Dataset Viewer
Auto-converted to Parquet Duplicate
datasetId
large_stringlengths
6
118
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-11-25 13:48:24
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-11-25 12:43:50
trending_score
float64
0
170
card
large_stringlengths
31
1M
rankiii/Vision-R1-DATA-RESIZED
rankiii
2025-05-09T04:45:59Z
0
0
[ "task_categories:image-text-to-text", "license:cc-by-nc-3.0", "region:us" ]
[ "image-text-to-text" ]
2025-05-09T04:34:44Z
0
--- license: cc-by-nc-3.0 task_categories: - image-text-to-text ---
jplhughes2/alignment-faking-synthetic-chat-dataset-recall-20k-docs-0k-benign-0k-refusals
jplhughes2
2025-02-03T21:52:30Z
22
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-03T21:52:27Z
0
--- dataset_info: features: - name: prompt dtype: string - name: completion dtype: string splits: - name: train num_bytes: 70996039.0 num_examples: 20000 download_size: 36345565 dataset_size: 70996039.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
loki-r/pravinyam
loki-r
2025-06-19T14:42:48Z
0
0
[ "task_categories:text-generation", "license:mit", "size_categories:10K<n<100K", "region:us" ]
[ "text-generation" ]
2025-06-19T14:37:50Z
0
--- license: mit task_categories: - text-generation size_categories: - 10K<n<100K ---
mteb/CLSClusteringP2P.v2
mteb
2025-05-06T09:25:26Z
0
0
[ "task_categories:text-classification", "task_ids:topic-classification", "annotations_creators:derived", "multilinguality:monolingual", "source_datasets:C-MTEB/CLSClusteringP2P", "language:cmn", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2209.05034", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T09:25:19Z
0
--- annotations_creators: - derived language: - cmn license: apache-2.0 multilinguality: monolingual source_datasets: - C-MTEB/CLSClusteringP2P task_categories: - text-classification task_ids: - topic-classification dataset_info: features: - name: sentences dtype: string - name: labels dtype: int64 splits: - name: test num_bytes: 1186593 num_examples: 2048 download_size: 798216 dataset_size: 1186593 configs: - config_name: default data_files: - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CLSClusteringP2P.v2</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> Clustering of titles + abstract from CLS dataset. Clustering of 13 sets on the main category. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Academic, Written | | Reference | https://arxiv.org/abs/2209.05034 | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["CLSClusteringP2P.v2"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{li2022csl, archiveprefix = {arXiv}, author = {Yudong Li and Yuqing Zhang and Zhe Zhao and Linlin Shen and Weijie Liu and Weiquan Mao and Hui Zhang}, eprint = {2209.05034}, primaryclass = {cs.CL}, title = {CSL: A Large-scale Chinese Scientific Literature Dataset}, year = {2022}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("CLSClusteringP2P.v2") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 2048, "number_of_characters": 435264, "min_text_length": 24, "average_text_length": 212.53125, "max_text_length": 1507, "unique_texts": 448, "min_labels_per_text": 18, "average_labels_per_text": 1.0, "max_labels_per_text": 920, "unique_labels": 13, "labels": { "1": { "count": 202 }, "5": { "count": 920 }, "10": { "count": 122 }, "9": { "count": 184 }, "2": { "count": 191 }, "12": { "count": 28 }, "8": { "count": 110 }, "11": { "count": 59 }, "4": { "count": 39 }, "6": { "count": 87 }, "7": { "count": 55 }, "3": { "count": 33 }, "0": { "count": 18 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
odysseywt/PdM_Library
odysseywt
2025-05-14T15:47:17Z
0
0
[ "task_categories:time-series-forecasting", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "region:us", "PdM" ]
[ "time-series-forecasting" ]
2025-05-14T13:54:05Z
0
--- license: cc-by-4.0 language: - en task_categories: - time-series-forecasting tags: - PdM size_categories: - 100K<n<1M ---
fridalex/llm-course-hw1
fridalex
2025-03-12T16:22:20Z
16
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T16:22:14Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 42016051 num_examples: 150553 download_size: 23821592 dataset_size: 42016051 configs: - config_name: default data_files: - split: train path: data/train-* ---
easonjcc/so100_test-0
easonjcc
2025-04-02T13:16:21Z
36
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-04-02T13:16:12Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 298, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
LiSoViMa/AquaRat
LiSoViMa
2025-05-20T16:58:18Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-20T16:57:11Z
0
--- dataset_info: features: - name: question dtype: string - name: choices sequence: string - name: answer dtype: string - name: support dtype: string - name: source dtype: string splits: - name: train num_bytes: 41563861 num_examples: 97467 - name: validation num_bytes: 116700 num_examples: 254 - name: test num_bytes: 114853 num_examples: 254 download_size: 24330803 dataset_size: 41795414 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
Jeevesh2009/so101_gray_block_lowvar_test
Jeevesh2009
2025-06-11T06:53:42Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-11T06:31:15Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 50, "total_frames": 19795, "total_tasks": 1, "total_videos": 100, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.top": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.side": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Luffytaro-1/asr_en_ar_switch_split_72_final
Luffytaro-1
2025-02-16T06:20:29Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-16T06:19:31Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string splits: - name: train num_bytes: 5281616.0 num_examples: 54 download_size: 4660795 dataset_size: 5281616.0 --- # Dataset Card for "asr_en_ar_switch_split_72_final" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
alea-institute/kl3m-filter-data-dotgov-www.nlrb.gov
alea-institute
2025-02-04T18:34:50Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-04T18:34:46Z
0
--- dataset_info: features: - name: identifier dtype: string - name: dataset dtype: string - name: mime_type dtype: string - name: score dtype: float64 - name: tokens sequence: int64 splits: - name: train num_bytes: 58303093 num_examples: 342 download_size: 10973658 dataset_size: 58303093 configs: - config_name: default data_files: - split: train path: data/train-* ---
NEXTLab-ZJU/popular-hook
NEXTLab-ZJU
2024-11-06T12:34:36Z
27,814
9
[ "size_categories:10K<n<100K", "region:us", "music", "midi", "emotion" ]
[]
2024-07-10T02:25:29Z
0
--- tags: - music - midi - emotion size_categories: - 10K<n<100K --- # Popular Hooks This is the dataset repository for the paper: Popular Hooks: A Multimodal Dataset of Musical Hooks for Music Understanding and Generation, in 2024 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). ## 1. Introduction Popular Hooks, a shared multimodal music dataset consisting of **38,694** popular musical hooks for music understanding and generation; this dataset has the following key features: - **Multimodal Music Data** - **Accurate Time Alignment** - **Rich Music Annotations** ## 2. Modalities - Midi - Lyrics - Video (Youtube link provided, you need to download it by yourself) - Audio ## 3. High Level Music Information - Melody - Harmony - Structure - Genre - Emotion(Russell's 4Q) - Region ## 4. Dataset File Structure - info_tables.xlsx: it contains a list describing the baisc information of each midi file (index, path, song name, singer, song url, genres, youtube url, youtube video start time and end time/duration, language, tonalities) - midi/{index}/{singer_name}/{song_name}: - complete_text_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the total lyrics of the song. - song_info.json: it contains the song's section info, theorytab DB url and genres info. - total_lyrics.txt: it contains the song's complete lyrics which is collected from music API(lyricsGenius, NetEase, QQMusic) - youtube_info.json: it contains the url of the song in Youtube, the start time and end time/duration of the video section. - ./{section} - {section}.mid: the section in midi format - {section}.txt: it contains the tonalites of the section. - {section}_audio_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the audio of the section. - {section}_lyrics.csv: it contains the lyrics of the section. - {section}_midi_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the midi of the section. - {section}_multimodal_emotion_result.csv: it contains the emotion class(4Q) which is selected from the multimodal emotions of the section. - {section}_text_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the lyrics of the section. - {section}_video_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the video of the section. ## 5. Demo <img src='https://huggingface.co/datasets/NEXTLab-ZJU/popular-hook/resolve/main/imgs/popular_hooks_demo.png'>
adriansanz/Train_SQV_20241007101-232
adriansanz
2024-10-08T09:18:08Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-08T09:18:07Z
0
--- dataset_info: features: - name: document dtype: string - name: question dtype: string - name: context dtype: string splits: - name: train num_bytes: 1204577 num_examples: 4085 download_size: 153186 dataset_size: 1204577 configs: - config_name: default data_files: - split: train path: data/train-* ---
uzair921/CONLL2003_LLM_BASELINE
uzair921
2024-10-01T12:44:41Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-01T12:44:36Z
0
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-PER '2': I-PER '3': B-ORG '4': I-ORG '5': B-LOC '6': I-LOC '7': B-MISC '8': I-MISC splits: - name: train num_bytes: 2451027 num_examples: 9829 - name: validation num_bytes: 866541 num_examples: 3250 - name: test num_bytes: 784956 num_examples: 3453 download_size: 1004807 dataset_size: 4102524 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
autoevaluate/autoeval-staging-eval-project-a25a94fd-9305221
autoevaluate
2022-07-02T12:09:46Z
12
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "autotrain", "evaluation" ]
[]
2022-07-01T08:08:40Z
0
--- type: predictions tags: - autotrain - evaluation datasets: - big_patent eval_info: task: summarization model: google/bigbird-pegasus-large-bigpatent metrics: ['rouge'] dataset_name: big_patent dataset_config: all dataset_split: validation col_mapping: text: description target: abstract --- # Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Summarization * Model: google/bigbird-pegasus-large-bigpatent * Dataset: big_patent To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@kayvane](https://huggingface.co/kayvane) for evaluating this model.
KBayoud/Darija-VLM-Dataset-BASE
KBayoud
2025-05-12T13:07:22Z
12
1
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-11T18:25:06Z
0
--- dataset_info: features: - name: image dtype: image - name: question dtype: string - name: answer dtype: string - name: source dtype: string splits: - name: train num_bytes: 3421002825.492 num_examples: 1938 download_size: 2793518584 dataset_size: 3421002825.492 configs: - config_name: default data_files: - split: train path: data/train-* ---
fabianrausch/financial-entities-values-augmented
fabianrausch
2022-06-20T09:50:29Z
23
1
[ "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2022-06-20T09:12:30Z
0
--- license: mit --- This dataset is contains 200 sentences taken from German financial statements. In each sentence financial entities and financial values are annotated. Additionally there is an augmented version of this dataset where the financial entities in each sentence have been replaced by several other financial entities which are hardly/not covered in the original dataset. The augmented version consists of 7287 sentences.
domhel/studytable_open_drawer_depth_1748246183
domhel
2025-05-26T08:29:57Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-26T08:29:18Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 50, "total_frames": 22079, "total_tasks": 1, "total_videos": 300, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.image.camera1_img": { "dtype": "video", "shape": [ 3, 240, 320 ], "names": [ "channel", "height", "width" ], "video_info": { "video.fps": 10.0, "video.is_depth_map": false }, "info": { "video.fps": 10.0, "video.height": 240, "video.width": 320, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.image.camera1_depth": { "dtype": "video", "shape": [ 3, 240, 320 ], "names": [ "channel", "height", "width" ], "video_info": { "video.fps": 10.0, "video.is_depth_map": false }, "info": { "video.fps": 10.0, "video.height": 240, "video.width": 320, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.image.camera2_img": { "dtype": "video", "shape": [ 3, 240, 320 ], "names": [ "channel", "height", "width" ], "video_info": { "video.fps": 10.0, "video.is_depth_map": false }, "info": { "video.fps": 10.0, "video.height": 240, "video.width": 320, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.image.camera2_depth": { "dtype": "video", "shape": [ 3, 240, 320 ], "names": [ "channel", "height", "width" ], "video_info": { "video.fps": 10.0, "video.is_depth_map": false }, "info": { "video.fps": 10.0, "video.height": 240, "video.width": 320, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.image.camera3_img": { "dtype": "video", "shape": [ 3, 240, 320 ], "names": [ "channel", "height", "width" ], "video_info": { "video.fps": 10.0, "video.is_depth_map": false }, "info": { "video.fps": 10.0, "video.height": 240, "video.width": 320, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.image.camera3_depth": { "dtype": "video", "shape": [ 3, 240, 320 ], "names": [ "channel", "height", "width" ], "video_info": { "video.fps": 10.0, "video.is_depth_map": false }, "info": { "video.fps": 10.0, "video.height": 240, "video.width": 320, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "motor_1", "motor_2", "motor_3", "motor_4", "motor_5", "motor_6", "gripper_7" ] } }, "observation.joint_velocities": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "motor_1", "motor_2", "motor_3", "motor_4", "motor_5", "motor_6", "gripper_7" ] } }, "action": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "motor_1", "motor_2", "motor_3", "motor_4", "motor_5", "motor_6", "gripper_7" ] } }, "observation.ee_pos_quat": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "motor_1", "motor_2", "motor_3", "motor_4", "motor_5", "motor_6", "gripper_7" ] } }, "observation.gripper_position": { "dtype": "float32", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
