunkId, null, // No embedding yet chunk, metadata ); documents.add(doc); } return documents; } /** * Create a splitter with default settings. */ public static RecursiveCharacterTextSplitter withDefaults() { return RecursiveCharacterTextSplitter.builder().build(); } /** * Create a splitter with custom chunk size. */ public static RecursiveCharacterTextSplitter withChunkSize(int chunkSize) { return RecursiveCharacterTextSplitter.builder() .chunkSize(chunkSize) .build(); } /** * Create a splitter with custom chunk size and overlap. */ public static RecursiveCharacterTextSplitter withChunkSizeAndOverlap(int chunkSize, int overlap) { return RecursiveCharacterTextSplitter.builder() .chunkSize(chunkSize) .chunkOverlap(overlap) .build(); } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/splitter/SemanticTextSplitter.java
package ai.driftkit.rag.core.splitter; import ai.driftkit.embedding.core.domain.Embedding; import ai.driftkit.embedding.core.domain.Response; import ai.driftkit.embedding.core.domain.TextSegment; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.rag.core.domain.LoadedDocument; import ai.driftkit.rag.core.domain.LoadedDocument.State; import ai.driftkit.vector.core.domain.Document; import lombok.Builder; import lombok.NonNull; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils; import java.text.BreakIterator; import java.util.*; /** * Text splitter that uses semantic similarity to create chunks. * Groups sentences together based on their semantic similarity. */ @Slf4j @Builder @RequiredArgsConstructor public class SemanticTextSplitter implements TextSplitter { @NonNull private final EmbeddingModel embeddingModel; @Builder.Default private final int targetChunkSize = 512; @Builder.Default private final float similarityThreshold = 0.7f; @Builder.Default private final int maxChunkSize = 1024; @Builder.Default private final int minChunkSize = 100; @Builder.Default private final boolean preserveMetadata = true; @Builder.Default private final boolean addChunkMetadata = true; /** * Split a loaded document into semantically coherent chunks. */ @Override public List<Document> split(LoadedDocument document) { if (StringUtils.isBlank(document.getContent()) || document.getState() != State.LOADED) { log.warn("Document {} has no content to split", document.getId()); return List.of(); } // First, split into sentences List<String> sentences = splitIntoSentences(document.getContent()); if (sentences.isEmpty()) { return List.of(); } log.debug("Document {} split into {} sentences", document.getId(), sentences.size()); // Group sentences into semantically coherent chunks List<List<String>> chunks = groupSentencesSemantically(sentences); log.debug("Grouped sentences into {} semantic chunks", chunks.size()); // Convert to Document objects List<Document> documents = new ArrayList<>(); for (int i = 0; i < chunks.size(); i++) { List<String> sentenceGroup = chunks.get(i); String chunkText = String.join(" ", sentenceGroup); String chunkId = document.getId() + "-semantic-" + i; // Create metadata for chunk Map<String, Object> metadata = new HashMap<>(); // Preserve original document metadata if requested if (preserveMetadata && document.getMetadata() != null) { metadata.putAll(document.getMetadata()); } // Add chunk-specific metadata if (addChunkMetadata) { metadata.put("sourceDocumentId", document.getId()); metadata.put("sourceDocumentSource", document.getSource()); metadata.put("chunkIndex", i); metadata.put("totalChunks", chunks.size()); metadata.put("chunkSize", chunkText.length()); metadata.put("sentenceCount", sentenceGroup.size()); metadata.put("splitterType", "semantic"); metadata.put("splitterTargetSize", targetChunkSize); metadata.put("splitterSimilarityThreshold", similarityThreshold); } Document doc = new Document( chunkId, null, // No embedding yet chunkText, metadata ); documents.add(doc); } return documents; } /** * Split text into sentences. */ private List<String> splitIntoSentences(String text) { List<String> sentences = new ArrayList<>(); BreakIterator sentenceIterator = BreakIterator.getSentenceInstance(Locale.getDefault()); sentenceIterator.setText(text); int start = sentenceIterator.first(); int end = sentenceIterator.next(); while (end != BreakIterator.DONE) { String sentence = text.substring(start, end).trim(); if (!sentence.isEmpty()) { sentences.add(sentence); } start = end; end = sentenceIterator.next(); } return sentences; } /** * Group sentences into semantically coherent chunks. */ private List<List<String>> groupSentencesSemantically(List<String> sentences) { List<List<String>> chunks = new ArrayList<>(); List<String> currentChunk = new ArrayList<>(); int currentSize = 0; for (int i = 0; i < sentences.size(); i++) { String sentence = sentences.get(i); int sentenceSize = sentence.length(); // If adding this sentence would exceed max size, finalize current chunk if (!currentChunk.isEmpty() && currentSize + sentenceSize > maxChunkSize) { chunks.add(new ArrayList<>(currentChunk)); currentChunk.clear(); currentSize = 0; } // Add sentence to current chunk currentChunk.add(sentence); currentSize += sentenceSize; // Check if we should start a new chunk based on size or semantic boundary if (currentSize >= targetChunkSize) { // Check semantic similarity with next sentence if (i < sentences.size() - 1) { String nextSentence = sentences.get(i + 1); float similarity = calculateSimilarity( String.join(" ", currentChunk), nextSentence ); // If similarity is low, this is a good breaking point if (similarity < similarityThreshold) { chunks.add(new ArrayList<>(currentChunk)); currentChunk.clear(); currentSize = 0; } } else { // Last sentence, finalize chunk chunks.add(new ArrayList<>(currentChunk)); currentChunk.clear(); currentSize = 0; } } } // Add any remaining sentences if (!currentChunk.isEmpty()) { // If the last chunk is too small, merge with previous if (!chunks.isEmpty() && currentSize < minChunkSize) { List<String> lastChunk = chunks.getLast(); lastChunk.addAll(currentChunk); } else { chunks.add(currentChunk); } } return chunks; } /** * Calculate semantic similarity between two texts. */ private float calculateSimilarity(String text1, String text2) { try { // Generate embeddings Response<Embedding> response1 = embeddingModel.embed(TextSegment.from(text1)); Response<Embedding> response2 = embeddingModel.embed(TextSegment.from(text2)); float[] vector1 = response1.content().vector(); float[] vector2 = response2.content().vector(); // Calculate cosine similarity return cosineSimilarity(vector1, vector2); } catch (Exception e) { log.warn("Failed to calculate similarity, using default threshold", e); return similarityThreshold; // Default to threshold to avoid breaking } } /** * Calculate cosine similarity between two vectors. */ private float cosineSimilarity(float[] vector1, float[] vector2) { if (vector1.length != vector2.length) { throw new IllegalArgumentException("Vectors must have the same length"); } float dotProduct = 0.0f; float norm1 = 0.0f; float norm2 = 0.0f; for (int i = 0; i < vector1.length; i++) { dotProduct += vector1[i] * vector2[i]; norm1 += vector1[i] * vector1[i]; norm2 += vector2[i] * vector2[i]; } return dotProduct / (float) (Math.sqrt(norm1) * Math.sqrt(norm2)); } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/core/splitter/TextSplitter.java
package ai.driftkit.rag.core.splitter; import ai.driftkit.rag.core.domain.LoadedDocument; import ai.driftkit.vector.core.domain.Document; import java.util.List; /** * Interface for splitting text documents into smaller chunks. * Implementations should handle different splitting strategies. */ public interface TextSplitter { /** * Split a loaded document into multiple chunks. * Each chunk will become a separate document in the vector store. * * @param document The document to split * @return List of document chunks ready for embedding */ List<Document> split(LoadedDocument document); /** * Split multiple documents into chunks. * * @param documents The documents to split * @return List of all document chunks */ default List<Document> splitAll(List<LoadedDocument> documents) { return documents.stream() .flatMap(doc -> split(doc).stream()) .toList(); } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/ingestion/IngestionException.java
package ai.driftkit.rag.ingestion; import lombok.Getter; import java.util.ArrayList; import java.util.Collections; import java.util.List; /** * Exception that accumulates multiple errors during ingestion process. */ @Getter public class IngestionException extends Exception { private final List<ErrorDetail> errors; /** * Error detail for a specific document. */ public record ErrorDetail( String documentId, String source, Exception error, ErrorType errorType ) {} /** * Type of error that occurred. */ public enum ErrorType { DOCUMENT_PROCESSING, RESULT_HANDLER, PIPELINE_INITIALIZATION } public IngestionException(String message, List<ErrorDetail> errors) { super(message + " (" + errors.size() + " errors)"); this.errors = Collections.unmodifiableList(new ArrayList<>(errors)); } public IngestionException(String message, Throwable cause) { super(message, cause); this.errors = List.of(new ErrorDetail("unknown", "unknown", cause instanceof Exception ? (Exception) cause : new RuntimeException(cause), ErrorType.PIPELINE_INITIALIZATION)); } /** * Check if there were any critical errors (non-result handler errors). */ public boolean hasCriticalErrors() { return errors.stream() .anyMatch(e -> e.errorType() != ErrorType.RESULT_HANDLER); } /** * Get only critical errors. */ public List<ErrorDetail> getCriticalErrors() { return errors.stream() .filter(e -> e.errorType() != ErrorType.RESULT_HANDLER) .toList(); } @Override public String getMessage() { StringBuilder sb = new StringBuilder(super.getMessage()); sb.append("\nError details:"); for (ErrorDetail error : errors) { sb.append("\n - Document: ").append(error.documentId()) .append(" (").append(error.errorType()).append("): ") .append(error.error().getMessage()); } return sb.toString(); } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/ingestion/IngestionPipeline.java
