hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a16145307d730b19850dc1fc80caf2b1aafe3c9
18,708
py
Python
databuilder/publisher/neo4j_csv_publisher.py
fBedecarrats/amundsendatabuilder
69bf5b77af11c770641724f2c311dd13b6ea8b8b
[ "Apache-2.0" ]
null
null
null
databuilder/publisher/neo4j_csv_publisher.py
fBedecarrats/amundsendatabuilder
69bf5b77af11c770641724f2c311dd13b6ea8b8b
[ "Apache-2.0" ]
null
null
null
databuilder/publisher/neo4j_csv_publisher.py
fBedecarrats/amundsendatabuilder
69bf5b77af11c770641724f2c311dd13b6ea8b8b
[ "Apache-2.0" ]
null
null
null
import copy import csv import ctypes import logging import time from os import listdir from os.path import isfile, join from string import Template import six from neo4j.v1 import GraphDatabase, Transaction # noqa: F401 from pyhocon import ConfigFactory # noqa: F401 from pyhocon import ConfigTree # noqa: F401 from typing import Set, List # noqa: F401 from databuilder.publisher.base_publisher import Publisher from databuilder.publisher.neo4j_preprocessor import NoopRelationPreprocessor # Setting field_size_limit to solve the error below # _csv.Error: field larger than field limit (131072) # https://stackoverflow.com/a/54517228/5972935 csv.field_size_limit(int(ctypes.c_ulong(-1).value // 2)) # Config keys # A directory that contains CSV files for nodes NODE_FILES_DIR = 'node_files_directory' # A directory that contains CSV files for relationships RELATION_FILES_DIR = 'relation_files_directory' # A end point for Neo4j e.g: bolt://localhost:9999 NEO4J_END_POINT_KEY = 'neo4j_endpoint' # A transaction size that determines how often it commits. NEO4J_TRANSCATION_SIZE = 'neo4j_transaction_size' # A progress report frequency that determines how often it report the progress. NEO4J_PROGRESS_REPORT_FREQUENCY = 'neo4j_progress_report_frequency' # A boolean flag to make it fail if relationship is not created NEO4J_RELATIONSHIP_CREATION_CONFIRM = 'neo4j_relationship_creation_confirm' NEO4J_MAX_CONN_LIFE_TIME_SEC = 'neo4j_max_conn_life_time_sec' # list of nodes that are create only, and not updated if match exists NEO4J_CREATE_ONLY_NODES = 'neo4j_create_only_nodes' NEO4J_USER = 'neo4j_user' NEO4J_PASSWORD = 'neo4j_password' # This will be used to provide unique tag to the node and relationship JOB_PUBLISH_TAG = 'job_publish_tag' # Neo4j property name for published tag PUBLISHED_TAG_PROPERTY_NAME = 'published_tag' # Neo4j property name for last updated timestamp LAST_UPDATED_EPOCH_MS = 'publisher_last_updated_epoch_ms' RELATION_PREPROCESSOR = 'relation_preprocessor' # CSV HEADER # A header with this suffix will be pass to Neo4j statement without quote UNQUOTED_SUFFIX = ':UNQUOTED' # A header for Node label NODE_LABEL_KEY = 'LABEL' # A header for Node key NODE_KEY_KEY = 'KEY' # Required columns for Node NODE_REQUIRED_KEYS = {NODE_LABEL_KEY, NODE_KEY_KEY} # Relationship relates two nodes together # Start node label RELATION_START_LABEL = 'START_LABEL' # Start node key RELATION_START_KEY = 'START_KEY' # End node label RELATION_END_LABEL = 'END_LABEL' # Node node key RELATION_END_KEY = 'END_KEY' # Type for relationship (Start Node)->(End Node) RELATION_TYPE = 'TYPE' # Type for reverse relationship (End Node)->(Start Node) RELATION_REVERSE_TYPE = 'REVERSE_TYPE' # Required columns for Relationship RELATION_REQUIRED_KEYS = {RELATION_START_LABEL, RELATION_START_KEY, RELATION_END_LABEL, RELATION_END_KEY, RELATION_TYPE, RELATION_REVERSE_TYPE} DEFAULT_CONFIG = ConfigFactory.from_dict({NEO4J_TRANSCATION_SIZE: 500, NEO4J_PROGRESS_REPORT_FREQUENCY: 500, NEO4J_RELATIONSHIP_CREATION_CONFIRM: False, NEO4J_MAX_CONN_LIFE_TIME_SEC: 50, RELATION_PREPROCESSOR: NoopRelationPreprocessor()}) NODE_MERGE_TEMPLATE = Template("""MERGE (node:$LABEL {key: '${KEY}'}) ON CREATE SET ${create_prop_body} ${update_statement}""") NODE_UPDATE_TEMPLATE = Template("""ON MATCH SET ${update_prop_body}""") RELATION_MERGE_TEMPLATE = Template("""MATCH (n1:$START_LABEL {key: '${START_KEY}'}), (n2:$END_LABEL {key: '${END_KEY}'}) MERGE (n1)-[r1:$TYPE]->(n2)-[r2:$REVERSE_TYPE]->(n1) $PROP_STMT RETURN n1.key, n2.key""") CREATE_UNIQUE_INDEX_TEMPLATE = Template('CREATE CONSTRAINT ON (node:${LABEL}) ASSERT node.key IS UNIQUE') LOGGER = logging.getLogger(__name__) class Neo4jCsvPublisher(Publisher): """ A Publisher takes two folders for input and publishes to Neo4j. One folder will contain CSV file(s) for Node where the other folder will contain CSV file(s) for Relationship. Neo4j follows Label Node properties Graph and more information about this is in: https://neo4j.com/docs/developer-manual/current/introduction/graphdb-concepts/ #TODO User UNWIND batch operation for better performance """ def __init__(self): # type: () -> None super(Neo4jCsvPublisher, self).__init__() def init(self, conf): # type: (ConfigTree) -> None conf = conf.with_fallback(DEFAULT_CONFIG) self._count = 0 # type: int self._progress_report_frequency = conf.get_int(NEO4J_PROGRESS_REPORT_FREQUENCY) self._node_files = self._list_files(conf, NODE_FILES_DIR) self._node_files_iter = iter(self._node_files) self._relation_files = self._list_files(conf, RELATION_FILES_DIR) self._relation_files_iter = iter(self._relation_files) self._driver = \ GraphDatabase.driver(conf.get_string(NEO4J_END_POINT_KEY), max_connection_life_time=conf.get_int(NEO4J_MAX_CONN_LIFE_TIME_SEC), auth=(conf.get_string(NEO4J_USER), conf.get_string(NEO4J_PASSWORD))) self._transaction_size = conf.get_int(NEO4J_TRANSCATION_SIZE) self._session = self._driver.session() self._confirm_rel_created = conf.get_bool(NEO4J_RELATIONSHIP_CREATION_CONFIRM) # config is list of node label. # When set, this list specifies a list of nodes that shouldn't be updated, if exists self.create_only_nodes = set(conf.get_list(NEO4J_CREATE_ONLY_NODES, default=[])) self.labels = set() # type: Set[str] self.publish_tag = conf.get_string(JOB_PUBLISH_TAG) # type: str if not self.publish_tag: raise Exception('{} should not be empty'.format(JOB_PUBLISH_TAG)) self._relation_preprocessor = conf.get(RELATION_PREPROCESSOR) LOGGER.info('Publishing Node csv files {}, and Relation CSV files {}' .format(self._node_files, self._relation_files)) def _list_files(self, conf, path_key): # type: (ConfigTree, str) -> List[str] """ List files from directory :param conf: :param path_key: :return: List of file paths """ if path_key not in conf: return [] path = conf.get_string(path_key) return [join(path, f) for f in listdir(path) if isfile(join(path, f))] def publish_impl(self): # noqa: C901 # type: () -> None """ Publishes Nodes first and then Relations :return: """ start = time.time() LOGGER.info('Creating indices using Node files: {}'.format(self._node_files)) for node_file in self._node_files: self._create_indices(node_file=node_file) LOGGER.info('Publishing Node files: {}'.format(self._node_files)) try: tx = self._session.begin_transaction() while True: try: node_file = next(self._node_files_iter) tx = self._publish_node(node_file, tx=tx) except StopIteration: break LOGGER.info('Publishing Relationship files: {}'.format(self._relation_files)) while True: try: relation_file = next(self._relation_files_iter) tx = self._publish_relation(relation_file, tx=tx) except StopIteration: break tx.commit() LOGGER.info('Committed total {} statements'.format(self._count)) # TODO: Add statsd support LOGGER.info('Successfully published. Elapsed: {} seconds'.format(time.time() - start)) except Exception as e: LOGGER.exception('Failed to publish. Rolling back.') if not tx.closed(): tx.rollback() raise e def get_scope(self): # type: () -> str return 'publisher.neo4j' def _create_indices(self, node_file): """ Go over the node file and try creating unique index :param node_file: :return: """ # type: (str) -> None LOGGER.info('Creating indices. (Existing indices will be ignored)') with open(node_file, 'r') as node_csv: for node_record in csv.DictReader(node_csv): label = node_record[NODE_LABEL_KEY] if label not in self.labels: self._try_create_index(label) self.labels.add(label) LOGGER.info('Indices have been created.') def _publish_node(self, node_file, tx): # type: (str, Transaction) -> Transaction """ Iterate over the csv records of a file, each csv record transform to Merge statement and will be executed. All nodes should have a unique key, and this method will try to create unique index on the LABEL when it sees first time within a job scope. Example of Cypher query executed by this method: MERGE (col_test_id1:Column {key: 'presto://gold.test_schema1/test_table1/test_id1'}) ON CREATE SET col_test_id1.name = 'test_id1', col_test_id1.order_pos = 2, col_test_id1.type = 'bigint' ON MATCH SET col_test_id1.name = 'test_id1', col_test_id1.order_pos = 2, col_test_id1.type = 'bigint' :param node_file: :return: """ with open(node_file, 'r') as node_csv: for count, node_record in enumerate(csv.DictReader(node_csv)): stmt = self.create_node_merge_statement(node_record=node_record) tx = self._execute_statement(stmt, tx) return tx def is_create_only_node(self, node_record): # type: (dict) -> bool """ Check if node can be updated :param node_record: :return: """ if self.create_only_nodes: return node_record[NODE_LABEL_KEY] in self.create_only_nodes else: return False def create_node_merge_statement(self, node_record): # type: (dict) -> str """ Creates node merge statement :param node_record: :return: """ params = copy.deepcopy(node_record) params['create_prop_body'] = self._create_props_body(node_record, NODE_REQUIRED_KEYS, 'node') update_statement = '' if not self.is_create_only_node(node_record): update_prop_body = self._create_props_body(node_record, NODE_REQUIRED_KEYS, 'node') update_statement = NODE_UPDATE_TEMPLATE.substitute(update_prop_body=update_prop_body) params['update_statement'] = update_statement return NODE_MERGE_TEMPLATE.substitute(params) def _publish_relation(self, relation_file, tx): # type: (str, Transaction) -> Transaction """ Creates relation between two nodes. (In Amundsen, all relation is bi-directional) Example of Cypher query executed by this method: MATCH (n1:Table {key: 'presto://gold.test_schema1/test_table1'}), (n2:Column {key: 'presto://gold.test_schema1/test_table1/test_col1'}) MERGE (n1)-[r1:COLUMN]->(n2)-[r2:BELONG_TO_TABLE]->(n1) RETURN n1.key, n2.key :param relation_file: :return: """ if self._relation_preprocessor.is_perform_preprocess(): LOGGER.info('Pre-processing relation with {}'.format(self._relation_preprocessor)) count = 0 with open(relation_file, 'r') as relation_csv: for rel_record in csv.DictReader(relation_csv): stmt, params = self._relation_preprocessor.preprocess_cypher( start_label=rel_record[RELATION_START_LABEL], end_label=rel_record[RELATION_END_LABEL], start_key=rel_record[RELATION_START_KEY], end_key=rel_record[RELATION_END_KEY], relation=rel_record[RELATION_TYPE], reverse_relation=rel_record[RELATION_REVERSE_TYPE]) if stmt: tx = self._execute_statement(stmt, tx=tx, params=params) count += 1 LOGGER.info('Executed pre-processing Cypher statement {} times'.format(count)) with open(relation_file, 'r') as relation_csv: for count, rel_record in enumerate(csv.DictReader(relation_csv)): stmt = self.create_relationship_merge_statement(rel_record=rel_record) tx = self._execute_statement(stmt, tx, expect_result=self._confirm_rel_created) return tx def create_relationship_merge_statement(self, rel_record): # type: (dict) -> str """ Creates relationship merge statement :param rel_record: :return: """ param = copy.deepcopy(rel_record) create_prop_body = self._create_props_body(rel_record, RELATION_REQUIRED_KEYS, 'r1') param['PROP_STMT'] = ' ' # No properties for relationship by default if create_prop_body: # We need one more body for reverse relation create_prop_body = ' , '.join([create_prop_body, self._create_props_body(rel_record, RELATION_REQUIRED_KEYS, 'r2')]) update_prop_body = ' , '.join([self._create_props_body(rel_record, RELATION_REQUIRED_KEYS, 'r1'), self._create_props_body(rel_record, RELATION_REQUIRED_KEYS, 'r2')]) param['PROP_STMT'] = """ON CREATE SET {create_prop_body} ON MATCH SET {update_prop_body}""".format(create_prop_body=create_prop_body, update_prop_body=update_prop_body) return RELATION_MERGE_TEMPLATE.substitute(param) def _create_props_body(self, record_dict, excludes, identifier): # type: (dict, Set, str) -> str """ Creates properties body with params required for resolving template. e.g: Note that node.key3 is not quoted if header has UNQUOTED_SUFFIX. identifier.key1 = 'val1' , identifier.key2 = 'val2', identifier.key3 = val3 :param record_dict: A dict represents CSV row :param excludes: set of excluded columns that does not need to be in properties (e.g: KEY, LABEL ...) :param identifier: identifier that will be used in CYPHER query as shown on above example :param is_update: Creates property body for update statement in MERGE :return: Properties body for Cypher statement """ template_params = {} props = [] for k, v in six.iteritems(record_dict): if k in excludes: template_params[k] = v continue # escape quote for Cypher query # if isinstance(str, v): v = v.replace('\'', "\\'") # escape backslash for Cypher query v = v.replace("\\", "\\") if k.endswith(UNQUOTED_SUFFIX): k = k[:-len(UNQUOTED_SUFFIX)] props.append('{id}.{key} = {val}'.format(id=identifier, key=k, val=v)) else: props.append("""{id}.{key} = '{val}'""".format(id=identifier, key=k, val=v)) template_params[k] = v props.append("""{id}.{key} = '{val}'""".format(id=identifier, key=PUBLISHED_TAG_PROPERTY_NAME, val=self.publish_tag)) props.append("""{id}.{key} = {val}""".format(id=identifier, key=LAST_UPDATED_EPOCH_MS, val='timestamp()')) return ', '.join(props) def _execute_statement(self, stmt, tx, params=None, expect_result=False): # type: (str, Transaction, bool) -> Transaction """ Executes statement against Neo4j. If execution fails, it rollsback and raise exception. If 'expect_result' flag is True, it confirms if result object is not null. :param stmt: :param tx: :param count: :param expect_result: By having this True, it will validate if result object is not None. :return: """ try: if LOGGER.isEnabledFor(logging.DEBUG): LOGGER.debug('Executing statement: {} with params {}'.format(stmt, params)) if six.PY2: result = tx.run(unicode(stmt, errors='ignore'), parameters=params) # noqa else: result = tx.run(str(stmt).encode('utf-8', 'ignore'), parameters=params) if expect_result and not result.single(): raise RuntimeError('Failed to executed statement: {}'.format(stmt)) self._count += 1 if self._count > 1 and self._count % self._transaction_size == 0: tx.commit() LOGGER.info('Committed {} statements so far'.format(self._count)) return self._session.begin_transaction() if self._count > 1 and self._count % self._progress_report_frequency == 0: LOGGER.info('Processed {} statements so far'.format(self._count)) return tx except Exception as e: LOGGER.exception('Failed to execute Cypher query') if not tx.closed(): tx.rollback() raise e def _try_create_index(self, label): # type: (str) -> None """ For any label seen first time for this publisher it will try to create unique index. There's no side effect on Neo4j side issuing index creation for existing index. :param label: :return: """ stmt = CREATE_UNIQUE_INDEX_TEMPLATE.substitute(LABEL=label) LOGGER.info('Trying to create index for label {label} if not exist: {stmt}'.format(label=label, stmt=stmt)) with self._driver.session() as session: session.run(stmt)
40.493506
117
0.618345
4a16159489a44aea91ac7952de2da0111dad0378
7,543
py
Python
landmark_regression/lib/dataset/PEdataset.py
Aurelio93/satellite-pose-estimation
46957a9bc9f204d468f8fe3150593b3db0f0726a
[ "MIT" ]
24
2019-09-05T04:05:58.000Z
2022-02-06T01:34:11.000Z
landmark_regression/lib/dataset/PEdataset.py
Aurelio93/satellite-pose-estimation
46957a9bc9f204d468f8fe3150593b3db0f0726a
[ "MIT" ]
2
2020-07-30T07:04:22.000Z
2022-03-14T06:40:49.000Z
landmark_regression/lib/dataset/PEdataset.py
Aurelio93/satellite-pose-estimation
46957a9bc9f204d468f8fe3150593b3db0f0726a
[ "MIT" ]
6
2020-02-04T06:34:32.000Z
2021-12-10T03:23:51.000Z
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by Bin Xiao (Bin.Xiao@microsoft.com) # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import json_tricks as json from collections import OrderedDict import numpy as np from scipy.io import loadmat, savemat from dataset.JointsDataset import JointsDataset logger = logging.getLogger(__name__) class PEdataset(JointsDataset): def __init__(self, cfg, root, image_set, is_train, transform=None): super().__init__(cfg, root, image_set, is_train, transform) self.num_joints = 11 self.flip_pairs = [] self.parent_ids = [] self.upper_body_ids = None self.lower_body_ids = None self.image_width = 1920 self.image_height = 1200 self.aspect_ratio = self.image_width * 1.0 / self.image_height self.pixel_std = 200 self.db = self._get_db() logger.info('=> load {} samples'.format(len(self.db))) def _get_db(self): # create train/val split file_name = os.path.join( self.root, self.image_set+'.json' ) with open(file_name) as anno_file: anno = json.load(anno_file) gt_db = [] for a in anno: image_name = a['image'] # c = np.array(a['center'], dtype=np.float) # s = np.array([a['scale'], a['scale']], dtype=np.float) box = np.array(a['box']).flatten() # import ipdb;ipdb.set_trace(); c,s=self._box2cs(box) joints_3d = np.zeros((self.num_joints, 3), dtype=np.float) joints_3d_vis = np.zeros((self.num_joints, 3), dtype=np.float) for idx, rec in enumerate(a['joints']): joints_3d[idx, 0:2] = rec[:] for idx, rec in enumerate(a['visible']): joints_3d_vis[idx, 0:2] = rec # # # joints_3d = np.zeros((self.num_joints, 3), dtype=np.float) # joints_3d_vis = np.zeros((self.num_joints, 3), dtype=np.float) # if self.image_set != 'test': # joints = np.array(a['joints']) # joints[:, 0:2] = joints[:, 0:2] - 1 # joints_vis = np.array(a['joints_vis']) # assert len(joints) == self.num_joints, \ # 'joint num diff: {} vs {}'.format(len(joints), # self.num_joints) # # joints_3d[:, 0:2] = joints[:, 0:2] # joints_3d_vis[:, 0] = joints_vis[:] # joints_3d_vis[:, 1] = joints_vis[:] image_dir = '../images/train/' gt_db.append( { 'image': os.path.join(image_dir, image_name), 'center': c, 'scale': s, 'joints_3d': joints_3d, 'joints_3d_vis': joints_3d_vis, 'filename': '', 'imgnum': 0, } ) return gt_db def _box2cs(self, box): x, y, w, h = box[:4] return self._xywh2cs(x, y, w, h) def _xywh2cs(self, x, y, w, h): center = np.zeros((2), dtype=np.float32) center[0] = x + w * 0.5 center[1] = y + h * 0.5 if w > self.aspect_ratio * h: h = w * 1.0 / self.aspect_ratio elif w < self.aspect_ratio * h: w = h * self.aspect_ratio scale = np.array( [w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std], dtype=np.float32) if center[0] != -1: scale = scale * 1.25 return center, scale def evaluate(self, cfg, preds, output_dir, *args, **kwargs): # # convert 0-based index to 1-based index preds[:, :, 0:2] += 1.0 if output_dir: pred_file = os.path.join(output_dir, 'pred.mat') savemat(pred_file, mdict={'preds': preds}) return {'Null': 0}, 0 if 'test' in cfg.DATASET.TEST_SET: return {'Null': 0.0}, 0.0 SC_BIAS = 0.6 threshold = 0.5 gt_file = os.path.join(cfg.DATASET.ROOT, 'annot', 'gt_{}.mat'.format(cfg.DATASET.TEST_SET)) gt_dict = loadmat(gt_file) dataset_joints = gt_dict['dataset_joints'] jnt_missing = gt_dict['jnt_missing'] pos_gt_src = gt_dict['pos_gt_src'] headboxes_src = gt_dict['headboxes_src'] pos_pred_src = np.transpose(preds, [1, 2, 0]) head = np.where(dataset_joints == 'head')[1][0] lsho = np.where(dataset_joints == 'lsho')[1][0] lelb = np.where(dataset_joints == 'lelb')[1][0] lwri = np.where(dataset_joints == 'lwri')[1][0] lhip = np.where(dataset_joints == 'lhip')[1][0] lkne = np.where(dataset_joints == 'lkne')[1][0] lank = np.where(dataset_joints == 'lank')[1][0] rsho = np.where(dataset_joints == 'rsho')[1][0] relb = np.where(dataset_joints == 'relb')[1][0] rwri = np.where(dataset_joints == 'rwri')[1][0] rkne = np.where(dataset_joints == 'rkne')[1][0] rank = np.where(dataset_joints == 'rank')[1][0] rhip = np.where(dataset_joints == 'rhip')[1][0] jnt_visible = 1 - jnt_missing uv_error = pos_pred_src - pos_gt_src uv_err = np.linalg.norm(uv_error, axis=1) headsizes = headboxes_src[1, :, :] - headboxes_src[0, :, :] headsizes = np.linalg.norm(headsizes, axis=0) headsizes *= SC_BIAS scale = np.multiply(headsizes, np.ones((len(uv_err), 1))) scaled_uv_err = np.divide(uv_err, scale) scaled_uv_err = np.multiply(scaled_uv_err, jnt_visible) jnt_count = np.sum(jnt_visible, axis=1) less_than_threshold = np.multiply((scaled_uv_err <= threshold), jnt_visible) PCKh = np.divide(100.*np.sum(less_than_threshold, axis=1), jnt_count) # save rng = np.arange(0, 0.5+0.01, 0.01) pckAll = np.zeros((len(rng), 16)) for r in range(len(rng)): threshold = rng[r] less_than_threshold = np.multiply(scaled_uv_err <= threshold, jnt_visible) pckAll[r, :] = np.divide(100.*np.sum(less_than_threshold, axis=1), jnt_count) PCKh = np.ma.array(PCKh, mask=False) PCKh.mask[6:8] = True jnt_count = np.ma.array(jnt_count, mask=False) jnt_count.mask[6:8] = True jnt_ratio = jnt_count / np.sum(jnt_count).astype(np.float64) name_value = [ ('Head', PCKh[head]), ('Shoulder', 0.5 * (PCKh[lsho] + PCKh[rsho])), ('Elbow', 0.5 * (PCKh[lelb] + PCKh[relb])), ('Wrist', 0.5 * (PCKh[lwri] + PCKh[rwri])), ('Hip', 0.5 * (PCKh[lhip] + PCKh[rhip])), ('Knee', 0.5 * (PCKh[lkne] + PCKh[rkne])), ('Ankle', 0.5 * (PCKh[lank] + PCKh[rank])), ('Mean', np.sum(PCKh * jnt_ratio)), ('Mean@0.1', np.sum(pckAll[11, :] * jnt_ratio)) ] name_value = OrderedDict(name_value) return name_value, name_value['Mean']
35.247664
80
0.513986
4a1615ce791431662118406eeadd34ecb19a9eae
4,730
py
Python
src/vallenae/features/acoustic_emission.py
vallen-systems/pyVallenAE
0e1c712c055ea5c4e7cb4373a2bf73f33c2b886d
[ "MIT" ]
10
2020-01-30T15:34:51.000Z
2022-03-11T07:49:31.000Z
src/vallenae/features/acoustic_emission.py
vallen-systems/pyVallenAE
0e1c712c055ea5c4e7cb4373a2bf73f33c2b886d
[ "MIT" ]
1
2020-10-30T16:25:11.000Z
2020-11-05T19:51:51.000Z
src/vallenae/features/acoustic_emission.py
vallen-systems/pyVallenAE
0e1c712c055ea5c4e7cb4373a2bf73f33c2b886d
[ "MIT" ]
5
2020-02-08T04:43:03.000Z
2022-02-23T13:52:00.000Z
import math from typing import Optional import numpy as np from numba import njit @njit def peak_amplitude(data: np.ndarray) -> float: """ Compute maximum absolute amplitude. Args: data: Input array Returns: Peak amplitude of the input array """ max_amplitude = 0 for sample in data: abs_value = abs(sample) if abs_value > max_amplitude: max_amplitude = abs_value return max_amplitude @njit def peak_amplitude_index(data: np.ndarray) -> int: """ Compute index of peak amplitude. Args: data: Input array Returns: Index of peak amplitude """ max_amplitude = 0 index_peak = 0 for index, sample in enumerate(data): abs_value = abs(sample) if abs_value > max_amplitude: max_amplitude = abs_value index_peak = index return index_peak @njit def is_above_threshold(data: np.ndarray, threshold: float) -> bool: """ Checks if absolute amplitudes are above threshold. Args: data: Input array threshold: Threshold amplitude Returns: True if input array is above threshold, otherwise False """ for sample in data: if abs(sample) >= threshold: return True return False @njit def first_threshold_crossing(data: np.ndarray, threshold: float) -> Optional[int]: """ Compute index of first threshold crossing. Args: data: Input array threshold: Threshold amplitude Returns: Index of first threshold crossing. None if threshold was not exceeded """ for index, sample in enumerate(data): if abs(sample) >= threshold: return index return None @njit def rise_time( data: np.ndarray, threshold: float, samplerate: int, first_crossing: Optional[int] = None, index_peak: Optional[int] = None, ) -> float: """ Compute the rise time. The rise time is the time between the first threshold crossing and the peak amplitude. Args: data: Input array (hit) threshold: Threshold amplitude (in volts) samplerate: Sample rate of the input array first_crossing: Precomputed index of first threshold crossing to save computation time index_peak: Precomputed index of peak amplitude to save computation time """ # save some computations if pre-results are provided n_first_crossing = ( first_crossing if first_crossing is not None else first_threshold_crossing(data, threshold) ) n_max = ( index_peak if index_peak is not None else peak_amplitude_index(data) ) return (n_max - n_first_crossing) / samplerate @njit def energy(data: np.ndarray, samplerate: int) -> float: """ Compute the energy of a hit. Energy is the integral of the squared AE-signal over time (EN 1330-9). The unit of energy is eu. 1 eu corresponds to 1e-14 V²s. Args: data: Input array (hit) samplerate: Sample rate of input array in Hz Returns: Energy of input array (hit) """ agg: float = 0 for sample in data: agg += sample ** 2 return agg * 1e14 / samplerate @njit def signal_strength(data: np.ndarray, samplerate: int) -> float: """ Compute the signal strength of a hit. Signal strength is the integral of the rectified AE-signal over time. The unit of Signal Strength is nVs (1e-9 Vs). Args: data: Input array (hit) samplerate: Sample rate of input array in Hz Returns: Signal strength of input array (hit) """ agg: float = 0 for sample in data: agg += abs(sample) return agg * 1e9 / samplerate @njit def counts(data: np.ndarray, threshold: float) -> int: """ Compute the number of positive threshold crossings of a hit (counts). Args: data: Input array threshold: Threshold amplitude Returns: Number of positive threshold crossings """ result: int = 0 was_above_threshold: bool = False for sample in data: if sample >= threshold: if not was_above_threshold: result += 1 was_above_threshold = True else: was_above_threshold = False return result @njit def rms(data: np.ndarray) -> float: """ Compute the root mean square (RMS) of an array. Args: data: Input array Returns: RMS of the input array References: https://en.wikipedia.org/wiki/Root_mean_square """ agg: float = 0 for sample in data: agg += sample ** 2 return math.sqrt(agg / len(data))
23.415842
94
0.627273
4a1617377b43ae9e472527396bf2394879bb9cc9
2,457
py
Python
streak-podium/streak-podium.py
supermitch/streak-podium
3b4aba92f6b138548afe87c204d507cd2211c2ef
[ "MIT" ]
1
2015-08-17T16:57:57.000Z
2015-08-17T16:57:57.000Z
streak-podium/streak-podium.py
supermitch/streak-podium
3b4aba92f6b138548afe87c204d507cd2211c2ef
[ "MIT" ]
1
2015-08-29T04:58:43.000Z
2015-09-10T04:22:13.000Z
streak-podium/streak-podium.py
supermitch/streak-podium
3b4aba92f6b138548afe87c204d507cd2211c2ef
[ "MIT" ]
null
null
null
#!/usr/bin/env python import argparse import collections import os import json import parse import read import render def setup_args(): """ Add and return command line arguments. """ parser = argparse.ArgumentParser('Streak Podium') parser.add_argument('-f', '--file', help='member list input filename') parser.add_argument('-o', '--org', help='organization to sort') parser.add_argument('-l', '--limit', type=int, default=5, help='limit number of users') return parser.parse_args() def gather_usernames(args): """ Return username list from chosen input source. """ if args.file: return read.input_file('temp/' + args.file) elif args.org: return read.org_members(args.org) else: return ['supermitch'] # Some default for now def main(): args = setup_args() print('Running Streak Podium') print('---------------------') if os.path.isfile('temp/streaks.json'): print('Found json streaks') with open('temp/streaks.json', 'r') as f: streaks = json.load(f) else: print('Did not find json streaks') kind = 'file' if args.file else 'Github org' name = args.file if args.file else args.org print('Input is {} [{}]'.format(kind, name)) print('\tlimiting query to {} users'.format(args.limit)) print('Gathering usernames...') usernames = gather_usernames(args) print('\tfound {} usernames'.format(len(usernames))) print('Reading streaks...') svgs = (read.svg_data(username) for username in usernames[:args.limit]) commits = (parse.extract_commits(svg) for svg in svgs) streaks = {user: parse.find_streaks(x) for user, x in zip(usernames, commits)} print('\tfound {} streaks'.format(len(streaks))) if not streaks: return with open('temp/streaks.json', 'w') as f: json.dump(streaks, f) for sort in ('best', 'latest'): # Sort by best, then by latest sorted_streaks = sorted(streaks.items(), key=lambda t: t[1].get(sort), reverse=True) print('\nTop {} streaks:'.format(sort)) print('============') for user, streak in sorted_streaks[:min(len(sorted_streaks), 5)]: # Top 5 print('{} - best: {} - latest: {}'.format(user, streak['best'], streak['latest'])) render.horizontal_bar(sorted_streaks, sort) if __name__ == '__main__': main()
29.60241
94
0.60928
4a16176ce7e2dbb7656fad5d84c80f3d89fe1cc9
2,349
py
Python
drawer.py
h3nnn4n/lambada-brot
50ec98544dfb4daa36c7781492c336d2fb822c59
[ "MIT" ]
null
null
null
drawer.py
h3nnn4n/lambada-brot
50ec98544dfb4daa36c7781492c336d2fb822c59
[ "MIT" ]
null
null
null
drawer.py
h3nnn4n/lambada-brot
50ec98544dfb4daa36c7781492c336d2fb822c59
[ "MIT" ]
null
null
null