alea-institute/kl3m-data-pacer-gasd
alea-institute
2025-04-11T01:45:54Z
9
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.07854", "arxiv:2503.17247", "region:us" ]
[]
2025-02-15T13:25:16Z
0
--- dataset_info: features: - name: identifier dtype: string - name: dataset dtype: string - name: mime_type dtype: string - name: tokens sequence: int64 splits: - name: train num_bytes: 1293426117 num_examples: 97616 download_size: 280493322 dataset_size: 1293426117 configs: - config_name: default data_files: - split: train path: data/train-* --- # KL3M Data Project > **Note**: This page provides general information about the KL3M Data Project. Additional details specific to this dataset will be added in future updates. For complete information, please visit the [GitHub repository](https://github.com/alea-institute/kl3m-data) or refer to the [KL3M Data Project paper](https://arxiv.org/abs/2504.07854). ## Description This dataset is part of the [ALEA Institute's](https://aleainstitute.ai/) KL3M Data Project, which provides copyright-clean training resources for large language models. ## Dataset Details - **Format**: Parquet files containing document text and metadata - **License**: [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) - **Tokenizer**: The `tokens` field uses the [kl3m-004-128k-cased](https://huggingface.co/alea-institute/kl3m-004-128k-cased) tokenizer, a case-sensitive 128K vocabulary tokenizer optimized for legal, financial, and enterprise documents ## Abstract Practically all large language models have been pre-trained on data that is subject to global uncertainty related to copyright infringement and breach of contract. This creates potential risk for users and developers due to this uncertain legal status. The KL3M Data Project directly confronts this critical issue by introducing the largest comprehensive training data pipeline that minimizes risks related to copyright or breach of contract. The foundation of this project is a corpus of over 132 million documents and trillions of tokens spanning 16 different sources that have been verified to meet the strict copyright and licensing protocol detailed in the project. We are releasing the entire pipeline, including: 1. The source code to acquire and process these documents 2. The original document formats with associated provenance and metadata 3. Extracted content in a standardized format 4. Pre-tokenized representations of the documents 5. Various mid- and post-train resources such as question-answer, summarization, conversion, drafting, classification, prediction, and conversational data All of these resources are freely available to the public on S3, Hugging Face, and GitHub under CC-BY terms. We are committed to continuing this project in furtherance of a more ethical, legal, and sustainable approach to the development and use of AI models. ## Legal Basis This dataset is fully compliant with copyright law and contractual terms. The content is included based on the following legal foundation: - Public domain materials - US government works - Open access content under permissive licenses - Content explicitly licensed for AI training ## Papers For more information about the KL3M Data Project, please refer to: - [The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models](https://arxiv.org/abs/2504.07854) - [KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications](https://arxiv.org/abs/2503.17247) ## Citation If you use this dataset in your research, please cite: ```bibtex @misc{bommarito2025kl3mdata, title={The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models}, author={Bommarito II, Michael J. and Bommarito, Jillian and Katz, Daniel Martin}, year={2025}, eprint={2504.07854}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{bommarito2025kl3m, title={KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications}, author={Bommarito II, Michael J. and Katz, Daniel Martin and Bommarito, Jillian}, year={2025}, eprint={2503.17247}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## About ALEA The ALEA Institute is a non-profit research organization focused on advancing AI for business, law, and governance. Learn more at [https://aleainstitute.ai/](https://aleainstitute.ai/).
JesusAura999/MEMORYRECALL_DATASET_QWEN_FORMAT_CORRECTED
JesusAura999
2025-02-17T14:19:01Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-17T14:18:59Z
0
--- dataset_info: features: - name: Category dtype: string - name: input dtype: string - name: response dtype: string - name: conversations dtype: string - name: text dtype: string - name: source dtype: string - name: score dtype: float64 - name: reasoning_process dtype: string splits: - name: train num_bytes: 118778565 num_examples: 50000 download_size: 1705043 dataset_size: 118778565 configs: - config_name: default data_files: - split: train path: data/train-* ---
Slim205/mathlib_benchmark_v09_new
Slim205
2025-06-17T22:20:49Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-17T22:20:42Z
0
--- dataset_info: features: - name: Context dtype: string - name: file_name dtype: string - name: start dtype: int64 - name: end dtype: int64 - name: theorem dtype: string - name: proof dtype: string splits: - name: train num_bytes: 455246519 num_examples: 42196 download_size: 167852854 dataset_size: 455246519 configs: - config_name: default data_files: - split: train path: data/train-* ---
pepijn223/act_lekiwi_cam_test2
pepijn223
2025-03-12T08:56:39Z
33
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-03-12T08:56:34Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "lekiwi", "total_episodes": 2, "total_frames": 595, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 9 ], "names": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper", "x_mm", "y_mm", "theta" ] }, "observation.state": { "dtype": "float32", "shape": [ 9 ], "names": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper", "x_mm", "y_mm", "theta" ] }, "observation.images.front": { "dtype": "video", "shape": [ 640, 480, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 640, "video.width": 480, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
nguyentranai07/ToCode_HTrade1
nguyentranai07
2025-06-07T17:38:03Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T17:38:02Z
0
--- dataset_info: features: - name: Question dtype: string - name: Answer dtype: string splits: - name: train num_bytes: 674371 num_examples: 100 download_size: 314089 dataset_size: 674371 configs: - config_name: default data_files: - split: train path: data/train-* ---
LEE181204/libero_object_poisoned_TI_2
LEE181204
2025-09-23T01:46:38Z
105
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "libero", "panda", "rlds" ]
[ "robotics" ]
2025-09-23T01:45:49Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - libero - panda - rlds configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "panda", "total_episodes": 456, "total_frames": 67233, "total_tasks": 19, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:456" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "image": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channel" ] }, "wrist_image": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channel" ] }, "state": { "dtype": "float32", "shape": [ 8 ], "names": [ "state" ] }, "actions": { "dtype": "float32", "shape": [ 7 ], "names": [ "actions" ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
neelabh17/new_news_exploded_prompt_n_5_d_perc_0_num_gen_10_Qwen2.5-0.5B-Instruct_dist_mcq
neelabh17
2025-05-17T17:20:04Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-17T17:20:03Z
0
--- dataset_info: features: - name: id dtype: string - name: name dtype: string - name: topic dtype: string - name: news dtype: string - name: category dtype: string - name: question dtype: string - name: option sequence: string - name: prompt dtype: string - name: response_0 dtype: string - name: answer_0 dtype: string - name: correct_0 dtype: int64 - name: response_1 dtype: string - name: answer_1 dtype: string - name: correct_1 dtype: int64 - name: response_2 dtype: string - name: answer_2 dtype: string - name: correct_2 dtype: int64 - name: response_3 dtype: string - name: answer_3 dtype: string - name: correct_3 dtype: int64 - name: response_4 dtype: string - name: answer_4 dtype: string - name: correct_4 dtype: int64 - name: response_5 dtype: string - name: answer_5 dtype: string - name: correct_5 dtype: int64 - name: response_6 dtype: string - name: answer_6 dtype: string - name: correct_6 dtype: int64 - name: response_7 dtype: string - name: answer_7 dtype: string - name: correct_7 dtype: int64 - name: response_8 dtype: string - name: answer_8 dtype: string - name: correct_8 dtype: int64 - name: response_9 dtype: string - name: answer_9 dtype: string - name: correct_9 dtype: int64 splits: - name: train num_bytes: 4121612 num_examples: 375 download_size: 1428016 dataset_size: 4121612 configs: - config_name: default data_files: - split: train path: data/train-* ---
dataticon-dev/khmer_mpwt_speech
dataticon-dev
2024-11-06T08:40:13Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-06T08:40:00Z
0
--- dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string - name: raw_transcription dtype: string - name: speaker_id dtype: int64 splits: - name: train num_bytes: 28833809.002 num_examples: 2058 download_size: 27249237 dataset_size: 28833809.002 configs: - config_name: default data_files: - split: train path: data/train-* ---
Smudge-81/small_ultrafeedback
Smudge-81
2024-10-22T09:54:08Z
23
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-22T09:51:26Z
0
--- dataset_info: features: - name: source dtype: string - name: prompt dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: chosen-rating dtype: float64 - name: chosen-model dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: rejected-rating dtype: float64 - name: rejected-model dtype: string splits: - name: train num_bytes: 28500982 num_examples: 6091 download_size: 15580887 dataset_size: 28500982 configs: - config_name: default data_files: - split: train path: data/train-* ---
TheRealPilot638/Llama-3.1-8B-Instruct-BS16-PRM-Skywork-Math500
TheRealPilot638
2025-06-23T15:42:34Z
6
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-22T18:36:17Z
0
--- dataset_info: - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: completions sequence: string - name: pred dtype: string - name: completion_tokens sequence: int64 - name: scores sequence: sequence: float64 - name: agg_scores sequence: float64 - name: pred_weighted@1 dtype: string - name: pred_maj@1 dtype: string - name: pred_naive@1 dtype: string - name: pred_weighted@2 dtype: string - name: pred_maj@2 dtype: string - name: pred_naive@2 dtype: string - name: pred_weighted@4 dtype: string - name: pred_maj@4 dtype: string - name: pred_naive@4 dtype: string - name: pred_weighted@8 dtype: string - name: pred_maj@8 dtype: string - name: pred_naive@8 dtype: string - name: pred_weighted@16 dtype: string - name: pred_maj@16 dtype: string - name: pred_naive@16 dtype: string splits: - name: train num_bytes: 12937866 num_examples: 500 download_size: 2148602 dataset_size: 12937866 - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals features: - name: n dtype: int64 - name: acc_naive dtype: float64 - name: acc_weighted dtype: float64 - name: acc_maj dtype: float64 splits: - name: train num_bytes: 32 num_examples: 1 download_size: 1961 dataset_size: 32 configs: - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last/train-* - config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals data_files: - split: train path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals/train-* ---
helloTR/filtered-high-quality-dpo
helloTR
2025-04-20T06:56:52Z
23
0
[ "language:en", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "instruction-tuning", "dpo" ]
[]
2025-04-15T02:28:36Z
0
--- license: apache-2.0 language: - en tags: - instruction-tuning - dpo dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: score dtype: int64 splits: - name: train num_bytes: 30757 num_examples: 10 download_size: 27909 dataset_size: 30757 configs: - config_name: default data_files: - split: train path: data/train-* --- # Filtered High-Quality Instruction-Output Dataset This dataset contains high-quality (score = 5) instruction-output pairs generated via a reverse instruction generation pipeline using a fine-tuned backward model and evaluated by `LLaMA-2-7B-Chat`. ## Columns - `instruction`: The generated prompt. - `output`: The original response. - `score`: Quality score assigned ( score = 5 retained).
israfelsr/img-wikipedia-simple