package ai.driftkit.rag.ingestion; import ai.driftkit.common.util.Retrier; import ai.driftkit.common.utils.AIUtils; import ai.driftkit.embedding.core.domain.Embedding; import ai.driftkit.embedding.core.domain.Response; import ai.driftkit.embedding.core.domain.TextSegment; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.rag.core.domain.LoadedDocument; import ai.driftkit.rag.core.loader.DocumentLoader; import ai.driftkit.rag.core.splitter.TextSplitter; import ai.driftkit.vector.core.domain.BaseVectorStore; import ai.driftkit.vector.core.domain.Document; import ai.driftkit.vector.core.domain.EmbeddingVectorStore; import ai.driftkit.vector.core.domain.TextVectorStore; import lombok.Builder; import lombok.NonNull; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import java.util.ArrayList; import java.util.List; import java.util.UUID; import java.util.concurrent.CompletableFuture; import java.util.concurrent.atomic.AtomicInteger; import java.util.function.Consumer; import java.util.stream.Stream; /** * Pipeline for ingesting documents into a vector store. * Uses streaming and virtual threads for efficient processing. */ @Slf4j @Builder @RequiredArgsConstructor public class IngestionPipeline { @NonNull private final DocumentLoader documentLoader; @NonNull private final TextSplitter textSplitter; private final EmbeddingModel embeddingClient; // Optional - only needed for EmbeddingVectorStore @NonNull private final BaseVectorStore vectorStore; @NonNull @Builder.Default private final String indexName = "default"; @Builder.Default private final int maxRetries = 3; @Builder.Default private final long retryDelayMs = 1000; @Builder.Default private final boolean useVirtualThreads = true; /** * Progress listener for tracking ingestion progress. */ public interface ProgressListener { void onDocumentLoaded(String documentId, String source); void onDocumentProcessed(String documentId, int chunks); void onDocumentFailed(String documentId, Exception error); void onChunkStored(String chunkId); void onProgress(long processed, long total); /** * Called when an error occurs in the result handler. * Default implementation logs the error. */ default void onResultHandlerError(String documentId, Exception error) { log.error("Error in result handler for document: {}", documentId, error); } } /** * Result of processing a single document. */ public record DocumentResult( String documentId, String source, int chunksCreated, int chunksStored, List<Exception> errors, long processingTimeMs ) { public boolean isSuccess() { return errors.isEmpty() && chunksCreated == chunksStored; } } /** * Validate configuration on build. */ private static void validate(IngestionPipeline pipeline) { if (pipeline.vectorStore instanceof EmbeddingVectorStore && pipeline.embeddingClient == null) { throw new IllegalArgumentException( "EmbeddingModel is required when using EmbeddingVectorStore" ); } } /** * Run the ingestion pipeline with streaming processing. * Each document is processed independently and can be acknowledged. * * @param progressListener Optional listener for progress updates * @return Stream of results for each processed document */ public Stream<DocumentResult> run(ProgressListener progressListener) { log.info("Starting streaming document ingestion pipeline for index: {}", indexName); try { // Get document stream - either lazy or eager loading Stream<LoadedDocument> documentStream = documentLoader.supportsStreaming() ? documentLoader.loadStream() : documentLoader.load().stream(); // Process each document independently return documentStream .map(doc -> processDocumentWithRetry(doc, progressListener)) .onClose(() -> log.info("Ingestion pipeline completed")); } catch (Exception e) { log.error("Failed to start ingestion pipeline", e); throw new RuntimeException("Failed to start ingestion pipeline", e); } } /** * Run the ingestion pipeline without progress tracking. */ public Stream<DocumentResult> run() { return run(null); } /** * Run the ingestion pipeline with a consumer for handling results. * This allows for acknowledgment pattern. * * @throws IngestionException if any errors occur during processing or in result handlers */ public void run(Consumer<DocumentResult> resultHandler, ProgressListener progressListener) throws IngestionException { List<IngestionException.ErrorDetail> accumulatedErrors = new ArrayList<>(); try (Stream<DocumentResult> results = run(progressListener)) { results.forEach(result -> { // Check for document processing errors if (!result.errors().isEmpty()) { for (Exception error : result.errors()) { accumulatedErrors.add(new IngestionException.ErrorDetail( result.documentId(), result.source(), error, IngestionException.ErrorType.DOCUMENT_PROCESSING )); } } // Handle result try { resultHandler.accept(result); } catch (Exception e) { log.error("Error in result handler for document: {}", result.documentId(), e); // Notify listener if available if (progressListener != null) { progressListener.onResultHandlerError(result.documentId(), e); } // Accumulate error accumulatedErrors.add(new IngestionException.ErrorDetail( result.documentId(), result.source(), e, IngestionException.ErrorType.RESULT_HANDLER )); } }); } catch (Exception e) { // Pipeline initialization or streaming error throw new IngestionException("Failed to execute ingestion pipeline", e); } // If there were any errors, throw exception with all details if (!accumulatedErrors.isEmpty()) { throw new IngestionException("Ingestion completed with errors", accumulatedErrors); } } /** * Process a single document with retry logic. */ private DocumentResult processDocumentWithRetry(LoadedDocument document, ProgressListener listener) { long startTime = System.currentTimeMillis(); String docId = document.getId() != null ? document.getId() : AIUtils.generateId(); if (listener != null) { listener.onDocumentLoaded(docId, document.getSource()); } Exception lastError = null; try { // Use Retrier to handle the retry logic DocumentResult result = Retrier.retry(() -> { DocumentResult processResult = processDocument(document, docId, listener); if (processResult.isSuccess()) { return processResult; } // If there were errors, throw exception to trigger retry if (!processResult.errors().isEmpty()) { throw new RuntimeException("Document processing had errors", processResult.errors().getFirst()); } return processResult; // Partial success, don't retry }, maxRetries, retryDelayMs, 1); return result; } catch (Exception e) { lastError = e; log.error("All retry attempts failed for document: {}", docId, e); } // All retries failed if (listener != null) { listener.onDocumentFailed(docId, lastError); } return new DocumentResult( docId, document.getSource(), 0, 0, List.of(lastError != null ? lastError : new RuntimeException("Processing failed")), System.currentTimeMillis() - startTime ); } /** * Process a single document. */ private DocumentResult processDocument(LoadedDocument document, String docId, ProgressListener listener) { long startTime = System.currentTimeMillis(); List<Exception> errors = new ArrayList<>(); AtomicInteger chunksCreated = new AtomicInteger(0); AtomicInteger chunksStored = new AtomicInteger(0); try { // Split document into chunks List<Document> chunks = textSplitter.split(document); chunksCreated.set(chunks.size()); log.debug("Document {} split into {} chunks", docId, chunks.size()); // Process chunks based on vector store type if (vectorStore instanceof TextVectorStore textStore) { // TextVectorStore handles embedding internally processChunksForTextStore(chunks, docId, document, textStore, chunksStored, errors, listener); } else if (vectorStore instanceof EmbeddingVectorStore embeddingStore) { // We need to create embeddings ourselves processChunksForEmbeddingStore(chunks, docId, document, embeddingStore, chunksStored, errors, listener); } else { // BaseVectorStore - store without embeddings (shouldn't happen in RAG context) throw new IllegalStateException("BaseVectorStore without text/embedding support is not suitable for RAG"); } if (listener != null) { listener.onDocumentProcessed(docId, chunksCreated.get()); } } catch (Exception e) { log.error("Error processing document: {}", docId, e); errors.add(e); } return new DocumentResult( docId, document.getSource(), chunksCreated.get(), chunksStored.get(), errors, System.currentTimeMillis() - startTime ); } /** * Process chunks for TextVectorStore (no embedding needed). */ private void processChunksForTextStore( List<Document> chunks, String docId, LoadedDocument sourceDoc, TextVectorStore textStore, AtomicInteger chunksStored, List<Exception> errors, ProgressListener listener) { processChunksAsync(chunks, docId, sourceDoc, chunksStored, errors, listener, (chunk, chunkId, chunkIndex) -> { // Create document without embedding (TextVectorStore will handle it) Document doc = new Document( chunkId, null, // No vector needed chunk.getPageContent(), chunk.getMetadata() ); // Add source metadata enrichDocumentMetadata(doc, sourceDoc, docId, chunkIndex); // Store in vector store textStore.addDocument(indexName, doc); return doc; }); } /** * Process chunks for EmbeddingVectorStore (we create embeddings). */ private void processChunksForEmbeddingStore( List<Document> chunks, String docId, LoadedDocument sourceDoc, EmbeddingVectorStore embeddingStore, AtomicInteger chunksStored, List<Exception> errors, ProgressListener listener) { processChunksAsync(chunks, docId, sourceDoc, chunksStored, errors, listener, (chunk, chunkId, chunkIndex) -> { // Generate embedding Response<Embedding> response = embeddingClient.embed( TextSegment.from(chunk.getPageContent()) ); float[] vector = response.content().vector(); // Create document with embedding Document embeddedDoc = new Document( chunkId, vector, chunk.getPageContent(), chunk.getMetadata() ); // Add source metadata enrichDocumentMetadata(embeddedDoc, sourceDoc, docId, chunkIndex); // Store