import json from multiprocessing import Pool import requests ENDPOINT = "https://4j10ejf71g.execute-api.us-east-1.amazonaws.com/mandel" def remote_mandel(request): response = requests.post(ENDPOINT, json=request) data = json.loads(response.content) ix = request["ix"] iy = request["iy"] print(f"[{ix:>3}, {iy:>3}]: {data['duration']:>4.2f}") return {(ix, iy): data.get("result")} def write_ppm(filename, size, data): with open(filename, "wt") as f: f.write("P2\n") f.write(f"{size} {size}\n") f.write("256\n") for k, v in enumerate(data): f.write(f"{v} ") if k % size == 0 and k > 0: f.write("\n") def main(): xmin = -0.742030 ymin = 0.125433 xmax = -0.744030 ymax = 0.127433 n_threads = 64 size = 1024 step_size = 64 max_iters = 1024 dx = (xmax - xmin) / (size // step_size) dy = (ymax - ymin) / (size // step_size) request_chunks = [] for ix in range(int(size / step_size)): for iy in range(int(size / step_size)): xmin_ = xmin + dx * ix ymin_ = ymin + dy * iy xmax_ = xmin + dx * (ix + 1) ymax_ = ymin + dy * (iy + 1) request = { "ix": ix, "iy": iy, "xmin": xmin_, "ymin": ymin_, "xmax": xmax_, "ymax": ymax_, "size": step_size, "max_iters": max_iters, } request_chunks.append(request) image_data = {} with Pool(n_threads) as p: for r in p.map(remote_mandel, request_chunks): k, v = next(iter(r.items())) image_data[k] = v image_pixels = [] for x in range(size): for y in range(size): block_ix = int(x / step_size) block_iy = int(y / step_size) ix = x % step_size iy = y % step_size pixel_index = ix + iy * step_size pixel = image_data[(block_iy, block_ix)][pixel_index] image_pixels.append(pixel) max_pixel = max(image_pixels) for i in range(size * size): image_pixels[i] = int(image_pixels[i] / max_pixel * 256) write_ppm("mandel.ppm", size, image_pixels) if __name__ == "__main__": main()
25.258065
74
0.515113
4a1618ad8a6a434b8df56f7ecb8f2882b1259e6c
315
py
Python
verde/tests/utils.py
jobar8/verde
66020d28d3e1e3990fcaa888766ff05c62464100
[ "BSD-3-Clause" ]
1
2019-11-19T20:24:02.000Z
2019-11-19T20:24:02.000Z
verde/tests/utils.py
lheagy/verde
24416cfc8388c6c7f3c0867dcd2ad3fdca37bb1b
[ "BSD-3-Clause" ]
null
null
null
verde/tests/utils.py
lheagy/verde
24416cfc8388c6c7f3c0867dcd2ad3fdca37bb1b
[ "BSD-3-Clause" ]
null
null
null
""" Testing utilities. """ import pytest def requires_numba(function): """ Skip the decorated test if numba is not installed. """ try: import numba except ImportError: numba = None mark = pytest.mark.skipif(numba is None, reason="requires numba") return mark(function)
18.529412
69
0.64127
4a161aa6adffbcff13ff1b9aeef862acd97718a5
2,592
py
Python
Android/NDK/android-ndk-r20b-win/build/ldflags_to_sanitizers.py
X018/CCTOOL
989af4d7edab82bf540400eb72eca4e7447d722c
[ "MIT" ]
5
2020-09-08T03:08:51.000Z
2021-05-27T20:51:08.000Z
Android/NDK/android-ndk-r20b-win/build/ldflags_to_sanitizers.py
X018/CCTOOL
989af4d7edab82bf540400eb72eca4e7447d722c
[ "MIT" ]
null
null
null
Android/NDK/android-ndk-r20b-win/build/ldflags_to_sanitizers.py
X018/CCTOOL
989af4d7edab82bf540400eb72eca4e7447d722c
[ "MIT" ]
3
2020-11-10T06:20:25.000Z
2021-05-24T07:21:59.000Z
#!/usr/bin/env python # # Copyright (C) 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Determines which sanitizers should be linked based on ldflags.""" from __future__ import print_function import sys def sanitizers_from_args(args): """Returns the sanitizers enabled by a given set of ldflags.""" sanitizers = set() for arg in args: if arg.startswith('-fsanitize='): sanitizer_list = arg.partition('=')[2] sanitizers |= set(sanitizer_list.split(',')) elif arg.startswith('-fno-sanitize='): sanitizer_list = arg.partition('=')[2] sanitizers -= set(sanitizer_list.split(',')) return sorted(list(sanitizers)) def argv_to_module_arg_lists(args): """Converts module ldflags from argv format to per-module lists. Flags are passed to us in the following format: ['global flag', '--module', 'flag1', 'flag2', '--module', 'flag 3'] These should be returned as a list for the global flags and a list of per-module lists, i.e.: ['global flag'], [['flag1', 'flag2'], ['flag1', 'flag3']] """ modules = [[]] for arg in args: if arg == '--module': modules.append([]) else: modules[-1].append(arg) return modules[0], modules[1:] def main(argv, stream=sys.stdout): """Program entry point.""" # The only args we're guaranteed to see are the program name and at least # one --module. GLOBAL_FLAGS might be empty, as might any of the # MODULE_FLAGS sections. if len(argv) < 2: sys.exit( 'usage: ldflags_to_sanitizers.py [GLOBAL_FLAGS] ' '--module [MODULE_FLAGS] [--module [MODULE_FLAGS]...]') global_flags, modules_flags = argv_to_module_arg_lists(argv[1:]) all_sanitizers = list(sanitizers_from_args(global_flags)) for module_flags in modules_flags: all_sanitizers.extend(sanitizers_from_args(module_flags)) print(' '.join(sorted(set(all_sanitizers))), file=stream) if __name__ == '__main__': main(sys.argv)
35.027027
77
0.665509
4a161ac06b4487ed78c41b606469899418f5ab80
12,769
py
Python
django_auth_adfs/backend.py
InnopolisSport/django-auth-adfs
306efd63d41f2fe858db5ab620d7bca6976b10e3
[ "BSD-2-Clause" ]
null
null
null
django_auth_adfs/backend.py
InnopolisSport/django-auth-adfs
306efd63d41f2fe858db5ab620d7bca6976b10e3
[ "BSD-2-Clause" ]
null
null
null
django_auth_adfs/backend.py
InnopolisSport/django-auth-adfs
306efd63d41f2fe858db5ab620d7bca6976b10e3
[ "BSD-2-Clause" ]
null
null
null
import logging import jwt from django.contrib.auth import get_user_model from django.contrib.auth.backends import ModelBackend from django.contrib.auth.models import Group from django.core.exceptions import ImproperlyConfigured, ObjectDoesNotExist, PermissionDenied from django_auth_adfs import signals from django_auth_adfs.config import provider_config, settings from django_auth_adfs.exceptions import MFARequired logger = logging.getLogger("django_auth_adfs") class AdfsBaseBackend(ModelBackend): def exchange_auth_code(self, authorization_code, request): logger.debug("Received authorization code: %s", authorization_code) data = { 'grant_type': 'authorization_code', 'client_id': settings.CLIENT_ID, 'redirect_uri': provider_config.redirect_uri(request), 'code': authorization_code, } if settings.CLIENT_SECRET: data['client_secret'] = settings.CLIENT_SECRET logger.debug("Getting access token at: %s", provider_config.token_endpoint) response = provider_config.session.post(provider_config.token_endpoint, data, timeout=settings.TIMEOUT) # 200 = valid token received # 400 = 'something' is wrong in our request if response.status_code == 400: if response.json().get("error_description", "").startswith("AADSTS50076"): raise MFARequired logger.error("ADFS server returned an error: %s", response.json()["error_description"]) raise PermissionDenied if response.status_code != 200: logger.error("Unexpected ADFS response: %s", response.content.decode()) raise PermissionDenied adfs_response = response.json() return adfs_response def validate_access_token(self, access_token): for idx, key in enumerate(provider_config.signing_keys): try: # Explicitly define the verification option. # The list below is the default the jwt module uses. # Explicit is better then implicit and it protects against # changes in the defaults the jwt module uses. options = { 'verify_signature': True, 'verify_exp': True, 'verify_nbf': True, 'verify_iat': True, 'verify_aud': True, 'verify_iss': True, 'require_exp': False, 'require_iat': False, 'require_nbf': False } # Validate token and return claims return jwt.decode( access_token, key=key, algorithms=['RS256', 'RS384', 'RS512'], audience=settings.AUDIENCE, issuer=provider_config.issuer, options=options, leeway=settings.JWT_LEEWAY ) except jwt.ExpiredSignatureError as error: logger.info("Signature has expired: %s", error) raise PermissionDenied except jwt.DecodeError as error: # If it's not the last certificate in the list, skip to the next one if idx < len(provider_config.signing_keys) - 1: continue else: logger.info('Error decoding signature: %s', error) raise PermissionDenied except jwt.InvalidTokenError as error: logger.info(str(error)) raise PermissionDenied def process_access_token(self, access_token, adfs_response=None): if not access_token: raise PermissionDenied logger.debug("Received access token: %s", access_token) claims = self.validate_access_token(access_token) if ( settings.BLOCK_GUEST_USERS and claims.get('http://schemas.microsoft.com/identity/claims/tenantid') != settings.TENANT_ID ): logger.info('Guest user denied') raise PermissionDenied if not claims: raise PermissionDenied user = self.create_user(claims) self.update_user_attributes(user, claims) self.update_user_groups(user, claims) self.update_user_flags(user, claims) signals.post_authenticate.send( sender=self, user=user, claims=claims, adfs_response=adfs_response ) user.full_clean() user.save() return user def create_user(self, claims): """ Create the user if it doesn't exist yet Args: claims (dict): claims from the access token Returns: django.contrib.auth.models.User: A Django user """ # Create the user username_claim = settings.USERNAME_CLAIM usermodel = get_user_model() if not claims.get(username_claim): logger.error("User claim's doesn't have the claim '%s' in his claims: %s" % (username_claim, claims)) raise PermissionDenied userdata = {usermodel.USERNAME_FIELD: claims[username_claim]} try: user = usermodel.objects.get(**userdata) except usermodel.DoesNotExist: if settings.CREATE_NEW_USERS: user = usermodel.objects.create(**userdata) logger.debug("User '%s' has been created.", claims[username_claim]) else: logger.debug("User '%s' doesn't exist and creating users is disabled.", claims[username_claim]) raise PermissionDenied if not user.password: user.set_unusable_password() return user def update_user_attributes(self, user, claims): """ Updates user attributes based on the CLAIM_MAPPING setting. Args: user (django.contrib.auth.models.User): User model instance claims (dict): claims from the access token """ required_fields = [field.name for field in user._meta.fields if field.blank is False] for field, claim in settings.CLAIM_MAPPING.items(): if hasattr(user, field): if claim in claims: setattr(user, field, claims[claim]) logger.debug("Attribute '%s' for user '%s' was set to '%s'.", field, user, claims[claim]) else: if field in required_fields: msg = "Claim not found in access token: '{}'. Check ADFS claims mapping." raise ImproperlyConfigured(msg.format(claim)) else: logger.warning("Claim '%s' for user field '%s' was not found in " "the access token for user '%s'. " "Field is not required and will be left empty", claim, field, user) else: msg = "User model has no field named '{}'. Check ADFS claims mapping." raise ImproperlyConfigured(msg.format(field)) def update_user_groups(self, user, claims): """ Updates user group memberships based on the GROUPS_CLAIM setting. Args: user (django.contrib.auth.models.User): User model instance claims (dict): Claims from the access token """ if settings.GROUPS_CLAIM is not None: # Update the user's group memberships django_groups = [group.name for group in user.groups.all()] if settings.GROUPS_CLAIM in claims: claim_groups = claims[settings.GROUPS_CLAIM] if not isinstance(claim_groups, list): claim_groups = [claim_groups, ] else: logger.debug("The configured groups claim '%s' was not found in the access token", settings.GROUPS_CLAIM) claim_groups = [] if sorted(claim_groups) != sorted(django_groups): existing_groups = list(Group.objects.filter(name__in=claim_groups).iterator()) existing_group_names = frozenset(group.name for group in existing_groups) new_groups = [] if settings.MIRROR_GROUPS: new_groups = [ Group.objects.get_or_create(name=name)[0] for name in claim_groups if name not in existing_group_names ] else: for name in claim_groups: if name not in existing_group_names: try: group = Group.objects.get(name=name) new_groups.append(group) except ObjectDoesNotExist: pass user.groups.set(existing_groups + new_groups) def update_user_flags(self, user, claims): """ Updates user boolean attributes based on the BOOLEAN_CLAIM_MAPPING setting. Args: user (django.contrib.auth.models.User): User model instance claims (dict): Claims from the access token """ if settings.GROUPS_CLAIM is not None: if settings.GROUPS_CLAIM in claims: access_token_groups = claims[settings.GROUPS_CLAIM] if not isinstance(access_token_groups, list): access_token_groups = [access_token_groups, ] else: logger.debug("The configured group claim was not found in the access token") access_token_groups = [] for flag, group in settings.GROUP_TO_FLAG_MAPPING.items(): if hasattr(user, flag): if group in access_token_groups: value = True else: value = False setattr(user, flag, value) logger.debug("Attribute '%s' for user '%s' was set to '%s'.", user, flag, value) else: msg = "User model has no field named '{}'. Check ADFS boolean claims mapping." raise ImproperlyConfigured(msg.format(flag)) for field, claim in settings.BOOLEAN_CLAIM_MAPPING.items(): if hasattr(user, field): bool_val = False if claim in claims and str(claims[claim]).lower() in ['y', 'yes', 't', 'true', 'on', '1']: bool_val = True setattr(user, field, bool_val) logger.debug('Attribute "%s" for user "%s" was set to "%s".', user, field, bool_val) else: msg = "User model has no field named '{}'. Check ADFS boolean claims mapping." raise ImproperlyConfigured(msg.format(field)) class AdfsAuthCodeBackend(AdfsBaseBackend): """ Authentication backend to allow authenticating users against a Microsoft ADFS server with an authorization code. """ def authenticate(self, request=None, authorization_code=None, **kwargs): # If loaded data is too old, reload it again provider_config.load_config() # If there's no token or code, we pass control to the next authentication backend if authorization_code is None or authorization_code == '': logger.debug("django_auth_adfs authentication backend was called but no authorization code was received") return adfs_response = self.exchange_auth_code(authorization_code, request) access_token = adfs_response["access_token"] user = self.process_access_token(access_token, adfs_response) return user class AdfsAccessTokenBackend(AdfsBaseBackend): """ Authentication backend to allow authenticating users against a Microsoft ADFS server with an access token retrieved by the client. """ def authenticate(self, request=None, access_token=None, **kwargs): # If loaded data is too old, reload it again provider_config.load_config() # If there's no token or code, we pass control to the next authentication backend if access_token is None or access_token == '': logger.debug("django_auth_adfs authentication backend was called but no authorization code was received") return access_token = access_token.decode() user = self.process_access_token(access_token) return user class AdfsBackend(AdfsAuthCodeBackend): """ Backwards compatible class name """ pass
42.003289
117
0.585089
4a161af4c07517a355f97a384d6cc3a26fc93265
9,589
py
Python
jobviewer.py
jansende/Igor
c9ada05fdbe052e799f27de94b872858a67da3d6
[ "MIT" ]
null
null
null
jobviewer.py
jansende/Igor
c9ada05fdbe052e799f27de94b872858a67da3d6
[ "MIT" ]
null
null
null
jobviewer.py
jansende/Igor
c9ada05fdbe052e799f27de94b872858a67da3d6
[ "MIT" ]
null
null
null
try: import readline except ImportError: print('You need to install readline.') print('Under Windows use: pip install pyreadline') raise import cmd import glob import json import os import os.path import socket import subprocess import threading import time import copy from classes.job import JobInformation, getJobList from classes.workerinformation import WorkerInformation from classes.machineinformation import MachineInformation, getMachineList from classes.helpers import openJSON def cleanJobs(Directory, Worker = None): for File in os.listdir(Directory): if File.endswith('.json'): try: with openJSON(os.path.join(Directory,File), JobInformation) as Job: if Job.Status == 'Finished': os.remove(os.path.join(Directory,File)) except: continue def cleanMachines(Directory): for File in os.listdir(Directory): if File.endswith('.json'): try: with openJSON(os.path.join(Directory,File), MachineInformation) as Machine: os.remove(os.path.join(Directory,File)) except: continue def printJobs(Directory, Worker = None): JobList = getJobList(Directory, filterByWorker=Worker) if len(JobList) == 0: raise RuntimeError('*** runtime error: no Jobs were found') WorkerList = set([ a.Information.Worker for a in JobList ]) StatusList = set([ a.Information.Status.lower() for a in JobList ]) for Worker in WorkerList: print('========================================') print('{worker:^40}'.format(worker=Worker)) print('========================================') for Status in StatusList: Jobs = getJobList(Directory, filterByWorker=Worker, filterByStatus=Status) if len(Jobs) > 0: print('--{status:-<38}'.format(status=Status.capitalize())) for Thread in Jobs: print(os.path.basename(Thread.File)) print('========================================') def printMachines(Directory): MachineList = getMachineList(Directory) if len(MachineList) == 0: raise RuntimeError('*** runtime error: no Workers were found') print('========================================') print('{title:^40}'.format(title='WORKERS')) print('========================================') for Machine in MachineList: print(Machine) print('========================================') def printMachineInformation(File): with openJSON(File, MachineInformation) as Machine: print('========================================') print('{domain:^40}'.format(domain=Machine.Domain)) print('========================================') print('User:', Machine.CurrentUser) print('Name:', Machine.Name) print('IP: ', Machine.IpAddress) print('----------------------------------------') print('CPU: {numberofcores} Cores ({machinetype})'.format(machinetype=Machine.MachineType,numberofcores=Machine.NumberOfCores)) print('OS: {system} ({platform})'.format(system=Machine.System,platform=Machine.Platform)) print('========================================') def printJobInformation(File): with openJSON(File, JobInformation) as Job: print('========================================') print('{name:^40}'.format(name=Job.Name)) print('========================================') print('Worker: ', Job.Worker) print('Priority: ', Job.Priority) print('Status: ', Job.Status) print('----------------------------------------') print('Script: ', Job.Script) print('TimeOut: ', Job.TimeOut) print('Directory:', Job.WorkingDirectory) print('========================================') def printInformation(File): try: printMachineInformation(File) return except: pass try: printJobInformation(File) return except: pass raise FileNotFoundError('*** File error: file could not be read') class JobViewer(cmd.Cmd): intro = 'Welcome to the Igor JobViewer. Type help or ? to list commands.' prompt = 'Igor>' config_file = 'config.json' def onecmd(self, line): #This ensures that we can use the do_* syntax and raise exceptions without breaking the program. #Furthermore, this means we can raise exceptions on deeper levels without implementing error handling in the do_* routines. try: return cmd.Cmd.onecmd(self, line) except Exception as Error: print(Error) def _WorkingDirectory(self): #Gets the JobDirectory from the configuration file. with openJSON(self.config_file, WorkerInformation) as Worker: return Worker.JobDirectory def do_show(self, arg): ''' Display an overview of all jobs Usage: show jobs [WORKER] WORKER ... filters jobs to display only those handled by WORKER Display an overview of all workers Usage: show workers Display information for a file (regardless if worker or job) Usage: show JSON_FILE JSON_FILE ... job or workers file ''' arguments = arg.split() if len(arguments) == 0: raise IndexError('*** Unknown syntax: ' + self.lastcmd) if arguments[0].endswith('.json'): printInformation(os.path.join(self._WorkingDirectory(),arguments[0])) elif arguments[0] == 'workers': printMachines(self._WorkingDirectory()) elif arguments[0] == 'jobs': try: printJobs(self._WorkingDirectory(), arguments[1]) except IndexError: printJobs(self._WorkingDirectory()) else: raise NotImplementedError('*** Unknown syntax: ' + self.lastcmd) def complete_show(self, *args): files = set(self._complete_file_names(*args, filter='*.json')) commands = set(self._complete_show_commands(*args)) return list(commands | files) def do_clean(self, arg): ''' Removes all completed jobs from the job folder Usage: clean jobs Removes all worker information from the worker information folder Usage: clean workers ''' arguments = arg.split() if len(arguments) != 1: raise IndexError('*** Unknown syntax: ' + self.lastcmd) if arguments[0] == 'workers': cleanMachines(self._WorkingDirectory()) elif arguments[0] == 'jobs': cleanJobs(self._WorkingDirectory()) else: raise NotImplementedError('*** Unknown syntax: ' + self.lastcmd) def complete_clean(self, *args): #The commands are the same as for show commands = set(self._complete_show_commands(*args)) return list(commands) def do_redo(self, arg): ''' Restart a given job Usage: redo JSON_FILE JSON_FILE ... job file ''' arguments = arg.split() if len(arguments) == 0: raise IndexError('*** Unknown syntax: ' + self.lastcmd) if arguments[0].endswith('.json'): with openJSON(os.path.join(self._WorkingDirectory(),arguments[0]), JobInformation, 'u') as New: New.Status = 'ToDo' else: raise NotImplementedError('*** Unknown syntax: ' + self.lastcmd) def complete_redo(self, *args): files = set(self._complete_file_names(*args, filter='*.json')) return list(files) def do_reassign(self, arg): ''' Reassigns a given job to a new worker Usage: reassign JSON_FILE WORKER JSON_FILE ... job file WORKER ... name of the worker the job is assigned to ''' arguments = arg.split() if len(arguments) == 2: with openJSON(os.path.join(self._WorkingDirectory(),arguments[0]), JobInformation, 'u') as New: New.Worker = arguments[1] else: raise NotImplementedError('*** Unknown syntax: ' + self.lastcmd) def complete_reassign(self, *args): files = set(self._complete_file_names(*args, filter='*.json')) return list(files) def do_delete(self, arg): ''' Deletes a given job file Usage: delete JSON_FILE JSON_FILE ... job file ''' arguments = arg.split() if len(arguments) == 1: os.remove(os.path.join(self._WorkingDirectory(),arguments[0])) else: raise NotImplementedError('*** Unknown syntax: ' + self.lastcmd) def complete_delete(self, *args): files = set(self._complete_file_names(*args, filter='*.json')) return list(files) def _complete_file_names(self, text, *ignored, filter): try: files = glob.glob(os.path.join(self._WorkingDirectory(),filter)) return [os.path.basename(a) for a in files if os.path.basename(a).startswith(text)] except: return [] def _complete_show_commands(self, text, *ignored): commands = ['jobs','workers'] return [a for a in commands if a.startswith(text)] def do_exit(self, arg): '''Exit the JobViewer''' return True if __name__ == '__main__': JobViewer().cmdloop()
40.804255
136
0.564814
4a161cde8e51265eeeb6c569d74e0fa79114a06b
20,170
py
Python
python/cohorte/repositories/java/bundles.py
isandlaTech/cohorte-runtime
686556cdde20beba77ae202de9969be46feed5e2
[ "Apache-2.0" ]
6
2015-04-28T16:51:08.000Z
2017-07-12T11:29:00.000Z
python/cohorte/repositories/java/bundles.py
isandlaTech/cohorte-runtime
686556cdde20beba77ae202de9969be46feed5e2
[ "Apache-2.0" ]
29
2015-02-24T11:11:26.000Z
2017-08-25T08:30:18.000Z
qualifier/deploy/cohorte-home/repo/cohorte/repositories/java/bundles.py
isandlaTech/cohorte-devtools
9ba9021369188d2f0ad5c845ef242fd5a7097b57
[ "Apache-2.0" ]
1
2015-08-24T13:23:43.000Z
2015-08-24T13:23:43.000Z
#!/usr/bin/python # -- Content-Encoding: UTF-8 -- """ Java JARs repository utility module **TODO:** * Enhance API & code :author: Thomas Calmant :license: Apache Software License 2.0 .. Copyright 2014 isandlaTech Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Standard library import contextlib import logging import operator import os import zipfile # Pelix from pelix.utilities import to_str from pelix.ipopo.decorators import ComponentFactory, Provides, Property, \ Invalidate, Validate # Cohorte import cohorte import cohorte.repositories from cohorte.repositories.beans import Artifact, Version from cohorte.repositories.java.manifest import Manifest # ------------------------------------------------------------------------------ # Bundle version import cohorte.version __version__=cohorte.version.__version__ # ------------------------------------------------------------------------------ # Empty bundle representing the system SYSTEM_BUNDLE = object() # Path of the manifest in a JAR MANIFEST_FILE = 'META-INF/MANIFEST.MF' # Path of the descriptions of the bundle services BUNDLE_SERVICES_FOLDER = 'META-INF/services' # FrameworkFactory service descriptor in the framework JAR file FRAMEWORK_SERVICE = 'org.osgi.framework.launch.FrameworkFactory' _logger = logging.getLogger(__name__) # ------------------------------------------------------------------------------ class Bundle(Artifact): """ Represents an OSGi bundle """ def __init__(self, jar_file, manifest): """ Sets up the bundle details :param jar_file: Path to the JAR file (can be empty, but shouldn't) :param manifest: The parsed Manifest of the JAR file (mandatory) :raise ValueError: Invalid manifest argument """ # Validate parameters if not manifest: raise ValueError("Manifest can't be None") # Extract information from the manifest self._manifest = manifest name = self._manifest.get('Bundle-SymbolicName', '').split(';', 2)[0] version = Version(self._manifest.get('Bundle-Version')) # Configure the Artifact Artifact.__init__(self, "java", name, version, jar_file) # Store Package information self.all_exports = \ self._manifest.extract_packages_list('Export-Package') self.all_imports = \ self._manifest.extract_packages_list('Import-Package') self.all_require = \ self._manifest.extract_packages_list('Require-Bundle') def exports(self, package_name, required_version=None): """ Tests if the given package is exported by this bundle :param package_name: The name of a package :param required_version: The required version/range of this package :return: True if the package is exported by this bundle """ if package_name not in self.all_exports: return False version = Version(self.all_exports[package_name].get('version')) return version.matches(required_version) def imports(self, other_bundle): """ Tests if this bundle should imports the given one :return: True if this bundle imports the other one through Require-Bundle or Import-Package """ if other_bundle.name in self.all_require: # Bundle referenced with a Require-Bundle requirement = self.all_require[other_bundle.name] if other_bundle.version.matches(requirement.get('version')): # The given bundle matches our requirements return True # Try with the packages for package in self.all_imports: if package in other_bundle.all_exports: # Get the required version requirement = self.all_imports[package].get('version') # Parse the provided version provided = other_bundle.all_exports[package].get('version') if Version(provided).matches(requirement): return True return False def is_fragment(self): """ Tests if this bundle is a fragment :return: True if this bundle is a fragment """ return 'Fragment-Host' in self._manifest.entries def get_exported_packages(self): """ Retrieves a Name -> Version dictionary of the exported packages :return: A Name -> Version dictionary """ return ((name, Version(attributes.get('version'))) for name, attributes in self.all_exports.items()) def get_manifest(self): """ Retrieves the parsed Manifest """ return self._manifest def get_service(self, service_name): """ Retrieves the content of a service description file (like the FrameworkFactory service) :param service_name: The name of a service :return: The content of the service description file, or None """ if not service_name: return None jar_file = zipfile.ZipFile(self.file) try: service_factory = jar_file.read( '{0}/{1}'.format(BUNDLE_SERVICES_FOLDER, service_name)) service_factory = to_str(service_factory) return service_factory.strip() except KeyError: # Not a framework JAR return None finally: jar_file.close() # ------------------------------------------------------------------------------ @ComponentFactory("cohorte-repository-artifacts-java-factory") @Provides(cohorte.repositories.SERVICE_REPOSITORY_ARTIFACTS) @Property('_language', cohorte.repositories.PROP_REPOSITORY_LANGUAGE, "java") class OSGiBundleRepository(object): """ Represents a repository """ def __init__(self): """ Sets up the repository """ # Language (property) self._language = None # Name -> [Bundle] self._bundles = {} # File -> Bundle self._files = {} # Name -> [(Package Version, Bundle)] self._packages = {} def __contains__(self, item): """ Tests if the given item is in the repository :param item: Item to be tested :return: True if the item is in the repository """ if isinstance(item, Bundle): # Test the Bundle object return item in self._bundles.values() elif item in self._bundles: # Item matches a bundle name return True else: # Test the file name for name in (item, os.path.realpath(item)): if name in self._files: return True # No match return False def __len__(self): """ Length of a repository <=> number of individual artifacts """ return sum((len(bundles) for bundles in self._bundles.values())) def __add_bundle(self, bundle, bundle_registry=None, package_registry=None): """ Adds a bundle to the given registry :param bundle: A Bundle object :param bundle_registry: Registry where to store the bundle :param package_registry: Registry where to store the packages of this bundle """ if bundle_registry is None: bundle_registry = self._bundles # Add the bundle to the dictionary bundle_list = bundle_registry.setdefault(bundle.name, []) bundle_list.append(bundle) bundle_list.sort(reverse=True) # Associate the file name with the bundle self._files[bundle.file] = bundle # Store exported packages for name, version in bundle.get_exported_packages(): self.