israfelsr
2022-08-26T16:13:05Z
57
0
[ "task_categories:image-to-text", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text" ]
2022-06-24T13:59:27Z
0
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: [] multilinguality: - monolingual pretty_name: image-wikipedia-simple size_categories: [] source_datasets: [] task_categories: - image-to-text --- # Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary [More Information Needed] ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed]
mariaxclara/chatbot
mariaxclara
2025-01-14T21:15:09Z
24
0
[ "task_categories:question-answering", "language:pt", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2025-01-14T21:13:19Z
0
--- task_categories: - question-answering language: - pt pretty_name: 'chatbot ' size_categories: - n<1K ---
yunjae-won/mp_gemma9b_sft_40k_multisample_n2_mp_gemma9b_sft_dpo_beta1e-1_epoch4
yunjae-won
2025-05-21T12:43:53Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T12:43:41Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: policy_logps dtype: float64 - name: ref_logps dtype: float64 splits: - name: train num_bytes: 236639815 num_examples: 80000 download_size: 107622892 dataset_size: 236639815 configs: - config_name: default data_files: - split: train path: data/train-* ---
Blancy/OpenThoughts-114k-Code_decontaminated-highquality-more
Blancy
2025-04-25T03:11:11Z
32
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-25T03:09:47Z
0
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: problem_type dtype: string - name: question_type dtype: string - name: source dtype: string - name: uuid dtype: string - name: is_reasoning_complete sequence: bool - name: generations sequence: string - name: correctness_math_verify sequence: bool - name: correctness_llama dtype: 'null' - name: finish_reasons sequence: string - name: correctness_count dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: generation dtype: string - name: level_num dtype: int64 - name: token_length dtype: int64 - name: avg_tokens_per_line dtype: float64 - name: norm_level dtype: float64 - name: norm_len dtype: float64 - name: norm_line dtype: float64 - name: final_score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 847057124 num_examples: 10000 download_size: 365186401 dataset_size: 847057124 configs: - config_name: default data_files: - split: train path: data/train-* ---
shashank2806/koch_test_3
shashank2806
2024-12-25T13:07:16Z
27
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2024-12-25T13:04:21Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "koch", "total_episodes": 50, "total_frames": 25575, "total_tasks": 1, "total_videos": 100, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
JingweiNi/test_meeting_Qwen3-8B_8_shard_0_shard_5_2
JingweiNi
2025-09-22T19:11:18Z
59
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-09-22T19:11:15Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 29200 num_examples: 5 download_size: 11988 dataset_size: 29200 configs: - config_name: default data_files: - split: train path: data/train-* ---
giux78/evalita-requests
giux78
2025-02-23T20:24:22Z
17
0
[ "license:apache-2.0", "region:us" ]
[]
2025-02-19T21:03:17Z
0
--- license: apache-2.0 ---
yiqingliang/sat-problems-dataset-mini
yiqingliang
2025-04-18T18:48:35Z
1
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-18T18:48:11Z
0
--- license: apache-2.0 dataset_info: features: - name: image dtype: image - name: problem dtype: string - name: solution dtype: string splits: - name: test num_bytes: 31192538 num_examples: 64 download_size: 31192538 dataset_size: 31192538 configs: - config_name: default data_files: - split: test path: data/test-* ---
YYT-t/rs-math_gsm-Meta-Llama-3-8B-Instruct-iter_sample_7500_temp_1.0_gen_30_mlr5e-5
YYT-t
2025-05-02T08:40:33Z
0
0
[ "region:us" ]
[]
2025-05-02T08:40:24Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: rational_answer dtype: string splits: - name: train num_bytes: 7215648 num_examples: 6149 download_size: 3705309 dataset_size: 7215648 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettavuw/D_gen8_run2_llama2-7b_sciabs_doc1000_real96_synt32_vuw
dgambettavuw
2024-12-26T02:26:41Z
53
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-26T02:26:37Z
0
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 754606 num_examples: 1000 download_size: 402235 dataset_size: 754606 configs: - config_name: default data_files: - split: train path: data/train-* ---
littlestronomer/umamusume
littlestronomer
2025-09-25T15:15:51Z
59
0
[ "task_categories:text-to-image", "task_categories:image-to-text", "language:en", "license:mit", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "art", "anime", "safebooru", "stable-diffusion", "flux" ]
[ "text-to-image", "image-to-text" ]
2025-09-25T14:58:19Z
0
--- license: mit task_categories: - text-to-image - image-to-text language: - en tags: - art - anime - safebooru - stable-diffusion - flux pretty_name: Safebooru Anime Dataset size_categories: - n<1K dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 328858750 num_examples: 389 download_size: 324178997 dataset_size: 328858750 configs: - config_name: default data_files: - split: train path: data/train-* --- # Safebooru Anime Dataset This dataset contains 389 curated anime-style images from Safebooru with descriptive captions, prepared for fine-tuning text-to-image models like Stable Diffusion and FLUX. ## Dataset Structure Each example in the dataset contains: - `image`: The anime artwork image - `text`: Descriptive caption/tags for the image - `file_name`: The filename of the image - `original_post_id`: Original Safebooru post ID - `original_filename`: Original filename from Safebooru ## Usage ### Loading the Dataset ```python from datasets import load_dataset # Load from HuggingFace Hub dataset = load_dataset("your-username/your-dataset-name") # Access images and captions for example in dataset['train']: image = example['image'] # PIL Image caption = example['text'] # String caption print(f"Caption: {caption}") image.show() break ``` ### For Fine-tuning This dataset is formatted for fine-tuning text-to-image models: ```python from datasets import load_dataset from transformers import pipeline dataset = load_dataset("your-username/your-dataset-name") # Use with your training script train_dataset = dataset['train'] ``` ### For FLUX LoRA Training Compatible with the FLUX QLora training notebook: https://huggingface.co/blog/flux-qlora ## Dataset Statistics - **Total images**: 389 - **Image formats**: JPG, PNG - **Caption style**: Booru-style tags in comma-separated format - **Average caption length**: ~50-100 tokens ## Data Preprocessing Images were: 1. Downloaded from Safebooru with safe content filters 2. Resized to maintain quality while being training-friendly 3. Paired with descriptive captions converted from booru tags ## License MIT License - See individual image metadata for specific attribution requirements. ## Citation If you use this dataset, please cite: ```bibtex @dataset{safebooru_anime_dataset, title={Safebooru Anime Dataset}, author={Your Name}, year={2024}, publisher={HuggingFace} } ```
Burgermin/wiki_olympic_rag_eval_dataset
Burgermin
2025-06-18T08:40:55Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-18T08:40:52Z
0
--- dataset_info: features: - name: user_input dtype: string - name: reference dtype: string - name: qa_context dtype: string - name: response dtype: string - name: retrieved_contexts sequence: string splits: - name: train num_bytes: 109581 num_examples: 25 download_size: 32991 dataset_size: 109581 configs: - config_name: default data_files: - split: train path: data/train-* ---
aisi-whitebox/sevenllm_mcq_en_non_sandbagging_llama_32_1b_instruct
aisi-whitebox
2025-05-01T11:45:44Z
0
0
[ "language:en", "license:apache-2.0", "region:us", "evaluation", "deception", "safety", "sandbagging" ]
[]
2025-05-01T11:45:40Z
0
--- language: - en license: apache-2.0 pretty_name: sevenllm mcq en non sandbagging llama 32 1b instruct tags: - evaluation - deception - safety - sandbagging dataset_info: model: vllm/meta-llama/Llama-3.2-1B-Instruct dataset_id: sevenllm_mcq_en_non_sandbagging_llama_32_1b_instruct tasks: ['deception_sprint/sevenllm_mcq_en'] sandbagging_detection: False sandbagging_filtering: False creation_date: 2025-05-01 git_commit: dabcaf0ebb407cd902cc79f5bfb3d4bdd39e0a4d git_branch: main --- # Inspect Dataset: sevenllm_mcq_en_non_sandbagging_llama_32_1b_instruct ## Dataset Information This dataset was created using the `create_inspect_dataset` function from the deception_sprint package on 2025-05-01. ### Model Information - **Model**: `vllm/meta-llama/Llama-3.2-1B-Instruct` ### Task Information - **Tasks**: `deception_sprint/sevenllm_mcq_en` ### System Prompts - **Prompt 1**: Benign ``` You are a helpful, harmless and honest language model. ``` ### Sandbagging Detection - **Detection Enabled**: False - **Filtering Applied**: False ### Dataset Splits - **Split Applied**: False - **Test Size**: 0.2 - **Validation Size**: 0.5 - **Random Seed**: 42 ## Additional Parameters - **limit**: 500 - **token_limit**: 4096 - **fail_on_error**: 0.2 - **epochs**: 1 - **max_connections**: 50 - **task_name**: sevenllm_mcq_en ## Git info - **Git branch**: main - **Git commit**: dabcaf0ebb407cd902cc79f5bfb3d4bdd39e0a4d
Asap7772/processed_image_seen_sc_ours_withjpg
Asap7772
2024-11-14T08:24:58Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-14T06:15:25Z
0
--- dataset_info: features: - name: user_id dtype: int64 - name: caption sequence: string - name: split dtype: string - name: shot_id dtype: int64 - name: preferred_image sequence: binary - name: dispreferred_image sequence: binary - name: preferred_image_uid sequence: string - name: dispreferred_image_uid sequence: string splits: - name: test num_bytes: 577417935 num_examples: 277 download_size: 574737834 dataset_size: 577417935 configs: - config_name: default data_files: - split: test path: data/test-* ---
mteb/CzechProductReviewSentimentClassification
mteb
2025-05-06T11:20:04Z
0
0
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-scoring", "task_ids:sentiment-classification", "task_ids:hate-speech-detection", "annotations_creators:derived", "multilinguality:monolingual", "language:ces", "license:cc-by-nc-sa-4.0", "modality:text", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T11:19:58Z
0
--- annotations_creators: - derived language: - ces license: cc-by-nc-sa-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 4318722 num_examples: 24000 - name: validation num_bytes: 534949 num_examples: 3000 - name: test num_bytes: 370337 num_examples: 2048 download_size: 3576380 dataset_size: 5224008 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CzechProductReviewSentimentClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> User reviews of products on Czech e-shop Mall.cz with 3 sentiment classes (positive, neutral, negative) | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Reviews, Written | | Reference | https://aclanthology.org/W13-1609/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["CzechProductReviewSentimentClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{habernal-etal-2013-sentiment, address = {Atlanta, Georgia}, author = {Habernal, Ivan and Pt{\'a}{\v{c}}ek, Tom{\'a}{\v{s}} and Steinberger, Josef}, booktitle = {Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis}, editor = {Balahur, Alexandra and van der Goot, Erik and Montoyo, Andres}, month = jun, pages = {65--74}, publisher = {Association for Computational Linguistics}, title = {Sentiment Analysis in {C}zech Social Media Using Supervised Machine Learning}, url = {https://aclanthology.org/W13-1609}, year = {2013}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("CzechProductReviewSentimentClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 2048, "number_of_characters": 314089, "number_texts_intersect_with_train": 506, "min_text_length": 1, "average_text_length": 153.36376953125, "max_text_length": 2859, "unique_text": 2003, "unique_labels": 3, "labels": { "1": { "count": 683 }, "0": { "count": 682 }, "2": { "count": 683 } } }, "train": { "num_samples": 24000, "number_of_characters": 3660165, "number_texts_intersect_with_train": null, "min_text_length": 1, "average_text_length": 152.506875, "max_text_length": 2603, "unique_text": 20409, "unique_labels": 3, "labels": { "1": { "count": 8000 }, "0": { "count": 8000 }, "2": { "count": 8000 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
Swati-sd/clippededge_1
Swati-sd
2025-03-15T12:55:16Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-15T12:55:08Z
0
--- dataset_info: features: - name: prompt dtype: string - name: image dtype: image - name: mask_0 dtype: image splits: - name: train num_bytes: 48825185.0 num_examples: 300 - name: test num_bytes: 5205168.0 num_examples: 30 download_size: 53965027 dataset_size: 54030353.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_10c22d4d-1810-4647-a847-66278776a6cd
argilla-internal-testing
2024-10-09T07:39:33Z
19
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-09T07:39:32Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1454 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
AI4Protein/VenusX_BindI_AlphaFold2_PDB
AI4Protein
2025-05-15T07:20:36Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-05-15T07:05:57Z
0
--- license: apache-2.0 ---
Lots-of-LoRAs/task175_spl_translation_en_pl
Lots-of-LoRAs
2025-01-05T14:29:23Z
64
0
[ "task_categories:text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2204.07705", "arxiv:2407.00066", "region:us" ]