in vector store embeddingStore.addDocument(indexName, embeddedDoc); return embeddedDoc; }); } /** * Common async processing logic for chunks. */ private void processChunksAsync( List<Document> chunks, String docId, LoadedDocument sourceDoc, AtomicInteger chunksStored, List<Exception> errors, ProgressListener listener, ChunkProcessor processor) { List<CompletableFuture<Void>> futures = new ArrayList<>(); for (int i = 0; i < chunks.size(); i++) { Document chunk = chunks.get(i); String chunkId = docId + "-" + i; final int chunkIndex = i; Runnable task = () -> { try { // Process chunk using the provided processor processor.process(chunk, chunkId, chunkIndex); chunksStored.incrementAndGet(); if (listener != null) { listener.onChunkStored(chunkId); } log.trace("Successfully stored chunk: {}", chunkId); } catch (Exception e) { log.error("Failed to process chunk: {}", chunkId, e); synchronized (errors) { errors.add(new RuntimeException("Failed to process chunk " + chunkId, e)); } } }; CompletableFuture<Void> future = useVirtualThreads ? CompletableFuture.runAsync(task, command -> Thread.ofVirtual().start(command)) : CompletableFuture.runAsync(task); futures.add(future); } // Wait for all chunks CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])).join(); } /** * Enrich document with source metadata. */ private void enrichDocumentMetadata(Document doc, LoadedDocument sourceDoc, String docId, int chunkIndex) { doc.getMetadata().put("source", sourceDoc.getSource()); doc.getMetadata().put("sourceDocId", docId); doc.getMetadata().put("chunkIndex", chunkIndex); } /** * Functional interface for processing individual chunks. */ @FunctionalInterface private interface ChunkProcessor { Document process(Document chunk, String chunkId, int chunkIndex) throws Exception; } }
0
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag
java-sources/ai/driftkit/driftkit-rag-core/0.8.1/ai/driftkit/rag/retrieval/RetrievalPipeline.java
package ai.driftkit.rag.retrieval; import ai.driftkit.embedding.core.domain.Embedding; import ai.driftkit.embedding.core.domain.Response; import ai.driftkit.embedding.core.domain.TextSegment; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.rag.core.reranker.Reranker; import ai.driftkit.rag.core.reranker.Reranker.RerankConfig; import ai.driftkit.rag.core.reranker.Reranker.RerankResult; import ai.driftkit.rag.core.retriever.Retriever; import ai.driftkit.rag.core.retriever.Retriever.RetrievalConfig; import ai.driftkit.rag.core.retriever.Retriever.RetrievalResult; import ai.driftkit.vector.core.domain.BaseVectorStore; import ai.driftkit.vector.core.domain.Document; import ai.driftkit.vector.core.domain.DocumentsResult; import ai.driftkit.vector.core.domain.EmbeddingVectorStore; import ai.driftkit.vector.core.domain.TextVectorStore; import lombok.Builder; import lombok.NonNull; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.concurrent.CompletableFuture; /** * Pipeline for retrieving relevant documents from a vector store. * Supports optional custom retrieval strategies and reranking. */ @Slf4j @Builder @RequiredArgsConstructor public class RetrievalPipeline { private final EmbeddingModel embeddingClient; // Optional - only needed for EmbeddingVectorStore @NonNull private final BaseVectorStore vectorStore; @NonNull @Builder.Default private final String indexName = "default"; private final Retriever retriever; // Optional - custom retrieval strategy private final Reranker reranker; // Optional - reranking model @Builder.Default private final int topK = 10; @Builder.Default private final float minScore = 0.0f; @Builder.Default private final Map<String, Object> filters = Map.of(); @Builder.Default private final boolean useVirtualThreads = true; @Builder.Default private final String queryPrefix = ""; // Optional prefix for queries (e.g., "Instruct: Retrieve semantically similar text.\nQuery: ") /** * Validate configuration on build. */ private static void validate(RetrievalPipeline pipeline) { if (pipeline.vectorStore instanceof EmbeddingVectorStore && pipeline.embeddingClient == null && pipeline.retriever == null) { throw new IllegalArgumentException( "EmbeddingModel is required when using EmbeddingVectorStore without custom Retriever" ); } } /** * Retrieve relevant documents for the given query. * * @param query The search query * @return List of relevant documents * @throws Exception if retrieval fails */ public List<Document> retrieve(String query) throws Exception { return retrieve(query, RetrievalConfig.defaultConfig()); } /** * Retrieve relevant documents with custom configuration. * * @param query The search query * @param config Custom retrieval configuration * @return List of relevant documents * @throws Exception if retrieval fails */ public List<Document> retrieve(String query, RetrievalConfig config) throws Exception { log.debug("Starting retrieval for query: {}", query); // Use custom config or fall back to builder defaults int effectiveTopK = config.topK() > 0 ? config.topK() : topK; float effectiveMinScore = config.minScore() >= 0 ? config.minScore() : minScore; Map<String, Object> effectiveFilters = config.filters() != null ? config.filters() : filters; // Step 1: Retrieve documents List<RetrievalResult> retrievalResults; if (retriever != null) { // Use custom retriever log.debug("Using custom retriever"); retrievalResults = retriever.retrieve( query, indexName, new RetrievalConfig(effectiveTopK, effectiveMinScore, effectiveFilters) ); } else { // Use vector store directly retrievalResults = retrieveFromVectorStore( query, effectiveTopK, effectiveMinScore, effectiveFilters ); } log.debug("Retrieved {} documents", retrievalResults.size()); // Step 2: Optional reranking if (reranker != null && !retrievalResults.isEmpty()) { log.debug("Applying reranking"); RerankConfig rerankConfig = new RerankConfig(effectiveTopK, Map.of()); List<RerankResult> rerankResults = reranker.rerank(query, retrievalResults, rerankConfig); log.debug("Reranking complete, {} documents remaining", rerankResults.size()); // Convert RerankResult back to RetrievalResult for consistency retrievalResults = rerankResults.stream() .map(RerankResult::toRetrievalResult) .toList(); } // Convert to Document list return retrievalResults.stream() .map(RetrievalResult::document) .toList(); } /** * Retrieve documents asynchronously. * * @param query The search query * @return CompletableFuture with results */ public CompletableFuture<List<Document>> retrieveAsync(String query) { return retrieveAsync(query, RetrievalConfig.defaultConfig()); } /** * Retrieve documents asynchronously with custom configuration. * * @param query The search query * @param config Custom retrieval configuration * @return CompletableFuture with results */ public CompletableFuture<List<Document>> retrieveAsync(String query, RetrievalConfig config) { if (useVirtualThreads) { return CompletableFuture.supplyAsync( () -> { try { return retrieve(query, config); } catch (Exception e) { throw new RuntimeException("Retrieval failed", e); } }, command -> Thread.ofVirtual().start(command) ); } else { return CompletableFuture.supplyAsync( () -> { try { return retrieve(query, config); } catch (Exception e) { throw new RuntimeException("Retrieval failed", e); } } ); } } /** * Retrieve documents directly from vector store. */ private List<RetrievalResult> retrieveFromVectorStore( String query, int k, float minScoreThreshold, Map<String, Object> filterMetadata) throws Exception { String effectiveQuery = queryPrefix.isEmpty() ? query : queryPrefix + query; DocumentsResult results; if (vectorStore instanceof TextVectorStore textStore) { // TextVectorStore handles embedding internally log.trace("Using TextVectorStore for retrieval"); results = textStore.findRelevant(indexName, effectiveQuery, k); } else if (vectorStore instanceof EmbeddingVectorStore embeddingStore) { // We need to create embedding ourselves log.trace("Using EmbeddingVectorStore for retrieval"); // Generate query embedding Response<Embedding> response = embeddingClient.embed(TextSegment.from(effectiveQuery)); float[] queryVector = response.content().vector(); results = embeddingStore.findRelevant(indexName, queryVector, k); } else { throw new IllegalStateException("BaseVectorStore without text/embedding support is not suitable for retrieval"); } // Convert to RetrievalResult and apply filters List<RetrievalResult> retrievalResults = new ArrayList<>(); for (DocumentsResult.ResultEntry entry : results.getResult()) { Document doc = entry.getDocument(); Float score = entry.getValue(); // Apply score filter if (score < minScoreThreshold) { continue; } // Apply metadata filters if (!matchesFilters(doc, filterMetadata)) { continue; } retrievalResults.add(new RetrievalResult( doc, score, Map.of("retrievalScore", score) )); } return retrievalResults; } /** * Check if document matches all filter criteria. */ private boolean matchesFilters(Document doc, Map<String, Object> filters) { if (filters == null || filters.isEmpty()) { return true; } Map<String, Object> metadata = doc.getMetadata(); if (metadata == null) { return false; } for (Map.Entry<String, Object> filter : filters.entrySet()) { Object docValue = metadata.get(filter.getKey()); Object filterValue = filter.getValue(); if (docValue == null || !docValue.equals(filterValue)) { return false; } } return true; } }
0
java-sources/ai/driftkit/driftkit-rag-spring-boot-starter/0.8.1/ai/driftkit/rag/spring
java-sources/ai/driftkit/driftkit-rag-spring-boot-starter/0.8.1/ai/driftkit/rag/spring/autoconfigure/RagAutoConfiguration.java