__add_package(package_registry, name, version, bundle) def __add_package(self, registry, name, version, bundle): """ Adds a Java package to the given registry :param registry: Registry where to store the package details :param name: Name of the package :param version: Version of the package :param bundle: Bundle providing this package """ if registry is None: registry = self._packages package_list = registry.setdefault(name, []) package_list.append((version, bundle)) package_list.sort(key=operator.itemgetter(0), reverse=True) def add_file(self, filename): """ Adds a JAR file to the repository :param filename: A JAR file name """ # Compute the real name of the JAR file filename = os.path.realpath(filename) # Parse the manifest manifest = Manifest() with contextlib.closing(zipfile.ZipFile(filename)) as jar: manifest.parse(jar.read(MANIFEST_FILE)) # Store the bundle self.__add_bundle(Bundle(filename, manifest)) def add_directory(self, dirname): """ Recursively adds all .jar bundles found in the given directory into the repository :param dirname: A path to a directory """ for root, _, filenames in os.walk(dirname, followlinks=True): for filename in filenames: if os.path.splitext(filename)[1] == '.jar': fullname = os.path.join(root, filename) try: self.add_file(fullname) except ValueError as ex: _logger.warning(ex) def clear(self): """ Clears the repository content """ self._files.clear() self._bundles.clear() self._packages.clear() def filter_services(self, service): """ Generator to find all bundles that declares an implementation of the given service (in META-INF/services) :param service: A service name :return: A generator of bundles (can be empty) """ for bundles in self._bundles.values(): # Multiple bundles with the same name for bundle in bundles: if bundle.get_service(service) is not None: yield bundle def get_artifact(self, name=None, version=None, filename=None, registry=None): """ Retrieves a bundle from the repository :param name: The bundle symbolic name (mutually exclusive with filename) :param version: The bundle version (None or '0.0.0' for any), ignored if filename is used :param filename: The bundle file name (mutually exclusive with name) :param registry: Registry where to look for the bundle :return: The first matching bundle :raise ValueError: If the bundle can't be found """ if registry is None: registry = self._bundles if filename: # Use the file name (direct search) bundle = self._files.get(filename) if bundle: # Found it return bundle for bundle_file in self._files: # Search by file base name if os.path.basename(bundle_file) == filename: return self._files[bundle_file] if not name: # Not found by file name, and no name to look for raise ValueError("Bundle file not found: {0}".format(filename)) if isinstance(name, Bundle): # Got a bundle bundle = name if bundle in registry: return bundle else: # Use the bundle symbolic name and version name = bundle.name version = bundle.version matching = registry.get(name, None) if not matching: raise ValueError('Bundle {0} not found.'.format(name)) for bundle in matching: if bundle.version.matches(version): return bundle raise ValueError('Bundle {0} not found for version {1}' .format(name, version)) def get_language(self): """ Retrieves the language of the artifacts stored in this repository """ return self._language def get_package(self, name, version=None, bundle_registry=None, package_registry=None): """ Retrieves a bundle from the repository providing the given package :param name: The package name :param version: The package version (None or '0.0.0' for any) :return: The first bundle providing the package, None if not found """ if bundle_registry is None: bundle_registry = self._bundles if package_registry is None: package_registry = self._packages matching = package_registry.get(name, None) if not matching: return None for pkg_version, pkg_bundle in matching: if pkg_version.matches(version): return pkg_bundle return None def resolve_installation(self, bundles, system_artifacts=None, system_packages=None): """ Returns all the bundles that must be installed in order to have the given bundles resolved. To simplify the work, the OSGi framework should be the first one in the list. :param bundles: A list of bundles to be resolved :param system_packages: Packages considered available by the framework :return: A tuple: (bundles, dependencies, missing artifacts, missing packages) :raise ValueError: One of the given bundles is unknown """ # Name -> Bundle for this resolution local_bundles = {} # Name -> (Version, Bundle) local_packages = {} # Bundle -> [Bundles] dependencies = {} # Missing elements missing_bundles = set() missing_packages = set() # Consider system packages already installed if system_packages: for name in system_packages: self.__add_package(local_packages, name, Version(None), SYSTEM_BUNDLE) # Consider system bundles already installed if system_artifacts: for artifact in system_artifacts: if isinstance(artifact, Bundle): # Got a bundle self.__add_bundle(artifact, local_bundles, local_packages) elif isinstance(artifact, Artifact): # Got an artifact bundle = self.get_artifact(artifact.name, artifact.version, artifact.file) if bundle: self.__add_bundle(bundle, local_bundles, local_packages) else: _logger.warning("Unknown system bundle: %s", artifact) else: _logger.warning("Unhandled system artifact: %s", artifact) # Resolution loop to_install = [self.get_artifact(name) for name in bundles] i = 0 while i < len(to_install): # Loop control bundle = to_install[i] i += 1 if bundle is None: # Ignore None bundle (system bundle) continue # Add the current bundle self.__add_bundle(bundle, local_bundles, local_packages) dependencies[bundle] = [] # Resolve Require-Bundle for required in bundle.all_require: # Get the required version required_version = bundle.all_require[required].get('version') # Find the bundle registry = None provider = None for registry in (local_bundles, self._bundles): try: provider = self.get_artifact(required, required_version, None, registry) # Found one break except ValueError: # Try next pass else: # No provider found missing_bundles.add(required) continue if provider is SYSTEM_BUNDLE: # Nothing to do with system bundles continue # Store the bundle we found dependencies[bundle].append(provider) if registry is self._bundles: # The provider was found in the global registry, store it self.__add_bundle(provider, local_bundles, local_packages) # The new bundle will be resolved later if provider not in to_install: # We'll have to resolve it to_install.append(provider) # Resolve Import-Package for imported in bundle.all_imports: # Get the required version pkg_version = bundle.all_imports[imported].get('version') # Self-import ? if bundle.exports(imported, pkg_version): # Nothing to do for this package continue # Work only if necessary provider = self.get_package(imported, pkg_version, local_bundles, local_packages) if provider: # Found the package in the resolved bundles if provider is not SYSTEM_BUNDLE: dependencies[bundle].append(provider) else: # Find it provider = self.get_package(imported, pkg_version, self._bundles, self._packages) if not provider: # Missing missing_packages.add(imported) elif provider is not SYSTEM_BUNDLE: # Store the bundle self.__add_bundle(provider, local_bundles, local_packages) # Store the dependency dependencies[bundle].append(provider) if provider not in to_install: # We'll have to resolve it to_install.append(provider) return to_install, dependencies, missing_bundles, missing_packages def walk(self): """ # Walk through the known artifacts """ for bundles in self._bundles.values(): for bundle in bundles: yield bundle @Validate def validate(self, context): """ Component validated """ # Home/Base repository for key in (cohorte.PROP_BASE, cohorte.PROP_HOME): repository = os.path.join(context.get_property(key), "repo") self.add_directory(repository) @Invalidate def invalidate(self, context): """ Component invalidated """ self.clear()
33.842282
80
0.564155
4a161d90865a00dee99364f1939e33fd4038fcf4
1,441
py
Python
CTFd/admin/pages.py
xmsec/LanCTFD
77659cca2aae4ab68cf25ddb5a7cbe63f597a9af
[ "Apache-2.0" ]
3
2020-05-13T14:02:11.000Z
2022-03-12T08:09:34.000Z
CTFd/admin/pages.py
xmsec/LanCTFD
77659cca2aae4ab68cf25ddb5a7cbe63f597a9af
[ "Apache-2.0" ]
6
2019-01-26T15:06:07.000Z
2019-02-11T01:48:20.000Z
CTFd/admin/pages.py
xmsec/LanCTFD
77659cca2aae4ab68cf25ddb5a7cbe63f597a9af
[ "Apache-2.0" ]
4
2019-08-01T02:16:44.000Z
2022-03-12T08:09:35.000Z
from flask import current_app as app, render_template, request, redirect, jsonify, url_for, Blueprint from CTFd.utils.decorators import admins_only from CTFd.models import db, Teams, Solves, Awards, Challenges, Fails, Flags, Tags, Files, Tracking, Pages, Configs from CTFd.schemas.pages import PageSchema from CTFd.utils import config, validators, markdown, uploads from CTFd.cache import cache from CTFd.admin import admin @admin.route('/admin/pages') @admins_only def pages_listing(): pages = Pages.query.all() return render_template('admin/pages.html', pages=pages) @admin.route('/admin/pages/new') @admins_only def pages_new(): return render_template('admin/editor.html') @admin.route('/admin/pages/preview', methods=['POST']) @admins_only def pages_preview(): data = request.form.to_dict() schema = PageSchema() page = schema.load(data) return render_template('page.html', content=markdown(page.data.content)) @admin.route('/admin/pages/<int:page_id>') @admins_only def pages_detail(page_id): page = Pages.query.filter_by(id=page_id).first_or_404() page_op = request.args.get('operation') if request.method == 'GET' and page_op == 'preview': return render_template('page.html', content=markdown(page.content)) if request.method == 'GET' and page_op == 'create': return render_template('admin/editor.html') return render_template('admin/editor.html', page=page)
32.022222
114
0.734906
4a161e33023aa212516d3fa34d0aece3fbdf6d78
24,765
py
Python
salt/states/cron.py
xiaowei582648206/saltx
1d17b030b973ce5422e0fbe7e17c98c7ca91c49b
[ "Apache-2.0" ]
1
2022-02-09T06:40:14.000Z
2022-02-09T06:40:14.000Z
salt/states/cron.py
xiaowei582648206/saltx
1d17b030b973ce5422e0fbe7e17c98c7ca91c49b
[ "Apache-2.0" ]
null
null
null
salt/states/cron.py
xiaowei582648206/saltx
1d17b030b973ce5422e0fbe7e17c98c7ca91c49b
[ "Apache-2.0" ]
4
2020-11-04T06:28:05.000Z
2022-02-09T10:54:49.000Z
# -*- coding: utf-8 -*- ''' Management of cron, the Unix command scheduler ============================================== Cron declarations require a number of parameters. The following are the parameters used by Salt to define the various timing values for a cron job: * ``minute`` * ``hour`` * ``daymonth`` * ``month`` * ``dayweek`` (0 to 6 are Sunday through Saturday, 7 can also be used for Sunday) .. warning:: Any timing arguments not specified take a value of ``*``. This means that setting ``hour`` to ``5``, while not defining the ``minute`` param, will result in Salt adding a job that will execute every minute between 5 and 6 A.M.! Additionally, the default user for these states is ``root``. Therefore, if the cron job is for another user, it is necessary to specify that user with the ``user`` parameter. A long time ago (before 2014.2), when making changes to an existing cron job, the name declaration is the parameter used to uniquely identify the job, so if an existing cron that looks like this: .. code-block:: yaml date > /tmp/crontest: cron.present: - user: root - minute: 5 Is changed to this: .. code-block:: yaml date > /tmp/crontest: cron.present: - user: root - minute: 7 - hour: 2 Then the existing cron will be updated, but if the cron command is changed, then a new cron job will be added to the user's crontab. The current behavior is still relying on that mechanism, but you can also specify an identifier to identify your crontabs: .. code-block:: yaml date > /tmp/crontest: cron.present: - identifier: SUPERCRON - user: root - minute: 7 - hour: 2 .. versionadded:: 2014.1.2 And, some months later, you modify it: .. code-block:: yaml superscript > /tmp/crontest: cron.present: - identifier: SUPERCRON - user: root - minute: 3 - hour: 4 .. versionadded:: 2014.1.2 The old **date > /tmp/crontest** will be replaced by **superscript > /tmp/crontest**. Additionally, Salt also supports running a cron every ``x minutes`` very similarly to the Unix convention of using ``*/5`` to have a job run every five minutes. In Salt, this looks like: .. code-block:: yaml date > /tmp/crontest: cron.present: - user: root - minute: '*/5' The job will now run every 5 minutes. Additionally, the temporal parameters (minute, hour, etc.) can be randomized by using ``random`` instead of using a specific value. For example, by using the ``random`` keyword in the ``minute`` parameter of a cron state, the same cron job can be pushed to hundreds or thousands of hosts, and they would each use a randomly-generated minute. This can be helpful when the cron job accesses a network resource, and it is not desirable for all hosts to run the job concurrently. .. code-block:: yaml /path/to/cron/script: cron.present: - user: root - minute: random - hour: 2 .. versionadded:: 0.16.0 Since Salt assumes a value of ``*`` for unspecified temporal parameters, adding a parameter to the state and setting it to ``random`` will change that value from ``*`` to a randomized numeric value. However, if that field in the cron entry on the minion already contains a numeric value, then using the ``random`` keyword will not modify it. Added the opportunity to set a job with a special keyword like '@reboot' or '@hourly'. Quotes must be used, otherwise PyYAML will strip the '@' sign. .. code-block:: yaml /path/to/cron/script: cron.present: - user: root - special: '@hourly' The script will be executed every reboot if cron daemon support this option. .. code-block:: yaml /path/to/cron/otherscript: cron.absent: - user: root - special: '@daily' This counter part definition will ensure than a job with a special keyword is not set. ''' from __future__ import absolute_import # Import python libs import os # Import salt libs import salt.utils import salt.utils.files from salt.modules.cron import ( _needs_change, _cron_matched ) def __virtual__(): if 'cron.list_tab' in __salt__: return True else: return (False, 'cron module could not be loaded') def _check_cron(user, cmd, minute=None, hour=None, daymonth=None, month=None, dayweek=None, comment=None, commented=None, identifier=None, special=None): ''' Return the changes ''' if minute is not None: minute = str(minute).lower() if hour is not None: hour = str(hour).lower() if daymonth is not None: daymonth = str(daymonth).lower() if month is not None: month = str(month).lower() if dayweek is not None: dayweek = str(dayweek).lower() if identifier is not None: identifier = str(identifier) if commented is not None: commented = commented is True if cmd is not None: cmd = str(cmd) lst = __salt__['cron.list_tab'](user) if special is None: for cron in lst['crons']: if _cron_matched(cron, cmd, identifier): if any([_needs_change(x, y) for x, y in ((cron['minute'], minute), (cron['hour'], hour), (cron['daymonth'], daymonth), (cron['month'], month), (cron['dayweek'], dayweek), (cron['identifier'], identifier), (cron['cmd'], cmd), (cron['comment'], comment), (cron['commented'], commented))]): return 'update' return 'present' else: for cron in lst['special']: if _cron_matched(cron, cmd, identifier): if any([_needs_change(x, y) for x, y in ((cron['spec'], special), (cron['identifier'], identifier), (cron['cmd'], cmd), (cron['comment'], comment), (cron['commented'], commented))]): return 'update' return 'present' return 'absent' def _check_cron_env(user, name, value=None): ''' Return the environment changes ''' if value is None: value = "" # Matching value set in salt.modules.cron._render_tab lst = __salt__['cron.list_tab'](user) for env in lst['env']: if name == env['name']: if value != env['value']: return 'update' return 'present' return 'absent' def _get_cron_info(): ''' Returns the proper group owner and path to the cron directory ''' owner = 'root' if __grains__['os'] == 'FreeBSD': group = 'wheel' crontab_dir = '/var/cron/tabs' elif __grains__['os'] == 'OpenBSD': group = 'crontab' crontab_dir = '/var/cron/tabs' elif __grains__['os_family'] == 'Solaris': group = 'root' crontab_dir = '/var/spool/cron/crontabs' elif __grains__['os'] == 'MacOS': group = 'wheel' crontab_dir = '/usr/lib/cron/tabs' else: group = 'root' crontab_dir = '/var/spool/cron' return owner, group, crontab_dir def present(name, user='root', minute='*', hour='*', daymonth='*', month='*', dayweek='*', comment=None, commented=False, identifier=False, special=None): ''' Verifies that the specified cron job is present for the specified user. For more advanced information about what exactly can be set in the cron timing parameters, check your cron system's documentation. Most Unix-like systems' cron documentation can be found via the crontab man page: ``man 5 crontab``. name The command that should be executed by the cron job. user The name of the user whose crontab needs to be modified, defaults to the root user minute The information to be set into the minute section, this can be any string supported by your cron system's the minute field. Default is ``*`` hour The information to be set in the hour section. Default is ``*`` daymonth The information to be set in the day of month section. Default is ``*`` month The information to be set in the month section. Default is ``*`` dayweek The information to be set in the day of week section. Default is ``*`` comment User comment to be added on line previous the cron job commented The cron job is set commented (prefixed with ``#DISABLED#``). Defaults to False. .. versionadded:: 2016.3.0 identifier Custom-defined identifier for tracking the cron line for future crontab edits. This defaults to the state name special A special keyword to specify periodicity (eg. @reboot, @hourly...). Quotes must be used, otherwise PyYAML will strip the '@' sign. .. versionadded:: 2016.3.0 ''' name = name.strip() if identifier is False: identifier = name ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if __opts__['test']: status = _check_cron(user, cmd=name, minute=minute, hour=hour, daymonth=daymonth, month=month, dayweek=dayweek, comment=comment, commented=commented, identifier=identifier, special=special) ret['result'] = None if status == 'absent': ret['comment'] = 'Cron {0} is set to be added'.format(name) elif status == 'present': ret['result'] = True ret['comment'] = 'Cron {0} already present'.format(name) elif status == 'update': ret['comment'] = 'Cron {0} is set to be updated'.format(name) return ret if special is None: data = __salt__['cron.set_job'](user=user, minute=minute, hour=hour, daymonth=daymonth, month=month, dayweek=dayweek, cmd=name, comment=comment, commented=commented, identifier=identifier) else: data = __salt__['cron.set_special'](user=user, special=special, cmd=name, comment=comment, commented=commented, identifier=identifier) if data == 'present': ret['comment'] = 'Cron {0} already present'.format(name) return ret if data == 'new': ret['comment'] = 'Cron {0} added to {1}\'s crontab'.format(name, user) ret['changes'] = {user: name} return ret if data == 'updated': ret['comment'] = 'Cron {0} updated'.format(name) ret['changes'] = {user: name} return ret ret['comment'] = ('Cron {0} for user {1} failed to commit with error \n{2}' .format(name, user, data)) ret['result'] = False return ret def absent(name, user='root', identifier=False, special=None, **kwargs): ''' Verifies that the specified cron job is absent for the specified user; only the name is matched when removing a cron job. name The command that should be absent in the user crontab. user The name of the user whose crontab needs to be modified, defaults to the root user identifier Custom-defined identifier for tracking the cron line for future crontab edits. This defaults to the state name special The special keyword used in the job (eg. @reboot, @hourly...). Quotes must be used, otherwise PyYAML will strip the '@' sign. ''' ### NOTE: The keyword arguments in **kwargs are ignored in this state, but ### cannot be removed from the function definition, otherwise the use ### of unsupported arguments will result in a traceback. name = name.strip() if identifier is False: identifier = name ret = {'name': name, 'result': True, 'changes': {}, 'comment': ''} if __opts__['test']: status = _check_cron(user, name, identifier=identifier) ret['result'] = None if status == 'absent': ret['result'] = True ret['comment'] = 'Cron {0} is absent'.format(name) elif status == 'present' or status == 'update': ret['comment'] = 'Cron {0} is set to be removed'.format(name) return ret if special is None: data = __salt__['cron.rm_job'](user, name, identifier=identifier) else: data = __salt__['cron.rm_special'](user, name, special=special, identifier=identifier) if data == 'absent': ret['comment'] = "Cron {0} already absent".format(name) return ret if data == 'removed': ret['comment'] = ("Cron {0} removed from {1}'s crontab" .format(name, user)) ret['changes'] = {user: name} return ret ret['comment'] = ("Cron {0} for user {1} failed to commit with error {2}" .format(name, user, data)) ret['result'] = False return ret def file(name, source_hash='', source_hash_name=None, user='root', template=None, context=None, replace=True, defaults=None, backup='', **kwargs): ''' Provides file.managed-like functionality (templating, etc.) for a pre-made crontab file, to be assigned to a given user. name The source file to be used as the crontab. This source file can be hosted on either the salt master server, or on an HTTP or FTP server. For files hosted on the salt file server, if the file is located on the master in the directory named spam, and is called eggs, the source string is ``salt://spam/eggs`` If the file is hosted on a HTTP or FTP server then the source_hash argument is also required source_hash This can be either a file which contains a source hash string for the source, or a source hash string. The source hash string is the hash algorithm followed by the hash of the file: ``md5=e138491e9d5b97023cea823fe17bac22`` source_hash_name When ``source_hash`` refers to a hash file, Salt will try to find the correct hash by matching the filename/URI associated with that hash. By default, Salt will look for the filename being managed. When managing a file at path ``/tmp/foo.txt``, then the following line in a hash file would match: .. code-block:: text acbd18db4cc2f85cedef654fccc4a4d8 foo.txt However, sometimes a hash file will include multiple similar paths: .. code-block:: text 37b51d194a7513e45b56f6524f2d51f2 ./dir1/foo.txt acbd18db4cc2f85cedef654fccc4a4d8 ./dir2/foo.txt 73feffa4b7f6bb68e44cf984c85f6e88 ./dir3/foo.txt In cases like this, Salt may match the incorrect hash. This argument can be used to tell Salt which filename to match, to ensure that the correct hash is identified. For example: .. code-block:: yaml foo_crontab: cron.file: - name: https://mydomain.tld/dir2/foo.txt - source_hash: https://mydomain.tld/hashes - source_hash_name: ./dir2/foo.txt .. note:: This argument must contain the full filename entry from the checksum file, as this argument is meant to disambiguate matches for multiple files that have the same basename. So, in the example above, simply using ``foo.txt`` would not match. .. versionadded:: 2016.3.5 user The user to whom the crontab should be assigned. This defaults to root. template If this setting is applied then the named templating engine will be used to render the downloaded file. Currently, jinja and mako are supported. context Overrides default context variables passed to the template. replace If the crontab should be replaced, if False then this command will be ignored if a crontab exists for the specified user. Default is True. defaults Default context passed to the template. backup Overrides the default backup mode for the user's crontab. ''' # Initial set up mode = '0600' try: group = __salt__['user.info'](user)['groups'][0] except Exception: ret = {'changes': {}, 'comment': "Could not identify group for user {0}".format(user), 'name': name, 'result': False} return ret cron_path = salt.utils.files.mkstemp() with salt.utils.fopen(cron_path, 'w+') as fp_: raw_cron = __salt__['cron.raw_cron'](user) if not raw_cron.endswith('\n'): raw_cron = "{0}\n".format(raw_cron) fp_.write(raw_cron) ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} # Avoid variable naming confusion in below module calls, since ID # declaration for this state will be a source URI. source = name if not replace and os.stat(cron_path).st_size > 0: ret['comment'] = 'User {0} already has a crontab. No changes ' \ 'made'.format(user) os.unlink(cron_path) return ret if __opts__['test']: fcm = __salt__['file.check_managed'](cron_path, source, source_hash, source_hash_name, user, group, mode, template, context, defaults, __env__, **kwargs ) ret['result'], ret['comment'] = fcm os.unlink(cron_path) return ret # If the source is a list then find which file exists source, source_hash = __salt__['file.source_list'](source, source_hash, __env__) # Gather the source file from the server try: sfn, source_sum, comment = __salt__['file.get_managed']( cron_path, template, source, source_hash, source_hash_name, user, group, mode, __env__, context, defaults, False, # skip_verify **kwargs ) except Exception as exc: ret['result'] = False ret['changes'] = {} ret['comment'] = 'Unable to manage file: {0}'.format(exc) return ret if comment: ret['comment'] = comment ret['result'] = False os.unlink(cron_path) return ret try: ret = __salt__['file.manage_file']( cron_path, sfn, ret, source, source_sum, user, group, mode, __env__, backup ) except Exception as exc: ret['result'] = False ret['changes'] = {} ret['comment'] = 'Unable to manage file: {0}'.format(exc) return ret cron_ret = None if "diff" in ret['changes']: cron_ret = __salt__['cron.write_cron_file_verbose'](user, cron_path) # Check cmd return code and show success or failure if cron_ret['retcode'] == 0: ret['comment'] = 'Crontab for user {0} was updated'.format(user) ret['result'] = True ret['changes'] = ret['changes']['diff'] else: ret['comment'] = 'Unable to update user {0} crontab {1}.' \ ' Error: {2}'.format(user, cron_path, cron_ret['stderr']) ret['result'] = False ret['changes'] = {} elif ret['result']: ret['comment'] = 'Crontab for user {0} is in the correct ' \ 'state'.format(user) ret['changes'] = {} os.unlink(cron_path) return ret def env_present(name, value=None, user='root'): ''' Verifies that the specified environment variable is present in the crontab for the specified user. name The name of the environment variable to set in the user crontab user The name of the user whose crontab needs to be modified, defaults to the root user value The value to set for the given environment variable ''' ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if __opts__['test']: status = _check_cron_env(user, name, value=value) ret['result'] = None if status == 'absent': ret['comment'] = 'Cron env {0} is set to be added'.format(name) elif status == 'present': ret['result'] = True ret['comment'] = 'Cron env {0} already present'.format(name) elif status == 'update': ret['comment'] = 'Cron env {0} is set to be updated'.format(name) return ret data = __salt__['cron.set_env'](user, name, value=value) if data == 'present': ret['comment'] = 'Cron env {0} already present'.format(name) return ret if data == 'new': ret['comment'] = 'Cron env {0} added to {1}\'s crontab'.format(name, user) ret['changes'] = {user: name} return ret if data == 'updated': ret['comment'] = 'Cron env {0} updated'.format(name) ret['changes'] = {user: name} return ret ret['comment'] = ('Cron env {0} for user {1} failed to commit with error \n{2}' .format(name, user, data)) ret['result'] = False return ret def env_absent(name, user='root'): ''' Verifies that the specified environment variable is absent from the crontab for the specified user name The name of the environment variable to remove from the user crontab user The name of the user whose crontab needs to be modified, defaults to the root user ''' name = name.strip() ret = {'name': name, 'result': True, 'changes': {}, 'comment': ''} if __opts__['test']: status = _check_cron_env(user, name) ret['result'] = None if status == 'absent': ret['result'] = True ret['comment'] = 'Cron env {0} is absent'.format(name) elif status == 'present' or status == 'update': ret['comment'] = 'Cron env {0} is set to be removed'.format(name) return ret data = __salt__['cron.rm_env'](user, name) if data == 'absent': ret['comment'] = "Cron env {0} already absent".format(name) return ret if data == 'removed': ret['comment'] = ("Cron env {0} removed from {1}'s crontab" .format(name, user)) ret['changes'] = {user: name} return ret ret['comment'] = ("Cron env {0} for user {1} failed to commit with error {2}" .format(name, user, data)) ret['result'] = False return ret
32.457405