[ "text-generation" ]
2025-01-05T14:29:21Z
0
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - apache-2.0 task_categories: - text-generation pretty_name: task175_spl_translation_en_pl dataset_info: config_name: plain_text features: - name: input dtype: string - name: output dtype: string - name: id dtype: string splits: - name: train num_examples: 287 - name: valid num_examples: 36 - name: test num_examples: 36 --- # Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task175_spl_translation_en_pl ## Dataset Description - **Homepage:** https://github.com/allenai/natural-instructions - **Paper:** https://arxiv.org/abs/2204.07705 - **Paper:** https://arxiv.org/abs/2407.00066 - **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:brg@mit.edu) ## Additional Information ### Citation Information The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it: ```bibtex @misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions, title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks}, author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi}, year={2022}, eprint={2204.07705}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2204.07705}, } ``` More details can also be found in the following paper: ```bibtex @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } ``` ### Contact Information For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:brg@mit.edu)
ScoutieAutoML/it_vacancies_vectorisation
ScoutieAutoML
2024-12-28T15:10:03Z
27
0
[ "task_categories:text-classification", "task_categories:feature-extraction", "task_categories:text-generation", "task_categories:zero-shot-classification", "task_categories:text2text-generation", "language:ru", "language:en", "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "russia", "vectors", "sentiment", "ner", "clusterisation", "vacancies", "it" ]
[ "text-classification", "feature-extraction", "text-generation", "zero-shot-classification", "text2text-generation" ]
2024-12-28T15:04:43Z
0
--- task_categories: - text-classification - feature-extraction - text-generation - zero-shot-classification - text2text-generation language: - ru - en tags: - russia - vectors - sentiment - ner - clusterisation - vacancies - it pretty_name: IT vacancies size_categories: - 10K<n<100K --- ## Description in English: The dataset is collected from Russian-language Telegram channels with information about various IT vacancies for ML, Data Science, Front-end, Back-end development,\ The dataset was collected and tagged automatically using the data collection and tagging service [Scoutie](https://scoutie.ru/).\ Try Scoutie and collect the same or another dataset using [link](https://scoutie.ru/) for FREE. ## Dataset fields: **taskId** - task identifier in the Scouti service.\ **text** - main text.\ **url** - link to the publication.\ **sourceLink** - link to Telegram.\ **subSourceLink** - link to the channel.\ **views** - text views.\ **likes** - for this dataset, an empty field (meaning the number of emotions).\ **createTime** - publication date in unix time format.\ **createTime** - publication collection date in unix time format.\ **clusterId** - cluster id.\ **vector** - text embedding (its vector representation).\ **ners** - array of identified named entities, where lemma is a lemmatized representation of a word, and label is the name of a tag, start_pos is the starting position of an entity in the text, end_pos is the ending position of an entity in the text.\ **sentiment** - emotional coloring of the text: POSITIVE, NEGATIVE, NEUTRAL.\ **language** - text language RUS, ENG.\ **spam** - text classification as advertising or not NOT_SPAM - no advertising, otherwise SPAM - the text is marked as advertising.\ **length** - number of tokens in the text (words).\ **markedUp** - means that the text is marked or not within the framework of the Skauti service, takes the value true or false. ## Описание на русском языке: Датасет собран из русскоязычных Telegram каналов с информацией о различных IT вакансиях для ML, Data Science, Front-end, Back-end разработке,\ Датасет был собран и размечен автоматически с помощью сервиса сбора и разметки данных [Скаути](https://scoutie.ru/).\ Попробуй Скаути и собери такой же или другой датасет по [ссылке](https://scoutie.ru/) БЕСПЛАТНО. ## Поля датасета: **taskId** - идентификатор задачи в сервисе Скаути.\ **text** - основной текст.\ **url** - ссылка на публикацию.\ **sourceLink** - ссылка на Telegram.\ **subSourceLink** - ссылка на канал.\ **views** - просмотры текста.\ **likes** - для данного датасета пустое поле (означающее количество эмоций).\ **createTime** - дата публикации в формате unix time.\ **createTime** - дата сбора публикации в формате unix time.\ **clusterId** - id кластера.\ **vector** - embedding текста (его векторное представление).\ **ners** - массив выявленных именованных сущностей, где lemma - лемматизированное представление слова, а label это название тега, start_pos - начальная позиция сущности в тексте, end_pos - конечная позиция сущности в тексте.\ **sentiment** - эмоциональный окрас текста: POSITIVE, NEGATIVE, NEUTRAL.\ **language** - язык текста RUS, ENG.\ **spam** - классификация текста, как рекламный или нет NOT_SPAM - нет рекламы, иначе SPAM - текст помечен, как рекламный.\ **length** - количество токенов в тексте (слов).\ **markedUp** - означает, что текст размечен или нет в рамках сервиса Скаути принимает значение true или false.
daparasyte/prompt_scores
daparasyte
2024-11-04T10:22:13Z
23
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-04T10:21:27Z
0
--- dataset_info: features: - name: id dtype: int64 - name: prompt dtype: string - name: score dtype: int64 - name: embedding sequence: float64 splits: - name: train num_bytes: 1387051325 num_examples: 109101 download_size: 1040902994 dataset_size: 1387051325 configs: - config_name: default data_files: - split: train path: data/train-* ---
vlm-reasoning-cot/ARC-AGI-Chunk
vlm-reasoning-cot
2025-06-07T02:22:39Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T01:43:54Z
0
--- dataset_info: - config_name: chunk_0001 features: - name: question dtype: string - name: reasoning dtype: string - name: answer dtype: string - name: source_folder dtype: string - name: problem_image_1 dtype: image - name: problem_image_2 dtype: image - name: problem_image_3 dtype: image - name: problem_image_4 dtype: image - name: problem_image_5 dtype: image - name: problem_image_6 dtype: image - name: problem_image_7 dtype: image - name: problem_image_8 dtype: image - name: problem_image_9 dtype: image - name: problem_image_10 dtype: image - name: problem_image_11 dtype: image - name: problem_image_12 dtype: image - name: problem_image_13 dtype: image - name: problem_image_14 dtype: image - name: problem_image_15 dtype: image - name: problem_image_16 dtype: image - name: problem_image_17 dtype: image - name: problem_image_18 dtype: image - name: problem_image_19 dtype: image - name: problem_image_20 dtype: image - name: problem_image_21 dtype: image - name: problem_image_22 dtype: image - name: reasoning_image_1 dtype: image - name: reasoning_image_2 dtype: image - name: reasoning_image_3 dtype: image - name: reasoning_image_4 dtype: image - name: reasoning_image_5 dtype: image - name: reasoning_image_6 dtype: image - name: reasoning_image_7 dtype: image - name: reasoning_image_8 dtype: image - name: reasoning_image_9 dtype: image - name: reasoning_image_10 dtype: image - name: reasoning_image_11 dtype: image - name: reasoning_image_12 dtype: image - name: reasoning_image_13 dtype: image - name: reasoning_image_14 dtype: image - name: reasoning_image_15 dtype: image - name: reasoning_image_16 dtype: image - name: reasoning_image_17 dtype: image - name: reasoning_image_18 dtype: image - name: reasoning_image_19 dtype: image - name: reasoning_image_20 dtype: image - name: reasoning_image_21 dtype: image - name: reasoning_image_22 dtype: image - name: reasoning_image_23 dtype: image - name: reasoning_image_24 dtype: image splits: - name: train num_bytes: 1047988015.0 num_examples: 1000 download_size: 869120847 dataset_size: 1047988015.0 - config_name: chunk_0002 features: - name: question dtype: string - name: reasoning dtype: string - name: answer dtype: string - name: source_folder dtype: string - name: problem_image_1 dtype: image - name: problem_image_2 dtype: image - name: problem_image_3 dtype: image - name: problem_image_4 dtype: image - name: problem_image_5 dtype: image - name: problem_image_6 dtype: image - name: problem_image_7 dtype: image - name: problem_image_8 dtype: image - name: problem_image_9 dtype: image - name: problem_image_10 dtype: image - name: problem_image_11 dtype: image - name: problem_image_12 dtype: image - name: problem_image_13 dtype: image - name: problem_image_14 dtype: image - name: problem_image_15 dtype: image - name: problem_image_16 dtype: image - name: problem_image_17 dtype: image - name: problem_image_18 dtype: image - name: problem_image_19 dtype: image - name: problem_image_20 dtype: image - name: problem_image_21 dtype: image - name: problem_image_22 dtype: image - name: reasoning_image_1 dtype: image - name: reasoning_image_2 dtype: image - name: reasoning_image_3 dtype: image - name: reasoning_image_4 dtype: image - name: reasoning_image_5 dtype: image - name: reasoning_image_6 dtype: image - name: reasoning_image_7 dtype: image - name: reasoning_image_8 dtype: image - name: reasoning_image_9 dtype: image - name: reasoning_image_10 dtype: image - name: reasoning_image_11 dtype: image - name: reasoning_image_12 dtype: image - name: reasoning_image_13 dtype: image - name: reasoning_image_14 dtype: image - name: reasoning_image_15 dtype: image - name: reasoning_image_16 dtype: image - name: reasoning_image_17 dtype: image - name: reasoning_image_18 dtype: image - name: reasoning_image_19 dtype: image - name: reasoning_image_20 dtype: image - name: reasoning_image_21 dtype: image - name: reasoning_image_22 dtype: image - name: reasoning_image_23 dtype: image - name: reasoning_image_24 dtype: image splits: - name: train num_bytes: 1113769233.0 num_examples: 1000 download_size: 926399415 dataset_size: 1113769233.0 configs: - config_name: chunk_0001 data_files: - split: train path: chunk_0001/train-* - config_name: chunk_0002 data_files: - split: train path: chunk_0002/train-* ---
cfy789/piper_real_test_0213_tt
cfy789
2025-02-13T05:45:53Z
31
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "piper", "tutorial" ]
[ "robotics" ]
2025-02-13T05:42:48Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - piper - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "piper", "total_episodes": 1, "total_frames": 177, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 15, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": null, "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_angle", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_angle", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "image", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": null }, "observation.images.phone": { "dtype": "image", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
hendrydong/r1-93K
hendrydong
2025-02-12T06:05:01Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-12T06:04:29Z
0
--- dataset_info: features: - name: problem dtype: string - name: response dtype: string - name: len dtype: int64 splits: - name: train num_bytes: 1457341962 num_examples: 93733 download_size: 650061855 dataset_size: 1457341962 configs: - config_name: default data_files: - split: train path: data/train-* ---
yobro4619/skywork_Llama_3.1
yobro4619
2024-12-01T22:58:48Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-01T22:58:46Z
0
--- dataset_info: features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: source dtype: string - name: reward_chosen dtype: float64 - name: reward_rejected dtype: float64 splits: - name: train num_bytes: 25019105 num_examples: 5000 download_size: 11754585 dataset_size: 25019105 configs: - config_name: default data_files: - split: train path: data/train-* ---
michsethowusu/ganda-tumbuka_sentence-pairs
michsethowusu
2025-04-02T10:58:10Z
8
0
[ "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-02T10:58:08Z
0
--- dataset_info: features: - name: score dtype: float32 - name: Ganda dtype: string - name: Tumbuka dtype: string splits: - name: train num_bytes: 20117554 num_examples: 143005 download_size: 20117554 dataset_size: 20117554 configs: - config_name: default data_files: - split: train path: Ganda-Tumbuka_Sentence-Pairs.csv --- # Ganda-Tumbuka_Sentence-Pairs Dataset This dataset contains sentence pairs for African languages along with similarity scores. It can be used for machine translation, sentence alignment, or other natural language processing tasks. This dataset is based on the NLLBv1 dataset, published on OPUS under an open-source initiative led by META. You can find more information here: [OPUS - NLLB-v1](https://opus.nlpl.eu/legacy/NLLB-v1.php) ## Metadata - **File Name**: Ganda-Tumbuka_Sentence-Pairs - **Number of Rows**: 143005 - **Number of Columns**: 3 - **Columns**: score, Ganda, Tumbuka ## Dataset Description The dataset contains sentence pairs in African languages with an associated similarity score. Each row consists of three columns: 1. `score`: The similarity score between the two sentences (range from 0 to 1). 2. `Ganda`: The first sentence in the pair (language 1). 3. `Tumbuka`: The second sentence in the pair (language 2). This dataset is intended for use in training and evaluating machine learning models for tasks like translation, sentence similarity, and cross-lingual transfer learning. ## References Below are papers related to how the data was collected and used in various multilingual and cross-lingual applications: [1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017 [2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018. [3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018 [4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018. [5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018. [6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018. [7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019. [8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB [9] Paul-Ambroise Duquenne, Hongyu Gong, Holger Schwenk, Multimodal and Multilingual Embeddings for Large-Scale Speech Mining, NeurIPS 2021, pages 15748-15761. [10] Kevin Heffernan, Onur Celebi, and Holger Schwenk, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