package ai.driftkit.rag.spring.autoconfigure; import ai.driftkit.common.domain.client.ModelClient; import ai.driftkit.context.core.service.PromptService; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.rag.core.reranker.ModelBasedReranker; import ai.driftkit.rag.core.retriever.VectorStoreRetriever; import ai.driftkit.rag.core.splitter.RecursiveCharacterTextSplitter; import ai.driftkit.rag.core.splitter.SemanticTextSplitter; import ai.driftkit.rag.ingestion.IngestionPipeline; import ai.driftkit.rag.retrieval.RetrievalPipeline; import ai.driftkit.rag.spring.service.DocumentLoaderFactory; import ai.driftkit.rag.spring.service.RagService; import ai.driftkit.vector.core.domain.BaseVectorStore; import ai.driftkit.vector.spring.parser.UnifiedParser; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.autoconfigure.AutoConfiguration; import org.springframework.boot.autoconfigure.condition.ConditionalOnBean; import org.springframework.boot.autoconfigure.condition.ConditionalOnClass; import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean; import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty; import org.springframework.boot.context.properties.EnableConfigurationProperties; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; /** * Spring Boot Auto Configuration for DriftKit RAG. */ @Slf4j @AutoConfiguration @ConditionalOnClass({IngestionPipeline.class, RetrievalPipeline.class}) @EnableConfigurationProperties(RagProperties.class) public class RagAutoConfiguration { /** * Document loader factory. */ @Bean @ConditionalOnMissingBean @ConditionalOnBean(UnifiedParser.class) public DocumentLoaderFactory documentLoaderFactory(UnifiedParser parser) { log.info("Creating DocumentLoaderFactory"); return new DocumentLoaderFactory(parser); } /** * Configuration for text splitters. */ @Configuration @ConditionalOnClass(RecursiveCharacterTextSplitter.class) public static class TextSplitterConfiguration { @Bean @ConditionalOnMissingBean @ConditionalOnProperty(prefix = "driftkit.rag.splitter", name = "type", havingValue = "recursive", matchIfMissing = true) public RecursiveCharacterTextSplitter recursiveCharacterTextSplitter(RagProperties properties) { RagProperties.SplitterProperties splitterProps = properties.getSplitter(); log.info("Creating RecursiveCharacterTextSplitter with chunk size: {}, overlap: {}", splitterProps.getChunkSize(), splitterProps.getChunkOverlap()); return RecursiveCharacterTextSplitter.builder() .chunkSize(splitterProps.getChunkSize()) .chunkOverlap(splitterProps.getChunkOverlap()) .preserveMetadata(splitterProps.isPreserveMetadata()) .addChunkMetadata(splitterProps.isAddChunkMetadata()) .build(); } @Bean @ConditionalOnMissingBean @ConditionalOnProperty(prefix = "driftkit.rag.splitter", name = "type", havingValue = "semantic") @ConditionalOnBean(EmbeddingModel.class) public SemanticTextSplitter semanticTextSplitter( RagProperties properties, EmbeddingModel embeddingModel) { RagProperties.SplitterProperties splitterProps = properties.getSplitter(); log.info("Creating SemanticTextSplitter with target size: {}, similarity threshold: {}", splitterProps.getTargetChunkSize(), splitterProps.getSimilarityThreshold()); return SemanticTextSplitter.builder() .embeddingModel(embeddingModel) .targetChunkSize(splitterProps.getTargetChunkSize()) .similarityThreshold(splitterProps.getSimilarityThreshold()) .maxChunkSize(splitterProps.getMaxChunkSize()) .minChunkSize(splitterProps.getMinChunkSize()) .preserveMetadata(splitterProps.isPreserveMetadata()) .addChunkMetadata(splitterProps.isAddChunkMetadata()) .build(); } } /** * Configuration for reranker. */ @Configuration @ConditionalOnClass(ModelBasedReranker.class) public static class RerankerConfiguration { @Bean @ConditionalOnMissingBean @ConditionalOnProperty(prefix = "driftkit.rag.reranker", name = "enabled", havingValue = "true", matchIfMissing = true) @ConditionalOnBean({ModelClient.class, PromptService.class}) public ModelBasedReranker modelBasedReranker( RagProperties properties, ModelClient modelClient, PromptService promptService) { RagProperties.RerankerProperties rerankerProps = properties.getReranker(); log.info("Creating ModelBasedReranker with model: {}", rerankerProps.getModel()); return ModelBasedReranker.builder() .modelClient(modelClient) .promptService(promptService) .promptId(rerankerProps.getPromptId()) .model(rerankerProps.getModel()) .temperature(rerankerProps.getTemperature()) .build(); } } /** * Configuration for retriever. */ @Configuration @ConditionalOnClass(VectorStoreRetriever.class) public static class RetrieverConfiguration { @Bean @ConditionalOnMissingBean @ConditionalOnBean(BaseVectorStore.class) public VectorStoreRetriever vectorStoreRetriever( RagProperties properties, BaseVectorStore vectorStore, @Autowired(required = false) EmbeddingModel embeddingModel) { RagProperties.RetrieverProperties retrieverProps = properties.getRetriever(); log.info("Creating VectorStoreRetriever with query prefix: {}", retrieverProps.getQueryPrefix()); return VectorStoreRetriever.builder() .vectorStore(vectorStore) .embeddingModel(embeddingModel) .queryPrefix(retrieverProps.getQueryPrefix()) .build(); } } /** * Main RAG service. */ @Bean @ConditionalOnMissingBean @ConditionalOnProperty(prefix = "driftkit.rag", name = "enabled", havingValue = "true", matchIfMissing = true) public RagService ragService( RagProperties properties, DocumentLoaderFactory loaderFactory, BaseVectorStore vectorStore, @Autowired(required = false) RecursiveCharacterTextSplitter textSplitter, @Autowired(required = false) EmbeddingModel embeddingModel, @Autowired(required = false) VectorStoreRetriever retriever, @Autowired(required = false) ModelBasedReranker reranker) { log.info("Creating RagService"); return new RagService( properties, loaderFactory, vectorStore, textSplitter, embeddingModel, retriever, reranker ); } }
0
java-sources/ai/driftkit/driftkit-rag-spring-boot-starter/0.8.1/ai/driftkit/rag/spring
java-sources/ai/driftkit/driftkit-rag-spring-boot-starter/0.8.1/ai/driftkit/rag/spring/autoconfigure/RagProperties.java
package ai.driftkit.rag.spring.autoconfigure; import lombok.Data; import org.springframework.boot.context.properties.ConfigurationProperties; import java.util.HashMap; import java.util.Map; import java.util.Set; /** * Configuration properties for DriftKit RAG. */ @Data @ConfigurationProperties(prefix = "driftkit.rag") public class RagProperties { /** * Default index name for vector store operations. */ private String defaultIndex = "default"; /** * Enable RAG features. */ private boolean enabled = true; /** * Text splitter configuration. */ private SplitterProperties splitter = new SplitterProperties(); /** * Reranker configuration. */ private RerankerProperties reranker = new RerankerProperties(); /** * Retriever configuration. */ private RetrieverProperties retriever = new RetrieverProperties(); /** * Ingestion pipeline configuration. */ private IngestionProperties ingestion = new IngestionProperties(); @Data public static class SplitterProperties { /** * Type of splitter: recursive or semantic. */ private String type = "recursive"; /** * Chunk size for recursive splitter. */ private int chunkSize = 512; /** * Overlap between chunks for recursive splitter. */ private int chunkOverlap = 128; /** * Target chunk size for semantic splitter. */ private int targetChunkSize = 512; /** * Similarity threshold for semantic splitter. */ private float similarityThreshold = 0.7f; /** * Maximum chunk size. */ private int maxChunkSize = 1024; /** * Minimum chunk size. */ private int minChunkSize = 100; /** * Whether to preserve document metadata in chunks. */ private boolean preserveMetadata = true; /** * Whether to add chunk-specific metadata. */ private boolean addChunkMetadata = true; } @Data public static class RerankerProperties { /** * Enable reranking. */ private boolean enabled = true; /** * Model to use for reranking. */ private String model = "gpt-4o"; /** * Temperature for reranking model. */ private float temperature = 0.0f; /** * Prompt ID for reranking. */ private String promptId = "rag.rerank"; } @Data public static class RetrieverProperties { /** * Default number of results to retrieve. */ private int defaultTopK = 10; /** * Default minimum score threshold. */ private float defaultMinScore = 0.0f; /** * Query prefix to add to all queries. */ private String queryPrefix = ""; } @Data public static class IngestionProperties { /** * Maximum retries for failed documents. */ private int maxRetries = 3; /** * Retry delay in milliseconds. */ private long retryDelayMs = 1000; /** * Use virtual threads for processing. */ private boolean useVirtualThreads = true; /** * Default file extensions to process. */ private Set<String> defaultExtensions = Set.of( "txt", "md", "json", "xml", "html", "csv", "pdf", "doc", "docx", "odt", "jpg", "jpeg", "png" ); /** * Maximum file size in bytes. */ private long maxFileSizeBytes = 50 * 1024 * 1024; // 50MB } }
0
java-sources/ai/driftkit/driftkit-rag-spring-boot-starter/0.8.1/ai/driftkit/rag/spring
java-sources/ai/driftkit/driftkit-rag-spring-boot-starter/0.8.1/ai/driftkit/rag/spring/service/DocumentLoaderFactory.java