94
0.547264
4a161e8f3410bacaf7d7ceac4abf9ee0e8a4b1d2
411
py
Python
batch_convert.py
mathfreak231/pbrchase
b50d5aa6ccf7366c3b605bb6a5b31e3fca54cd0f
[ "MIT" ]
9
2015-07-19T05:37:59.000Z
2020-10-02T20:26:11.000Z
batch_convert.py
mathfreak231/pbrchase
b50d5aa6ccf7366c3b605bb6a5b31e3fca54cd0f
[ "MIT" ]
8
2015-07-19T23:52:14.000Z
2020-06-05T01:45:28.000Z
batch_convert.py
mathfreak231/pbrchase
b50d5aa6ccf7366c3b605bb6a5b31e3fca54cd0f
[ "MIT" ]
7
2016-03-21T03:37:45.000Z
2021-12-22T10:26:54.000Z
import glob import subprocess import os.path def main(): for filename in glob.glob('sounds/*/*.wav'): output_filename = os.path.splitext(filename)[0] + '.ogg' subprocess.check_call(['sox', filename, output_filename]) output_filename = os.path.splitext(filename)[0] + '.mp3' subprocess.check_call(['sox', filename, output_filename]) if __name__ == '__main__': main()
24.176471
65
0.659367
4a16203d568097184063f2c90af08e28ab0362d8
754
py
Python
tz_detect/views.py
ben-hoover/django-tz-detect
91450a2aaef608106a6265b4a53d12372db030d5
[ "MIT" ]
null
null
null
tz_detect/views.py
ben-hoover/django-tz-detect
91450a2aaef608106a6265b4a53d12372db030d5
[ "MIT" ]
null
null
null
tz_detect/views.py
ben-hoover/django-tz-detect
91450a2aaef608106a6265b4a53d12372db030d5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from django.http import HttpResponse from django.views.generic import View class SetOffsetView(View): http_method_names = ['post'] def post(self, request, *args, **kwargs): tz = request.POST.get('tz', None) if not tz: offset = request.POST.get('offset', None) if not offset: return HttpResponse("No 'offset' parameter provided", status=400) try: offset = int(offset) except ValueError: return HttpResponse("Invalid 'offset' value provided", status=400) request.session['detected_tz'] = int(offset) else: request.session['detected_tz'] = tz return HttpResponse("OK")
31.416667
82
0.582228
4a162047fbfae8b1ca98a08632d1010b3dc69c02
6,490
py
Python
pybind/nos/v6_0_2c/rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/default_vrf/neighbor/af_ipv4_neighbor_peergroup_holder/af_ipv4_neighbor_peergroup/af_neighbor_capability/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/nos/v6_0_2c/rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/default_vrf/neighbor/af_ipv4_neighbor_peergroup_holder/af_ipv4_neighbor_peergroup/af_neighbor_capability/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/nos/v6_0_2c/rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/default_vrf/neighbor/af_ipv4_neighbor_peergroup_holder/af_ipv4_neighbor_peergroup/af_neighbor_capability/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import orf class af_neighbor_capability(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-rbridge - based on the path /rbridge-id/router/router-bgp/address-family/ipv4/ipv4-unicast/default-vrf/neighbor/af-ipv4-neighbor-peergroup-holder/af-ipv4-neighbor-peergroup/af-neighbor-capability. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__orf',) _yang_name = 'af-neighbor-capability' _rest_name = 'capability' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__orf = YANGDynClass(base=orf.orf, is_container='container', presence=False, yang_name="orf", rest_name="orf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Advertise ORF capability to the peer', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'rbridge-id', u'router', u'router-bgp', u'address-family', u'ipv4', u'ipv4-unicast', u'default-vrf', u'neighbor', u'af-ipv4-neighbor-peergroup-holder', u'af-ipv4-neighbor-peergroup', u'af-neighbor-capability'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'rbridge-id', u'router', u'bgp', u'address-family', u'ipv4', u'unicast', u'neighbor', u'af-ipv4-neighbor-peergroup', u'capability'] def _get_orf(self): """ Getter method for orf, mapped from YANG variable /rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/default_vrf/neighbor/af_ipv4_neighbor_peergroup_holder/af_ipv4_neighbor_peergroup/af_neighbor_capability/orf (container) """ return self.__orf def _set_orf(self, v, load=False): """ Setter method for orf, mapped from YANG variable /rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/default_vrf/neighbor/af_ipv4_neighbor_peergroup_holder/af_ipv4_neighbor_peergroup/af_neighbor_capability/orf (container) If this variable is read-only (config: false) in the source YANG file, then _set_orf is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_orf() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=orf.orf, is_container='container', presence=False, yang_name="orf", rest_name="orf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Advertise ORF capability to the peer', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """orf must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=orf.orf, is_container='container', presence=False, yang_name="orf", rest_name="orf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Advertise ORF capability to the peer', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True)""", }) self.__orf = t if hasattr(self, '_set'): self._set() def _unset_orf(self): self.__orf = YANGDynClass(base=orf.orf, is_container='container', presence=False, yang_name="orf", rest_name="orf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Advertise ORF capability to the peer', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True) orf = __builtin__.property(_get_orf, _set_orf) _pyangbind_elements = {'orf': orf, }
52.33871
490
0.720339
4a162362c6b6f05422a273caeb1a57dcc3b2fad0
31,377
py
Python
tests/template_tests/syntax_tests/i18n/test_blocktranslate.py
jpmallarino/django
659d2421c7adbbcd205604002d521d82d6b0b465
[ "BSD-3-Clause", "0BSD" ]
16
2019-08-10T12:24:06.000Z
2020-05-21T09:11:14.000Z
tests/template_tests/syntax_tests/i18n/test_blocktranslate.py
jpmallarino/django
659d2421c7adbbcd205604002d521d82d6b0b465
[ "BSD-3-Clause", "0BSD" ]
12
2019-08-10T11:55:29.000Z
2020-05-21T04:46:30.000Z
tests/template_tests/syntax_tests/i18n/test_blocktranslate.py
jpmallarino/django
659d2421c7adbbcd205604002d521d82d6b0b465
[ "BSD-3-Clause", "0BSD" ]
3
2019-08-20T13:29:34.000Z
2020-01-30T22:05:10.000Z
import inspect import os from functools import partial, wraps from asgiref.local import Local from django.template import Context, Template, TemplateSyntaxError from django.template.base import Token, TokenType from django.templatetags.i18n import BlockTranslateNode from django.test import SimpleTestCase, override_settings from django.utils import translation from django.utils.safestring import mark_safe from django.utils.translation import trans_real from ...utils import setup as base_setup from .base import MultipleLocaleActivationTestCase, extended_locale_paths, here def setup(templates, *args, **kwargs): blocktranslate_setup = base_setup(templates, *args, **kwargs) blocktrans_setup = base_setup( { name: template.replace("{% blocktranslate ", "{% blocktrans ").replace( "{% endblocktranslate %}", "{% endblocktrans %}" ) for name, template in templates.items() } ) tags = { "blocktrans": blocktrans_setup, "blocktranslate": blocktranslate_setup, } def decorator(func): @wraps(func) def inner(self, *args): signature = inspect.signature(func) for tag_name, setup_func in tags.items(): if "tag_name" in signature.parameters: setup_func(partial(func, tag_name=tag_name))(self) else: setup_func(func)(self) return inner return decorator class I18nBlockTransTagTests(SimpleTestCase): libraries = {"i18n": "django.templatetags.i18n"} @setup( { "i18n03": ( "{% load i18n %}{% blocktranslate %}{{ anton }}{% endblocktranslate %}" ) } ) def test_i18n03(self): """simple translation of a variable""" output = self.engine.render_to_string("i18n03", {"anton": "Å"}) self.assertEqual(output, "Å") @setup( { "i18n04": ( "{% load i18n %}{% blocktranslate with berta=anton|lower %}{{ berta }}" "{% endblocktranslate %}" ) } ) def test_i18n04(self): """simple translation of a variable and filter""" output = self.engine.render_to_string("i18n04", {"anton": "Å"}) self.assertEqual(output, "å") @setup( { "legacyi18n04": ( "{% load i18n %}" "{% blocktranslate with anton|lower as berta %}{{ berta }}" "{% endblocktranslate %}" ) } ) def test_legacyi18n04(self): """simple translation of a variable and filter""" output = self.engine.render_to_string("legacyi18n04", {"anton": "Å"}) self.assertEqual(output, "å") @setup( { "i18n05": ( "{% load i18n %}{% blocktranslate %}xxx{{ anton }}xxx" "{% endblocktranslate %}" ) } ) def test_i18n05(self): """simple translation of a string with interpolation""" output = self.engine.render_to_string("i18n05", {"anton": "yyy"}) self.assertEqual(output, "xxxyyyxxx") @setup( { "i18n07": "{% load i18n %}" "{% blocktranslate count counter=number %}singular{% plural %}" "{{ counter }} plural{% endblocktranslate %}" } ) def test_i18n07(self): """translation of singular form""" output = self.engine.render_to_string("i18n07", {"number": 1}) self.assertEqual(output, "singular") @setup( { "legacyi18n07": "{% load i18n %}" "{% blocktranslate count number as counter %}singular{% plural %}" "{{ counter }} plural{% endblocktranslate %}" } ) def test_legacyi18n07(self): """translation of singular form""" output = self.engine.render_to_string("legacyi18n07", {"number": 1}) self.assertEqual(output, "singular") @setup( { "i18n08": "{% load i18n %}" "{% blocktranslate count number as counter %}singular{% plural %}" "{{ counter }} plural{% endblocktranslate %}" } ) def test_i18n08(self): """translation of plural form""" output = self.engine.render_to_string("i18n08", {"number": 2}) self.assertEqual(output, "2 plural") @setup( { "legacyi18n08": "{% load i18n %}" "{% blocktranslate count counter=number %}singular{% plural %}" "{{ counter }} plural{% endblocktranslate %}" } ) def test_legacyi18n08(self): """translation of plural form""" output = self.engine.render_to_string("legacyi18n08", {"number": 2}) self.assertEqual(output, "2 plural") @setup( { "i18n17": ( "{% load i18n %}" "{% blocktranslate with berta=anton|escape %}{{ berta }}" "{% endblocktranslate %}" ) } ) def test_i18n17(self): """ Escaping inside blocktranslate and translate works as if it was directly in the template. """ output = self.engine.render_to_string("i18n17", {"anton": "α & β"}) self.assertEqual(output, "α &amp; β") @setup( { "i18n18": ( "{% load i18n %}" "{% blocktranslate with berta=anton|force_escape %}{{ berta }}" "{% endblocktranslate %}" ) } ) def test_i18n18(self): output = self.engine.render_to_string("i18n18", {"anton": "α & β"}) self.assertEqual(output, "α &amp; β") @setup( { "i18n19": ( "{% load i18n %}{% blocktranslate %}{{ andrew }}{% endblocktranslate %}" ) } ) def test_i18n19(self): output = self.engine.render_to_string("i18n19", {"andrew": "a & b"}) self.assertEqual(output, "a &amp; b") @setup( { "i18n21": ( "{% load i18n %}{% blocktranslate %}{{ andrew }}{% endblocktranslate %}" ) } ) def test_i18n21(self): output = self.engine.render_to_string("i18n21", {"andrew": mark_safe("a & b")}) self.assertEqual(output, "a & b") @setup( { "legacyi18n17": ( "{% load i18n %}" "{% blocktranslate with anton|escape as berta %}{{ berta }}" "{% endblocktranslate %}" ) } ) def test_legacyi18n17(self): output = self.engine.render_to_string("legacyi18n17", {"anton": "α & β"}) self.assertEqual(output, "α &amp; β") @setup( { "legacyi18n18": "{% load i18n %}" "{% blocktranslate with anton|force_escape as berta %}" "{{ berta }}{% endblocktranslate %}" } ) def test_legacyi18n18(self): output = self.engine.render_to_string("legacyi18n18", {"anton": "α & β"}) self.assertEqual(output, "α &amp; β") @setup( { "i18n26": "{% load i18n %}" "{% blocktranslate with extra_field=myextra_field count counter=number %}" "singular {{ extra_field }}{% plural %}plural{% endblocktranslate %}" } ) def test_i18n26(self): """ translation of plural form with extra field in singular form (#13568) """ output = self.engine.render_to_string( "i18n26", {"myextra_field": "test", "number": 1} ) self.assertEqual(output, "singular test") @setup( { "legacyi18n26": ( "{% load i18n %}" "{% blocktranslate with myextra_field as extra_field " "count number as counter %}singular {{ extra_field }}{% plural %}plural" "{% endblocktranslate %}" ) } ) def test_legacyi18n26(self): output = self.engine.render_to_string( "legacyi18n26", {"myextra_field": "test", "number": 1} ) self.assertEqual(output, "singular test") @setup( { "i18n27": "{% load i18n %}{% blocktranslate count counter=number %}" "{{ counter }} result{% plural %}{{ counter }} results" "{% endblocktranslate %}" } ) def test_i18n27(self): """translation of singular form in Russian (#14126)""" with translation.override("ru"): output = self.engine.render_to_string("i18n27", {"number": 1}) self.assertEqual( output, "1 \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442" ) @setup( { "legacyi18n27": "{% load i18n %}" "{% blocktranslate count number as counter %}{{ counter }} result" "{% plural %}{{ counter }} results{% endblocktranslate %}" } ) def test_legacyi18n27(self): with translation.override("ru"): output = self.engine.render_to_string("legacyi18n27", {"number": 1}) self.assertEqual( output, "1 \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442" ) @setup( { "i18n28": ( "{% load i18n %}" "{% blocktranslate with a=anton b=berta %}{{ a }} + {{ b }}" "{% endblocktranslate %}" ) } ) def test_i18n28(self): """simple translation of multiple variables""" output = self.engine.render_to_string("i18n28", {"anton": "α", "berta": "β"}) self.assertEqual(output, "α + β") @setup( { "legacyi18n28": "{% load i18n %}" "{% blocktranslate with anton as a and berta as b %}" "{{ a }} + {{ b }}{% endblocktranslate %}" } ) def test_legacyi18n28(self): output = self.engine.render_to_string( "legacyi18n28", {"anton": "α", "berta": "β"} ) self.assertEqual(output, "α + β") # blocktranslate handling of variables which are not in the context. # this should work as if blocktranslate was not there (#19915) @setup( { "i18n34": ( "{% load i18n %}{% blocktranslate %}{{ missing }}" "{% endblocktranslate %}" ) } ) def test_i18n34(self): output = self.engine.render_to_string("i18n34") if self.engine.string_if_invalid: self.assertEqual(output, "INVALID") else: self.assertEqual(output, "") @setup( { "i18n34_2": ( "{% load i18n %}{% blocktranslate with a='α' %}{{ missing }}" "{% endblocktranslate %}" ) } ) def test_i18n34_2(self): output = self.engine.render_to_string("i18n34_2") if self.engine.string_if_invalid: self.assertEqual(output, "INVALID") else: self.assertEqual(output, "") @setup( { "i18n34_3": ( "{% load i18n %}{% blocktranslate with a=anton %}{{ missing }}" "{% endblocktranslate %}" ) } ) def test_i18n34_3(self): output = self.engine.render_to_string("i18n34_3", {"anton": "\xce\xb1"}) if self.engine.string_if_invalid: self.assertEqual(output, "INVALID") else: self.assertEqual(output, "") @setup( { "i18n37": "{% load i18n %}" '{% translate "Page not found" as page_not_found %}' "{% blocktranslate %}Error: {{ page_not_found }}{% endblocktranslate %}" } ) def test_i18n37(self): with translation.override("de"): output = self.engine.render_to_string("i18n37") self.assertEqual(output, "Error: Seite nicht gefunden") # blocktranslate tag with asvar @setup( { "i18n39": ( "{% load i18n %}" "{% blocktranslate asvar page_not_found %}Page not found" "{% endblocktranslate %}>{{ page_not_found }}<" ) } ) def test_i18n39(self): with translation.override("de"): output = self.engine.render_to_string("i18n39") self.assertEqual(output, ">Seite nicht gefunden<") @setup( { "i18n40": "{% load i18n %}" '{% translate "Page not found" as pg_404 %}' "{% blocktranslate with page_not_found=pg_404 asvar output %}" "Error: {{ page_not_found }}" "{% endblocktranslate %}" } ) def test_i18n40(self): output = self.engine.render_to_string("i18n40") self.assertEqual(output, "") @setup( { "i18n41": "{% load i18n %}" '{% translate "Page not found" as pg_404 %}' "{% blocktranslate with page_not_found=pg_404 asvar output %}" "Error: {{ page_not_found }}" "{% endblocktranslate %}" ">{{ output }}<" } ) def test_i18n41(self): with translation.override("de"): output = self.engine.render_to_string("i18n41") self.assertEqual(output, ">Error: Seite nicht gefunden<") @setup( { "template": ( "{% load i18n %}{% blocktranslate asvar %}Yes{% endblocktranslate %}" ) } ) def test_blocktrans_syntax_error_missing_assignment(self, tag_name): msg = "No argument provided to the '{}' tag for the asvar option.".format( tag_name ) with self.assertRaisesMessage(TemplateSyntaxError, msg): self.engine.render_to_string("template") @setup({"template": "{% load i18n %}{% blocktranslate %}%s{% endblocktranslate %}"}) def test_blocktrans_tag_using_a_string_that_looks_like_str_fmt(self): output = self.engine.render_to_string("template") self.assertEqual(output, "%s") @setup( { "template": ( "{% load i18n %}{% blocktranslate %}{% block b %} {% endblock %}" "{% endblocktranslate %}" ) } ) def test_with_block(self, tag_name): msg = "'{}' doesn't allow other block tags (seen 'block b') inside it".format( tag_name ) with self.assertRaisesMessage(TemplateSyntaxError, msg): self.engine.render_to_string("template") @setup( { "template": ( "{% load i18n %}" "{% blocktranslate %}{% for b in [1, 2, 3] %} {% endfor %}" "{% endblocktranslate %}" ) } ) def test_with_for(self, tag_name): msg = ( f"'{tag_name}' doesn't allow other block tags (seen 'for b in [1, 2, 3]') " f"inside it" ) with self.assertRaisesMessage(TemplateSyntaxError, msg): self.engine.render_to_string("template") @setup( { "template": ( "{% load i18n %}{% blocktranslate with foo=bar with %}{{ foo }}" "{% endblocktranslate %}" ) } ) def test_variable_twice(self): with self.assertRaisesMessage( TemplateSyntaxError, "The 'with' option was specified more than once" ): self.engine.render_to_string("template", {"foo": "bar"}) @setup( {"template": "{% load i18n %}{% blocktranslate with %}{% endblocktranslate %}"} ) def test_no_args_with(self, tag_name): msg = "\"with\" in '{}' tag needs at least one keyword argument.".format( tag_name ) with self.assertRaisesMessage(TemplateSyntaxError, msg): self.engine.render_to_string("template") @setup( { "template": ( "{% load i18n %}{% blocktranslate count a %}{% endblocktranslate %}" ) } ) def test_count(self, tag_name): msg = "\"count\" in '{}' tag expected exactly one keyword argument.".format( tag_name ) with self.assertRaisesMessage(TemplateSyntaxError, msg): self.engine.render_to_string("template", {"a": [1, 2, 3]}) @setup( { "template": ( "{% load i18n %}{% blocktranslate count counter=num %}{{ counter }}" "{% plural %}{{ counter }}{% endblocktranslate %}" ) } ) def test_count_not_number(self, tag_name): msg = "'counter' argument to '{}' tag must be a number.".format(tag_name) with self.assertRaisesMessage(TemplateSyntaxError, msg): self.engine.render_to_string("template", {"num": "1"}) @setup( { "template": ( "{% load i18n %}{% blocktranslate count count=var|length %}" "There is {{ count }} object. {% block a %} {% endblock %}" "{% endblocktranslate %}" ) } ) def test_plural_bad_syntax(self, tag_name): msg = "'{}' doesn't allow other block tags inside it".format(tag_name) with self.assertRaisesMessage(TemplateSyntaxError, msg): self.engine.render_to_string("template", {"var": [1, 2, 3]}) class TranslationBlockTranslateTagTests(SimpleTestCase): tag_name = "blocktranslate" def get_template(self, template_string): return Template( template_string.replace( "{{% blocktranslate ", "{{% {}".format(self.tag_name) ).replace( "{{% endblocktranslate %}}", "{{% end{} %}}".format(self.tag_name) ) ) @override_settings(LOCALE_PATHS=extended_locale_paths) def test_template_tags_pgettext(self): """{% blocktranslate %} takes message contexts into account (#14806).""" trans_real._active = Local() trans_real._translations = {} with translation.override("de"): # Nonexistent context t = self.get_template( '{% load i18n %}{% blocktranslate context "nonexistent" %}May' "{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "May") # Existing context... using a literal t = self.get_template( "{% load i18n %}" '{% blocktranslate context "month name" %}May{% endblocktranslate %}' ) rendered = t.render(Context()) self.assertEqual(rendered, "Mai") t = self.get_template( "{% load i18n %}" '{% blocktranslate context "verb" %}May{% endblocktranslate %}' ) rendered = t.render(Context()) self.assertEqual(rendered, "Kann") # Using a variable t = self.get_template( "{% load i18n %}{% blocktranslate context message_context %}" "May{% endblocktranslate %}" ) rendered = t.render(Context({"message_context": "month name"})) self.assertEqual(rendered, "Mai") t = self.get_template( "{% load i18n %}{% blocktranslate context message_context %}" "May{% endblocktranslate %}" ) rendered = t.render(Context({"message_context": "verb"})) self.assertEqual(rendered, "Kann") # Using a filter t = self.get_template( "{% load i18n %}" "{% blocktranslate context message_context|lower %}May" "{% endblocktranslate %}" ) rendered = t.render(Context({"message_context": "MONTH NAME"})) self.assertEqual(rendered, "Mai") t = self.get_template( "{% load i18n %}" "{% blocktranslate context message_context|lower %}May" "{% endblocktranslate %}" ) rendered = t.render(Context({"message_context": "VERB"})) self.assertEqual(rendered, "Kann") # Using 'count' t = self.get_template( "{% load i18n %}" '{% blocktranslate count number=1 context "super search" %}{{ number }}' " super result{% plural %}{{ number }} super results" "{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "1 Super-Ergebnis") t = self.get_template( "{% load i18n %}" '{% blocktranslate count number=2 context "super search" %}{{ number }}' " super result{% plural %}{{ number }} super results" "{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "2 Super-Ergebnisse") t = self.get_template( "{% load i18n %}" '{% blocktranslate context "other super search" count number=1 %}' "{{ number }} super result{% plural %}{{ number }} super results" "{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "1 anderen Super-Ergebnis") t = self.get_template( "{% load i18n %}" '{% blocktranslate context "other super search" count number=2 %}' "{{ number }} super result{% plural %}{{ number }} super results" "{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "2 andere Super-Ergebnisse") # Using 'with' t = self.get_template( "{% load i18n %}" '{% blocktranslate with num_comments=5 context "comment count" %}' "There are {{ num_comments }} comments{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "Es gibt 5 Kommentare") t = self.get_template( "{% load i18n %}" '{% blocktranslate with num_comments=5 context "other comment count" %}' "There are {{ num_comments }} comments{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "Andere: Es gibt 5 Kommentare") # Using trimmed t = self.get_template( "{% load i18n %}{% blocktranslate trimmed %}\n\nThere\n\t are 5 " "\n\n comments\n{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "There are 5 comments") t = self.get_template( "{% load i18n %}" '{% blocktranslate with num_comments=5 context "comment count" trimmed ' "%}\n\n" "There are \t\n \t {{ num_comments }} comments\n\n" "{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "Es gibt 5 Kommentare") t = self.get_template( "{% load i18n %}" '{% blocktranslate context "other super search" count number=2 trimmed ' "%}\n{{ number }} super \n result{% plural %}{{ number }} super results" "{% endblocktranslate %}" ) rendered = t.render(Context()) self.assertEqual(rendered, "2 andere Super-Ergebnisse") # Misuses msg = "Unknown argument for 'blocktranslate' tag: %r." with self.assertRaisesMessage(TemplateSyntaxError, msg % 'month="May"'): self.get_template( '{% load i18n %}{% blocktranslate context with month="May" %}' "{{ month }}{% endblocktranslate %}" ) msg = ( '"context" in %r tag expected exactly one argument.' % "blocktranslate" ) with self.assertRaisesMessage(TemplateSyntaxError, msg): self.get_template( "{% load i18n %}{% blocktranslate context %}{% endblocktranslate %}" ) with self.assertRaisesMessage(TemplateSyntaxError, msg): self.get_template( "{% load i18n %}{% blocktranslate count number=2 context %}" "{{ number }} super result{% plural %}{{ number }}" " super results{% endblocktranslate %}" ) @override_settings(LOCALE_PATHS=[os.path.join(here, "other", "locale")]) def test_bad_placeholder_1(self): """ Error in translation file should not crash template rendering (#16516). (%(person)s is translated as %(personne)s in fr.po). """ with translation.override("fr"): t = Template( "{% load i18n %}{% blocktranslate %}My name is {{ person }}." "{% endblocktranslate %}" ) rendered = t.render(Context({"person": "James"})) self.assertEqual(rendered, "My name is James.") @override_settings(LOCALE_PATHS=[os.path.join(here, "other", "locale")]) def test_bad_placeholder_2(self): """ Error in translation file should not crash template rendering (#18393). (%(person) misses a 's' in fr.po, causing the string formatting to fail) . """ with translation.override("fr"): t = Template( "{% load i18n %}{% blocktranslate %}My other name is {{ person }}." "{% endblocktranslate %}" ) rendered = t.render(Context({"person": "James"})) self.assertEqual(rendered, "My other name is James.") class TranslationBlockTransnTagTests(TranslationBlockTranslateTagTests): tag_name = "blocktrans" class MultipleLocaleActivationBlockTranslateTests(MultipleLocaleActivationTestCase): tag_name = "blocktranslate" def get_template(self, template_string): return Template( template_string.replace( "{{% blocktranslate ", "{{% {}".format(self.tag_name) ).replace( "{{% endblocktranslate %}}", "{{% end{} %}}".format(self.tag_name) ) ) def test_single_locale_activation(self): """ Simple baseline behavior with one locale for all the supported i18n constructs. """ with translation.override("fr"): self.assertEqual( self.get_template( "{% load i18n %}{% blocktranslate %}Yes{% endblocktranslate %}" ).render(Context({})), "Oui", ) def test_multiple_locale_btrans(self): with translation.override("de"): t = self.get_template( "{% load i18n %}{% blocktranslate %}No{% endblocktranslate %}" ) with translation.override(self._old_language), translation.override("nl"): self.assertEqual(t.render(Context({})), "Nee") def test_multiple_locale_deactivate_btrans(self): with translation.override("de", deactivate=True): t = self.get_template( "{% load i18n %}{% blocktranslate %}No{% endblocktranslate %}" ) with translation.override("nl"): self.assertEqual(t.render(Context({})), "Nee") def test_multiple_locale_direct_switch_btrans(self): with translation.override("de"): t = self.get_template( "{% load i18n %}{% blocktranslate %}No{% endblocktranslate %}" ) with translation.override("nl"): self.assertEqual(t.render(Context({})), "Nee") class MultipleLocaleActivationBlockTransTests( MultipleLocaleActivationBlockTranslateTests ): tag_name = "blocktrans" class MiscTests(SimpleTestCase): tag_name = "blocktranslate" def get_template(self, template_string): return Template( template_string.replace( "{{% blocktranslate ", "{{% {}".format(self.tag_name) ).replace( "{{% endblocktranslate %}}", "{{% end{} %}}".format(self.tag_name) ) ) @override_settings(LOCALE_PATHS=extended_locale_paths) def test_percent_in_translatable_block(self): t_sing = self.get_template( "{% load i18n %}{% blocktranslate %}The result was {{ percent }}%" "{% endblocktranslate %}" ) t_plur = self.get_template( "{% load i18n %}{% blocktranslate count num as number %}" "{{ percent }}% represents {{ num }} object{% plural %}" "{{ percent }}% represents {{ num }} objects{% endblocktranslate %}" ) with translation.override("de"): self.assertEqual( t_sing.render(Context({"percent": 42})), "Das Ergebnis war 42%" ) self.assertEqual( t_plur.render(Context({"percent": 42, "num": 1})), "42% stellt 1 Objekt dar", ) self.assertEqual( t_plur.render(Context({"percent": 42, "num": 4})), "42% stellt 4 Objekte dar", ) @override_settings(LOCALE_PATHS=extended_locale_paths) def test_percent_formatting_in_blocktranslate(self): """ Python's %-formatting is properly escaped in blocktranslate, singular, or plural. """ t_sing = self.get_template( "{% load i18n %}{% blocktranslate %}There are %(num_comments)s comments" "{% endblocktranslate %}" ) t_plur = self.get_template( "{% load i18n %}{% blocktranslate count num as number %}" "%(percent)s% represents {{ num }} object{% plural %}" "%(percent)s% represents {{ num }} objects{% endblocktranslate %}" ) with translation.override("de"): # Strings won't get translated as they don't match after escaping % self.assertEqual( t_sing.render(Context({"num_comments": 42})), "There are %(num_comments)s comments", ) self.assertEqual( t_plur.render(Context({"percent": 42, "num": 1})), "%(percent)s% represents 1 object", ) self.assertEqual( t_plur.render(Context({"percent": 42, "num": 4})), "%(percent)s% represents 4 objects", ) class MiscBlockTranslationTests(MiscTests): tag_name = "blocktrans" class BlockTranslateNodeTests(SimpleTestCase): def test_repr(self): block_translate_node = BlockTranslateNode( extra_context={}, singular=[ Token(TokenType.TEXT, "content"), Token(TokenType.VAR, "variable"), ], ) self.assertEqual( repr(block_translate_node), "<BlockTranslateNode: extra_context={} " 'singular=[<Text token: "content...">, <Var token: "variable...">] ' "plural=None>", )