Voxel51/deeplesion-balanced-2k
Voxel51
2025-06-24T19:20:09Z
0
0
[ "task_categories:object-detection", "language:en", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "library:fiftyone", "region:us", "fiftyone", "image", "object-detection" ]
[ "object-detection" ]
2025-06-24T19:08:36Z
0
--- annotations_creators: [] language: en size_categories: - 1K<n<10K task_categories: - object-detection task_ids: [] pretty_name: deeplesion_balanced tags: - fiftyone - image - object-detection dataset_summary: ' This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2161 samples. ## Installation If you haven''t already, install FiftyOne: ```bash pip install -U fiftyone ``` ## Usage ```python import fiftyone as fo from fiftyone.utils.huggingface import load_from_hub # Load the dataset # Note: other available arguments include ''max_samples'', etc dataset = load_from_hub("pjramg/deeplesion_balanced_fiftyone") # Launch the App session = fo.launch_app(dataset) ``` ' --- # DeepLesion Benchmark Subset (Balanced 2K) This dataset is a curated subset of the [DeepLesion dataset](https://nihcc.app.box.com/v/DeepLesion), prepared for demonstration and benchmarking purposes. It consists of 2,000 CT lesion samples, balanced across 8 coarse lesion types, and filtered to include lesions with a short diameter > 10mm. ## Dataset Details - **Source**: [DeepLesion](https://nihcc.app.box.com/v/DeepLesion) - **Institution**: National Institutes of Health (NIH) Clinical Center - **Subset size**: 2,000 images - **Lesion types**: lung, abdomen, mediastinum, liver, pelvis, soft tissue, kidney, bone - **Selection criteria**: - Short diameter > 10mm - Balanced sampling across all types - **Windowing**: All slices were windowed using DICOM parameters and converted to 8-bit PNG format ## License This dataset is shared under the **[CC BY-NC-SA 4.0 License](https://creativecommons.org/licenses/by-nc-sa/4.0/)**, as specified by the NIH DeepLesion dataset creators. > This dataset is intended **only for non-commercial research and educational use**. > You must credit the original authors and the NIH Clinical Center when using this data. ## Citation If you use this data, please cite: ```bibtex @article{yan2018deeplesion, title={DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning}, author={Yan, Ke and Zhang, Yao and Wang, Le Lu and Huang, Xuejun and Summers, Ronald M}, journal={Journal of medical imaging}, volume={5}, number={3}, pages={036501}, year={2018}, publisher={SPIE} } Curation done by FiftyOne. @article{moore2020fiftyone, title={FiftyOne}, author={Moore, B. E. and Corso, J. J.}, journal={GitHub. Note: https://github.com/voxel51/fiftyone}, year={2020} } ``` ## Intended Uses - Embedding demos - Lesion similarity and retrieval - Benchmarking medical image models - Few-shot learning on lesion types ## Limitations - This is a small subset of the full DeepLesion dataset - Not suitable for training full detection models - Labels are coarse and may contain inconsistencies ## Contact Created by Paula Ramos for demo purposes using FiftyOne and the DeepLesion public metadata.
espressovi/VALUED
espressovi
2025-01-28T19:38:00Z
31
1
[ "license:cc-by-4.0", "region:us" ]
[]
2025-01-28T07:44:47Z
0
--- license: cc-by-4.0 --- # VALUED - Vision and Logical Understanding Evaluation Dataset. --- This repository contains dataset associated with the paper at (https://data.mlr.press/assets/pdf/v01-13.pdf). View samples from the dataset at the [dataset page](https://espressovi.github.io/VALUED). ## Authors - [Soumadeep Saha](https://www.isical.ac.in/~soumadeep.saha_r) - [Saptarshi Saha](https://openreview.net/profile?id=~Saptarshi_Saha1) - [Utpal Garain](https://www.isical.ac.in/~utpal). ## Abstract Starting with early successes in computer vision tasks, deep learning based techniques have since overtaken state of the art approaches in a multitude of domains. However, it has been demonstrated time and again that these techniques fail to capture semantic context and logical constraints, instead often relying on spurious correlations to arrive at the answer. Since application of deep learning techniques to critical scenarios are dependent on adherence to domain specific constraints, several attempts have been made to address this issue. One limitation holding back a thorough exploration of this area, is a lack of suitable datasets which feature a rich set of rules. In order to address this, we present the VALUE (Vision And Logical Understanding Evaluation) Dataset, consisting of 200,000+ annotated images and an associated rule set, based on the popular board game - chess. The curated rule set considerably constrains the set of allowable predictions, and are designed to probe key semantic abilities like localization and enumeration. Alongside standard metrics, additional metrics to measure performance with regards to logical consistency is presented. We analyze several popular and state of the art vision models on this task, and show that, although their performance on standard metrics are laudable, they produce a plethora of incoherent results, indicating that this dataset presents a significant challenge for future works. --- ## Usage ### Download data - The generated train/test set along with all labels can be found [here](https://zenodo.org/records/10607059). - The DOI for the dataset is 10.5281/zenodo.8278014. ## Cite If you find our work useful, please cite: ``` @article{saha2024valued, title={{VALUED} - Vision and Logical Understanding Evaluation Dataset}, author={Soumadeep Saha and Saptarshi Saha and Utpal Garain}, journal={Journal of Data-centric Machine Learning Research}, year={2024}, url={https://openreview.net/forum?id=nS9oxKyy9u} } ```
koenvanwijk/insert5
koenvanwijk
2025-06-14T23:26:38Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-14T23:26:23Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 2, "total_frames": 4388, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
tmpmodelsave/llamasft_math_ift_balanced_moredata_100tmp10
tmpmodelsave
2025-01-21T05:53:08Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-21T05:53:06Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 85917567 num_examples: 30000 download_size: 31416891 dataset_size: 85917567 configs: - config_name: default data_files: - split: train path: data/train-* ---
vlm-reasoning-cot/Visual_Search_New_1000
vlm-reasoning-cot
2025-06-12T17:21:12Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-12T17:20:50Z
0
--- dataset_info: config_name: chunk_0001 features: - name: question dtype: string - name: reasoning dtype: string - name: answer dtype: string - name: source_folder dtype: string - name: problem_image_1 dtype: image - name: reasoning_image_1 dtype: image splits: - name: train num_bytes: 1018252583.0 num_examples: 1000 download_size: 946548220 dataset_size: 1018252583.0 configs: - config_name: chunk_0001 data_files: - split: train path: chunk_0001/train-* ---
mteb/VieStudentFeedbackClassification
mteb
2025-06-20T19:12:38Z
0
0
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-scoring", "task_ids:sentiment-classification", "task_ids:hate-speech-detection", "annotations_creators:human-annotated", "multilinguality:monolingual", "source_datasets:uitnlp/vietnamese_students_feedback", "language:vie", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-06-20T19:12:16Z
0
--- annotations_creators: - human-annotated language: - vie license: mit multilinguality: monolingual source_datasets: - uitnlp/vietnamese_students_feedback task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1023776 num_examples: 11426 - name: validation num_bytes: 136041 num_examples: 1583 - name: test num_bytes: 180695 num_examples: 2048 download_size: 608176 dataset_size: 1340512 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">VieStudentFeedbackClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> A Vietnamese dataset for classification of student feedback | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Reviews, Written | | Reference | https://ieeexplore.ieee.org/document/8573337 | Source datasets: - [uitnlp/vietnamese_students_feedback](https://huggingface.co/datasets/uitnlp/vietnamese_students_feedback) ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_task("VieStudentFeedbackClassification") evaluator = mteb.MTEB([task]) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{8573337, author = {Nguyen, Kiet Van and Nguyen, Vu Duc and Nguyen, Phu X. V. and Truong, Tham T. H. and Nguyen, Ngan Luu-Thuy}, booktitle = {2018 10th International Conference on Knowledge and Systems Engineering (KSE)}, doi = {10.1109/KSE.2018.8573337}, number = {}, pages = {19-24}, title = {UIT-VSFC: Vietnamese Students’ Feedback Corpus for Sentiment Analysis}, volume = {}, year = {2018}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("VieStudentFeedbackClassification") desc_stats = task.metadata.descriptive_stats ``` ```json {} ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
nvidia/PhysicalAI-Robotics-GR00T-GR1
nvidia
2025-06-14T04:34:00Z
8
0
[ "license:cc-by-4.0", "size_categories:n<1K", "modality:text", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-14T00:33:27Z
0
--- license: cc-by-4.0 --- # GR1-100 92 Videos of a Fourier GR1-T2 robot performing various tasks in the lab from the third person perspective.<br> This dataset is ready for commercial/non-commercial use. ## Dataset Owner(s): NVIDIA Corporation (GEAR Lab) ## Dataset Creation Date: May 1, 2025 ## License/Terms of Use: This dataset is governed by the [Creative Commons Attribution 4.0 International License (CC-BY-4.0)](https://creativecommons.org/licenses/by/4.0/deed.en).<br> This dataset was created using a Fourier GR1-T2 robot. ## Intended Usage: Training video dataset for robotics. ## Dataset Characterization **Data Collection Method**<br> - Human<br> **Labeling Method**<br> - Human <br> ## Dataset Format MP4 files ## Dataset Quantification Record count: 92 videos<br> Total Size: 142.3MB ## Reference(s): [DreamGen WhitePaper](https://arxiv.org/html/2505.12705v1)<br> [IDM-GR1 Model](https://huggingface.co/seonghyeonye/IDM_gr1) ## Ethical Considerations: NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
nfiekas/fishnet-evals
nfiekas
2025-04-26T08:35:56Z
315
1
[ "license:cc0-1.0", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-25T06:10:44Z
0
--- license: cc0-1.0 --- # Lichess database positions with Stockfish evaluations Positions with evaluations extracted from https://database.lichess.org/. Evaluations were computed using Lichess's distributed Stockfish analysis [fishnet](https://github.com/lichess-org/fishnet), using various Stockfish versions. column | type | description --- | --- | --- `fen` | string | FEN of the evaluated position. En passant square included only if a fully legal en passant move exists. `cp` / `mate` | int *or* null | Signed evaluation of the position in centipawns or moves to mate, as computed by Stockfish. Exactly one of these is not null. Always given from White's point of view, so positive if White has the advantage `move` | string *or* null | UCI notation of the next move played by the **human** player, if any. Always in Chess960 mode (king move to rook for castling). Known issues: * Note that even `mate` evaluations are not completely guaranteed to be correct, especially those produced before 2016. * 2016-12, 2020-07 and 2020-08 are intentionally omitted, because due to intermittent bugs, many broken evaluations were produced in those months.
HKrecords/MNLP_M3_dpo_dataset
HKrecords
2025-06-09T13:09:52Z
23
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-09T13:09:50Z
0
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 10561822.421688953 num_examples: 3000 download_size: 6203661 dataset_size: 10561822.421688953 configs: - config_name: default data_files: - split: train path: data/train-* ---
lihaoxin2020/ki_extraction-30b-lmeval-deepseek-reasoner-on-mmlu_pro-0shot_cot-scillm-b330c24d48-vw54
lihaoxin2020
2025-09-25T00:07:07Z
102
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-09-25T00:06:46Z
0