package ai.driftkit.rag.spring.service; import ai.driftkit.rag.core.domain.LoadedDocument; import ai.driftkit.rag.core.loader.DocumentLoader; import ai.driftkit.rag.core.loader.FileSystemLoader; import ai.driftkit.rag.core.loader.UrlLoader; import ai.driftkit.vector.spring.parser.UnifiedParser; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.springframework.stereotype.Service; import java.nio.file.Path; import java.nio.file.Paths; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.Set; import java.util.stream.Stream; /** * Factory for creating DocumentLoader instances at runtime. */ @Slf4j @Service @RequiredArgsConstructor public class DocumentLoaderFactory { private final UnifiedParser parser; /** * Create a FileSystemLoader for the given path. */ public FileSystemLoader fileSystemLoader(String path) { return fileSystemLoader(Paths.get(path)); } /** * Create a FileSystemLoader with custom configuration. */ public FileSystemLoader fileSystemLoader(Path path) { log.debug("Creating FileSystemLoader for path: {}", path); return FileSystemLoader.builder() .rootPath(path) .parser(parser) .build(); } /** * Create a FileSystemLoader with full configuration. */ public FileSystemLoader fileSystemLoader( Path path, boolean recursive, Set<String> extensions, Set<String> excludePatterns) { log.debug("Creating configured FileSystemLoader for path: {}", path); return FileSystemLoader.builder() .rootPath(path) .parser(parser) .recursive(recursive) .extensions(extensions) .excludePatterns(excludePatterns) .build(); } /** * Create a UrlLoader for a single URL. */ public UrlLoader urlLoader(String url) { return urlLoader(List.of(url)); } /** * Create a UrlLoader for multiple URLs. */ public UrlLoader urlLoader(List<String> urls) { log.debug("Creating UrlLoader for {} URLs", urls.size()); return UrlLoader.builder() .urls(urls) .parser(parser) .build(); } /** * Create a UrlLoader with custom configuration. */ public UrlLoader urlLoader( List<String> urls, Map<String, String> headers, int timeoutSeconds) { log.debug("Creating configured UrlLoader for {} URLs", urls.size()); return UrlLoader.builder() .urls(urls) .parser(parser) .headers(headers) .timeoutSeconds(timeoutSeconds) .build(); } /** * Create a composite loader that combines multiple loaders. */ public DocumentLoader compositeLoader(DocumentLoader... loaders) { return new CompositeDocumentLoader(List.of(loaders)); } /** * Composite loader that aggregates multiple loaders. */ @RequiredArgsConstructor private static class CompositeDocumentLoader implements DocumentLoader { private final List<DocumentLoader> loaders; @Override public List<LoadedDocument> load() throws Exception { List<LoadedDocument> allDocs = new ArrayList<>(); for (DocumentLoader loader : loaders) { allDocs.addAll(loader.load()); } return allDocs; } @Override public Stream<LoadedDocument> loadStream() throws Exception { return loaders.stream() .flatMap(loader -> { try { return loader.loadStream(); } catch (Exception e) { log.error("Error loading from loader", e); return Stream.empty(); } }); } @Override public boolean supportsStreaming() { return loaders.stream().allMatch(DocumentLoader::supportsStreaming); } } }
0
java-sources/ai/driftkit/driftkit-rag-spring-boot-starter/0.8.1/ai/driftkit/rag/spring
java-sources/ai/driftkit/driftkit-rag-spring-boot-starter/0.8.1/ai/driftkit/rag/spring/service/RagService.java
package ai.driftkit.rag.spring.service; import ai.driftkit.embedding.core.service.EmbeddingModel; import ai.driftkit.rag.core.loader.DocumentLoader; import ai.driftkit.rag.core.reranker.ModelBasedReranker; import ai.driftkit.rag.core.retriever.Retriever; import ai.driftkit.rag.core.retriever.VectorStoreRetriever; import ai.driftkit.rag.core.splitter.RecursiveCharacterTextSplitter; import ai.driftkit.rag.core.splitter.TextSplitter; import ai.driftkit.rag.ingestion.IngestionPipeline; import ai.driftkit.rag.retrieval.RetrievalPipeline; import ai.driftkit.rag.spring.autoconfigure.RagProperties; import ai.driftkit.vector.core.domain.BaseVectorStore; import ai.driftkit.vector.core.domain.Document; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils; import java.nio.file.Path; import java.util.List; import java.util.Map; import java.util.stream.Stream; /** * Main service for RAG operations. * Provides convenient methods for document ingestion and retrieval. */ @Slf4j @RequiredArgsConstructor public class RagService { private final RagProperties properties; private final DocumentLoaderFactory loaderFactory; private final BaseVectorStore vectorStore; private final TextSplitter textSplitter; private final EmbeddingModel embeddingModel; private final VectorStoreRetriever retriever; private final ModelBasedReranker reranker; /** * Ingest documents from file system. */ public Stream<IngestionPipeline.DocumentResult> ingestFromFileSystem( String path, String indexName) { return ingestFromFileSystem(Path.of(path), indexName); } /** * Ingest documents from file system with custom configuration. */ public Stream<IngestionPipeline.DocumentResult> ingestFromFileSystem( Path path, String indexName) { if (StringUtils.isEmpty(indexName)) { indexName = properties.getDefaultIndex(); } DocumentLoader loader = loaderFactory.fileSystemLoader(path); return ingest(loader, indexName); } /** * Ingest documents from URLs. */ public Stream<IngestionPipeline.DocumentResult> ingestFromUrls( List<String> urls, String indexName) { if (StringUtils.isEmpty(indexName)) { indexName = properties.getDefaultIndex(); } DocumentLoader loader = loaderFactory.urlLoader(urls); return ingest(loader, indexName); } /** * Ingest documents using a custom loader. */ public Stream<IngestionPipeline.DocumentResult> ingest( DocumentLoader loader, String indexName) { log.info("Starting ingestion into index: {}", indexName); IngestionPipeline pipeline = IngestionPipeline.builder() .documentLoader(loader) .textSplitter(textSplitter) .embeddingClient(embeddingModel) .vectorStore(vectorStore) .indexName(indexName) .maxRetries(properties.getIngestion().getMaxRetries()) .retryDelayMs(properties.getIngestion().getRetryDelayMs()) .useVirtualThreads(properties.getIngestion().isUseVirtualThreads()) .build(); return pipeline.run(); } /** * Retrieve documents with default configuration. */ public List<Document> retrieve(String query) { return retrieve(query, properties.getDefaultIndex()); } /** * Retrieve documents from specific index. */ public List<Document> retrieve(String query, String indexName) { return retrieve( query, indexName, properties.getRetriever().getDefaultTopK(), properties.getRetriever().getDefaultMinScore() ); } /** * Retrieve documents with custom configuration. */ public List<Document> retrieve( String query, String indexName, int topK, float minScore) { return retrieve(query, indexName, topK, minScore, Map.of()); } /** * Retrieve documents with full configuration. */ public List<Document> retrieve( String query, String indexName, int topK, float minScore, Map<String, Object> filters) { if (StringUtils.isEmpty(query)) { log.warn("Empty query provided"); return List.of(); } if (StringUtils.isEmpty(indexName)) { indexName = properties.getDefaultIndex(); } log.debug("Retrieving documents for query: {} from index: {}", query, indexName); try { RetrievalPipeline.RetrievalPipelineBuilder builder = RetrievalPipeline.builder() .vectorStore(vectorStore) .embeddingClient(embeddingModel) .indexName(indexName) .topK(topK) .minScore(minScore) .filters(filters) .queryPrefix(properties.getRetriever().getQueryPrefix()) .useVirtualThreads(properties.getIngestion().isUseVirtualThreads()); // Add optional components if available if (retriever != null) { builder.retriever(retriever); } if (reranker != null && properties.getReranker().isEnabled()) { builder.reranker(reranker); } RetrievalPipeline pipeline = builder.build(); return pipeline.retrieve(query); } catch (Exception e) { log.error("Failed to retrieve documents for query: {}", query, e); return List.of(); } } /** * Create a custom ingestion pipeline builder. */ public IngestionPipeline.IngestionPipelineBuilder ingestionBuilder() { return IngestionPipeline.builder() .vectorStore(vectorStore) .embeddingClient(embeddingModel) .textSplitter(textSplitter) .maxRetries(properties.getIngestion().getMaxRetries()) .retryDelayMs(properties.getIngestion().getRetryDelayMs()) .useVirtualThreads(properties.getIngestion().isUseVirtualThreads()); } /** * Create a custom retrieval pipeline builder. */ public RetrievalPipeline.RetrievalPipelineBuilder retrievalBuilder() { RetrievalPipeline.RetrievalPipelineBuilder builder = RetrievalPipeline.builder() .vectorStore(vectorStore) .embeddingClient(embeddingModel) .topK(properties.getRetriever().getDefaultTopK()) .minScore(properties.getRetriever().getDefaultMinScore()) .queryPrefix(properties.getRetriever().getQueryPrefix()) .useVirtualThreads(properties.getIngestion().isUseVirtualThreads()); if (retriever != null) { builder.retriever(retriever); } if (reranker != null && properties.getReranker().isEnabled()) { builder.reranker(reranker); } return builder; } }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/domain/BaseVectorStore.java
package ai.driftkit.vector.core.domain; import ai.driftkit.config.EtlConfig.VectorStoreConfig; import org.apache.commons.collections4.CollectionUtils; import java.util.List; /** * Base Vector Store interface containing all methods except findRelevant. * This interface defines the core operations for document management in a vector store. */ public interface BaseVectorStore { void configure(VectorStoreConfig config) throws Exception; boolean supportsStoreName(String storeName); /** * Add documents with embeddings. Returns list of IDs of the stored documents. */ default String addDocument(String index, Document document) throws Exception { List<String> result = addDocuments(index, List.of(document)); if (CollectionUtils.isEmpty(result)) { return null; } return result.getFirst(); } /** * Add documents with embeddings. Returns list of IDs of the stored documents. */ List<String> addDocuments(String index, List<Document> documents) throws Exception; /** * Update a document (including its vector) for a given ID. */ void updateDocument(String id, String index, Document document) throws Exception; /** * Delete a document by ID. */ void deleteDocument(String id, String index) throws Exception; /** * Read a document by ID. */ Document readDocument(String id, String index) throws Exception; }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/domain/Document.java
package ai.driftkit.vector.core.domain; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import java.util.Map; @Data @NoArgsConstructor @AllArgsConstructor public class Document { private String id; private float[] vector; private String pageContent; private Map<String, Object> metadata; public Document(String id, float[] vector, String content) { this(id, vector, content,null); } }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/domain/DocumentsResult.java