35.736902
88
0.527393
4a1623ac8e48b182ccca13602c85402a668b2cfa
2,781
py
Python
test.py
larsbratholm/ddr
1d9690c73553aeb4287694084af781e0944c0190
[ "MIT" ]
1
2020-03-17T03:27:18.000Z
2020-03-17T03:27:18.000Z
test.py
larsbratholm/ddr
1d9690c73553aeb4287694084af781e0944c0190
[ "MIT" ]
null
null
null
test.py
larsbratholm/ddr
1d9690c73553aeb4287694084af781e0944c0190
[ "MIT" ]
1
2020-03-17T02:58:32.000Z
2020-03-17T02:58:32.000Z
# Full example for my blog post at: # https://danijar.com/building-variational-auto-encoders-in-tensorflow/ import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data tfd = tf.contrib.distributions def make_encoder(data, code_size): x = tf.layers.flatten(data) x = tf.layers.dense(x, 200, tf.nn.relu) x = tf.layers.dense(x, 200, tf.nn.relu) loc = tf.layers.dense(x, code_size) scale = tf.layers.dense(x, code_size, tf.nn.softplus) return tfd.MultivariateNormalDiag(loc, scale) def make_prior(code_size): loc = tf.zeros(code_size) scale = tf.ones(code_size) return tfd.MultivariateNormalDiag(loc, scale) def make_decoder(code, data_shape): x = code x = tf.layers.dense(x, 200, tf.nn.relu) x = tf.layers.dense(x, 200, tf.nn.relu) logit = tf.layers.dense(x, np.prod(data_shape)) logit = tf.reshape(logit, [-1] + data_shape) return tfd.Independent(tfd.Bernoulli(logit), 2) def plot_codes(ax, codes, labels): ax.scatter(codes[:, 0], codes[:, 1], s=2, c=labels, alpha=0.1) ax.set_aspect('equal') ax.set_xlim(codes.min() - .1, codes.max() + .1) ax.set_ylim(codes.min() - .1, codes.max() + .1) ax.tick_params( axis='both', which='both', left='off', bottom='off', labelleft='off', labelbottom='off') def plot_samples(ax, samples): for index, sample in enumerate(samples): ax[index].imshow(sample, cmap='gray') ax[index].axis('off') data = tf.placeholder(tf.float32, [None, 28, 28]) make_encoder = tf.make_template('encoder', make_encoder) make_decoder = tf.make_template('decoder', make_decoder) # Define the model. prior = make_prior(code_size=2) posterior = make_encoder(data, code_size=2) code = posterior.sample() # Define the loss. likelihood = make_decoder(code, [28, 28]).log_prob(data) divergence = tfd.kl_divergence(posterior, prior) elbo = tf.reduce_mean(likelihood - divergence) optimize = tf.train.AdamOptimizer(0.001).minimize(-elbo) samples = make_decoder(prior.sample(10), [28, 28]).mean() mnist = input_data.read_data_sets('MNIST_data/') fig, ax = plt.subplots(nrows=20, ncols=11, figsize=(10, 20)) with tf.train.MonitoredSession() as sess: for epoch in range(20): feed = {data: mnist.test.images.reshape([-1, 28, 28])} test_elbo, test_codes, test_samples = sess.run([elbo, code, samples], feed) print('Epoch', epoch, 'elbo', test_elbo) ax[epoch, 0].set_ylabel('Epoch {}'.format(epoch)) plot_codes(ax[epoch, 0], test_codes, mnist.test.labels) plot_samples(ax[epoch, 1:], test_samples) for _ in range(600): feed = {data: mnist.train.next_batch(100)[0].reshape([-1, 28, 28])} sess.run(optimize, feed) plt.savefig('vae-mnist.png', dpi=300, transparent=True, bbox_inches='tight')
33.107143
79
0.701546
4a162453ab5fbb672465b5b22cb15b986749aa83
24,739
py
Python
mathics/builtin/numbertheory.py
JoseCarlosGarcia95/Mathics
1927ada93c5ce2d8cbe731731ab1f55cd5527467
[ "Apache-2.0" ]
1
2019-10-10T09:56:06.000Z
2019-10-10T09:56:06.000Z
mathics/builtin/numbertheory.py
JoseCarlosGarcia95/Mathics
1927ada93c5ce2d8cbe731731ab1f55cd5527467
[ "Apache-2.0" ]
null
null
null
mathics/builtin/numbertheory.py
JoseCarlosGarcia95/Mathics
1927ada93c5ce2d8cbe731731ab1f55cd5527467
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Number theoretic functions """ import sympy from itertools import combinations from mathics.builtin.base import Builtin, Test from mathics.core.expression import ( Expression, Integer, Rational, Symbol, from_python) from mathics.core.convert import from_sympy import mpmath class PowerMod(Builtin): """ <dl> <dt>'PowerMod[$x$, $y$, $m$]' <dd>computes $x$^$y$ modulo $m$. </dl> >> PowerMod[2, 10000000, 3] = 1 >> PowerMod[3, -2, 10] = 9 >> PowerMod[0, -1, 2] : 0 is not invertible modulo 2. = PowerMod[0, -1, 2] >> PowerMod[5, 2, 0] : The argument 0 should be nonzero. = PowerMod[5, 2, 0] 'PowerMod' does not support rational coefficients (roots) yet. """ attributes = ('Listable',) messages = { 'ninv': "`1` is not invertible modulo `2`.", } def apply(self, a, b, m, evaluation): 'PowerMod[a_Integer, b_Integer, m_Integer]' a_int = a m_int = m a, b, m = a.value, b.value, m.value if m == 0: evaluation.message('PowerMod', 'divz', m) return if b < 0: b = -b try: a = int(sympy.invert(a, m)) except sympy.polys.polyerrors.NotInvertible: evaluation.message('PowerMod', 'ninv', a_int, m_int) return return Integer(pow(a, b, m)) class Mod(Builtin): """ <dl> <dt>'Mod[$x$, $m$]' <dd>returns $x$ modulo $m$. </dl> >> Mod[14, 6] = 2 >> Mod[-3, 4] = 1 >> Mod[-3, -4] = -3 >> Mod[5, 0] : The argument 0 should be nonzero. = Mod[5, 0] """ attributes = ('Listable', 'NumericFunction') def apply(self, n, m, evaluation): 'Mod[n_Integer, m_Integer]' n, m = n.get_int_value(), m.get_int_value() if m == 0: evaluation.message('Mod', 'divz', m) return return Integer(n % m) class EvenQ(Test): """ <dl> <dt>'EvenQ[$x$]' <dd>returns 'True' if $x$ is even, and 'False' otherwise. </dl> >> EvenQ[4] = True >> EvenQ[-3] = False >> EvenQ[n] = False """ def test(self, n): value = n.get_int_value() return value is not None and value % 2 == 0 class OddQ(Test): """ <dl> <dt>'OddQ[$x$]' <dd>returns 'True' if $x$ is odd, and 'False' otherwise. </dl> >> OddQ[-3] = True >> OddQ[0] = False """ def test(self, n): value = n.get_int_value() return value is not None and value % 2 != 0 class GCD(Builtin): """ <dl> <dt>'GCD[$n1$, $n2$, ...]' <dd>computes the greatest common divisor of the given integers. </dl> >> GCD[20, 30] = 10 >> GCD[10, y] = GCD[10, y] 'GCD' is 'Listable': >> GCD[4, {10, 11, 12, 13, 14}] = {2, 1, 4, 1, 2} 'GCD' does not work for rational numbers and Gaussian integers yet. """ attributes = ('Flat', 'Listable', 'OneIdentity', 'Orderless') def apply(self, ns, evaluation): 'GCD[ns___Integer]' ns = ns.get_sequence() result = 0 for n in ns: value = n.get_int_value() if value is None: return result = sympy.gcd(result, value) return Integer(result) # FIXME: Previosuly this used gmpy's gcdext. sympy's gcdex is not as powerful # class ExtendedGCD(Builtin): # """ # >> ExtendedGCD[10, 15] # = {5, {-1, 1}} # # 'ExtendedGCD' works with any number of arguments: # >> ExtendedGCD[10, 15, 7] # = {1, {-3, 3, -2}} # # Compute the greated common divisor and check the result: # >> numbers = {10, 20, 14}; # >> {gcd, factors} = ExtendedGCD[Sequence @@ numbers] # = {2, {3, 0, -2}} # >> Plus @@ (numbers * factors) # = 2 # # 'ExtendedGCD' does not work for rational numbers and Gaussian integers yet # """ # # attributes = ('Listable',) # # def apply(self, ns, evaluation): # 'ExtendedGCD[ns___Integer]' # # ns = ns.get_sequence() # result = 0 # coeff = [] # for n in ns: # value = n.get_int_value() # if value is None: # return # new_result, c1, c2 = sympy.gcdex(result, value) # result = new_result # coeff = [c * c1 for c in coeff] + [c2] # return Expression('List', Integer(result), Expression( # 'List', *(Integer(c) for c in coeff))) class LCM(Builtin): """ <dl> <dt>'LCM[$n1$, $n2$, ...]' <dd>computes the least common multiple of the given integers. </dl> >> LCM[15, 20] = 60 >> LCM[20, 30, 40, 50] = 600 """ attributes = ('Flat', 'Listable', 'OneIdentity', 'Orderless') def apply(self, ns, evaluation): 'LCM[ns___Integer]' ns = ns.get_sequence() result = 1 for n in ns: value = n.get_int_value() if value is None: return result = sympy.lcm(result, value) return Integer(result) class FactorInteger(Builtin): """ <dl> <dt>'FactorInteger[$n$]' <dd>returns the factorization of $n$ as a list of factors and exponents. </dl> >> factors = FactorInteger[2010] = {{2, 1}, {3, 1}, {5, 1}, {67, 1}} To get back the original number: >> Times @@ Power @@@ factors = 2010 'FactorInteger' factors rationals using negative exponents: >> FactorInteger[2010 / 2011] = {{2, 1}, {3, 1}, {5, 1}, {67, 1}, {2011, -1}} """ # TODO: GausianIntegers option # e.g. FactorInteger[5, GaussianIntegers -> True] def apply(self, n, evaluation): 'FactorInteger[n_]' if isinstance(n, Integer): factors = sympy.factorint(n.value) factors = sorted(factors.items()) return Expression('List', *(Expression('List', factor, exp) for factor, exp in factors)) elif isinstance(n, Rational): factors, factors_denom = list(map( sympy.factorint, n.value.as_numer_denom())) for factor, exp in factors_denom.items(): factors[factor] = factors.get(factor, 0) - exp factors = sorted(factors.items()) return Expression('List', *(Expression('List', factor, exp) for factor, exp in factors)) else: return evaluation.message('FactorInteger', 'exact', n) class Divisors(Builtin): """ <dl> <dt>'Divisors[$n$]' <dd>returns a list of the integers that divide $n$. </dl> >> Divisors[96] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96} >> Divisors[704] = {1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704} >> Divisors[{87, 106, 202, 305}] = {{1, 3, 29, 87}, {1, 2, 53, 106}, {1, 2, 101, 202}, {1, 5, 61, 305}} #> Divisors[0] = Divisors[0] #> Divisors[{-206, -502, -1702, 9}] = {{1, 2, 103, 206}, {1, 2, 251, 502}, {1, 2, 23, 37, 46, 74, 851, 1702}, {1, 3, 9}} #> Length[Divisors[1000*369]] = 96 #> Length[Divisors[305*176*369*100]] = 672 """ # TODO: support GaussianIntegers # e.g. Divisors[2, GaussianIntegers -> True] attributes = ('Listable',) def apply(self, n, evaluation): 'Divisors[n_Integer]' if n == Integer(0): return None return Expression('List', *[from_sympy(i) for i in sympy.divisors(n.to_sympy())]) class IntegerExponent(Builtin): """ <dl> <dt>'IntegerExponent[$n$, $b$]' <dd>gives the highest exponent of $b$ that divides $n$. </dl> >> IntegerExponent[16, 2] = 4 >> IntegerExponent[-510000] = 4 >> IntegerExponent[10, b] = IntegerExponent[10, b] """ rules = { 'IntegerExponent[n_]': 'IntegerExponent[n, 10]', } messages = { 'int': 'Integer expected at position 1 in `1`', 'ibase': 'Base `1` is not an integer greater than 1.', } def apply(self, n, b, evaluation): 'IntegerExponent[n_Integer, b_Integer]' py_n, py_b = n.to_python(), b.to_python() expr = Expression('IntegerExponent', n, b) if not isinstance(py_n, int): evaluation.message('IntegerExponent', 'int', expr) py_n = abs(py_n) if not (isinstance(py_b, int) and py_b > 1): evaluation.message('IntegerExponent', 'ibase', b) # TODO: Optimise this (dont need to calc. base^result) # NOTE: IntegerExponent[a,b] causes a Python error here when a or b are # symbols result = 1 while py_n % (py_b ** result) == 0: result += 1 return from_python(result - 1) class MantissaExponent(Builtin): """ <dl> <dt>'MantissaExponent[$n$]' <dd>finds a list containing the mantissa and exponent of a given number $n$. <dt>'MantissaExponent[$n$, $b$]' <dd>finds the base‐b mantissa and exponent of $n$. </dl> >> MantissaExponent[2.5*10^20] = {0.25, 21} >> MantissaExponent[125.24] = {0.12524, 3} >> MantissaExponent[125., 2] = {0.976563, 7} >> MantissaExponent[10, b] = MantissaExponent[10, b] #> MantissaExponent[E, Pi] = {E / Pi, 1} #> MantissaExponent[Pi, Pi] = {1 / Pi, 2} #> MantissaExponent[5/2 + 3, Pi] = {11 / (2 Pi ^ 2), 2} #> MantissaExponent[b] = MantissaExponent[b] #> MantissaExponent[17, E] = {17 / E ^ 3, 3} #> MantissaExponent[17., E] = {0.84638, 3} #> MantissaExponent[Exp[Pi], 2] = {E ^ Pi / 32, 5} #> MantissaExponent[3 + 2 I, 2] : The value 3 + 2 I is not a real number = MantissaExponent[3 + 2 I, 2] #> MantissaExponent[25, 0.4] : Base 0.4 is not a real number greater than 1. = MantissaExponent[25, 0.4] #> MantissaExponent[0.0000124] = {0.124, -4} #> MantissaExponent[0.0000124, 2] = {0.812646, -16} #> MantissaExponent[0] = {0, 0} #> MantissaExponent[0, 2] = {0, 0} """ attributes = ('Listable',) rules = { 'MantissaExponent[0]': '{0, 0}', 'MantissaExponent[0, n_]': '{0, 0}', } messages = { 'realx': 'The value `1` is not a real number', 'rbase': 'Base `1` is not a real number greater than 1.', } def apply(self, n, b, evaluation): 'MantissaExponent[n_, b_]' # Handle Input with special cases such as PI and E n_sympy, b_sympy = n.to_sympy(), b.to_sympy() expr = Expression('MantissaExponent', n, b) if isinstance(n.to_python(), complex): evaluation.message('MantissaExponent', 'realx', n) return expr if n_sympy.is_constant(): temp_n = Expression('N', n).evaluate(evaluation) py_n = temp_n.to_python() else: return expr if b_sympy.is_constant(): temp_b = Expression('N', b).evaluate(evaluation) py_b = temp_b.to_python() else: return expr if not py_b > 1: evaluation.message('MantissaExponent', 'rbase', b) return expr base_exp = int(mpmath.log(py_n, py_b)) exp = (base_exp + 1) if base_exp >= 0 else base_exp return Expression('List', Expression('Divide', n , b ** exp), exp) def apply_2(self, n, evaluation): 'MantissaExponent[n_]' n_sympy = n.to_sympy() expr = Expression('MantissaExponent', n) if isinstance(n.to_python(), complex): evaluation.message('MantissaExponent', 'realx', n) return expr # Handle Input with special cases such as PI and E if n_sympy.is_constant(): temp_n = Expression('N', n).evaluate(evaluation) py_n = temp_n.to_python() else: return expr base_exp = int(mpmath.log10(py_n)) exp = (base_exp + 1) if base_exp >= 0 else base_exp return Expression('List', Expression('Divide', n , (10 ** exp)), exp) def _fractional_part(self, n, expr, evaluation): n_sympy = n.to_sympy() if n_sympy.is_constant(): if (n_sympy >= 0): positive_integer_part = Expression("Floor", n).evaluate(evaluation).to_python() result = n - positive_integer_part else: negative_integer_part = Expression("Ceiling", n).evaluate(evaluation).to_python() result = n - negative_integer_part else: return expr return from_python(result) class FractionalPart(Builtin): """ <dl> <dt>'FractionalPart[$n$]' <dd>finds the fractional part of $n$. </dl> >> FractionalPart[4.1] = 0.1 >> FractionalPart[-5.25] = -0.25 #> FractionalPart[b] = FractionalPart[b] #> FractionalPart[{-2.4, -2.5, -3.0}] = {-0.4, -0.5, 0.} #> FractionalPart[14/32] = 7 / 16 #> FractionalPart[4/(1 + 3 I)] = 2 / 5 - I / 5 #> FractionalPart[Pi^20] = -8769956796 + Pi ^ 20 """ attributes = ('Listable', 'NumericFunction', 'ReadProtected') def apply(self, n, evaluation): 'FractionalPart[n_]' expr = Expression('FractionalPart', n) return _fractional_part(self.__class__.__name__, n, expr, evaluation) def apply_2(self, n, evaluation): 'FractionalPart[n_Complex]' expr = Expression('FractionalPart', n) n_real = Expression("Re", n).evaluate(evaluation) n_image = Expression("Im", n).evaluate(evaluation) real_fractional_part = _fractional_part(self.__class__.__name__, n_real, expr, evaluation) image_fractional_part = _fractional_part(self.__class__.__name__, n_image, expr, evaluation) return Expression('Complex', real_fractional_part, image_fractional_part) class Prime(Builtin): """ <dl> <dt>'Prime[$n$]' <dd>returns the $n$th prime number. </dl> >> Prime[1] = 2 >> Prime[167] = 991 """ messages = { 'intpp': 'Positive integer argument expected in `1`.', } def apply(self, n, evaluation): 'Prime[n_]' n_int = n.to_python() if isinstance(n_int, int) and n_int > 0: return Integer(sympy.prime(n_int)) expr = Expression('Prime', n) evaluation.message('Prime', 'intpp', expr) return class PrimeQ(Builtin): """ <dl> <dt>'PrimeQ[$n$]' <dd>returns 'True' if $n$ is a prime number. </dl> For very large numbers, 'PrimeQ' uses probabilistic prime testing, so it might be wrong sometimes (a number might be composite even though 'PrimeQ' says it is prime). The algorithm might be changed in the future. >> PrimeQ[2] = True >> PrimeQ[-3] = True >> PrimeQ[137] = True >> PrimeQ[2 ^ 127 - 1] = True #> PrimeQ[1] = False #> PrimeQ[2 ^ 255 - 1] = False All prime numbers between 1 and 100: >> Select[Range[100], PrimeQ] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97} 'PrimeQ' has attribute 'Listable': >> PrimeQ[Range[20]] = {False, True, True, False, True, False, True, False, False, False, True, False, True, False, False, False, True, False, True, False} """ attributes = ('Listable',) def apply(self, n, evaluation): 'PrimeQ[n_]' n = n.get_int_value() if n is None: return Symbol('False') n = abs(n) if sympy.isprime(n): return Symbol('True') else: return Symbol('False') class CoprimeQ(Builtin): """ <dl> <dt>'CoprimeQ[$x$, $y$]' <dd>tests whether $x$ and $y$ are coprime by computing their greatest common divisor. </dl> >> CoprimeQ[7, 9] = True >> CoprimeQ[-4, 9] = True >> CoprimeQ[12, 15] = False CoprimeQ also works for complex numbers >> CoprimeQ[1+2I, 1-I] = True >> CoprimeQ[4+2I, 6+3I] = False >> CoprimeQ[2, 3, 5] = True >> CoprimeQ[2, 4, 5] = False """ attributes = ('Listable',) def apply(self, args, evaluation): 'CoprimeQ[args__]' py_args = [arg.to_python() for arg in args.get_sequence()] if not all(isinstance(i, int) or isinstance(i, complex) for i in py_args): return Symbol('False') if all(sympy.gcd(n, m) == 1 for (n, m) in combinations(py_args, 2)): return Symbol('True') else: return Symbol('False') class PrimePowerQ(Builtin): """ <dl> <dt>'PrimePowerQ[$n$]' <dd>returns 'True' if $n$ is a power of a prime number. </dl> >> PrimePowerQ[9] = True >> PrimePowerQ[52142] = False >> PrimePowerQ[-8] = True >> PrimePowerQ[371293] = True #> PrimePowerQ[1] = False """ rules = { 'PrimePowerQ[1]': 'False', } attributes = ('Listable', 'Protected', 'ReadProtected') # TODO: GaussianIntegers option """ #> PrimePowerQ[5, GaussianIntegers -> True] = False """ # TODO: Complex args """ #> PrimePowerQ[{3 + I, 3 - 2 I, 3 + 4 I, 9 + 7 I}] = {False, True, True, False} """ # TODO: Gaussian rationals """ #> PrimePowerQ[2/125 - 11 I/125] = True """ def apply(self, n, evaluation): 'PrimePowerQ[n_]' n = n.get_int_value() if n is None: return Symbol('False') n = abs(n) if len(sympy.factorint(n)) == 1: return Symbol('True') else: return Symbol('False') class PrimePi(Builtin): """ <dl> <dt>'PrimePi[$x$]' <dd>gives the number of primes less than or equal to $x$. </dl> >> PrimePi[100] = 25 >> PrimePi[-1] = 0 >> PrimePi[3.5] = 2 >> PrimePi[E] = 1 """ # TODO: Traditional Form def apply(self, n, evaluation): 'PrimePi[n_?NumericQ]' result = sympy.ntheory.primepi(n.to_python(n_evaluation=evaluation)) return from_python(result) class NextPrime(Builtin): """ <dl> <dt>'NextPrime[$n$]' <dd>gives the next prime after $n$. <dt>'NextPrime[$n$,$k$]' <dd>gives the $k$th prime after $n$. </dl> >> NextPrime[10000] = 10007 >> NextPrime[100, -5] = 73 >> NextPrime[10, -5] = -2 >> NextPrime[100, 5] = 113 >> NextPrime[5.5, 100] = 563 >> NextPrime[5, 10.5] = NextPrime[5, 10.5] """ rules = { 'NextPrime[n_]': 'NextPrime[n, 1]', } def apply(self, n, k, evaluation): 'NextPrime[n_?NumericQ, k_?IntegerQ]' py_k = k.to_python(n_evaluation=evaluation) py_n = n.to_python(n_evaluation=evaluation) if py_k >= 0: return from_python(sympy.ntheory.nextprime(py_n, py_k)) # Hack to get earlier primes result = n.to_python() for i in range(-py_k): try: result = sympy.ntheory.prevprime(result) except ValueError: # No earlier primes return from_python(-1 * sympy.ntheory.nextprime(0, py_k - i)) return from_python(result) class RandomPrime(Builtin): """ <dl> <dt>'RandomPrime[{$imin$, $imax}]' <dd>gives a random prime between $imin$ and $imax$. <dt>'RandomPrime[$imax$]' <dd>gives a random prime between 2 and $imax$. <dt>'RandomPrime[$range$, $n$]' <dd>gives a list of $n$ random primes in $range$. </dl> >> RandomPrime[{14, 17}] = 17 >> RandomPrime[{14, 16}, 1] : There are no primes in the specified interval. = RandomPrime[{14, 16}, 1] >> RandomPrime[{8,12}, 3] = {11, 11, 11} >> RandomPrime[{10,30}, {2,5}] = ... #> RandomPrime[{10,12}, {2,2}] = {{11, 11}, {11, 11}} #> RandomPrime[2, {3,2}] = {{2, 2}, {2, 2}, {2, 2}} """ messages = { 'posdim': ( 'The dimensions parameter `1` is expected to be a positive ' 'integer or a list of positive integers.'), 'noprime': 'There are no primes in the specified interval.', 'prmrng': ('First argument `1` is not a positive integer or a list ' 'of two positive integers.'), 'posint': ('The paramater `1` describing the interval is expected to ' 'be a positive integer.'), } rules = { 'RandomPrime[imax_?NotListQ]': 'RandomPrime[{1, imax}, 1]', 'RandomPrime[int_?ListQ]': 'RandomPrime[int, 1]', 'RandomPrime[imax_?ListQ, n_?ArrayQ]': ( 'ConstantArray[RandomPrime[imax, 1], n]'), 'RandomPrime[imax_?NotListQ, n_?ArrayQ]': ( 'ConstantArray[RandomPrime[{1, imax}, 1], n]'), } # TODO: Use random state as in other randomised methods within mathics def apply(self, interval, n, evaluation): 'RandomPrime[interval_?ListQ, n_]' if not isinstance(n, Integer): evaluation.message('RandomPrime', 'posdim', n) return py_n = n.to_python() py_int = interval.to_python() if not (isinstance(py_int, list) and len(py_int) == 2): evaluation.message('RandomPrime', 'prmrng', interval) imin, imax = min(py_int), max(py_int) if imin <= 0 or not isinstance(imin, int): evaluation.message('RandomPrime', 'posint', interval.leaves[0]) return if imax <= 0 or not isinstance(imax, int): evaluation.message('RandomPrime', 'posint', interval.leaves[1]) return try: if py_n == 1: return from_python(sympy.ntheory.randprime(imin, imax + 1)) return from_python([sympy.ntheory.randprime(imin, imax + 1) for i in range(py_n)]) except ValueError: evaluation.message('RandomPrime', 'noprime') return class Quotient(Builtin): ''' <dl> <dt>'Quotient[m, n]' <dd>computes the integer quotient of $m$ and $n$. </dl> >> Quotient[23, 7] = 3 #> Quotient[13, 0] : Infinite expression Quotient[13, 0] encountered. = ComplexInfinity #> Quotient[-17, 7] = -3 #> Quotient[-17, -4] = 4 #> Quotient[19, -4] = -5 ''' attributes = ('Listable', 'NumericFunction') messages = { 'infy': 'Infinite expression `1` encountered.', } def apply(self, m, n, evaluation): 'Quotient[m_Integer, n_Integer]' py_m = m.get_int_value() py_n = n.get_int_value() if py_n == 0: evaluation.message('Quotient', 'infy', Expression('Quotient', m, n)) return Symbol('ComplexInfinity') return Integer(py_m // py_n) class QuotientRemainder(Builtin): ''' <dl> <dt>'QuotientRemainder[m, n]' <dd>computes a list of the quotient and remainder from division of $m$ by $n$. </dl> >> QuotientRemainder[23, 7] = {3, 2} #> QuotientRemainder[13, 0] : The argument 0 in QuotientRemainder[13, 0] should be nonzero. = QuotientRemainder[13, 0] #> QuotientRemainder[-17, 7] = {-3, 4} #> QuotientRemainder[-17, -4] = {4, -1} #> QuotientRemainder[19, -4] = {-5, -1} #> QuotientRemainder[a, 0] = QuotientRemainder[a, 0] #> QuotientRemainder[a, b] = QuotientRemainder[a, b] #> QuotientRemainder[5.2,2.5] = {2, 0.2} #> QuotientRemainder[5, 2.] = {2, 1.} ''' attributes = ('Listable', 'NumericFunction') messages = { 'divz': 'The argument 0 in `1` should be nonzero.', } def apply(self, m, n, evaluation): 'QuotientRemainder[m_, n_]' if m.is_numeric() and n.is_numeric(): py_m = m.to_python() py_n = n.to_python() if py_n == 0: return evaluation.message('QuotientRemainder', 'divz', Expression('QuotientRemainder', m, n)) return Expression('List', Integer(py_m // py_n), (py_m % py_n)) else: return Expression('QuotientRemainder', m, n)
25.373333
139
0.530215
4a1624a5b9d2bd1c474a184efa97d17f9ac50df8
1,284
py
Python
Reinforcement-Learning/assignment1/draft.py
gajeraj/MLSA-workshops-2020-student
cafbf5ac8750dd2b962174ad71dabf35ac90e2f4
[ "MIT" ]
5
2020-02-27T07:04:44.000Z
2021-06-03T17:20:55.000Z
Reinforcement-Learning/assignment1/draft.py
Phoebe0222/MLSA-workshops-2019-student
cafbf5ac8750dd2b962174ad71dabf35ac90e2f4
[ "MIT" ]
null
null
null
Reinforcement-Learning/assignment1/draft.py
Phoebe0222/MLSA-workshops-2019-student
cafbf5ac8750dd2b962174ad71dabf35ac90e2f4
[ "MIT" ]
9
2019-08-09T12:08:28.000Z
2019-10-16T06:35:22.000Z
''' This includes my test runs to understand the data structure when attempting the problem. Feel free to go through and try it yourself. ''' import gym import numpy as np from lake_envs import * # uncomment to check out stochastic/deterministic environments #env = gym.make("Deterministic-4x4-FrozenLake-v0") env = gym.make("Stochastic-4x4-FrozenLake-v0") ''' P: nested dictionary From gym.core.Environment For each pair of states in [1, nS] and actions in [1, nA], P[state][action] is a tuple of the form (probability, nextstate, reward, terminal) where - probability: float the probability of transitioning from "state" to "nextstate" with "action" - nextstate: int denotes the state we transition to (in range [0, nS - 1]) - reward: int either 0 or 1, the reward for transitioning from "state" to "nextstate" with "action" - terminal: bool True when "nextstate" is a terminal state (hole or goal), False otherwise ''' P = env.P nA = 4 nS = 16 gamma = 0.9 policy = 2 * np.ones(nS, dtype='int') for state in P: A = P[state] for action in A: for prob, next_state, reward, terminal in A[action]: print('p(s_{}|s_{},a_{})={}, with reward {}'.format(next_state,state,action,prob,reward)) env.close()
27.319149
101
0.680685
4a1624b8361e20a663f27224a3feabbd2cd1601f
1,446
py
Python
ci/test.py
tiagoshibata/coremltools_bdist_wininst
e052eda593e57dc57c69bacfbd2aa02c89f950fb
[ "Unlicense" ]
null
null
null
ci/test.py
tiagoshibata/coremltools_bdist_wininst
e052eda593e57dc57c69bacfbd2aa02c89f950fb
[ "Unlicense" ]
null
null
null
ci/test.py
tiagoshibata/coremltools_bdist_wininst
e052eda593e57dc57c69bacfbd2aa02c89f950fb
[ "Unlicense" ]
null
null
null
import os import subprocess import sys import traceback from custom_venv import CustomVenv def run(*command, **kwargs): subprocess.run(command, cwd='coremltools', check=True, **kwargs) def run_tests(): env = CustomVenv(clear=True, symlinks=True, with_pip=True, requirements=['-r', 'coremltools/test_requirements.pip']) env.create('venv') cmake_environment = os.environ.copy() cmake_environment['CMAKE_BUILD_TYPE'] = 'Release' cmake_environment['PATH'] = os.pathsep.join((os.path.dirname(env.python), cmake_environment['PATH'])) cmake_environment['PYTHONPATH'] = os.pathsep.join((os.getcwd(), cmake_environment.get('PYTHONPATH', ''))) run('cmake', '.', env=cmake_environment) run('cmake', '--build', '.', '--target', 'pytest', '--config', 'Release', env=cmake_environment) def tests_should_pass(): if sys.version_info >= (3, 7) or sys.version_info < (3, 5) and os.name == 'nt': print('Some dependencies are unavailable for this Python version in this system, tests are expected to fail') return False if os.name == 'nt': print('Native compilation is failing in Windows, tests are expected to fail') return False return True def main(): if tests_should_pass(): run_tests() else: try: run_tests() except Exception: # Don't fail the CI build traceback.print_exc() if __name__ == '__main__': main()
31.434783
120
0.663209
4a16257e5a54433a12ebd8c8a1c6e08da5ba141a
1,247
py
Python
Day2_math_operators/math_operators.py
ariv14/python_day1
6a649d19669a3952aa55509754a91afebe215066
[ "Apache-2.0" ]
null
null
null
Day2_math_operators/math_operators.py
ariv14/python_day1
6a649d19669a3952aa55509754a91afebe215066
[ "Apache-2.0" ]
null
null
null
Day2_math_operators/math_operators.py
ariv14/python_day1
6a649d19669a3952aa55509754a91afebe215066
[ "Apache-2.0" ]
null
null
null
# Simple math operations interpreters # Addition calculator print("#######################################################################\n") print("Simple addition calculator") a = input("Enter first value: ") b = input("Enter second value: ") print("The sum of two values are : ") print(int(a) + int(b)) print("#######################################################################\n") # Subtraction calculator print("Simple subtraction calculator") a = input("Enter first value: ") b = input("Enter second value: ") print("The subtraction of two values are : ") print(int(a) - int(b)) print("#######################################################################\n") # Division calculator print("Simple division calculator") a = input("Enter first value: ") b = input("Enter second value: ") print("The division of two values are : ") print(int(a) / int(b)) print("#######################################################################\n") # Multiplication calculator print("Simple multiplication calculator") a = input("Enter first value: ") b = input("Enter second value: ") print("The multiplication of two values are : ") print(int(a) * int(b)) print("#######################################################################\n")
31.974359
82
0.493986