--- dataset_info: - config_name: biology features: - name: data list: - name: role dtype: string - name: content dtype: string - name: raw_response struct: - name: text dtype: string - name: raw_text dtype: string - name: knowledge_pieces list: string - name: doc_id dtype: int64 - name: native_id dtype: int64 splits: - name: train num_bytes: 4477015 num_examples: 200 download_size: 1692020 dataset_size: 4477015 - config_name: chemistry features: - name: data list: - name: role dtype: string - name: content dtype: string - name: raw_response struct: - name: text dtype: string - name: raw_text dtype: string - name: knowledge_pieces list: string - name: doc_id dtype: int64 - name: native_id dtype: int64 splits: - name: train num_bytes: 6869958 num_examples: 200 download_size: 2525816 dataset_size: 6869958 - config_name: computer science features: - name: data list: - name: role dtype: string - name: content dtype: string - name: raw_response struct: - name: text dtype: string - name: raw_text dtype: string - name: knowledge_pieces list: string - name: doc_id dtype: int64 - name: native_id dtype: int64 splits: - name: train num_bytes: 6540940 num_examples: 200 download_size: 2355538 dataset_size: 6540940 - config_name: engineering features: - name: data list: - name: role dtype: string - name: content dtype: string - name: raw_response struct: - name: text dtype: string - name: raw_text dtype: string - name: knowledge_pieces list: string - name: doc_id dtype: int64 - name: native_id dtype: int64 splits: - name: train num_bytes: 8353562 num_examples: 200 download_size: 3128075 dataset_size: 8353562 - config_name: health features: - name: data list: - name: role dtype: string - name: content dtype: string - name: raw_response struct: - name: text dtype: string - name: raw_text dtype: string - name: knowledge_pieces list: string - name: doc_id dtype: int64 - name: native_id dtype: int64 splits: - name: train num_bytes: 4668344 num_examples: 200 download_size: 1792046 dataset_size: 4668344 - config_name: math features: - name: data list: - name: role dtype: string - name: content dtype: string - name: raw_response struct: - name: text dtype: string - name: raw_text dtype: string - name: knowledge_pieces list: string - name: doc_id dtype: int64 - name: native_id dtype: int64 splits: - name: train num_bytes: 6458731 num_examples: 200 download_size: 2340058 dataset_size: 6458731 - config_name: physics features: - name: data list: - name: role dtype: string - name: content dtype: string - name: raw_response struct: - name: text dtype: string - name: raw_text dtype: string - name: knowledge_pieces list: string - name: doc_id dtype: int64 - name: native_id dtype: int64 splits: - name: train num_bytes: 7068469 num_examples: 200 download_size: 2558074 dataset_size: 7068469 configs: - config_name: biology data_files: - split: train path: biology/train-* - config_name: chemistry data_files: - split: train path: chemistry/train-* - config_name: computer science data_files: - split: train path: computer science/train-* - config_name: engineering data_files: - split: train path: engineering/train-* - config_name: health data_files: - split: train path: health/train-* - config_name: math data_files: - split: train path: math/train-* - config_name: physics data_files: - split: train path: physics/train-* ---
tinisoft/indicvoices-tamil-valid-subset
tinisoft
2025-06-03T06:08:36Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T06:07:59Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: duration dtype: float64 - name: lang dtype: string - name: samples dtype: int64 - name: verbatim dtype: string - name: normalized dtype: string - name: speaker_id dtype: string - name: scenario dtype: string - name: task_name dtype: string - name: gender dtype: string - name: age_group dtype: string - name: job_type dtype: string - name: qualification dtype: string - name: area dtype: string - name: district dtype: string - name: state dtype: string - name: occupation dtype: string - name: verification_report dtype: string - name: unsanitized_verbatim dtype: string - name: unsanitized_normalized dtype: string splits: - name: train num_bytes: 162451871.2 num_examples: 800 - name: validation num_bytes: 40612967.8 num_examples: 200 download_size: 197132715 dataset_size: 203064839.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
lhkhiem28/MolT-Rex-datasets
lhkhiem28
2025-09-26T14:34:25Z
227
0
[ "region:us" ]
[]
2025-09-17T18:49:55Z
0
--- viewer: false configs: - config_name: Caco-2 data_files: - split: train path: Caco-2/train-* - split: test path: Caco-2/test-* - config_name: Clearance hepatocyte data_files: - split: train path: Clearance hepatocyte/train-* - split: test path: Clearance hepatocyte/test-* - config_name: Clearance microsome data_files: - split: train path: Clearance microsome/train-* - split: test path: Clearance microsome/test-* - config_name: Half life data_files: - split: train path: Half life/train-* - split: test path: Half life/test-* - config_name: LD50 data_files: - split: train path: LD50/train-* - split: test path: LD50/test-* - config_name: Lipophilicity data_files: - split: train path: Lipophilicity/train-* - split: test path: Lipophilicity/test-* - config_name: PPBR data_files: - split: train path: PPBR/train-* - split: test path: PPBR/test-* - config_name: Solubility data_files: - split: train path: Solubility/train-* - split: test path: Solubility/test-* - config_name: VDss data_files: - split: train path: VDss/train-* - split: test path: VDss/test-* dataset_info: - config_name: Caco-2 features: - name: id dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: messages_fgs list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1392627 num_examples: 637 - name: test num_bytes: 401443 num_examples: 182 download_size: 213372 dataset_size: 1794070 - config_name: Clearance hepatocyte features: - name: id dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: messages_fgs list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1597857 num_examples: 849 - name: test num_bytes: 459929 num_examples: 243 download_size: 209731 dataset_size: 2057786 - config_name: Clearance microsome features: - name: id dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: messages_fgs list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1445781 num_examples: 771 - name: test num_bytes: 416071 num_examples: 221 download_size: 213672 dataset_size: 1861852 - config_name: Half life features: - name: id dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: messages_fgs list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 861537 num_examples: 466 - name: test num_bytes: 251345 num_examples: 135 download_size: 153290 dataset_size: 1112882 - config_name: LD50 features: - name: id dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: messages_fgs list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 8646716 num_examples: 5169 - name: test num_bytes: 2516273 num_examples: 1478 download_size: 1154294 dataset_size: 11162989 - config_name: Lipophilicity features: - name: id dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: messages_fgs list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 5626737 num_examples: 2940 - name: test num_bytes: 1614410 num_examples: 840 download_size: 776070 dataset_size: 7241147 - config_name: PPBR features: - name: id dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: messages_fgs list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 2310665 num_examples: 1129 - name: test num_bytes: 664700 num_examples: 324 download_size: 339465 dataset_size: 2975365 - config_name: Solubility features: - name: id dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: messages_fgs list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 13263161 num_examples: 6987 - name: test num_bytes: 3863730 num_examples: 1997 download_size: 1796791 dataset_size: 17126891 - config_name: VDss features: - name: id dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: messages_fgs list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1698940 num_examples: 791 - name: test num_bytes: 485208 num_examples: 226 download_size: 266639 dataset_size: 2184148 ---
cat-claws/hotpotqa_clustered_agglomerative_all-MiniLM-L6-v2_2
cat-claws
2025-09-20T07:34:55Z
74
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-09-20T07:34:47Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1391756 num_examples: 10000 - name: validation num_bytes: 938825 num_examples: 7405 - name: test num_bytes: 823933 num_examples: 7405 download_size: 1969193 dataset_size: 3154514 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
test-gen/mbpp_mbpp-dagger-easy-qwen-coder-7b-instruct-from-sft-iter1_t0.0_n1_generated_tests
test-gen
2025-05-08T21:50:00Z
36
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T15:04:48Z
0
--- dataset_info: features: - name: task_id dtype: int32 - name: text dtype: string - name: code dtype: string - name: test_list sequence: string - name: test_setup_code dtype: string - name: challenge_test_list sequence: string - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 277119 num_examples: 500 download_size: 126766 dataset_size: 277119 configs: - config_name: default data_files: - split: test path: data/test-* ---
lamm-mit/synthetic_graph_pathfinding_100K
lamm-mit
2024-12-15T13:33:32Z
28
1
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-15T13:33:30Z
0
--- dataset_info: features: - name: instruction dtype: string - name: answer dtype: string splits: - name: train num_bytes: 9187152 num_examples: 100000 - name: test num_bytes: 458795 num_examples: 5000 download_size: 2765841 dataset_size: 9645947 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Hanumansai/Question_answer_synthetic_dataset
Hanumansai
2025-03-22T09:39:19Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-22T09:39:17Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 252651 num_examples: 1253 download_size: 113452 dataset_size: 252651 configs: - config_name: default data_files: - split: train path: data/train-* ---
chiyuanhsiao/QA_ASR_TTS_phase-2_v2
chiyuanhsiao
2024-12-08T20:06:08Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-08T18:21:47Z
0
--- dataset_info: features: - name: id dtype: string - name: question dtype: string - name: question_speech dtype: audio - name: question_unit sequence: int64 - name: instruction dtype: string - name: response_interleaf dtype: string - name: response_text dtype: string - name: response_speech dtype: audio splits: - name: train num_bytes: 2185209.0 num_examples: 5 download_size: 2169256 dataset_size: 2185209.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ashercn97/combined-reasoning-data
ashercn97
2024-11-28T04:41:37Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-28T04:41:35Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 5655896 num_examples: 2500 download_size: 2944029 dataset_size: 5655896 configs: - config_name: default data_files: - split: train path: data/train-* ---
LynxLegion/test2
LynxLegion
2025-01-01T11:23:31Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-31T16:37:16Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: float64 - name: response dtype: string splits: - name: train num_bytes: 1824.0 num_examples: 6 - name: test num_bytes: 190 num_examples: 1 download_size: 8046 dataset_size: 2014.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
dbaeka/soen_691_msg_test_5000_hashed
dbaeka
2025-03-18T12:05:49Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-17T07:01:39Z
0
--- dataset_info: features: - name: hash dtype: string - name: value struct: - name: callgraph dtype: string - name: msg dtype: string - name: patch dtype: string - name: summary dtype: string splits: - name: test num_bytes: 5947893 num_examples: 5000 download_size: 3228713 dataset_size: 5947893 configs: - config_name: default data_files: - split: test path: data/test-* ---
smui/llama_bts_ko
smui
2024-11-22T00:47:34Z
15
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-22T00:45:10Z
0
--- license: apache-2.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 ---
gupta-tanish/Ultrafeedback-llama3-8b-Instruct-optimal-selection-grm-gemma2b
gupta-tanish
2025-03-26T21:29:52Z
7
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-26T21:28:41Z
0
--- dataset_info: features: - name: prompt_id dtype: string - name: prompt dtype: string - name: all_generated_responses sequence: string - name: all_reward_scores sequence: float64 - name: A0 list: - name: content dtype: string - name: role dtype: string - name: A1 list: - name: content dtype: string - name: role dtype: string - name: A2 list: - name: content dtype: string - name: role dtype: string - name: A3 list: - name: content dtype: string - name: role dtype: string - name: A4 list: - name: content dtype: string - name: role dtype: string - name: A5 list: - name: content dtype: string - name: role dtype: string - name: A6 list: - name: content dtype: string - name: role dtype: string - name: A7 list: - name: content dtype: string - name: role dtype: string - name: score_A0 dtype: float64 - name: score_A1 dtype: float64 - name: score_A2 dtype: float64 - name: score_A3 dtype: float64 - name: score_A4 dtype: float64 - name: score_A5 dtype: float64 - name: score_A6 dtype: float64 - name: score_A7 dtype: float64 splits: - name: train_prefs num_bytes: 4715105820 num_examples: 59131 - name: test_prefs num_bytes: 153619601 num_examples: 1930 download_size: 1884694253 dataset_size: 4868725421 configs: - config_name: default data_files: - split: train_prefs path: data/train_prefs-* - split: test_prefs path: data/test_prefs-* ---
heig-vd-geo/STDL-soils
heig-vd-geo
2025-05-15T12:06:27Z
0
0
[ "task_categories:image-segmentation", "language:en", "license:mit", "size_categories:1B<n<10B", "region:us" ]
[ "image-segmentation" ]
2025-05-15T11:58:19Z
0
--- license: mit task_categories: - image-segmentation language: - en size_categories: - 1B<n<10B ---
danibor/wiki-paragraphs-es
danibor
2025-02-28T18:35:40Z
21
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-28T17:46:40Z
0