package ai.driftkit.vector.core.domain; import com.fasterxml.jackson.annotation.JsonIgnore; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * DocumentsResult class revised for serialization compatibility */ @Data @NoArgsConstructor @AllArgsConstructor public class DocumentsResult { public static final DocumentsResult EMPTY = new DocumentsResult(); private List<ResultEntry> result = new ArrayList<>(); public DocumentsResult(Map<Document, Float> docs) { docs.entrySet().forEach(e -> { result.add(new ResultEntry(e.getKey(), e.getValue())); }); } @JsonIgnore public Document first() { return result.isEmpty() ? null : result.get(0).getDocument(); } @JsonIgnore public boolean isEmpty() { return result == null || result.isEmpty(); } @JsonIgnore public void put(Document doc, Float value) { result.add(new ResultEntry(doc, value)); } @JsonIgnore public List<Document> documents() { List<Document> docs = new ArrayList<>(); for (ResultEntry entry : result) { docs.add(entry.getDocument()); } return docs; } @JsonIgnore public int size() { return isEmpty() ? 0 : result.size(); } /** * ResultEntry class to hold Document and its associated Float value */ @Data @NoArgsConstructor @AllArgsConstructor public static class ResultEntry { private Document document; private Float value; } }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/domain/EmbeddingVectorStore.java
package ai.driftkit.vector.core.domain; /** * Vector Store interface that supports similarity search using embedding vectors. * This interface extends BaseVectorStore and adds the ability to search using * float array embeddings. */ public interface EmbeddingVectorStore extends BaseVectorStore { /** * Perform similarity search given a vector embedding, returning documents with scores, * where the key is the Document and the value is the similarity score. * * @param index the index to search in * @param embedding the embedding vector to search with * @param k the number of top results to return * @return DocumentsResult containing documents and their similarity scores * @throws Exception if an error occurs during search */ DocumentsResult findRelevant(String index, float[] embedding, int k) throws Exception; }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/domain/Pair.java
package ai.driftkit.vector.core.domain; import lombok.AllArgsConstructor; import lombok.Data; /** * A simple Pair utility class */ @Data @AllArgsConstructor public class Pair<L, R> { private L left; private R right; }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/domain/TextVectorStore.java
package ai.driftkit.vector.core.domain; /** * Vector Store interface that supports similarity search using text queries. * This interface extends BaseVectorStore and adds the ability to search using * text strings, which are typically converted to embeddings internally. */ public interface TextVectorStore extends BaseVectorStore { /** * Perform similarity search given a text query, returning documents with scores, * where the key is the Document and the value is the similarity score. * The text query will be converted to an embedding internally. * * @param index the index to search in * @param query the text query to search with * @param k the number of top results to return * @return DocumentsResult containing documents and their similarity scores * @throws Exception if an error occurs during search */ DocumentsResult findRelevant(String index, String query, int k) throws Exception; }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/filebased/FileBasedVectorStore.java
package ai.driftkit.vector.core.filebased; import ai.driftkit.config.EtlConfig.VectorStoreConfig; import ai.driftkit.vector.core.domain.Document; import ai.driftkit.vector.core.inmemory.InMemoryVectorStore; import org.jetbrains.annotations.NotNull; import java.io.*; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.UUID; import java.util.concurrent.ConcurrentHashMap; public class FileBasedVectorStore extends InMemoryVectorStore { private String configPath; public boolean supportsStoreName(String storeName) { return "filebased".equalsIgnoreCase(storeName); } @Override public void configure(VectorStoreConfig config) throws Exception { this.configPath = config.get("storageFile"); loadFromDisk(); } private void loadFromDisk() { File file = new File(configPath); if (file.exists()) { try (ObjectInputStream ois = new ObjectInputStream(new FileInputStream(file))) { documentMap = (ConcurrentHashMap<String, Map<String, Document>>) ois.readObject(); } catch (IOException | ClassNotFoundException e) { throw new RuntimeException("Failed to load vector store from disk", e); } } else { documentMap = new ConcurrentHashMap<>(); } } private void saveToDisk() { try (ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(configPath))) { oos.writeObject(documentMap); } catch (IOException e) { throw new RuntimeException("Failed to save vector store to disk", e); } } public List<String> addDocuments(String indexName, List<Document> documents) { List<String> ids = new ArrayList<>(); for (Document doc : documents) { String id = doc.getId(); if (id == null || id.isEmpty()) { id = UUID.randomUUID().toString(); doc.setId(id); } Map<String, Document> index = getIndexOrCreate(indexName); index.put(id, doc); ids.add(id); } saveToDisk(); return ids; } @NotNull private Map<String, Document> getIndexOrCreate(String indexName) { return documentMap.computeIfAbsent(indexName, e -> new ConcurrentHashMap<>()); } }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/inmemory/InMemoryVectorStore.java
package ai.driftkit.vector.core.inmemory; import ai.driftkit.config.EtlConfig.VectorStoreConfig; import ai.driftkit.vector.core.domain.Document; import ai.driftkit.vector.core.domain.DocumentsResult; import ai.driftkit.vector.core.domain.EmbeddingVectorStore; import org.jetbrains.annotations.NotNull; import java.util.*; import java.util.concurrent.ConcurrentHashMap; import java.util.stream.Collectors; public class InMemoryVectorStore implements EmbeddingVectorStore { protected Map<String, Map<String, Document>> documentMap = new ConcurrentHashMap<>(); public boolean supportsStoreName(String storeName) { return "inmemory".equalsIgnoreCase(storeName); } @Override public void configure(VectorStoreConfig config) throws Exception { } public List<String> addDocuments(String indexName, List<Document> documents) { List<String> ids = new ArrayList<>(); for (Document doc : documents) { String id = doc.getId(); if (id == null || id.isEmpty()) { id = UUID.randomUUID().toString(); doc.setId(id); } Map<String, Document> index = getIndexOrCreate(indexName); index.put(id, doc); ids.add(id); } return ids; } public DocumentsResult findRelevant(String index, float[] queryEmbedding, int topK) { return query(index, queryEmbedding, topK, null); } public DocumentsResult query(String indexName, float[] queryEmbedding, int topK, Map<String, Object> filters) { Map<String, Document> index = getIndexOrCreate(indexName); // Step 1: Apply metadata filters List<Document> filteredDocuments = index.values().stream() .filter(doc -> filters == null || (doc.getVector() != null && matchesFilters(doc.getMetadata(), filters))) .collect(Collectors.toList()); // Step 2: Extract embeddings and IDs List<float[]> docVectors = filteredDocuments.stream() .map(Document::getVector) .collect(Collectors.toList()); List<String> docIds = filteredDocuments.stream() .map(Document::getId) .collect(Collectors.toList()); // Step 3: Calculate top-k similarities List<SimilarityResult> topResults = getTopKSimilarities(queryEmbedding, docVectors, docIds, topK); // Step 4: Prepare results LinkedHashMap<Document, Float> resultMap = new LinkedHashMap<>(); for (SimilarityResult result : topResults) { if (result.getSimilarity() == 0) { continue; } Document doc = index.get(result.getDocumentId()); resultMap.put(doc, result.getSimilarity()); } return new DocumentsResult(resultMap); } private boolean matchesFilters(Map<String, Object> metadata, Map<String, Object> filters) { for (Map.Entry<String, Object> filter : filters.entrySet()) { if (!metadata.containsKey(filter.getKey()) || !metadata.get(filter.getKey()).equals(filter.getValue())) { return false; } } return true; } private List<SimilarityResult> getTopKSimilarities(float[] queryEmbedding, List<float[]> docEmbeddings, List<String> docIds, int k) { List<SimilarityResult> results = new ArrayList<>(); for (int i = 0; i < docEmbeddings.size(); i++) { float[] docEmbedding = docEmbeddings.get(i); float similarity = cosineSimilarity(queryEmbedding, docEmbedding); results.add(new SimilarityResult(similarity, docIds.get(i))); } // Sort results by similarity in descending order results.sort((r1, r2) -> Float.compare(r2.getSimilarity(), r1.getSimilarity())); // Return top-k results return results.stream().filter(e -> e.getSimilarity() > 0).limit(k).collect(Collectors.toList()); } private float cosineSimilarity(float[] v1, float[] v2) { float dotProduct = 0f; float normA = 0f; float normB = 0f; for (int i = 0; i < v1.length; i++) { dotProduct += v1[i] * v2[i]; normA += v1[i] * v1[i]; normB += v2[i] * v2[i]; } return dotProduct / (float) (Math.sqrt(normA) * Math.sqrt(normB) + 1e-10f); } public void updateDocument(String id, String indexName, Document document) { Map<String, Document> index = getIndexOrCreate(indexName); if (!index.containsKey(id)) { throw new NoSuchElementException("No document found with ID: " + id); } index.put(id, document); } public void deleteDocument(String id, String indexName) { Map<String, Document> index = getIndexOrCreate(indexName); if (!index.containsKey(id)) { throw new NoSuchElementException("No document found with ID: " + id); } index.remove(id); } public Document readDocument(String id, String indexName) { return getIndexOrCreate(indexName).get(id); } @NotNull private Map<String, Document> getIndexOrCreate(String indexName) { return documentMap.computeIfAbsent(indexName, e -> new ConcurrentHashMap<>()); } private static class SimilarityResult { private final float similarity; private final String documentId; public SimilarityResult(float similarity, String documentId) { this.similarity = similarity; this.documentId = documentId; } public float getSimilarity() { return similarity; } public String getDocumentId() { return documentId; } } }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/pinecone