4a162583f49be887b2988c0fb7a77eb22e826ab5
612
py
Python
scripts/writeLineToVTK.py
bjlittle/mint
fe4862951e0c570caef6e86440b090650dca000b
[ "0BSD" ]
null
null
null
scripts/writeLineToVTK.py
bjlittle/mint
fe4862951e0c570caef6e86440b090650dca000b
[ "0BSD" ]
null
null
null
scripts/writeLineToVTK.py
bjlittle/mint
fe4862951e0c570caef6e86440b090650dca000b
[ "0BSD" ]
null
null
null
import sys from numpy import * nline = eval(sys.argv[1]) t = linspace(0., 1., nline) x = eval(sys.argv[2]) y = eval(sys.argv[3]) f = open(sys.argv[4], 'w') f.write('# vtk DataFile Version 4.2\n') f.write('vtk output\n') f.write('ASCII\n') f.write('DATASET UNSTRUCTURED_GRID\n') f.write('POINTS {} double\n'.format(nline)) for i in range(nline): f.write('{} {} 0\n'.format(x[i], y[i])) ncells = nline - 1 f.write('CELLS {} {}\n'.format(ncells, ncells*3)) for i in range(ncells): f.write('2 {} {}\n'.format(i, i + 1)) f.write('CELL_TYPES {}\n'.format(ncells)) for i in range(ncells): f.write('3\n') f.close()
24.48
49
0.627451
4a1626004d346a4bc802b499f550a95e83d63466
1,778
py
Python
voice.py
dutch213/pt-voicebox
8fd13c64dda26de450e815f38b66a14df23fb536
[ "MIT" ]
null
null
null
voice.py
dutch213/pt-voicebox
8fd13c64dda26de450e815f38b66a14df23fb536
[ "MIT" ]
null
null
null
voice.py
dutch213/pt-voicebox
8fd13c64dda26de450e815f38b66a14df23fb536
[ "MIT" ]
1
2019-09-30T01:31:25.000Z
2019-09-30T01:31:25.000Z
__author__ = 'jamiebrew' import operator # keeps a dictionary of sources with associated weights class Voice(object): def __init__(self, weighted_corpora, name = 'no_name'): self.name = name self.weighted_corpora = weighted_corpora # aggregates the suggestion lists of all constituent corpora in this voice, prints the top num_words from this list def suggest(self, sentence, cursor_position, num_words): suggestions = {} for key in self.weighted_corpora: corp, weight = self.weighted_corpora[key] if not weight == 0: contributed_suggestions = corp.suggest(sentence, cursor_position, num_words) for word, score in contributed_suggestions: if word not in suggestions: suggestions[word] = [0, {}] suggestions[word][0] += score * weight suggestions[word][1][corp.name] = score else: suggestions[word][0] += score * weight suggestions[word][1][corp.name] = score suggestions = list(reversed(sorted(suggestions.items(), key=operator.itemgetter(1))))[0:num_words] return suggestions[0:num_words] # adds a corpus to this voice def add_corpus(self, corp, weight): self.weighted_corpora[corp.name] = [corp, weight] # proportionally adjusts the weights to different corpora such that they sum to 1 def normalize_weights(self): total_weight = 0 for key in self.weighted_corpora: total_weight += self.weighted_corpora[key][1] for key in self.weighted_corpora: self.weighted_corpora[key][1] = self.weighted_corpora[key][1] / total_weight
44.45
119
0.626547
4a1626d408baae148fbcc1b753c90639aa7fb856
5,579
py
Python
rgc/ThreadQueue/__init__.py
zyndagj/gantry-crane
482385e0ad1f284206a30a1683c9b1aef23d3db4
[ "BSD-3-Clause" ]
8
2019-09-27T20:08:16.000Z
2021-07-12T18:27:23.000Z
rgc/ThreadQueue/__init__.py
zyndagj/gantry-crane
482385e0ad1f284206a30a1683c9b1aef23d3db4
[ "BSD-3-Clause" ]
13
2019-11-19T17:37:18.000Z
2021-01-15T17:41:35.000Z
rgc/ThreadQueue/__init__.py
zyndagj/gantry-crane
482385e0ad1f284206a30a1683c9b1aef23d3db4
[ "BSD-3-Clause" ]
2
2019-12-13T22:55:01.000Z
2021-02-09T22:09:58.000Z
############################################################################### # Author: Greg Zynda # Last Modified: 01/15/2021 ############################################################################### # BSD 3-Clause License # # Copyright (c) 2018, Texas Advanced Computing Center - UT Austin # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### import sys, os, logging, re, json from tqdm import tqdm from threading import Thread, current_thread from time import sleep logger = logging.getLogger(__name__) try: from Queue import Queue pyv = 2 except: from queue import Queue pyv = 3 # https://github.com/tqdm/tqdm/issues/313 class TqdmHandler(logging.StreamHandler): def emit(self, record): try: msg = self.format(record) tqdm.write(msg) # , file=sys.stderr) self.flush() except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) class ThreadQueue: def __init__(self, target, n_threads=10): ''' Class for killable thread pools # Parameters target (function): Target function for threads to run n_threads (int): Number of worker threads to use [10] verbose (bool): Enables verbose logging ''' # Get the log level self.numerical_level = logger.getEffectiveLevel() self.log_level = logging.getLevelName(self.numerical_level) # Init logger with handler for tqdm FORMAT = '[%(levelname)s - %(threadName)s - %(name)s.%(funcName)s] %(message)s' # Store handler so it can be removed self.handler = TqdmHandler() self.handler.setFormatter(logging.Formatter(FORMAT)) logger.addHandler(self.handler) logger.propagate = False logger.debug("Finished initializing the threaded log handler for tqdm") self.pbar = '' self.n_threads = n_threads self.queue = Queue() # Spawn threads self.threads = [Thread(target=self.worker, args=[target]) for i in range(n_threads)] for t in self.threads: t.start() logger.debug("Spawned and started %i threads"%(n_threads)) def __del__(self): logger.debug("Removing handler") logger.removeHandler(self.handler) def process_list(self, work_list): ''' # Parameters work_list (list): List of argument lists for threads to run ''' #if self.log_level != 'DEBUG': self.pbar = tqdm(total=len(work_list)) try: for work_item in work_list: self.queue.put(work_item) logger.debug("Added %i items to the work queue"%(len(work_list))) while not self.queue.empty(): sleep(0.5) logger.debug("Finished running work list") while self.pbar.n != len(work_list): sleep(0.5) if self.pbar: self.pbar.close() self.pbar = '' except KeyboardInterrupt as e: logger.warning("Caught KeyboardInterrupt - Killing threads") for t in self.threads: t.alive = False for t in self.threads: t.join() sys.exit(e) def join(self): ''' Waits until all child threads are joined ''' try: for t in self.threads: logger.debug("Added STOP") self.queue.put('STOP') for t in self.threads: while t.is_alive(): t.join(0.5) if self.pbar: self.pbar.close() self.pbar = '' logger.debug("Joined all threads") except KeyboardInterrupt as e: logger.warning("Caught KeyboardInterrupt. Killing threads") for t in self.threads: t.alive = False sp.call('pkill -9f "singularity pull"', shell=True) for t in self.threads: t.join() sys.exit(e) def worker(self, target): ''' Worker for pulling images # Parameters target (function): Target function for thread to run ''' t = current_thread() t.alive = True for args in iter(self.queue.get, 'STOP'): if not t.alive: logger.debug("Thread was killed. Stopping") break if type(args) is list or type(args) is tuple: logger.debug("Running %s%s"%(target.__name__, str(map(str, args)))) target(*args) else: logger.debug("Running %s(%s)"%(target.__name__, str(args))) target(args) #if self.log_level != 'DEBUG': logger.debug("Finished task. Updating progress") self.pbar.update(1) self.queue.task_done()
35.535032
86
0.683277
4a1627399965ec4a1e41ff2fe21e6f742dbb51ad
7,287
py
Python
src/sentry/utils/cursors.py
apragacz/sf-sentry
2fdd6c1195c29a1d401d1cd538c22ea68556699a
[ "BSD-3-Clause" ]
1
2018-03-05T15:40:12.000Z
2018-03-05T15:40:12.000Z
src/sentry/utils/cursors.py
pitchin/sentry
ff6f260e9edb726374d2e4f455ff8b3d0ecd551e
[ "BSD-3-Clause" ]
1
2018-08-22T16:49:48.000Z
2018-08-22T16:49:48.000Z
src/sentry/utils/cursors.py
pitchin/sentry
ff6f260e9edb726374d2e4f455ff8b3d0ecd551e
[ "BSD-3-Clause" ]
1
2018-07-02T09:46:44.000Z
2018-07-02T09:46:44.000Z
""" sentry.utils.cursors ~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import import six from collections import Sequence class Cursor(object): def __init__(self, value, offset=0, is_prev=False, has_results=None): self.value = int(value) self.offset = int(offset) self.is_prev = bool(is_prev) self.has_results = has_results def __str__(self): return '%s:%s:%s' % (self.value, self.offset, int(self.is_prev)) def __repr__(self): return '<%s: value=%s offset=%s is_prev=%s>' % ( type(self), self.value, self.offset, int(self.is_prev) ) def __nonzero__(self): return self.has_results @classmethod def from_string(cls, value): bits = value.split(':') if len(bits) != 3: raise ValueError try: bits = float(bits[0]), int(bits[1]), int(bits[2]) except (TypeError, ValueError): raise ValueError return cls(*bits) class CursorResult(Sequence): def __init__(self, results, next, prev, hits=None, max_hits=None): self.results = results self.next = next self.prev = prev self.hits = hits self.max_hits = max_hits def __len__(self): return len(self.results) def __iter__(self): return iter(self.results) def __getitem__(self, key): return self.results[key] def __repr__(self): return '<%s: results=%s>' % (type(self).__name__, len(self.results)) def _build_next_values(cursor, results, key, limit, is_desc): value = cursor.value offset = cursor.offset is_prev = cursor.is_prev num_results = len(results) if not value and num_results: value = int(key(results[0])) # Next cursor for a prev-cursor simply starts from that prev cursors value # without an offset. if is_prev: return (value, 0, True) # No results means no more next if not num_results: return (value, offset, False) # Are there more results than whats on the current page? has_next = num_results > limit # Determine what our next cursor is by ensuring we have a unique offset next_value = int(key(results[-1])) # value has not changed, page forward by adjusting the offset if next_value == value: next_offset = offset + limit return (next_value, next_offset, has_next) # We have an absolute value to page from. If any of the items in # the current result set come *after* or *before* (depending on the # is_desc flag) we will want to increment the offset to account for # moving past them. # # This is required to account for loss of precision in the key value. next_offset = 0 result_iter = reversed(results) # If we have more results the last item in the results should be # skipped, as we know we want to start from that item and do not # need to offset from it. if has_next: six.next(result_iter) for result in result_iter: result_value = int(key(result)) is_larger = result_value >= next_value is_smaller = result_value <= next_value if (is_desc and is_smaller) or (not is_desc and is_larger): next_offset += 1 else: break return (next_value, next_offset, has_next) def _build_prev_values(cursor, results, key, limit, is_desc): value = cursor.value offset = cursor.offset is_prev = cursor.is_prev num_results = len(results) if is_prev: has_prev = num_results > limit else: # It's likely that there's a previous page if they passed us either # offset values has_prev = value or offset # If the cursor contains previous results, the first item is the item that # indicates if we have more items later, and is *not* the first item in the # list, that should be used for the value. first_prev_index = 1 if is_prev and has_prev else 0 # If we're paging back we need to calculate the key from the first result # with for_prev=True to ensure rounding of the key is correct.See # sentry.api.paginator.BasePaginator.get_item_key prev_value = int(key(results[first_prev_index], for_prev=True)) if results else 0 # Prev only has an offset if the cursor we were dealing with was a # previous cursor. Otherwise we'd be taking the offset while moving forward. prev_offset = offset if is_prev else 0 if not (is_prev and num_results): return (prev_value, prev_offset, has_prev) # Value has not changed, page back by adjusting the offset if prev_value == value: prev_offset = offset + limit return (prev_value, prev_offset, has_prev) # Just as in the next cursor builder, we may need to add an offset # if any of the results at the beginning are *before* or *after* # (depending on the is_desc flag). # # This is required to account for loss of precision in the key value. prev_offset = 0 result_iter = iter(results) # If we know there are more previous results, we need to move past # the item indicating that more items exist. if has_prev: six.next(result_iter) # Always move past the first item, this is the prev_value item and will # already be offset in the next query. six.next(result_iter) for result in result_iter: result_value = int(key(result, for_prev=True)) is_larger = result_value >= prev_value is_smaller = result_value <= prev_value # Note that the checks are reversed here as a prev query has # it's ordering reversed. if (is_desc and is_larger) or (not is_desc and is_smaller): prev_offset += 1 else: break return (prev_value, prev_offset, has_prev) def build_cursor(results, key, limit=100, is_desc=False, cursor=None, hits=None, max_hits=None): if cursor is None: cursor = Cursor(0, 0, 0) # Compute values for next cursor next_value, next_offset, has_next = _build_next_values( cursor=cursor, results=results, key=key, limit=limit, is_desc=is_desc ) # Compute values for prev cursor prev_value, prev_offset, has_prev = _build_prev_values( cursor=cursor, results=results, key=key, limit=limit, is_desc=is_desc ) if cursor.is_prev and has_prev: # A prev cursor with more reults should have the first item chopped off # as this is the item that indicates we have more items before, and # should not be included on this page. results = results[1:] elif not cursor.is_prev: # For next page cursors we cut off the extra item that indicates there # are more items. results = results[:limit] next_cursor = Cursor(next_value or 0, next_offset, False, has_next) prev_cursor = Cursor(prev_value or 0, prev_offset, True, has_prev) return CursorResult( results=results, next=next_cursor, prev=prev_cursor, hits=hits, max_hits=max_hits, )
30.877119
96
0.650336
4a16277fce4469d98744f9be7f00abef87fd233d
2,817
py
Python
ReachabilityTables.py
PauloBarrantes/Tarea1-Redes
ebdb0defbc0a9b7ccf6fb87ff151ca33daf24c64
[ "MIT" ]
null
null
null
ReachabilityTables.py
PauloBarrantes/Tarea1-Redes
ebdb0defbc0a9b7ccf6fb87ff151ca33daf24c64
[ "MIT" ]
null
null
null
ReachabilityTables.py
PauloBarrantes/Tarea1-Redes
ebdb0defbc0a9b7ccf6fb87ff151ca33daf24c64
[ "MIT" ]
null
null
null
from texttable import * import threading class ReachabilityTables: """docstring for ReachabilityTables.""" def __init__(self): self.reach_table = {} # Save the ip from the source of the message and the mask as the key. For the entry, # we will save the message ip address, the cost and the port it is working on. def save_address(self, ip, origin, mask, cost, port): # First, we need to make sure that we have the key in table. if self.reach_table.get((ip, mask)): # If we did find the key, then we need to try to acquire the lock, before # updating the table, and make sure it is not in the process of being remove. # Also, we need to catch any lock exception, because in case the lock gets remove while updating the table. try: # Acquire the lock. lock = self.reach_table.get((ip, mask))[3] lock.acquire() # Now update the table and release the lock when finished. if self.reach_table.get((ip, mask))[2] > cost: self.reach_table.update({(ip, mask): [origin, port, cost, lock]}) lock.release() except threading.ThreadError: # The lock got remove, so just keep going, we know we can't update it. print("No se pudo modificar la entrada: " + ip + ", " + mask + ". Intente de nuevo.") return else: # Create a new lock for this entry and a lock check, in case we are deleting it. entry_lock = threading.Lock() self.reach_table.update({(ip, mask): [origin, port, cost, entry_lock]}) # Remove an entry from the reachability table. def remove_address(self, ip, port): for key in list(self.reach_table): if self.reach_table.get(key)[0] == ip and self.reach_table.get(key)[1] == port: # Acquire the lock, remove the entry and then release the lock. # In order to avoid any errors, we need to keep our lock in memory. entry_lock = self.reach_table.get(key)[3] entry_lock.acquire() self.reach_table.pop(key) entry_lock.release() # Print the reachability table. def print_table(self): print("TABLA DE ALCANZABILIDAD") table = Texttable() table.set_cols_align(["l", "r","g" ,"c","k"]) table.set_cols_valign(["t", "m","w", "b","a"]) table.add_row(["IP", "Máscara", "Origen","Puerto","Costo"]) for key in self.reach_table: table.add_row([key[0], key[1], self.reach_table.get(key)[0], self.reach_table.get(key)[1], self.reach_table.get(key)[2]]) print (table.draw() + "\n")
41.426471
119
0.579695
4a1629890e4f4085770b48a3a68cf69b5b402ee3
1,594
py
Python
app/main/views.py
Ian1017/News
a28fc4447608a20256ad88881f331bc27ef932a2
[ "MIT" ]
null
null
null
app/main/views.py
Ian1017/News
a28fc4447608a20256ad88881f331bc27ef932a2
[ "MIT" ]
null
null
null
app/main/views.py
Ian1017/News
a28fc4447608a20256ad88881f331bc27ef932a2
[ "MIT" ]
null
null
null
from flask import render_template, redirect, url_for, request from . import main from ..models import Sources from ..requests import get_articles, get_sources, topheadlines @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' title = "Home- News From Various News Sources" general_category = get_sources('general') business_category = get_sources('business') entertainment_category = get_sources('entertainment') sports_category = get_sources('sports') technology_category = get_sources('technology') science_category = get_sources('science') health_category = get_sources('health') return render_template('index.html', title = title, general = general_category, business = business_category, entertainment = entertainment_category, sports = sports_category, tech = technology_category, science = science_category, health = health_category) @main.route('/articles/source_id, per_page') def articles(source_id, per_page): ''' Function that returns articles based on their sources ''' news_source = get_articles(source_id, per_page) title = f'{source_id} | All Articles' return render_template('articles.html', title = title, name = source_id, news = news_source) @main.route('/topheadlines/per_page') def headlines(per_page): ''' Function that return top headlines articles ''' topheadlines_news = topheadlines(per_page) title = 'Top Headlines' return render_template('topheadlines.html', title = 'Top Headlines', news = topheadlines_news)
37.069767
261
0.735885
4a162b4278080aa9bd839b3a29f7731617d7d942
9,165
py
Python
releasenotes/source/conf.py
laoyigrace/subject_store
b0113aac169f7bd54a6ab31f145fe01a94365810
[ "Apache-2.0" ]
null
null
null
releasenotes/source/conf.py
laoyigrace/subject_store
b0113aac169f7bd54a6ab31f145fe01a94365810
[ "Apache-2.0" ]
null
null
null
releasenotes/source/conf.py
laoyigrace/subject_store
b0113aac169f7bd54a6ab31f145fe01a94365810
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # Glance_store Release Notes documentation build configuration file # # Modified from corresponding configuration file in Glance. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'oslosphinx', 'reno.sphinxext', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Glance_store Release Notes' copyright = u'2015, Openstack Foundation' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import pbr.version subject_store_version = pbr.version.VersionInfo('subject_store') # The full version, including alpha/beta/rc tags. release = subject_store_version.version_string_with_vcs() # The short X.Y version. version = subject_store_version.canonical_version_string() # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an subject file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an subject file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'GlanceStoreReleaseNotesdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'GlanceStoreReleaseNotes.tex', u'Glance_store Release Notes Documentation', u'Glance_store Developers', 'manual'), ] # The name of an subject file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'subjectstorereleasenotes', u'Glance_store Release Notes Documentation', [u'Glance_store Developers'], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'GlanceStoreReleaseNotes', u'Glance_store Release Notes Documentation', u'Glance_store Developers', 'GlanceStoreReleaseNotes', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False # -- Options for Internationalization output ------------------------------ locale_dirs = ['locale/']
32.5
81
0.716094
4a162c19b3da4e63f6de66dac71e79e75a3c1d07
1,899
py
Python
scripts/playbook.py
JHibbard/create-playbook
aed60565a09af4b21d849fd083d4f9c4e2bef899
[ "MIT" ]
null
null
null
scripts/playbook.py
JHibbard/create-playbook
aed60565a09af4b21d849fd083d4f9c4e2bef899
[ "MIT" ]
null
null
null
scripts/playbook.py
JHibbard/create-playbook
aed60565a09af4b21d849fd083d4f9c4e2bef899
[ "MIT" ]
null
null
null
import click from pathlib import Path CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help'], max_content_width=80) def create_dirs(dirs_to_create): for d in dirs_to_create: d.mkdir(mode=0o755, parents=True) def create_files(files_to_create): for f in files_to_create: open(f, 'a').close() def create_playbook(location): dirs_to_create = [ location.joinpath('group_vars'), location.joinpath('roles'), ] files_to_create = [ location.joinpath('group_vars', 'all'), location.joinpath('playbook.yml'), ] create_dirs(dirs_to_create) create_files(files_to_create) def create_role(location, rolename): dirs_to_create = [ location.joinpath("roles", rolename), location.joinpath("roles", rolename, "tasks"), location.joinpath("roles", rolename, "handlers"), location.joinpath("roles", rolename, "templates"), location.joinpath("roles", rolename, "files"), location.joinpath("roles", rolename, "vars"), location.joinpath("roles", rolename, "meta"), ] files_to_create = [ location.joinpath("roles", rolename, "tasks", "main.yml"), location.joinpath("roles", rolename, "handlers", "main.yml"), ] create_dirs(dirs_to_create) create_files(files_to_create) @click.command(context_settings=CONTEXT_SETTINGS) @click.argument('playbook_location', type=click.Path(file_okay=False, dir_okay=False, resolve_path=True)) @click.argument('roles_to_create', nargs=-1) def make_skeleton(playbook_location, roles_to_create): location = Path(playbook_location) location.mkdir(parents=True) click.echo(f'Creating playbook: {location.stem}') create_playbook(location) for r in roles_to_create: click.echo(f'... creating role: {r}') create_role(location, r)
28.772727
84
0.665087
4a162c52ec9dffcdac535037169d1d679a6cc193
2,416
py
Python
perfkitbenchmarker/providers/gcp/bigquery.py
pierre-emmanuelJ/PerfKitBenchmarker
3ef6acfd54d4e3d1f074ef40b3fc5b3a3f855f69
[ "Apache-2.0" ]
null
null
null
perfkitbenchmarker/providers/gcp/bigquery.py
pierre-emmanuelJ/PerfKitBenchmarker
3ef6acfd54d4e3d1f074ef40b3fc5b3a3f855f69
[ "Apache-2.0" ]
null
null
null
perfkitbenchmarker/providers/gcp/bigquery.py
pierre-emmanuelJ/PerfKitBenchmarker
3ef6acfd54d4e3d1f074ef40b3fc5b3a3f855f69
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing class for GCP's Bigquery EDW service.""" from perfkitbenchmarker import edw_service from perfkitbenchmarker import flags from perfkitbenchmarker import providers from perfkitbenchmarker.providers.gcp import util as gcp_util FLAGS = flags.FLAGS class Bigquery(edw_service.EdwService): """Object representing a Bigquery cluster.""" CLOUD = providers.GCP SERVICE_TYPE = 'bigquery' def __init__(self, edw_service_spec): super(Bigquery, self).__init__(edw_service_spec) def _Create(self): """Create a BigQuery cluster. Bigquery clusters creation is out of scope of the benchmarking. """ raise NotImplementedError def _Exists(self): """Method to validate the existence of a Bigquery cluster. Returns: Boolean value indicating the existence of a cluster. """ return True def _Delete(self): """Delete a BigQuery cluster. Bigquery cluster deletion is out of scope of benchmarking. """ raise NotImplementedError def GetMetadata(self): """Return a dictionary of the metadata for the BigQuery cluster.""" basic_data = super(Bigquery, self).GetMetadata() return basic_data def RunCommandHelper(self): """Bigquery specific run script command components.""" bq = self.cluster_identifier.split('.') return '--bq_project_id={} --bq_dataset_id={}'.format(bq[0], bq[1]) def InstallAndAuthenticateRunner(self, vm): """Method to perform installation and authentication of bigquery runner. Native Bigquery client that ships with the google_cloud_sdk https://cloud.google.com/bigquery/docs/bq-command-line-too used as client. Args: vm: Client vm on which the script will be run. """ vm.Install('google_cloud_sdk') gcp_util.AuthenticateServiceAccount(vm)
31.376623
78
0.738411
4a162c7512d304692e43050efa1c3b9bd044b008
2,059
py
Python
resource/lib/python2.7/site-packages/pyasn1/codec/der/encoder.py
claudiopastorini/geofire-python
274e1b1d733a1158e4f36de40f0349dbc1ff6c34
[ "MIT" ]
1,346
2015-01-01T14:52:24.000Z
2022-03-28T12:50:48.000Z
resource/lib/python2.7/site-packages/pyasn1/codec/der/encoder.py
claudiopastorini/geofire-python
274e1b1d733a1158e4f36de40f0349dbc1ff6c34
[ "MIT" ]
474
2015-01-01T10:27:46.000Z
2022-03-21T12:26:16.000Z
resource/lib/python2.7/site-packages/pyasn1/codec/der/encoder.py
claudiopastorini/geofire-python
274e1b1d733a1158e4f36de40f0349dbc1ff6c34
[ "MIT" ]
191
2015-01-02T18:27:22.000Z
2022-03-29T10:49:48.000Z
# # This file is part of pyasn1 software. # # Copyright (c) 2005-2017, Ilya Etingof <etingof@gmail.com> # License: http://pyasn1.sf.net/license.html # from pyasn1.type import univ from pyasn1.codec.cer import encoder from pyasn1 import error class SetOfEncoder(encoder.SetOfEncoder): @staticmethod def _cmpSetComponents(c1, c2): tagSet1 = isinstance(c1, univ.Choice) and c1.getEffectiveTagSet() or c1.getTagSet() tagSet2 = isinstance(c2, univ.Choice) and c2.getEffectiveTagSet() or c2.getTagSet() return cmp(tagSet1, tagSet2) tagMap = encoder.tagMap.copy() tagMap.update({ # Overload CER encoders with BER ones (a bit hackerish XXX) univ.BitString.tagSet: encoder.encoder.BitStringEncoder(), univ.OctetString.tagSet: encoder.encoder.OctetStringEncoder(), # Set & SetOf have same tags univ.SetOf().tagSet: SetOfEncoder() }) typeMap = encoder.typeMap class Encoder(encoder.Encoder): supportIndefLength = False def __call__(self, client, defMode=True, maxChunkSize=0): if not defMode or maxChunkSize: raise error.PyAsn1Error('DER forbids indefinite length mode') return encoder.Encoder.__call__(self, client, defMode, maxChunkSize) #: Turns ASN.1 object into DER octet stream. #: #: Takes any ASN.1 object (e.g. :py:class:`~pyasn1.type.base.PyAsn1Item` derivative) #: walks all its components recursively and produces a DER octet stream. #: #: Parameters #: ---------- # value: any pyasn1 object (e.g. :py:class:`~pyasn1.type.base.PyAsn1Item` derivative) #: A pyasn1 object to encode #: #: defMode: :py:class:`bool` #: If `False`, produces indefinite length encoding #: #: maxChunkSize: :py:class:`int` #: Maximum chunk size in chunked encoding mode (0 denotes unlimited chunk size) #: #: Returns #: ------- #: : :py:class:`bytes` (Python 3) or :py:class:`str` (Python 2) #: Given ASN.1 object encoded into BER octetstream #: #: Raises #: ------ #: : :py:class:`pyasn1.error.PyAsn1Error` #: On encoding errors encode = Encoder(tagMap, typeMap)
31.19697
91
0.697912
4a162d5722784f69fcdbf49a5d1efbe37cba7f62
4,874
py
Python
improver/cli/regrid.py
owena11/improver
ff658db31364c0bdf3af3940736c260e10544705
[ "BSD-3-Clause" ]
1
2021-08-02T21:17:18.000Z
2021-08-02T21:17:18.000Z
improver/cli/regrid.py
owena11/improver
ff658db31364c0bdf3af3940736c260e10544705
[ "BSD-3-Clause" ]
4
2018-01-24T11:29:15.000Z
2021-01-11T15:16:21.000Z
improver/cli/regrid.py
owena11/improver
ff658db31364c0bdf3af3940736c260e10544705
[ "BSD-3-Clause" ]
1
2021-08-02T21:17:19.000Z
2021-08-02T21:17:19.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Script to regrid a NetCDF file""" from improver import cli @cli.clizefy @cli.with_output def process( cube: cli.inputcube, target_grid: cli.inputcube, land_sea_mask: cli.inputcube = None, *, regrid_mode="bilinear", extrapolation_mode="nanmask", land_sea_mask_vicinity: float = 25000, regridded_title: str = None, ): """Regrids source cube data onto a target grid. Optional land-sea awareness. Args: cube (iris.cube.Cube): Source cube to be regridded. target_grid (iris.cube.Cube): Cube defining the spatial grid onto which to regrid the source data. If also using land_sea_mask-aware regridding then this must be land_binary_mask data. land_sea_mask (iris.cube.Cube): Cube describing the land_binary_mask on the source grid if land-sea aware regridding is required, with land points set to one and sea points set to zero. regrid_mode (str): Selects which regridding techniques to use. Default uses iris.analysis.Linear(); "nearest" uses iris.analysis.Nearest(); "nearest-with-mask" uses Nearest() with land-sea awareness. extrapolation_mode (str): Mode to use for extrapolating data into regions beyond the limits of the input cube domain. Refer to online documentation for iris.analysis. Modes are - extrapolate - extrapolated points will take their values from the nearest source point nan - extrapolated points will be set to NaN error - a ValueError will be raised notifying an attempt to extrapolate mask - extrapolated points will always be masked, even if the source data is not a MaskedArray nanmask - if the source data is a MaskedArray extrapolated points will be masked; otherwise they will be set to NaN land_sea_mask_vicinity (float): Radius of vicinity to search for a coastline, in metres. regridded_title (str): New "title" attribute to be set if the field is being regridded (since "title" may contain grid information). If None, a default value is used. Returns: iris.cube.Cube: Processed cube. Raises: ValueError: If source land_sea_mask is supplied but regrid mode is not "nearest-with-mask". ValueError: If regrid_mode is "nearest-with-mask" but no source land_sea_mask is provided (from plugin). """ from improver.standardise import RegridLandSea if land_sea_mask and "nearest-with-mask" not in regrid_mode: msg = ( "Land-mask file supplied without appropriate regrid-mode. " "Use --regrid-mode nearest-with-mask." ) raise ValueError(msg) return RegridLandSea( regrid_mode=regrid_mode, extrapolation_mode=extrapolation_mode, landmask=land_sea_mask, landmask_vicinity=land_sea_mask_vicinity, )(cube, target_grid, regridded_title=regridded_title)
