|
|
--- |
|
|
annotations_creators: |
|
|
- machine-generated |
|
|
language: |
|
|
- en |
|
|
license: cc-by-4.0 |
|
|
multilinguality: |
|
|
- monolingual |
|
|
pretty_name: OpenMind2D |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
source_datasets: |
|
|
- AnonRes/OpenMind |
|
|
task_categories: |
|
|
- image-classification |
|
|
- image-to-text |
|
|
- zero-shot-image-classification |
|
|
task_ids: |
|
|
- multi-class-image-classification |
|
|
- image-captioning |
|
|
- visual-question-answering |
|
|
tags: |
|
|
- medical |
|
|
- neuroimaging |
|
|
- brain |
|
|
- mri |
|
|
- 3d-to-2d |
|
|
- computer-vision |
|
|
- healthcare |
|
|
paperswithcode_id: openmind |
|
|
dataset_info: |
|
|
features: |
|
|
- name: image |
|
|
dtype: image |
|
|
- name: orientation |
|
|
dtype: string |
|
|
- name: volume_id |
|
|
dtype: int32 |
|
|
- name: slice_id |
|
|
dtype: int32 |
|
|
- name: slice_coord |
|
|
dtype: int32 |
|
|
- name: split |
|
|
dtype: string |
|
|
- name: unique_id |
|
|
dtype: string |
|
|
- name: modality |
|
|
dtype: string |
|
|
- name: image_quality_score |
|
|
dtype: float32 |
|
|
- name: age |
|
|
dtype: float32 |
|
|
- name: sex |
|
|
dtype: string |
|
|
- name: health_status |
|
|
dtype: string |
|
|
- name: manufacturer |
|
|
dtype: string |
|
|
- name: magnetic_field_strength |
|
|
dtype: float32 |
|
|
- name: repetition_time |
|
|
dtype: float32 |
|
|
- name: echo_time |
|
|
dtype: float32 |
|
|
- name: width |
|
|
dtype: int32 |
|
|
- name: height |
|
|
dtype: int32 |
|
|
- name: format |
|
|
dtype: string |
|
|
- name: file_size |
|
|
dtype: int32 |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 16787700000 |
|
|
num_examples: 335754 |
|
|
download_size: 11751390000 |
|
|
dataset_size: 16787700000 |
|
|
--- |
|
|
|
|
|
# OpenMind2D: 2D Brain MRI Slices |
|
|
|
|
|
OpenMind2D is a 2D medical imaging dataset derived from the [OpenMind dataset](https://huggingface.co/datasets/AnonRes/OpenMind). It contains 335,754 2D slices extracted from 3D brain MRI volumes in three anatomical orientations (axial, sagittal, coronal). |
|
|
|
|
|
## Dataset Statistics |
|
|
|
|
|
- **Total Images**: 335,754 |
|
|
- **Resolution**: 256×256 pixels |
|
|
- **Format**: JPEG |
|
|
- **Size**: ~11.7 GB |
|
|
- **Splits**: Train (70%), Validation (20%), Test (10%) |
|
|
- **Orientations**: Axial, sagittal, coronal |
|
|
- **Modalities**: T1w, T2w, FLAIR, DWI, and 19+ additional MRI types |
|
|
|
|
|
## Source |
|
|
|
|
|
This dataset is derived from the OpenMind dataset ([Dufumier et al., 2024](https://arxiv.org/abs/2412.17041)), which contains 114,000 3D brain MRI volumes from 800 OpenNeuro datasets. |
|
|
|
|
|
### Processing |
|
|
|
|
|
1. Slice extraction from three anatomical orientations |
|
|
2. Isotropic resampling to 1mm³ spacing |
|
|
3. Intensity normalization (1st-99th percentile clipping) |
|
|
4. Resize to 256×256 pixels |
|
|
5. JPEG compression with metadata preservation |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
``` |
|
|
OpenMind2D/ |
|
|
├── metadata.parquet # Primary metadata |
|
|
├── train/ # All images |
|
|
│ ├── 00000001_000.jpg |
|
|
│ └── ... |
|
|
└── README.md |
|
|
``` |
|
|
|
|
|
### Key Metadata Fields |
|
|
|
|
|
- `image`: 256×256 JPEG brain MRI slice |
|
|
- `orientation`: axial, sagittal, or coronal |
|
|
- `volume_id`: Volume identifier |
|
|
- `unique_id`: Original OpenMind volume ID |
|
|
- `modality`: MRI sequence type |
|
|
- `split`: train/validation/test |
|
|
- `age`: Subject age |
|
|
- `sex`: Subject sex |
|
|
- `manufacturer`: Scanner manufacturer |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load dataset |
|
|
dataset = load_dataset("liamchalcroft/OpenMind2D") |
|
|
train_data = dataset['train'] |
|
|
|
|
|
# Get sample |
|
|
sample = train_data[0] |
|
|
image = sample['image'] |
|
|
orientation = sample['orientation'] |
|
|
modality = sample['modality'] |
|
|
|
|
|
# Filter by modality or orientation |
|
|
t1_data = dataset.filter(lambda x: x['modality'] == 'T1w') |
|
|
axial_data = dataset.filter(lambda x: x['orientation'] == 'axial') |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset, please cite the original OpenMind work: |
|
|
|
|
|
```bibtex |
|
|
@article{dufumier2024openmind, |
|
|
title = {OpenMind: A Large-Scale Dataset for Self-Supervised Learning in Medical Imaging}, |
|
|
author = {Dufumier, Basile and others}, |
|
|
journal = {arXiv preprint arXiv:2412.17041}, |
|
|
year = {2024}, |
|
|
url = {https://arxiv.org/abs/2412.17041} |
|
|
} |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0), consistent with the original OpenMind dataset. |