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/pinecone/client/PineconeVectorStore.java
package ai.driftkit.vector.core.pinecone.client; import ai.driftkit.config.EtlConfig; import ai.driftkit.config.EtlConfig.VectorStoreConfig; import ai.driftkit.vector.core.domain.Document; import ai.driftkit.vector.core.domain.DocumentsResult; import ai.driftkit.vector.core.domain.EmbeddingVectorStore; import ai.driftkit.vector.core.pinecone.client.PineconeVectorStore.PineconeQueryResponse.Match; import ai.driftkit.vector.core.pinecone.client.PineconeVectorStore.PineconeUpsertRequest.VectorEntry; import feign.*; import feign.jackson.JacksonDecoder; import feign.jackson.JacksonEncoder; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import lombok.extern.slf4j.Slf4j; import okhttp3.OkHttpClient; import org.apache.commons.collections4.CollectionUtils; import java.nio.ByteBuffer; import java.util.*; @Slf4j public class PineconeVectorStore implements EmbeddingVectorStore { private VectorStoreConfig config; private PineconeApi api; @Override public void configure(VectorStoreConfig config) { this.config = config; this.api = Feign.builder() .client(new feign.okhttp.OkHttpClient(new OkHttpClient.Builder().build())) .encoder(new JacksonEncoder()) .decoder(new JacksonDecoder()) .target(PineconeApi.class, config.get(EtlConfig.ENDPOINT)); log.info("Configured PineconeVectorStore"); } @Override public boolean supportsStoreName(String storeName) { return "pinecone".equalsIgnoreCase(storeName); } @Override public List<String> addDocuments(String index, List<Document> documents) throws Exception { String namespace = index; List<VectorEntry> entries = new ArrayList<>(); List<String> ids = new ArrayList<>(); for (Document doc : documents) { String id = doc.getId(); if (id == null || id.isEmpty()) { id = UUID.randomUUID().toString(); doc.setId(id); } Map<String, Object> metadata = fromDocument(doc); entries.add(new VectorEntry(id, doc.getVector(), metadata)); ids.add(id); } PineconeUpsertRequest req = new PineconeUpsertRequest(entries, namespace); api.upsert(config.get(EtlConfig.API_KEY), req); return ids; } @Override public DocumentsResult findRelevant(String index, float[] embedding, int k) throws Exception { String namespace = index; PineconeQueryRequest req = new PineconeQueryRequest(embedding, k, namespace, true); PineconeQueryResponse resp = api.query(config.get(EtlConfig.API_KEY), req); if (resp.getMatches() == null) return DocumentsResult.EMPTY; LinkedHashMap<Document, Float> resultMap = new LinkedHashMap<>(); for (PineconeQueryResponse.Match m : resp.getMatches()) { Document doc = toDocument(m.getId(), m.getMetadata()); resultMap.put(doc, m.getScore()); } return new DocumentsResult(resultMap); } @Override public void updateDocument(String id, String index, Document document) throws Exception { try { String namespace = index; VectorEntry entry = new VectorEntry(id, document.getVector(), fromDocument(document)); PineconeUpsertRequest req = new PineconeUpsertRequest(Collections.singletonList(entry), namespace); api.upsert(config.get(EtlConfig.API_KEY), req); } catch (Exception e) { if (e instanceof FeignException ex) { Optional<ByteBuffer> body = ex.responseBody(); if (body.isPresent()) { String bs = new String(body.get().array()); throw new RuntimeException(bs, e); } } throw new RuntimeException(e); } } @Override public void deleteDocument(String id, String index) throws Exception { String namespace = index; PineconeDeleteRequest deleteRequest = new PineconeDeleteRequest(Collections.singletonList(id), namespace, false, null); api.delete(config.get(EtlConfig.API_KEY), deleteRequest); } @Override public Document readDocument(String id, String index) throws Exception { PineconeIdQueryRequest queryParams = new PineconeIdQueryRequest(); queryParams.setId(id); queryParams.setNamespace(index); queryParams.setTopK(1); queryParams.setIncludeMetadata(true); PineconeQueryResponse resp = api.fetch(config.get(EtlConfig.API_KEY), queryParams); if (CollectionUtils.isEmpty(resp.getMatches())) return null; Match m = resp.getMatches().getFirst(); return toDocument(m.getId(), m.getMetadata()); } private Document toDocument(String id, Map<String, Object> metadata) { String pageContent = (String) metadata.getOrDefault("page_content", ""); Map<String, Object> metaCopy = new HashMap<>(metadata); metaCopy.remove("page_content"); Document doc = new Document(id, null, pageContent); doc.setMetadata(metaCopy); return doc; } private Map<String, Object> fromDocument(Document doc) { Map<String, Object> metadata = new HashMap<>( doc.getMetadata() != null ? doc.getMetadata() : Collections.emptyMap() ); metadata.put("page_content", doc.getPageContent()); return metadata; } // Feign client interface public interface PineconeApi { @RequestLine("POST /vectors/upsert") @Headers({"Content-Type: application/json", "Api-Key: {apiKey}"}) Map<String, Object> upsert(@Param("apiKey") String apiKey, PineconeUpsertRequest request); @RequestLine("POST /query") @Headers({"Content-Type: application/json", "Api-Key: {apiKey}"}) PineconeQueryResponse query(@Param("apiKey") String apiKey, PineconeQueryRequest request); @RequestLine("POST /query") @Headers({"Content-Type: application/json", "Api-Key: {apiKey}"}) PineconeQueryResponse fetch(@Param("apiKey") String apiKey, @QueryMap PineconeIdQueryRequest idRequest); @RequestLine("POST /vectors/delete") @Headers({"Content-Type: application/json", "Api-Key: {apiKey}"}) Map<String, Object> delete(@Param("apiKey") String apiKey, PineconeDeleteRequest request); } @Data @NoArgsConstructor @AllArgsConstructor public static class PineconeUpsertRequest { private List<VectorEntry> vectors; private String namespace; @Data @NoArgsConstructor @AllArgsConstructor public static class VectorEntry { private String id; private float[] values; private Map<String, Object> metadata; } } @Data @NoArgsConstructor @AllArgsConstructor public static class PineconeQueryRequest { private float[] vector; private int topK; private String namespace; private boolean includeMetadata; } @Data @NoArgsConstructor @AllArgsConstructor public static class PineconeIdQueryRequest { private String id; private int topK; private String namespace; private boolean includeMetadata; } @Data @NoArgsConstructor @AllArgsConstructor public static class PineconeQueryResponse { private List<Match> matches; private String namespace; @Data @NoArgsConstructor @AllArgsConstructor public static class Match { private String id; private float score; private Map<String, Object> metadata; } } @Data @NoArgsConstructor @AllArgsConstructor public static class PineconeFetchResponse { private Map<String, VectorRecord> vectors; private String namespace; @Data @NoArgsConstructor @AllArgsConstructor public static class VectorRecord { private String id; private float[] values; private Map<String, Object> metadata; } } @Data @NoArgsConstructor @AllArgsConstructor public static class PineconeDeleteRequest { private List<String> ids; private String namespace; private boolean deleteAll; private Map<String, Object> filter; } }
0
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core
java-sources/ai/driftkit/driftkit-vector-core/0.8.1/ai/driftkit/vector/core/service/VectorStoreFactory.java
package ai.driftkit.vector.core.service; import ai.driftkit.config.EtlConfig.VectorStoreConfig; import ai.driftkit.vector.core.domain.BaseVectorStore; import ai.driftkit.vector.core.domain.EmbeddingVectorStore; import ai.driftkit.vector.core.domain.TextVectorStore; /** * This factory creates instances of vector stores from config. */ import java.util.LinkedHashMap; import java.util.Map; import java.util.ServiceLoader; import java.util.concurrent.ConcurrentHashMap; /** * This factory creates instances of vector stores from config. */ public class VectorStoreFactory { private static final Map<String, BaseVectorStore> stores = new ConcurrentHashMap<>(); public static BaseVectorStore fromConfig(VectorStoreConfig config) throws Exception { if (config == null || config.getName() == null) { throw new IllegalArgumentException("Configuration and storeName must not be null"); } return stores.computeIfAbsent(config.getName(), name -> { String storeName = config.getName(); // Try to load EmbeddingVectorStore implementations ServiceLoader<EmbeddingVectorStore> embeddingLoader = ServiceLoader.load(EmbeddingVectorStore.class); for (EmbeddingVectorStore store : embeddingLoader) { if (store.supportsStoreName(storeName)) { try { store.configure(config); return store; } catch (Exception e) { throw new RuntimeException(e); } } } // Try to load TextVectorStore implementations ServiceLoader<TextVectorStore> textLoader = ServiceLoader.load(TextVectorStore.class); for (TextVectorStore store : textLoader) { if (store.supportsStoreName(storeName)) { try { store.configure(config); return store; } catch (Exception e) { throw new RuntimeException(e); } } } throw new IllegalArgumentException("Unknown or unavailable vector store: " + storeName); }); } }
0
java-sources/ai/driftkit/driftkit-vector-spring-ai/0.8.1/ai/driftkit/vector
java-sources/ai/driftkit/driftkit-vector-spring-ai/0.8.1/ai/driftkit/vector/springai/SpringAiVectorStoreAdapter.java