42.754386
84
0.677472
4a162df88fb6828ea849b09df60a06af7b567872
1,521
py
Python
kd_common/kd_common/funcutil.py
konovalovdmitry/catsnap
d5f1d7c37dcee1ad3fee2cdc12a3b44b56f4c63f
[ "MIT" ]
null
null
null
kd_common/kd_common/funcutil.py
konovalovdmitry/catsnap
d5f1d7c37dcee1ad3fee2cdc12a3b44b56f4c63f
[ "MIT" ]
null
null
null
kd_common/kd_common/funcutil.py
konovalovdmitry/catsnap
d5f1d7c37dcee1ad3fee2cdc12a3b44b56f4c63f
[ "MIT" ]
1
2021-09-30T08:06:20.000Z
2021-09-30T08:06:20.000Z
import collections from typing import List, Union, Any, Generator, Set, Sequence, TypeVar, Optional, Tuple, Iterable from types import ModuleType, FunctionType from gc import get_referents import sys T = TypeVar('T') def to_list(seq: Optional[Union[List[T], Tuple[T, ...], Set[T], str]], unique_flag: bool = False) -> List[Union[T, str]]: if seq is None: return [] if isinstance(seq, (set, list, tuple)): return list(seq) return [seq] def unique(sequence: Iterable[T]) -> List[T]: seen: Set[Any] = set() result = [] for x in sequence: if not x in seen: seen.add(x) result.append(x) return result _BLACKLIST = type, ModuleType, FunctionType def getsize(obj: Any) -> int: if isinstance(obj, _BLACKLIST): raise TypeError('getsize() does not take argument of type: '+ str(type(obj))) seen_ids: Set[Any] = set() size = 0 objects = [obj] while objects: need_referents = [] for obj in objects: if not isinstance(obj, _BLACKLIST) and id(obj) not in seen_ids: seen_ids.add(id(obj)) size += sys.getsizeof(obj) need_referents.append(obj) objects = get_referents(*need_referents) return size def flatten(l): if isinstance(l, float) or l is None: return [] for el in l: if isinstance(el, Iterable) and not isinstance(el, (str, bytes)): yield from flatten(el) else: yield el
26.684211
121
0.60092
4a162f14bbb7e26e395f4d7bf9cb04b2c5da4bfa
1,188
py
Python
statsmodels/sandbox/examples/try_quantile_regression1.py
yarikoptic/statsmodels
f990cb1a1ef0c9883c9394444e6f9d027efabec6
[ "BSD-3-Clause" ]
20
2015-01-28T21:52:59.000Z
2022-01-24T01:24:26.000Z
statsmodels/sandbox/examples/try_quantile_regression1.py
yarikoptic/statsmodels
f990cb1a1ef0c9883c9394444e6f9d027efabec6
[ "BSD-3-Clause" ]
6
2015-08-28T16:59:03.000Z
2019-04-12T22:29:01.000Z
statsmodels/sandbox/examples/try_quantile_regression1.py
yarikoptic/statsmodels
f990cb1a1ef0c9883c9394444e6f9d027efabec6
[ "BSD-3-Clause" ]
28
2015-04-01T20:02:25.000Z
2021-07-03T00:09:28.000Z
'''Example to illustrate Quantile Regression Author: Josef Perktold polynomial regression with systematic deviations above ''' import numpy as np from statsmodels.compat.python import zip from scipy import stats import statsmodels.api as sm from statsmodels.regression.quantile_regression import QuantReg sige = 0.1 nobs, k_vars = 500, 3 x = np.random.uniform(-1, 1, size=nobs) x.sort() exog = np.vander(x, k_vars+1)[:,::-1] mix = 0.1 * stats.norm.pdf(x[:,None], loc=np.linspace(-0.5, 0.75, 4), scale=0.01).sum(1) y = exog.sum(1) + mix + sige * (np.random.randn(nobs)/2 + 1)**3 p = 0.5 res_qr = QuantReg(y, exog).fit(p) res_qr2 = QuantReg(y, exog).fit(0.1) res_qr3 = QuantReg(y, exog).fit(0.75) res_ols = sm.OLS(y, exog).fit() params = [res_ols.params, res_qr2.params, res_qr.params, res_qr3.params] labels = ['ols', 'qr 0.1', 'qr 0.5', 'qr 0.75'] import matplotlib.pyplot as plt plt.figure() plt.plot(x, y, '.', alpha=0.5) for lab, beta in zip(['ols', 'qr 0.1', 'qr 0.5', 'qr 0.75'], params): print('%-8s'%lab, np.round(beta, 4)) fitted = np.dot(exog, beta) lw = 2 plt.plot(x, fitted, lw=lw, label=lab) plt.legend() plt.title('Quantile Regression') plt.show()
25.826087
88
0.670034
4a162f81404021520e9fd94756021b5b72932916
2,633
py
Python
okta/models/password_policy.py
corylevine/okta-sdk-python
c86b8fdc4525e84199143c27213c0aebc6b2af8f
[ "Apache-2.0" ]
145
2017-06-13T21:54:04.000Z
2022-02-25T05:44:34.000Z
okta/models/password_policy.py
corylevine/okta-sdk-python
c86b8fdc4525e84199143c27213c0aebc6b2af8f
[ "Apache-2.0" ]
146
2017-06-02T17:46:12.000Z
2022-03-29T15:52:15.000Z
okta/models/password_policy.py
corylevine/okta-sdk-python
c86b8fdc4525e84199143c27213c0aebc6b2af8f
[ "Apache-2.0" ]
98
2017-06-27T03:44:51.000Z
2022-03-23T04:58:18.000Z
# flake8: noqa """ Copyright 2020 - Present Okta, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # AUTO-GENERATED! DO NOT EDIT FILE DIRECTLY # SEE CONTRIBUTOR DOCUMENTATION from okta.models.policy\ import Policy from okta.models.policy_type import PolicyType from okta.models import password_policy_conditions\ as password_policy_conditions from okta.models import password_policy_settings\ as password_policy_settings class PasswordPolicy( Policy ): """ A class for PasswordPolicy objects. """ def __init__(self, config=None): super().__init__(config) if config: self.type = PolicyType("PASSWORD") if "conditions" in config: if isinstance(config["conditions"], password_policy_conditions.PasswordPolicyConditions): self.conditions = config["conditions"] elif config["conditions"] is not None: self.conditions = password_policy_conditions.PasswordPolicyConditions( config["conditions"] ) else: self.conditions = None else: self.conditions = None if "settings" in config: if isinstance(config["settings"], password_policy_settings.PasswordPolicySettings): self.settings = config["settings"] elif config["settings"] is not None: self.settings = password_policy_settings.PasswordPolicySettings( config["settings"] ) else: self.settings = None else: self.settings = None else: self.conditions = None self.settings = None def request_format(self): parent_req_format = super().request_format() current_obj_format = { "conditions": self.conditions, "settings": self.settings } parent_req_format.update(current_obj_format) return parent_req_format
34.194805
90
0.615648
4a163132977cbbb316f2ac6700da38608081aacf
5,062
py
Python
salt/modules/eselect.py
ahammond/salt
945b21b70dbe708716d7b009a2005ef0acf76e6b
[ "Apache-2.0" ]
1
2019-06-04T19:11:22.000Z
2019-06-04T19:11:22.000Z
salt/modules/eselect.py
ahammond/salt
945b21b70dbe708716d7b009a2005ef0acf76e6b
[ "Apache-2.0" ]
null
null
null
salt/modules/eselect.py
ahammond/salt
945b21b70dbe708716d7b009a2005ef0acf76e6b
[ "Apache-2.0" ]
2
2017-01-05T16:14:59.000Z
2019-01-31T23:15:25.000Z
# -*- coding: utf-8 -*- ''' Support for eselect, Gentoo's configuration and management tool. ''' from __future__ import absolute_import import logging # Import salt libs import salt.utils log = logging.getLogger(__name__) def __virtual__(): ''' Only work on Gentoo systems with eselect installed ''' if __grains__['os'] == 'Gentoo' and salt.utils.which('eselect'): return 'eselect' return (False, 'The eselect execution module cannot be loaded: either the system is not Gentoo or the eselect binary is not in the path.') def exec_action(module, action, module_parameter=None, action_parameter=None, state_only=False): ''' Execute an arbitrary action on a module. module name of the module to be executed action name of the module's action to be run module_parameter additional params passed to the defined module action_parameter additional params passed to the defined action state_only don't return any output but only the success/failure of the operation CLI Example (updating the ``php`` implementation used for ``apache2``): .. code-block:: bash salt '*' eselect.exec_action php update action_parameter='apache2' ''' out = __salt__['cmd.run']( 'eselect --brief --colour=no {0} {1} {2} {3}'.format( module, module_parameter or '', action, action_parameter or ''), python_shell=False ) out = out.strip().split('\n') if out[0].startswith('!!! Error'): return False if state_only: return True if len(out) < 1: return False if len(out) == 1 and not out[0].strip(): return False return out def get_modules(): ''' List available ``eselect`` modules. CLI Example: .. code-block:: bash salt '*' eselect.get_modules ''' modules = [] module_list = exec_action('modules', 'list', action_parameter='--only-names') if not module_list: return None for module in module_list: if module not in ['help', 'usage', 'version']: modules.append(module) return modules def get_target_list(module, action_parameter=None): ''' List available targets for the given module. module name of the module to be queried for its targets action_parameter additional params passed to the defined action .. versionadded:: Carbon CLI Example: .. code-block:: bash salt '*' eselect.get_target_list kernel ''' exec_output = exec_action(module, 'list', action_parameter=action_parameter) if not exec_output: return None target_list = [] if isinstance(exec_output, list): for item in exec_output: target_list.append(item.split(None, 1)[0]) return target_list return None def get_current_target(module, module_parameter=None, action_parameter=None): ''' Get the currently selected target for the given module. module name of the module to be queried for its current target module_parameter additional params passed to the defined module action_parameter additional params passed to the 'show' action CLI Example (current target of system-wide ``java-vm``): .. code-block:: bash salt '*' eselect.get_current_target java-vm action_parameter='system' CLI Example (current target of ``kernel`` symlink): .. code-block:: bash salt '*' eselect.get_current_target kernel ''' result = exec_action(module, 'show', module_parameter=module_parameter, action_parameter=action_parameter)[0] if not result: return None if result == '(unset)': return None return result def set_target(module, target, module_parameter=None, action_parameter=None): ''' Set the target for the given module. Target can be specified by index or name. module name of the module for which a target should be set target name of the target to be set for this module module_parameter additional params passed to the defined module action_parameter additional params passed to the defined action CLI Example (setting target of system-wide ``java-vm``): .. code-block:: bash salt '*' eselect.set_target java-vm icedtea-bin-7 action_parameter='system' CLI Example (setting target of ``kernel`` symlink): .. code-block:: bash salt '*' eselect.set_target kernel linux-3.17.5-gentoo ''' if action_parameter: action_parameter = '{0} {1}'.format(action_parameter, target) else: action_parameter = target # get list of available modules if module not in get_modules(): log.error('Module {0} not available'.format(module)) return False exec_result = exec_action(module, 'set', module_parameter=module_parameter, action_parameter=action_parameter, state_only=True) if exec_result: return exec_result return False
25.18408
142
0.657843
4a163190715f2c4f3a393a3148cd950be2923306
15,521
py
Python
elyra/metadata/manager.py
ptitzler/elyra-2
a59f8b0ec69eb224980da8c6fcebd7fa84d89ab9
[ "Apache-2.0" ]
null
null
null
elyra/metadata/manager.py
ptitzler/elyra-2
a59f8b0ec69eb224980da8c6fcebd7fa84d89ab9
[ "Apache-2.0" ]
null
null
null
elyra/metadata/manager.py
ptitzler/elyra-2
a59f8b0ec69eb224980da8c6fcebd7fa84d89ab9
[ "Apache-2.0" ]
null
null
null
# # Copyright 2018-2022 Elyra Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import re from typing import Any from typing import Dict from typing import List from typing import Union from jsonschema import draft7_format_checker from jsonschema import validate from jsonschema import ValidationError from traitlets import Type # noqa H306 from traitlets.config import LoggingConfigurable # noqa H306 from elyra.metadata.error import SchemaNotFoundError from elyra.metadata.metadata import Metadata from elyra.metadata.schema import SchemaManager from elyra.metadata.storage import FileMetadataStore from elyra.metadata.storage import MetadataStore class MetadataManager(LoggingConfigurable): """Manages the persistence and retrieval of metadata instances""" metadata_store_class = Type( default_value=FileMetadataStore, config=True, klass=MetadataStore, help="""The metadata store class. This is configurable to allow subclassing of the MetadataStore for customized behavior.""", ) def __init__(self, schemaspace: str, **kwargs: Any): """ Generic object to manage metadata instances. :param schemaspace (str): the partition where metadata instances are stored :param kwargs: additional arguments to be used to instantiate a metadata manager Keyword Args: metadata_store_class (str): the name of the MetadataStore subclass to use for storing managed instances """ super().__init__(**kwargs) self.schema_mgr = SchemaManager.instance() schemaspace_instance = self.schema_mgr.get_schemaspace(schemaspace) self.schemaspace = schemaspace_instance.name self.metadata_store = self.metadata_store_class(self.schemaspace, **kwargs) def schemaspace_exists(self) -> bool: """Returns True if the schemaspace for this instance exists""" return self.metadata_store.schemaspace_exists() def get_all(self, include_invalid: bool = False, of_schema: str = None) -> List[Metadata]: """Returns all metadata instances in summary form (name, display_name, location)""" instances = [] instance_list = self.metadata_store.fetch_instances(include_invalid=include_invalid) for metadata_dict in instance_list: # validate the instance prior to return, include invalid instances as appropriate try: metadata = Metadata.from_dict(self.schemaspace, metadata_dict) if of_schema and metadata.schema_name != of_schema: # If provided, filter on of_schema continue metadata.on_load() # Allow class instances to handle loads # if we're including invalid and there was an issue on retrieval, add it to the list if include_invalid and metadata.reason: # If no schema-name is present, set to '{unknown}' since we can't make that determination. if not metadata.schema_name: metadata.schema_name = "{unknown}" else: # go ahead and validate against the schema self.validate(metadata.name, metadata) instances.append(metadata) except Exception as ex: # Ignore ValidationError and others when fetching all instances # Since we may not have a metadata instance due to a failure during `from_dict()`, # instantiate a bad instance directly to use in the message and invalid result. invalid_instance = Metadata(**metadata_dict) self.log.warning( f"Fetch of instance '{invalid_instance.name}' " f"of schemaspace '{self.schemaspace}' " f"encountered an exception: {ex}" ) if include_invalid and (not of_schema or invalid_instance.schema_name == of_schema): # Export invalid instances if requested and if a schema was not specified # or the specified schema matches the instance's schema. invalid_instance.reason = ex.__class__.__name__ instances.append(invalid_instance) return instances def get(self, name: str) -> Metadata: """Returns the metadata instance corresponding to the given name""" if name is None: raise ValueError("The 'name' parameter requires a value.") instance_list = self.metadata_store.fetch_instances(name=name) metadata_dict = instance_list[0] metadata = Metadata.from_dict(self.schemaspace, metadata_dict) # Allow class instances to alter instance metadata.on_load() # Validate the instance on load self.validate(name, metadata) return metadata def create(self, name: str, metadata: Metadata) -> Metadata: """Creates the given metadata, returning the created instance""" return self._save(name, metadata) def update(self, name: str, metadata: Metadata, for_migration: bool = False) -> Metadata: """Updates the given metadata, returning the updated instance""" return self._save(name, metadata, for_update=True, for_migration=for_migration) def remove(self, name: str) -> None: """Removes the metadata instance corresponding to the given name""" instance_list = self.metadata_store.fetch_instances(name=name) metadata_dict = instance_list[0] self.log.debug(f"Removing metadata resource '{name}' from schemaspace '{self.schemaspace}'.") metadata = Metadata.from_dict(self.schemaspace, metadata_dict) metadata.pre_delete() # Allow class instances to handle delete self.metadata_store.delete_instance(metadata_dict) try: metadata.post_delete() # Allow class instances to handle post-delete tasks (e.g., cache updates, etc.) except Exception as ex: self._rollback(name, metadata, "delete", ex) raise ex def validate(self, name: str, metadata: Metadata) -> None: """Validate metadata against its schema. Ensure metadata is valid based on its schema. If invalid or schema is not found, ValidationError will be raised. """ metadata_dict = metadata.to_dict() schema_name = metadata_dict.get("schema_name") if not schema_name: raise ValueError( f"Instance '{name}' in the {self.schemaspace} schemaspace is missing a 'schema_name' field!" ) schema = self._get_schema(schema_name) # returns a value or throws try: validate(instance=metadata_dict, schema=schema, format_checker=draft7_format_checker) except ValidationError as ve: # Because validation errors are so verbose, only provide the first line. first_line = str(ve).partition("\n")[0] msg = f"Validation failed for instance '{name}' using the {schema_name} schema with error: {first_line}." self.log.error(msg) raise ValidationError(msg) from ve @staticmethod def get_normalized_name(name: str) -> str: # lowercase and replaces spaces with underscore name = re.sub("\\s+", "_", name.lower()) # remove all invalid characters name = re.sub("[^a-z0-9-_]+", "", name) # begin with alpha if not name[0].isalpha(): name = "a_" + name # end with alpha numeric if not name[-1].isalnum(): name = name + "_0" return name def _get_schema(self, schema_name: str) -> dict: """Loads the schema based on the schema_name and returns the loaded schema json. Throws ValidationError if schema file is not present. """ schema_json = self.schema_mgr.get_schema(self.schemaspace, schema_name) if schema_json is None: schema_file = os.path.join(os.path.dirname(__file__), "schemas", schema_name + ".json") if not os.path.exists(schema_file): self.log.error( f"The file for schema '{schema_name}' is missing from its expected location: '{schema_file}'" ) raise SchemaNotFoundError(f"The file for schema '{schema_name}' is missing!") return schema_json def _save(self, name: str, metadata: Metadata, for_update: bool = False, for_migration: bool = False) -> Metadata: if not metadata: raise ValueError("An instance of class 'Metadata' was not provided.") if not isinstance(metadata, Metadata): raise TypeError("'metadata' is not an instance of class 'Metadata'.") if not name and not for_update: # name is derived from display_name only on creates if metadata.display_name: name = MetadataManager.get_normalized_name(metadata.display_name) metadata.name = name if not name: # At this point, name must be set raise ValueError("Name of metadata was not provided.") match = re.search("^[a-z]([a-z0-9-_]*[a-z,0-9])?$", name) if match is None: raise ValueError( "Name of metadata must be lowercase alphanumeric, beginning with alpha and can include " "embedded hyphens ('-') and underscores ('_')." ) orig_value = None if for_update: if for_migration: # Avoid triggering a on_load() call since migrations will likely stem from there instance_list = self.metadata_store.fetch_instances(name=name) orig_value = instance_list[0] else: orig_value = self.get(name) # Allow class instances to handle pre-save tasks metadata.pre_save(for_update=for_update) self._apply_defaults(metadata) # Validate the metadata prior to storage then store the instance. self.validate(name, metadata) metadata_dict = self.metadata_store.store_instance(name, metadata.prepare_write(), for_update=for_update) metadata_post_op = Metadata.from_dict(self.schemaspace, metadata_dict) # Allow class instances to handle post-save tasks (e.g., cache updates, etc.) # Note that this is a _different_ instance from pre-save call try: metadata_post_op.post_save(for_update=for_update) except Exception as ex: if for_update: self._rollback(name, orig_value, "update", ex) else: # Use the metadata instance prior to post op self._rollback(name, Metadata.from_dict(self.schemaspace, metadata_dict), "create", ex) raise ex return self.get(name) # Retrieve updated/new instance so load hook can be called def _rollback(self, name: str, orig_value: Union[Metadata, Dict], operation: str, exception: Exception): """Rolls back the original value depending on the operation. For rolled back creation attempts, we must remove the created instance. For rolled back update or deletion attempts, we must restore the original value. Note that these operations must call the metadata store directly so that class hooks are not called. """ self.log.debug(f"Rolling back metadata operation '{operation}' for instance '{name}' due to: {exception}") if operation == "create": # remove the instance, orig_value is the newly-created instance. if isinstance(orig_value, Metadata): orig_value = orig_value.to_dict() self.metadata_store.delete_instance(orig_value) elif operation == "update": # restore original as an update if isinstance(orig_value, dict): orig_value = Metadata.from_dict(self.schemaspace, orig_value) self.metadata_store.store_instance(name, orig_value.prepare_write(), for_update=True) elif operation == "delete": # restore original as a create if isinstance(orig_value, dict): orig_value = Metadata.from_dict(self.schemaspace, orig_value) self.metadata_store.store_instance(name, orig_value.prepare_write(), for_update=False) self.log.warning( f"Rolled back metadata operation '{operation}' for instance '{name}' due to " f"failure in post-processing method: {exception}" ) def _apply_defaults(self, metadata: Metadata) -> None: """If a given property has a default value defined, and that property is not currently represented, assign it the default value. We will also treat constants similarly. For schema-level properties (i.e., not application-level), we will check if such a property has a corresponding attribute and, if so, set the property to that value. Note: we only consider constants updates for schema-level properties """ # Get the schema and build a dict consisting of properties and their default/const values (for those # properties that have defaults/consts defined). Then walk the metadata instance looking for missing # properties and assign the corresponding value. Note that we do not consider existing properties with # values of None for default replacement since that may be intentional (although those values will # likely fail subsequent validation). We also don't consider defaults when applying values to the # schema-level properties since these settings are function of a defined attribute. schema = self.schema_mgr.get_schema(self.schemaspace, metadata.schema_name) def _update_instance(target_prop: str, schema_properties: Dict, instance: Union[Metadata, Dict]) -> None: property_defaults = {} for name, property in schema_properties.items(): if target_prop in property: property_defaults[name] = property[target_prop] if property_defaults: # schema defines defaulted properties if isinstance(instance, Metadata): # schema properties, updated constants for name, default in property_defaults.items(): if hasattr(instance, name): setattr(instance, name, default) else: # instance properties, update missing defaults instance_properties = instance for name, default in property_defaults.items(): if name not in instance_properties: instance_properties[name] = default # Update default properties of instance properties _update_instance("default", schema["properties"]["metadata"]["properties"], metadata.metadata) # Update const properties of schema properties _update_instance("const", schema["properties"], metadata)
48.808176
118
0.657883
4a16325e3e40776e182362c766a2f37551b72217
66,317
py
Python
tests/python/frontend/tflite/test_forward.py
yagnasrinath/incubator-tvm
8b2476fa87cda205daf4bd17d7d58e07a259043c
[ "Apache-2.0" ]
null
null
null
tests/python/frontend/tflite/test_forward.py
yagnasrinath/incubator-tvm
8b2476fa87cda205daf4bd17d7d58e07a259043c
[ "Apache-2.0" ]
null
null
null
tests/python/frontend/tflite/test_forward.py
yagnasrinath/incubator-tvm
8b2476fa87cda205daf4bd17d7d58e07a259043c