--- dataset_info: features: - name: url dtype: string - name: title dtype: string - name: paragraph dtype: string splits: - name: train num_bytes: 2677602228.2212667 num_examples: 1563926 download_size: 1853359014 dataset_size: 2677602228.2212667 configs: - config_name: default data_files: - split: train path: data/train-* ---
villekuosmanen/agilex_tian_put_red_book_top
villekuosmanen
2025-02-13T22:16:15Z
33
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-02-13T22:15:54Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "arx5_bimanual", "total_episodes": 21, "total_frames": 22101, "total_tasks": 1, "total_videos": 63, "total_chunks": 1, "chunks_size": 1000, "fps": 25, "splits": { "train": "0:21" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 14 ] }, "observation.state": { "dtype": "float32", "shape": [ 14 ] }, "observation.effort": { "dtype": "float32", "shape": [ 14 ] }, "observation.images.cam_high": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 25.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_left_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 25.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_right_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 25.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
twei11/node1_round_60
twei11
2025-04-17T07:56:34Z
18
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-17T07:56:33Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 7204562 num_examples: 1800 download_size: 3534849 dataset_size: 7204562 configs: - config_name: default data_files: - split: train path: data/train-* ---
sine/LeetCodeSample
sine
2024-10-21T18:54:40Z
41
1
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-21T17:42:38Z
0
--- configs: - config_name: python data_files: - split: test path: python/test-* dataset_info: config_name: python features: - name: id dtype: string - name: content dtype: string - name: test struct: - name: code dtype: string - name: labels struct: - name: programming_language dtype: string - name: execution_language dtype: string - name: questionId dtype: string - name: questionFrontendId dtype: string - name: questionTitle dtype: string - name: stats struct: - name: totalAccepted dtype: string - name: totalSubmission dtype: string - name: totalAcceptedRaw dtype: int64 - name: totalSubmissionRaw dtype: int64 - name: acRate dtype: string splits: - name: test num_bytes: 1236371 num_examples: 260 download_size: 502189 dataset_size: 1236371 ---
gzx1988/gzx5w-3
gzx1988
2024-10-20T10:12:35Z
19
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-20T10:12:12Z
0
--- license: apache-2.0 ---
nimapourjafar/mm_tqa
nimapourjafar
2024-06-15T01:29:14Z
32
1
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-06-15T01:29:01Z
1
--- dataset_info: features: - name: images sequence: image: decode: false - name: audios sequence: 'null' - name: videos sequence: 'null' - name: data list: - name: data dtype: string - name: modality dtype: string - name: role dtype: string splits: - name: train num_bytes: 379242136 num_examples: 1493 download_size: 378257680 dataset_size: 379242136 configs: - config_name: default data_files: - split: train path: data/train-* ---
collectivat/tv3_parla
collectivat
2024-11-25T15:21:20Z
287
3
[ "task_categories:automatic-speech-recognition", "task_categories:text-generation", "task_ids:language-modeling", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:ca", "license:cc-by-nc-4.0", "size_categories:100K<n<1M", "region:us" ]
[ "automatic-speech-recognition", "text-generation" ]
2022-03-02T23:29:22Z
0
--- annotations_creators: - found language_creators: - found language: - ca license: - cc-by-nc-4.0 multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - automatic-speech-recognition - text-generation task_ids: - language-modeling pretty_name: TV3Parla --- # Dataset Card for TV3Parla ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://collectivat.cat/asr#tv3parla - **Repository:** - **Paper:** [Building an Open Source Automatic Speech Recognition System for Catalan](https://www.isca-speech.org/archive/iberspeech_2018/kulebi18_iberspeech.html) - **Point of Contact:** [Col·lectivaT](mailto:info@collectivat.cat) ### Dataset Summary This corpus includes 240 hours of Catalan speech from broadcast material. The details of segmentation, data processing and also model training are explained in Külebi, Öktem; 2018. The content is owned by Corporació Catalana de Mitjans Audiovisuals, SA (CCMA); we processed their material and hereby making it available under their terms of use. This project was supported by the Softcatalà Association. ### Supported Tasks and Leaderboards The dataset can be used for: - Language Modeling. - Automatic Speech Recognition (ASR) transcribes utterances into words. ### Languages The dataset is in Catalan (`ca`). ## Dataset Structure ### Data Instances ``` { 'path': 'tv3_0.3/wav/train/5662515_1492531876710/5662515_1492531876710_120.180_139.020.wav', 'audio': {'path': 'tv3_0.3/wav/train/5662515_1492531876710/5662515_1492531876710_120.180_139.020.wav', 'array': array([-0.01168823, 0.01229858, 0.02819824, ..., 0.015625 , 0.01525879, 0.0145874 ]), 'sampling_rate': 16000}, 'text': 'algunes montoneres que que et feien anar ben col·locat i el vent també hi jugava una mica de paper bufava vent de cantó alguns cops o de cul i el pelotón el vent el porta molt malament hi havia molts nervis' } ``` ### Data Fields - `path` (str): Path to the audio file. - `audio` (dict): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus, it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - `text` (str): Transcription of the audio file. ### Data Splits The dataset is split into "train" and "test". | | train | test | |:-------------------|-------:|-----:| | Number of examples | 159242 | 2220 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/). ### Citation Information ``` @inproceedings{kulebi18_iberspeech, author={Baybars Külebi and Alp Öktem}, title={{Building an Open Source Automatic Speech Recognition System for Catalan}}, year=2018, booktitle={Proc. IberSPEECH 2018}, pages={25--29}, doi={10.21437/IberSPEECH.2018-6} } ``` ### Contributions Thanks to [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
softjapan/jaquad-sft
softjapan
2025-09-24T14:32:53Z
72
0
[ "task_categories:question-answering", "task_categories:text-generation", "language:ja", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "japanese", "question-answering", "sft", "instruction-tuning" ]
[ "question-answering", "text-generation" ]
2025-09-24T04:47:07Z
0
--- license: mit task_categories: - question-answering - text-generation language: - ja tags: - japanese - question-answering - sft - instruction-tuning size_categories: - 10K<n<100K --- # softjapan/jaquad-sft ## データセットの概要 このデータセットは、JaQuAD(Japanese Question Answering Dataset)をSFT(Supervised Fine-Tuning)形式に変換したものです。日本語の質問応答タスクに特化したinstruction tuning用のデータセットです。 ## データセットの詳細 - **言語**: 日本語 - **タスク**: 質問応答、instruction tuning - **形式**: SFT(instruction/input/output) - **訓練データ**: 31,748件 - **検証データ**: 3,939件 - **合計**: 35,687件 ## データ形式 各サンプルは以下の形式で構成されています: ```json { "id": "tr-000-00-000", "instruction": "次の文脈に基づいて質問に答えてください。可能なら短く正確に答えてください。", "input": "【文脈】手塚治虫(てづかおさむ、本名:手塚治(読み同じ)、1928年(昭和3年)11月3日-1989年(平成元年)2月9日)は、日本の漫画家、アニメーター、アニメ監督である。\n戦後日本においてストーリー漫画の第一人者として、漫画表現の開拓者的な存在として活躍した。\n\n兵庫県宝塚市出身(出生は大阪府豊能郡豊中町、現在の豊中市)同市名誉市民である。\n大阪帝国大学附属医学専門部を卒業。\n医師免許取得のち医学博士(奈良県立医科大学・1961年)。\n\n【質問】戦後日本のストーリー漫画の第一人者で、医学博士の一面もある漫画家は誰?", "output": "手塚治虫" } ``` ## 使用方法 ### データセットの読み込み ```python from datasets import load_dataset # データセットを読み込み dataset = load_dataset("softjapan/jaquad-sft") # 訓練データの例を表示 print(dataset["train"][0]) ``` ### LoRAファインチューニングでの使用 ```python import os import math import random import inspect import transformers from datasets import load_dataset from transformers import ( AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling, Trainer, ) # 衝突回避: HF の TrainingArguments を明示別名 from transformers import TrainingArguments as HFTrainingArguments from peft import LoraConfig, get_peft_model, TaskType # -------- 0) 再現性(任意) -------- SEED = int(os.environ.get("SEED", 42)) random.seed(SEED) os.environ["PYTHONHASHSEED"] = str(SEED) # -------- 1) データ読み込み -------- dataset = load_dataset("softjapan/jaquad-sft") # train / validation あり # remove_columns 用に元カラム名を控える if "train" in dataset: original_columns = dataset["train"].column_names else: first_split = list(dataset.keys())[0] original_columns = dataset[first_split].column_names # -------- 2) トークナイザー & モデル -------- model_name = "Qwen/Qwen2-1.5B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" # torch_dtype は非推奨 → dtype へ model = AutoModelForCausalLM.from_pretrained( model_name, dtype="auto", device_map="auto", ) # -------- 3) LoRA 設定 -------- lora_config = LoraConfig( r=8, lora_alpha=16, lora_dropout=0.05, target_modules=["q_proj", "k_proj", "v_proj", "o_proj"], task_type=TaskType.CAUSAL_LM, bias="none", ) model = get_peft_model(model, lora_config) # -------- 4) 前処理(batched=False) -------- def format_row(ex): inst = (ex.get("instruction") or "").strip() inp = (ex.get("input") or "").strip() out = (ex.get("output") or "").strip() return f"### 指示\n{inst}\n\n### 入力\n{inp}\n\n### 応答\n{out}" def tokenize(example): text = format_row(example) return tokenizer( text, truncation=True, max_length=1024, padding="max_length", ) tokenized = {} for split in dataset.keys(): tokenized[split] = dataset[split].map( tokenize, batched=False, remove_columns=original_columns, desc=f"Tokenizing {split}", ) train_ds = tokenized.get("train") eval_ds = tokenized.get("validation") # validation が無い(将来の互換)場合のフォールバック if train_ds is None: only_name = list(tokenized.keys())[0] only_ds = tokenized[only_name] n = len(only_ds) cut = max(1, int(n * 0.02)) eval_ds = only_ds.select(range(cut)) train_ds = only_ds.select(range(cut, n)) # -------- 5) Collator(Pad を -100 に)-------- collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) # -------- 6) TrainingArguments(衝突耐性) -------- print("Transformers version:", transformers.__version__) common_args = dict( output_dir="./qwen2-jaquad-lora", num_train_epochs=3, per_device_train_batch_size=2, per_device_eval_batch_size=2, gradient_accumulation_steps=8, learning_rate=2e-4, lr_scheduler_type="cosine", warmup_ratio=0.03, weight_decay=0.0, logging_steps=50, save_steps=500, save_total_limit=2, report_to="none", bf16=True, # 対応GPUなら True gradient_checkpointing=False, # VRAM節約 ) # 実際に使われるクラスのシグネチャを確認(名前衝突や古い版でも動くように) sig = inspect.signature(HFTrainingArguments.__init__).parameters if "evaluation_strategy" in sig: training_args = HFTrainingArguments( **common_args, evaluation_strategy="steps", eval_steps=500, ) else: # 古い版互換(基本的に今は通らない想定だが保険) training_args = HFTrainingArguments( **common_args, do_eval=True, ) # -------- 7) Trainer -------- trainer = Trainer( model=model, args=training_args, train_dataset=train_ds, eval_dataset=eval_ds, data_collator=collator, ) # -------- 8) 学習 & 評価 & 保存 -------- trainer.train() metrics = trainer.evaluate() eval_loss = metrics.get("eval_loss", None) if eval_loss is not None: try: ppl = math.exp(eval_loss) print(f"Eval loss: {eval_loss:.4f} | PPL: {ppl:.2f}") except OverflowError: print(f"Eval loss: {eval_loss:.4f} | PPL: overflow") save_dir = "./qwen2-jaquad-lora-adapter" trainer.model.save_pretrained(save_dir) tokenizer.save_pretrained(save_dir) print(f"Saved LoRA adapter to: {save_dir}") ``` ## ライセンス このデータセットはMITライセンスの下で公開されています。 ## 引用 ```bibtex @dataset{softjapan/jaquad-sft, title={softjapan/jaquad-sft: Japanese Question Answering Dataset for SFT}, author={Your Name}, year={2024}, url={https://huggingface.co/datasets/softjapan/jaquad-sft} } ``` ## 関連リンク - [元データセット: SkelterLabsInc/jaquad](https://huggingface.co/datasets/SkelterLabsInc/jaquad) - [変換スクリプト](https://github.com/softjapan/jaquad-to-sft)
shelbin/blocks2plate
shelbin
2025-04-16T08:45:24Z
18
1
[ "license:mit", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "LeRobot", "SO-ARM100" ]
[]
2025-04-16T08:28:22Z
0
--- license: mit tags: - LeRobot - SO-ARM100 --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot) and [SO-ARM100](https://github.com/TheRobotStudio/SO-ARM100) # Dataset Structure ```json meta/info.json: { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 20, "total_frames": 19038, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.webcam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ```
yoonholee/completions_wstar-balanced_Qwen3-4B_HMMT2025
yoonholee
2025-05-13T11:52:34Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-13T11:52:33Z
0
--- dataset_info: features: - name: problem dtype: string - name: hint dtype: string - name: completions sequence: string - name: corrects sequence: bool - name: acc dtype: float64 - name: answer dtype: string splits: - name: train num_bytes: 12354891 num_examples: 240 download_size: 4536451 dataset_size: 12354891 configs: - config_name: default data_files: - split: train path: data/train-* ---
zhuang97/FourSquare-NYC-User-Profiles
zhuang97
2025-03-26T15:29:13Z
13
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-26T15:29:03Z
0
--- dataset_info: features: - name: user_id dtype: string - name: user_profile dtype: string - name: traits sequence: string - name: attributes sequence: string - name: preferences sequence: string - name: routines sequence: string splits: - name: train num_bytes: 1468346 num_examples: 1047 download_size: 582745 dataset_size: 1468346 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "FourSquare-NYC-User-Profiles" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
End of preview. Expand in Data Studio