package ai.driftkit.vector.springai; import ai.driftkit.config.EtlConfig.VectorStoreConfig; import ai.driftkit.vector.core.domain.Document; import ai.driftkit.vector.core.domain.DocumentsResult; import ai.driftkit.vector.core.domain.TextVectorStore; import lombok.extern.slf4j.Slf4j; import org.apache.commons.collections4.CollectionUtils; import org.apache.commons.lang3.StringUtils; import org.springframework.ai.vectorstore.SearchRequest; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.UUID; /** * Adapter that bridges Spring AI VectorStore with DriftKit VectorStore interface. * This allows using any Spring AI vector store implementation within the DriftKit framework. */ @Slf4j public class SpringAiVectorStoreAdapter implements TextVectorStore { private final org.springframework.ai.vectorstore.VectorStore springAiVectorStore; private final String storeName; private VectorStoreConfig config; public SpringAiVectorStoreAdapter(org.springframework.ai.vectorstore.VectorStore springAiVectorStore, String storeName) { if (springAiVectorStore == null) { throw new IllegalArgumentException("Spring AI VectorStore cannot be null"); } if (StringUtils.isBlank(storeName)) { throw new IllegalArgumentException("Store name cannot be blank"); } this.springAiVectorStore = springAiVectorStore; this.storeName = storeName; } @Override public void configure(VectorStoreConfig config) throws Exception { this.config = config; log.info("Configured Spring AI Vector Store adapter with store name: {}", storeName); } @Override public boolean supportsStoreName(String storeName) { return this.storeName.equalsIgnoreCase(storeName); } @Override public List<String> addDocuments(String index, List<Document> documents) throws Exception { if (CollectionUtils.isEmpty(documents)) { return new ArrayList<>(); } if (StringUtils.isBlank(index)) { throw new IllegalArgumentException("Index cannot be blank"); } List<org.springframework.ai.document.Document> springAiDocs = new ArrayList<>(); List<String> documentIds = new ArrayList<>(); for (Document doc : documents) { if (doc == null) { continue; } String id = StringUtils.isNotEmpty(doc.getId()) ? doc.getId() : UUID.randomUUID().toString(); documentIds.add(id); Map<String, Object> metadata = new HashMap<>(); if (doc.getMetadata() != null) { metadata.putAll(doc.getMetadata()); } metadata.put("index", index); metadata.put("driftkit_id", id); org.springframework.ai.document.Document springAiDoc = org.springframework.ai.document.Document.builder() .id(id) .text(doc.getPageContent()) .metadata(metadata) .build(); springAiDocs.add(springAiDoc); } if (CollectionUtils.isEmpty(springAiDocs)) { return documentIds; } springAiVectorStore.add(springAiDocs); log.debug("Added {} documents to Spring AI vector store for index: {}", springAiDocs.size(), index); return documentIds; } @Override public DocumentsResult findRelevant(String index, String query, int k) throws Exception { if (StringUtils.isBlank(query)) { return DocumentsResult.EMPTY; } if (StringUtils.isBlank(index)) { throw new IllegalArgumentException("Index cannot be blank"); } if (k <= 0) { throw new IllegalArgumentException("k must be positive"); } // Create search request with text query SearchRequest searchRequest = SearchRequest.builder() .query(query) .filterExpression(String.format("index == '%s'", escapeFilterValue(index))) .topK(k) .build(); List<org.springframework.ai.document.Document> results = springAiVectorStore.similaritySearch(searchRequest); DocumentsResult result = new DocumentsResult(); // Spring AI returns results already sorted by relevance for (org.springframework.ai.document.Document doc : results) { Document driftkitDoc = convertToDriftKitDocument(doc); if (driftkitDoc == null) { continue; } // Spring AI doesn't expose similarity scores directly, so we use a placeholder // The results are already ordered by relevance float score = -1f; result.put(driftkitDoc, score); } log.debug("Found {} relevant documents for index: {}", result.size(), index); return result; } @Override public void updateDocument(String id, String index, Document document) throws Exception { if (StringUtils.isEmpty(id)) { throw new IllegalArgumentException("Document ID cannot be empty"); } if (document == null) { throw new IllegalArgumentException("Document cannot be null"); } if (StringUtils.isBlank(index)) { throw new IllegalArgumentException("Index cannot be blank"); } deleteDocument(id, index); document.setId(id); addDocuments(index, List.of(document)); log.debug("Updated document {} in index: {}", id, index); } @Override public void deleteDocument(String id, String index) throws Exception { if (StringUtils.isEmpty(id)) { throw new IllegalArgumentException("Document ID cannot be empty"); } if (StringUtils.isBlank(index)) { throw new IllegalArgumentException("Index cannot be blank"); } springAiVectorStore.delete(List.of(id)); log.debug("Deleted document {} from index: {}", id, index); } @Override public Document readDocument(String id, String index) throws Exception { if (StringUtils.isEmpty(id)) { throw new IllegalArgumentException("Document ID cannot be empty"); } if (StringUtils.isBlank(index)) { throw new IllegalArgumentException("Index cannot be blank"); } // For findById, we need to create a dummy query with proper filter SearchRequest searchRequest = SearchRequest.builder() .filterExpression(String.format("driftkit_id == '%s' && index == '%s'", escapeFilterValue(id), escapeFilterValue(index))) .topK(1) .build(); List<org.springframework.ai.document.Document> results = springAiVectorStore.similaritySearch(searchRequest); if (CollectionUtils.isEmpty(results)) { return null; } return convertToDriftKitDocument(results.get(0)); } private List<Double> convertToDoubleList(float[] floatArray) { if (floatArray == null) { return new ArrayList<>(); } List<Double> doubleList = new ArrayList<>(floatArray.length); for (float f : floatArray) { doubleList.add((double) f); } return doubleList; } private float[] convertToFloatArray(List<Double> doubleList) { if (CollectionUtils.isEmpty(doubleList)) { return null; } float[] floatArray = new float[doubleList.size()]; for (int i = 0; i < doubleList.size(); i++) { floatArray[i] = doubleList.get(i).floatValue(); } return floatArray; } private Document convertToDriftKitDocument(org.springframework.ai.document.Document springAiDoc) { if (springAiDoc == null) { return null; } String id = (String) springAiDoc.getMetadata().getOrDefault("driftkit_id", springAiDoc.getId()); Map<String, Object> metadata = new HashMap<>(); if (springAiDoc.getMetadata() != null) { metadata.putAll(springAiDoc.getMetadata()); metadata.remove("driftkit_id"); metadata.remove("index"); } return new Document( id, null, springAiDoc.getText(), metadata ); } private String escapeFilterValue(String value) { return value.replace("'", "\\'"); } private float calculateCosineSimilarity(float[] vectorA, float[] vectorB) { if (vectorA == null || vectorB == null || vectorA.length != vectorB.length) { return 0.0f; } float dotProduct = 0.0f; float normA = 0.0f; float normB = 0.0f; for (int i = 0; i < vectorA.length; i++) { dotProduct += vectorA[i] * vectorB[i]; normA += vectorA[i] * vectorA[i]; normB += vectorB[i] * vectorB[i]; } if (normA == 0.0f || normB == 0.0f) { return 0.0f; } return (float) (dotProduct / (Math.sqrt(normA) * Math.sqrt(normB))); } }
0
java-sources/ai/driftkit/driftkit-vector-spring-ai/0.8.1/ai/driftkit/vector
java-sources/ai/driftkit/driftkit-vector-spring-ai/0.8.1/ai/driftkit/vector/springai/SpringAiVectorStoreFactory.java
package ai.driftkit.vector.springai; import ai.driftkit.vector.core.domain.TextVectorStore; import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils; /** * Factory for creating Spring AI vector store adapters. */ @Slf4j public class SpringAiVectorStoreFactory { /** * Creates a DriftKit TextVectorStore adapter for the given Spring AI VectorStore. * * @param springAiVectorStore The Spring AI vector store implementation * @param storeName The name to identify this store (e.g., "pinecone", "qdrant", "weaviate") * @return A DriftKit TextVectorStore adapter */ public static TextVectorStore create(org.springframework.ai.vectorstore.VectorStore springAiVectorStore, String storeName) { if (springAiVectorStore == null) { throw new IllegalArgumentException("Spring AI VectorStore cannot be null"); } if (StringUtils.isEmpty(storeName)) { throw new IllegalArgumentException("Store name cannot be empty"); } log.info("Creating Spring AI VectorStore adapter for store: {}", storeName); return new SpringAiVectorStoreAdapter(springAiVectorStore, storeName); } }
0
java-sources/ai/driftkit/driftkit-vector-spring-ai-starter/0.8.1/ai/driftkit/vector/springai
java-sources/ai/driftkit/driftkit-vector-spring-ai-starter/0.8.1/ai/driftkit/vector/springai/autoconfigure/SpringAiVectorStoreAutoConfiguration.java
package ai.driftkit.vector.springai.autoconfigure; import ai.driftkit.vector.core.domain.TextVectorStore; import ai.driftkit.vector.springai.SpringAiVectorStoreAdapter; import ai.driftkit.vector.springai.SpringAiVectorStoreFactory; import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils; import org.springframework.boot.autoconfigure.AutoConfiguration; import org.springframework.boot.autoconfigure.condition.ConditionalOnBean; import org.springframework.boot.autoconfigure.condition.ConditionalOnClass; import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean; import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty; import org.springframework.boot.context.properties.EnableConfigurationProperties; import org.springframework.context.annotation.Bean; /** * Auto-configuration for Spring AI vector store integration with DriftKit. */ @Slf4j @AutoConfiguration @ConditionalOnClass({org.springframework.ai.vectorstore.VectorStore.class, TextVectorStore.class}) @ConditionalOnProperty(prefix = "driftkit.vector.spring-ai", name = "enabled", havingValue = "true", matchIfMissing = true) @EnableConfigurationProperties(SpringAiVectorStoreProperties.class) public class SpringAiVectorStoreAutoConfiguration { @Bean @ConditionalOnBean(org.springframework.ai.vectorstore.VectorStore.class) @ConditionalOnMissingBean(SpringAiVectorStoreAdapter.class) public TextVectorStore springAiVectorStoreAdapter(org.springframework.ai.vectorstore.VectorStore springAiVectorStore, SpringAiVectorStoreProperties properties) { if (StringUtils.isBlank(properties.getStoreName())) { throw new IllegalStateException("Spring AI Vector Store name cannot be blank"); } log.info("Creating Spring AI VectorStore adapter with name: {}", properties.getStoreName()); return SpringAiVectorStoreFactory.create(springAiVectorStore, properties.getStoreName()); } }