Dataset Card for Hugging Face Hub Dataset Cards

This datasets consists of dataset cards for models hosted on the Hugging Face Hub. The dataset cards are created by the community and provide information about datasets hosted on the Hugging Face Hub. This dataset is updated on a daily basis and includes publicly available datasets on the Hugging Face Hub.

This dataset is made available to help support users wanting to work with a large number of Dataset Cards from the Hub. We hope that this dataset will help support research in the area of Dataset Cards and their use but the format of this dataset may not be useful for all use cases. If there are other features that you would like to see included in this dataset, please open a new discussion.

Dataset Details

Uses

There are a number of potential uses for this dataset including:

  • text mining to find common themes in dataset cards
  • analysis of the dataset card format/content
  • topic modelling of dataset cards
  • training language models on the dataset cards

Out-of-Scope Use

[More Information Needed]

Dataset Structure

This dataset has a single split.

Dataset Creation

Curation Rationale

The dataset was created to assist people in working with dataset cards. In particular it was created to support research in the area of dataset cards and their use. It is possible to use the Hugging Face Hub API or client library to download dataset cards and this option may be preferable if you have a very specific use case or require a different format.

Source Data

The source data is README.md files for datasets hosted on the Hugging Face Hub. We do not include any other supplementary files that may be included in the dataset directory.

Data Collection and Processing

The data is downloaded using a CRON job on a daily basis.

Who are the source data producers?

The source data producers are the creators of the dataset cards on the Hugging Face Hub. This includes a broad variety of people from the community ranging from large companies to individual researchers. We do not gather any information about who created the dataset card in this repository although this information can be gathered from the Hugging Face Hub API.

Annotations [optional]

There are no additional annotations in this dataset beyond the dataset card content.

Annotation process

N/A

Who are the annotators?

N/A

Personal and Sensitive Information

We make no effort to anonymize the data. Whilst we don't expect the majority of dataset cards to contain personal or sensitive information, it is possible that some dataset cards may contain this information. Dataset cards may also link to websites or email addresses.

Bias, Risks, and Limitations

Dataset cards are created by the community and we do not have any control over the content of the dataset cards. We do not review the content of the dataset cards and we do not make any claims about the accuracy of the information in the dataset cards. Some dataset cards will themselves discuss bias and sometimes this is done by providing examples of bias in either the training data or the responses provided by the dataset. As a result this dataset may contain examples of bias.

Whilst we do not directly download any images linked to in the dataset cards, some dataset cards may include images. Some of these images may not be suitable for all audiences.

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation

No formal citation is required for this dataset but if you use this dataset in your work, please include a link to this dataset page.

Dataset Card Authors

@davanstrien

Dataset Card Contact

@davanstrien

Downloads last month
888

Space using librarian-bots/dataset_cards_with_metadata 1

Collection including librarian-bots/dataset_cards_with_metadata