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument """ TFLite testcases ================ This article is a test script to test TFLite operator with Relay. """ from __future__ import print_function from functools import partial import numpy as np import tvm from tvm import te from tvm import relay import tensorflow as tf from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import variables try: from tensorflow import lite as interpreter_wrapper except ImportError: from tensorflow.contrib import lite as interpreter_wrapper from tvm.contrib.download import download_testdata import tvm.relay.testing.tf as tf_testing from packaging import version as package_version from PIL import Image import os ####################################################################### # Generic run functions for TVM & TFLite # -------------------------------------- def convert_to_list(x): if not isinstance(x, list): x = [x] return x ####################################################################### # Get a real image for e2e testing. # -------------------------------------- def get_real_image(im_height, im_width): repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/' img_name = 'elephant-299.jpg' image_url = os.path.join(repo_base, img_name) img_path = download_testdata(image_url, img_name, module='data') image = Image.open(img_path).resize((im_height, im_width)) x = np.array(image).astype('uint8') data = np.reshape(x, (1, im_height, im_width, 3)) return data def run_tvm_graph(tflite_model_buf, input_data, input_node, num_output=1, target='llvm', out_names=None): """ Generic function to compile on relay and execute on tvm """ try: import tflite.Model except ImportError: raise ImportError("The tflite package must be installed") # get TFLite model from buffer tflite_model = tflite.Model.Model.GetRootAsModel(tflite_model_buf, 0) input_data = convert_to_list(input_data) input_node = convert_to_list(input_node) shape_dict = {} dtype_dict = {} for i, e in enumerate(input_node): shape_dict[e] = input_data[i].shape dtype_dict[e] = input_data[i].dtype.name mod, params = relay.frontend.from_tflite(tflite_model, shape_dict=shape_dict, dtype_dict=dtype_dict) with relay.build_config(opt_level=3): graph, lib, params = relay.build(mod, target, params=params) ctx = tvm.context(target, 0) from tvm.contrib import graph_runtime m = graph_runtime.create(graph, lib, ctx) # set inputs for i, e in enumerate(input_node): m.set_input(e, tvm.nd.array(input_data[i].astype(input_data[i].dtype))) m.set_input(**params) # execute m.run() # get outputs assert out_names is None or num_output == len(out_names), "out_names: {} num_output: {}".format( out_names, num_output) tvm_output_list = [] for i in range(0, num_output): tvm_output = m.get_output(i) tvm_output_list.append(tvm_output.asnumpy()) return tvm_output_list def run_tflite_graph(tflite_model_buf, input_data): """ Generic function to execute TFLite """ input_data = convert_to_list(input_data) interpreter = interpreter_wrapper.Interpreter(model_content=tflite_model_buf) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # set input assert len(input_data) == len(input_details) for i in range(len(input_details)): interpreter.set_tensor(input_details[i]['index'], input_data[i]) # Run interpreter.invoke() # get output tflite_output = list() for i in range(len(output_details)): tflite_output.append(interpreter.get_tensor(output_details[i]['index'])) return tflite_output def compare_tflite_with_tvm(in_data, in_name, input_tensors, output_tensors, init_global_variables=False, out_names=None, quantized=False, input_range=None): """Generic function to generate and compare TFLite and TVM output""" in_data = convert_to_list(in_data) in_name = convert_to_list(in_name) out_names = convert_to_list(out_names) in_node = [0] * len(in_name) for i in range(len(in_name)): in_node[i] = in_name[i].split(':')[0] if ":" in in_name[i] else in_name[i] with tf.Session() as sess: if init_global_variables: sess.run(variables.global_variables_initializer()) # convert to tflite model converter = interpreter_wrapper.TFLiteConverter.from_session( sess, input_tensors, output_tensors) if quantized: converter.inference_type = tf.lite.constants.QUANTIZED_UINT8 input_arrays = converter.get_input_arrays() input_stats = {} # calculate the mean and quantization scale for every input tensor, # with respect to its fp32 input range, defined in fake_quant. # s = 255/(fmax-fmin); m = -fmin*s (the zero point) for i in input_arrays: try: quant_scale = 255 / (input_range[i][1] - input_range[i][0]) except ZeroDivisionError: raise ZeroDivisionError('Min and max of the input range for tensor ' + i + ' can\'t be equal') mean = - input_range[i][0] * quant_scale input_stats[i] = (mean, quant_scale) converter.quantized_input_stats = input_stats tflite_model_buffer = converter.convert() tflite_output = run_tflite_graph(tflite_model_buffer, in_data) for device in ["llvm"]: ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) continue tvm_output = run_tvm_graph(tflite_model_buffer, in_data, in_node, target=device, num_output=len(out_names), out_names=out_names) # WARNING: the results could well be random values clipped to 0 or 255 because of badly tuned output # range for the specific operator. While adding test ensure that we aren't getting only clipped values # in output tensors that still pass the assertion. For reference see _test_elemwise_qnn_out_range() if quantized: for i in range(len(tflite_output)): # allow absolute tolerance of 1 in the quantized results tvm.testing.assert_allclose(tflite_output[i], tvm_output[i], atol=1, rtol=1e-5) else: for i in range(len(tflite_output)): tvm.testing.assert_allclose(tflite_output[i], tvm_output[i], atol=1e-5, rtol=1e-5) def with_fused_activation_function(input_tensor, fn_name): if fn_name is None or fn_name == "NONE": return input_tensor if fn_name == "RELU": return nn_ops.relu(input_tensor) if fn_name == "RELU6": return nn_ops.relu6(input_tensor) if fn_name == "RELU_N1_TO_1": return math_ops.maximum(-1, math_ops.minimum(input_tensor, 1)) if fn_name == "TANH": return math_ops.tanh(input_tensor) raise AssertionError("Unknown fused_activation_function {}".format(fn_name)) def _test_split(in_shape, axis, num_Splits, dtype): '''internal split tester taking as parameters in_shape, number of tensors to split into and dtype (data type)''' np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=in_shape, dtype=dtype) out = array_ops.split(in_data, num_Splits, axis=axis) out_names = ['out_' + str(n) + ':0' for n in range(num_Splits)] compare_tflite_with_tvm([np_data], ['Placeholder:0'], [in_data], out, out_names=out_names) def test_forward_split(): '''test split layer''' # rank 1 _test_split((3,), 0, 1, 'float32') _test_split((3,), 0, 3, 'float32') _test_split((6,), 0, 3, 'float32') # rank 2 _test_split((6, 2), 0, 3, 'float32') _test_split((2, 6), 1, 6, 'float32') # rank 3 if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_split((6, 2, 4), 0, 2, 'int32') _test_split((2, 6, 4), 1, 3, 'float32') _test_split((2, 4, 6), 2, 1, 'float32') # rank 4 _test_split((6, 1, 3, 5), 0, 3, 'float32') _test_split((1, 6, 3, 5), 1, 3, 'float32') _test_split((1, 3, 6, 5), 2, 3, 'float32') _test_split((1, 3, 5, 6), 3, 3, 'float32') # split along negative axis _test_split((6, 1, 3, 5), -4, 3, 'float32') _test_split((1, 6, 3, 5), -3, 3, 'float32') _test_split((1, 3, 6, 5), -2, 3, 'float32') _test_split((1, 3, 5, 6), -1, 3, 'float32') ####################################################################### # slice # ----- def _test_slice(data, begin, size): """ One iteration of SLICE """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = array_ops.slice(in_data, begin, size) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_slice(): """ SLICE """ _test_slice(np.arange(4, dtype=np.float32).reshape((4, )), begin=[0], size=[2]) _test_slice(np.arange(18, dtype=np.int32).reshape((3, 2, 3)), begin=[1, 0, 0], size=[1, 1, 3]) # tflite 1.13 outputs nonsense values if size[i] == -1 if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_slice(np.arange(8, dtype=np.int32).reshape((2, 4)), begin=[0, 1], size=[-1, -1]) _test_slice(np.arange(5, dtype=np.int32).reshape((5, )), begin=[4], size=[-1]) ####################################################################### # transpose # --------- def _test_forward_transpose(ishape, axes=()): data = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) if not axes: out = array_ops.transpose(in_data) else: out = array_ops.transpose(in_data, axes) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_transpose(): _test_forward_transpose((2, 2)) _test_forward_transpose((2, 3, 4)) _test_forward_transpose((7, 8, 8, 10)) _test_forward_transpose((2, 3, 4), (1, 2, 0)) _test_forward_transpose((2, 3, 4), (0, 1, 2)) _test_forward_transpose((2, 3, 4, 5), (3, 0, 1, 2)) _test_forward_transpose((2, 3, 4, 5), ()) ####################################################################### # Cast # -------- def _test_cast(data, cast_dtype): """ One iteration of CAST """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = math_ops.cast(in_data, cast_dtype) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_cast(): """ CAST """ _test_cast(np.arange(6.0, dtype=np.float32).reshape((1, 6)), cast_dtype=tf.int32) _test_cast(np.arange(6.0, dtype=np.float32).reshape((1, 6)), cast_dtype=tf.uint8) _test_cast(np.arange(6.0, dtype=np.int32).reshape((1, 6)), cast_dtype=tf.int64) ####################################################################### # tile # --------- def _test_forward_tile(in_shape, reps, dtype): data = np.random.uniform(-5, 5, size=in_shape).astype(dtype) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = array_ops.tile(in_data, reps) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_tile(): _test_forward_tile((2, ), (3, ), "int32") _test_forward_tile((2, 2), (2, 3), "float32") ###################################################################### # BatchToSpaceND # -------------- def _test_batch_to_space_nd(input_shape, block_shape, crops, dtype='int32'): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype=dtype) out = array_ops.batch_to_space_nd(in_data, block_shape, crops) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_batch_to_space_nd(): # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/batch-to-space-n-d _test_batch_to_space_nd( input_shape=[4, 1, 1, 1], block_shape=[2, 2], crops=[[0, 0], [0, 0]] ) _test_batch_to_space_nd( input_shape=[4, 1, 1, 3], block_shape=[2, 2], crops=[[0, 0], [0, 0]] ) _test_batch_to_space_nd( input_shape=[4, 2, 2, 1], block_shape=[2, 2], crops=[[0, 0], [0, 0]] ) ###################################################################### # SpaceToBatchND # -------------- def _test_space_to_batch_nd(input_shape, block_shape, paddings, dtype='int32'): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype=dtype) out = array_ops.space_to_batch_nd(in_data, block_shape, paddings) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_space_to_batch_nd(): # test cases: https://www.tensorflow.org/api_docs/python/tf/space_to_batch_nd _test_space_to_batch_nd( input_shape=[1, 2, 2, 1], block_shape=[2, 2], paddings=[[0, 0], [0, 0]] ) _test_space_to_batch_nd( input_shape=[1, 2, 2, 3], block_shape=[2, 2], paddings=[[0, 0], [0, 0]] ) _test_space_to_batch_nd( input_shape=[1, 4, 4, 1], block_shape=[2, 2], paddings=[[0, 0], [0, 0]] ) _test_space_to_batch_nd( input_shape=[2, 2, 4, 1], block_shape=[2, 2], paddings=[[0, 0], [2, 0]] ) ####################################################################### # Pooling # ------- def _test_pooling_iteration(input_shape, **kwargs): """ One iteration of pool operation with given shapes and attributes """ x = -np.arange( np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype='float32') out = nn_ops.pool(in_data, **kwargs) compare_tflite_with_tvm(x,'Placeholder:0', [in_data], [out]) def _test_pooling(input_shape, **kwargs): _test_pooling_iteration(input_shape, **kwargs) def test_forward_pooling(): """ Pooling """ for pool_type in ['AVG', 'MAX']: _test_pooling(input_shape=[2, 9, 10, 2], window_shape=[1, 1], padding='SAME', pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1]) _test_pooling(input_shape=[2, 10, 9, 2], window_shape=[1, 1], padding='SAME', pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1]) _test_pooling(input_shape=[2, 9, 10, 2], window_shape=[2, 1], padding='SAME', pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1]) _test_pooling(input_shape=[2, 10, 9, 2], window_shape=[2, 3], padding='SAME', pooling_type=pool_type, dilation_rate=[1, 1], strides=[2, 1]) ####################################################################### # Convolution # ----------- def _test_convolution(tensor_in_sizes, filter_in_sizes, dilations, strides, padding, data_format, is_depthwise=False): """ One iteration of convolution with given shapes and attributes """ total_size_1 = 1 total_size_2 = 1 for s in tensor_in_sizes: total_size_1 *= s for s in filter_in_sizes: total_size_2 *= s # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype='float32') in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype='float32') strides = [1] + strides + [1] dilations = [1] + dilations + [1] if is_depthwise: out = nn_ops.depthwise_conv2d_native(in_data, in_filter, strides=strides, padding=padding, data_format=data_format) else: out = nn_ops.conv2d(in_data, in_filter, strides=strides, padding=padding, data_format=data_format) data_array = np.reshape(data_array, tensor_in_sizes).astype('float32') compare_tflite_with_tvm(data_array, 'Placeholder:0', [in_data], [out]) def test_forward_convolution(): _test_convolution([4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NHWC') _test_convolution([4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], 'VALID', 'NHWC') _test_convolution([4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], 'SAME', 'NHWC') _test_convolution([4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], 'VALID', 'NHWC') # depthwise convolution _test_convolution([4, 8, 8, 176], [1, 1, 176, 1], [1, 1], [1, 1], 'SAME', 'NHWC', True) _test_convolution([4, 17, 17, 19], [3, 3, 19, 1], [1, 1], [2, 2], 'VALID', 'NHWC', True) _test_convolution([4, 17, 17, 124], [1, 1, 124, 1], [1, 1], [1, 1], 'SAME', 'NHWC', True) _test_convolution([4, 17, 17, 12], [3, 3, 12, 1], [1, 1], [2, 2], 'VALID', 'NHWC', True) _test_convolution([4, 17, 17, 12], [3, 3, 12, 2], [1, 1], [2, 2], 'VALID', 'NHWC', True) ####################################################################### # Transpose Convolution # --------------------- def _test_transpose_conv(tensor_in_sizes, filter_in_sizes, output_shape, strides, padding): """ One iteration of transpose convolution with given shapes and attributes """ total_size_1 = 1 total_size_2 = 1 for s in tensor_in_sizes: total_size_1 *= s for s in filter_in_sizes: total_size_2 *= s # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype='float32') in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype='float32') strides = [1] + strides + [1] # in_filter layout is HWOI out = nn_ops.conv2d_transpose(in_data, in_filter, output_shape=output_shape, strides=strides, padding=padding) data_array = np.reshape(data_array, tensor_in_sizes).astype('float32') compare_tflite_with_tvm(data_array, 'Placeholder:0', [in_data], [out]) def test_forward_transpose_conv(): # kernel 3x3, padding VALID _test_transpose_conv([4, 32, 32, 16], [3, 3, 5, 16], [4, 34, 34, 5], [1, 1], 'VALID') _test_transpose_conv([1, 32, 32, 16], [3, 3, 5, 16], [1, 65, 65, 5], [2, 2], 'VALID') _test_transpose_conv([1, 32, 32, 16], [3, 3, 5, 16], [1, 65, 34, 5], [2, 1], 'VALID') # kernel 2x2, padding VALID _test_transpose_conv([4, 32, 32, 16], [2, 2, 5, 16], [4, 33, 33, 5], [1, 1], 'VALID') _test_transpose_conv([1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 64, 5], [2, 2], 'VALID') _test_transpose_conv([1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 33, 5], [2, 1], 'VALID') # kernel 1x1, padding VALID _test_transpose_conv([4, 32, 32, 16], [1, 1, 5, 16], [4, 32, 32, 5], [1, 1], 'VALID') _test_transpose_conv([1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 63, 5], [2, 2], 'VALID') _test_transpose_conv([1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 32, 5], [2, 1], 'VALID') # kernel 1x1, padding SAME _test_transpose_conv([4, 32, 32, 16], [1, 1, 5, 16], [4, 32, 32, 5], [1, 1], 'SAME') _test_transpose_conv([1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 63, 5], [2, 2], 'SAME') _test_transpose_conv([1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 32, 5], [2, 1], 'SAME') ####################################################################### # Reshape # ------- def _test_reshape(data, out_shape): """ One iteration of reshape operation with given data and out shape """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = array_ops.reshape(in_data, out_shape) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_reshape(): _test_reshape(np.arange(6.0, dtype=np.float32), [2, 3]) _test_reshape(np.arange(6), [-1, 2]) _test_reshape(np.arange(6), [3, -1]) _test_reshape(np.arange(6), [-1]) ####################################################################### # Resize # ------ def _test_resize(tf_resize_op, data, align_corners): """ One iteration of Resize """ assert len(data) == 2 # Test with tensor and constant with tf.Graph().as_default(): images_tensor = array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in') size = ops.convert_to_tensor(data[1], dtype=data[1].dtype) out_tensor = tf_resize_op(images=images_tensor, size=size, align_corners=align_corners) compare_tflite_with_tvm([data[0]], ['in:0'], [images_tensor], [out_tensor]) def test_all_resize(): """ Resize """ data = [np.random.rand(1, 16, 16, 3).astype("float32"), np.array([8, 8], dtype=np.int32)] ### RESIZE_BILINEAR _test_resize(tf.image.resize_bilinear, data, align_corners=False) _test_resize(tf.image.resize_bilinear, data, align_corners=True) ### RESIZE_NEAREST_NEIGHBOR (was added in v1.13) # According to topi resize.h # Align corners not supported for nearest neighbour from tflite.BuiltinOperator import BuiltinOperator if 'RESIZE_NEAREST_NEIGHBOR' in dir(BuiltinOperator()): _test_resize(tf.image.resize_nearest_neighbor, data, align_corners=False) ####################################################################### # Concatenation # ------------- def _test_concatenation(data, axis): """ One iteration of concatenation """ assert len(data) >= 1 with tf.Graph().as_default(): in_data = [ array_ops.placeholder(shape=tensor.shape, dtype=tensor.dtype, name="in_{}".format(idx)) for idx, tensor in enumerate(data)] out = array_ops.concat(in_data, axis=axis) name = ["in_{}:0".format(idx) for idx in range(len(data))] compare_tflite_with_tvm(data, name, in_data, [out]) def test_forward_concatenation(): _test_concatenation( [np.arange(6).reshape((1, 2, 1, 3)), np.arange(6).reshape((1, 2, 1, 3))], 1) _test_concatenation( [np.arange(6).reshape((3, 2)), np.arange(6).reshape((3, 2))], 1) _test_concatenation( [np.arange(6).reshape((2, 1, 1, 3)), np.arange(6).reshape((2, 1, 1, 3)), np.arange(6).reshape((2, 1, 1, 3))], 1) ####################################################################### # Unary elemwise # -------------- def _test_unary_elemwise(math_op, data): """ One iteration of unary elemwise """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name='in') out = math_op(in_data) compare_tflite_with_tvm(data, ['in:0'], [in_data], [out]) ####################################################################### # Abs # --- def _test_abs(data): """ One iteration of abs """ return _test_unary_elemwise(math_ops.abs, data) ####################################################################### # Ceil # ---- def _test_ceil(data): """ One iteration of ceil """ return _test_unary_elemwise(math_ops.ceil, data) ####################################################################### # Floor # ----- def _test_floor(data): """ One iteration of floor """ return _test_unary_elemwise(math_ops.floor, data) ####################################################################### # Exp # --- def _test_exp(data): """ One iteration of exp """ return _test_unary_elemwise(math_ops.exp, data) ####################################################################### # Log # --- def _test_log(data): """ One iteration of log """ return _test_unary_elemwise(math_ops.log, data) ####################################################################### # Sin # --- def _test_sin(data): """ One iteration of sin """ return _test_unary_elemwise(math_ops.sin, data) ####################################################################### # Cos # --- def _test_cos(data): """ One iteration of cos """ return _test_unary_elemwise(math_ops.cos, data) ####################################################################### # Sqrt # ---- def _test_sqrt(data): """ One iteration of sqrt """ return _test_unary_elemwise(math_ops.sqrt, data) ####################################################################### # Rsqrt # ----- def _test_rsqrt(data): """ One iteration of rsqrt """ return _test_unary_elemwise(math_ops.rsqrt, data) ####################################################################### # Neg # --- def _test_neg(data): """ One iteration of neg """ return _test_unary_elemwise(math_ops.neg, data) ####################################################################### # Square # ------ def _test_square(data): """ One iteration of square """ return _test_unary_elemwise(math_ops.square, data) def _test_forward_unary_elemwise(test_op): # functions that need positive input if test_op.__name__ in {'_test_log', '_test_sqrt', '_test_rsqrt'}: test_op(np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 3))) else: test_op(np.random.uniform(-10, 10, (3, 2)).astype(np.float32)) def test_all_unary_elemwise(): _test_forward_unary_elemwise(_test_abs) _test_forward_unary_elemwise(_test_floor) _test_forward_unary_elemwise(_test_exp) _test_forward_unary_elemwise(_test_log) _test_forward_unary_elemwise(_test_sin) _test_forward_unary_elemwise(_test_sqrt) _test_forward_unary_elemwise(_test_rsqrt) _test_forward_unary_elemwise(_test_neg) _test_forward_unary_elemwise(_test_square) # ceil and cos come with TFLite 1.14.0.post1 fbs schema if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_forward_unary_elemwise(_test_ceil) _test_forward_unary_elemwise(_test_cos) ####################################################################### # Element-wise # --- def _test_elemwise(math_op, data, fused_activation_function=None, quantized=False, qnn_op=None): """ One iteration of elemwise """ assert len(data) == 2 # Test with two tensors with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[0].shape, dtype='float32', name='in_0'), array_ops.placeholder(shape=data[1].shape, dtype='float32', name='in_1')] if quantized: # fake_quant will keep the tensors in float32 until the conversion in the session inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0], min=-100, max=100, name="inq_0"), tf.quantization.fake_quant_with_min_max_args(in_data[1], min=-50, max=50, name="inq_1")] input_range = {'inq_0': (-100, 100), 'inq_1': (-50, 50)} out = math_op(inq_data[0], inq_data[1]) out = with_fused_activation_function(out, fused_activation_function) # set the fp32 output range with respect to the operation out_min, out_max = _test_elemwise_qnn_out_range(qnn_op) out = tf.quantization.fake_quant_with_min_max_args(out, min=out_min, max=out_max, name="out") compare_tflite_with_tvm(data, ['inq_0:0', 'inq_1:0'], inq_data, [out], quantized=True, input_range=input_range) else: out = math_op(in_data[0], in_data[1]) out = with_fused_activation_function(out, fused_activation_function) compare_tflite_with_tvm(data, ['in_0:0', 'in_1:0'], in_data, [out]) # Test with tensor and constant with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[0].shape, dtype='float32', name='in_0')] if quantized: inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0], min=-100, max=100, name="inq_0")] inq_const = tf.quantization.fake_quant_with_min_max_args(data[1], min=-50, max=50, name="const_tensor") input_range = {'inq_0': (-100, 100)} # the 2nd tensor is treated as constant and directly added as part of the operation out = math_op(inq_data, ops.convert_to_tensor(inq_const, dtype='float32', name='inq_const')) out = with_fused_activation_function(out, fused_activation_function) out_min, out_max = _test_elemwise_qnn_out_range(qnn_op) out = tf.quantization.fake_quant_with_min_max_args(out, min=out_min, max=out_max, name="out") compare_tflite_with_tvm(data[0], ['inq_0:0'], inq_data, [out], quantized=True, input_range=input_range) else: out = math_op(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype)) out = with_fused_activation_function(out, fused_activation_function) compare_tflite_with_tvm(data[0], ['in_0:0'], in_data, [out]) # Test with constant and tensor with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[1].shape, dtype='float32', name='in_1')] if quantized: inq_const = tf.quantization.fake_quant_with_min_max_args(data[0], min=-100, max=100, name="const_tensor") inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0], min=-50, max=50, name="inq_1")] input_range = {'inq_1': (-50, 50)} # the 1st tensor is treated as constant and directly added as part of the operation out = math_op(ops.convert_to_tensor(inq_const, dtype='float32', name='inq_const'), inq_data) out = with_fused_activation_function(out, fused_activation_function) out_min, out_max = _test_elemwise_qnn_out_range(qnn_op) out = tf.quantization.fake_quant_with_min_max_args(out, min=out_min, max=out_max, name="out") compare_tflite_with_tvm(data[1], ['inq_1:0'], inq_data, [out], quantized=True, input_range=input_range) else: out = math_op(ops.convert_to_tensor(data[0], dtype=data[0].dtype), in_data[0]) out = with_fused_activation_function(out, fused_activation_function) compare_tflite_with_tvm(data[1], ['in_1:0'], in_data, [out]) ####################################################################### # Add # --- def _test_add(data, fused_activation_function=None, quantized=False, qnn_op=None): """ One iteration of add """ return _test_elemwise(math_ops.add, data, fused_activation_function, quantized, qnn_op) ####################################################################### # Subtract # -------- def _test_sub(data, fused_activation_function=None): """ One iteration of subtract """ return _test_elemwise(math_ops.subtract, data, fused_activation_function) ####################################################################### # Mul # --- def _test_mul(data, fused_activation_function=None, quantized=False, qnn_op=None): """ One iteration of mul """ return _test_elemwise(math_ops.multiply, data, fused_activation_function, quantized, qnn_op) ####################################################################### # Divide # ------ def _test_div(data, fused_activation_function=None): """ One iteration of divide """ return _test_elemwise(math_ops.divide, data, fused_activation_function) ####################################################################### # Power # ----- def _test_pow(data): """ One iteration of power """ return _test_elemwise(math_ops.pow, data) ####################################################################### # Maximum # ------- def _test_maximum(data): """ One iteration of maximum """ return _test_elemwise(math_ops.maximum, data) ####################################################################### # Minimum # ------- def _test_minimum(data): """ One iteration of minimum """ return _test_elemwise(math_ops.minimum, data) ####################################################################### # Greater # ------- def _test_greater(data): """ One iteration of greater """ return _test_elemwise(math_ops.greater, data) ####################################################################### # Greater_equal # ------------- def _test_greater_equal(data): """ One iteration of greater_equal """ return _test_elemwise(math_ops.greater_equal, data) ####################################################################### # Less # ---- def _test_less(data): """ One iteration of less """ return _test_elemwise(math_ops.less, data) ####################################################################### # Less_equal # ---------- def _test_less_equal(data): """ One iteration of less_equal """ return _test_elemwise(math_ops.less_equal, data) ####################################################################### # Equal # ----- def _test_equal(data): """ One iteration of equal """ return _test_elemwise(math_ops.equal, data) ####################################################################### # Not_equal # --------- def _test_not_equal(data): """ One iteration of not_equal""" return _test_elemwise(math_ops.not_equal, data) ####################################################################### # Squared_difference # ------------------ def _test_squared_difference(data): """ One iteration of squared difference """ return _test_elemwise(math_ops.squared_difference, data) def _test_forward_elemwise(testop): """ Elewise""" testop([np.arange(6.0, dtype=np.float32).reshape((2, 1, 1, 3)), np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3))]) testop([np.arange(6.0, dtype=np.float32).reshape((2, 1, 3)), np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 3))]) testop([np.arange(3.0, dtype=np.float32).reshape((1, 3)), np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3))]) def _test_forward_elemwise_quantized(testop): testop([np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8)], quantized=True, qnn_op=testop) def _test_elemwise_qnn_out_range(qnn_op): # set the fake_quant output range with respect to the input tensors float32 range qnn_out_range = { _test_add: (-150, 150), _test_sub: (-150, 150), _test_mul: (-5e+3, 5e+3), } return qnn_out_range[qnn_op] def test_all_elemwise(): _test_forward_elemwise(_test_add) _test_forward_elemwise_quantized(_test_add) _test_forward_elemwise(partial(_test_add, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_add, fused_activation_function="RELU6")) _test_forward_elemwise(_test_sub) _test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU6")) _test_forward_elemwise(_test_mul) _test_forward_elemwise_quantized(_test_mul) _test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU6")) _test_forward_elemwise(_test_div) _test_forward_elemwise(partial(_test_div, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_div, fused_activation_function="RELU6")) _test_forward_elemwise(_test_pow) _test_forward_elemwise(_test_maximum) _test_forward_elemwise(_test_minimum) _test_forward_elemwise(_test_greater) _test_forward_elemwise(_test_squared_difference) _test_forward_elemwise(_test_greater_equal) _test_forward_elemwise(_test_less) _test_forward_elemwise(_test_less_equal) _test_forward_elemwise(_test_equal) _test_forward_elemwise(_test_not_equal) ####################################################################### # Logical operators # ----------------- def _test_logical_binary(logical_bin_op, data): with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[0].shape, dtype='bool', name='in_0'), array_ops.placeholder(shape=data[1].shape, dtype='bool', name='in_1')] out = logical_bin_op(in_data[0], in_data[1], name='out') compare_tflite_with_tvm(data, ['in_0:0', 'in_1:0'], in_data, [out]) def _test_forward_logical_and(data): """ One iteration of logical and """ return _test_logical_binary(math_ops.logical_and, data) def _test_forward_logical_or(data): """ One iteration of logical or """ return _test_logical_binary(math_ops.logical_or, data) def test_all_logical(): data = [np.random.choice(a=[False, True], size=(2, 3, 4)).astype('bool'), np.random.choice(a=[False, True], size=(2, 3, 4)).astype('bool')] # boolean dtype is not supported by older versions than TFLite 1.15.0 if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'): _test_forward_logical_and(data) _test_forward_logical_or(data) ####################################################################### # Zeros like # -------- def _test_zeros_like(data): """ One iteration of ZEROS LIKE """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = gen_array_ops.zeros_like(in_data) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_zeros_like(): """ ZEROS LIKE """ _test_zeros_like(np.arange(6.0, dtype=np.float32).reshape((1, 6))) ####################################################################### # Reduce # ------ def _test_reduce(math_op, data, keep_dims=None): """ One iteration of reduce """ assert len(data) == 2 # Test with tensor and constant with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in') out = math_op(in_data, data[1], keep_dims) compare_tflite_with_tvm([data[0]], ['in:0'], [in_data], [out]) def _test_reduce_quantize(math_op, data, keep_dims=None): """ One iteration of reduce """ assert len(data) == 2 # Test with tensor and constant with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[0].shape, dtype="float32", name='in')] inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0], min=-100, max=100, name="inq_0")] input_range = {'inq_0': (-100, 100)} out = math_op(inq_data, data[1], keep_dims) out = tf.quantization.fake_quant_with_min_max_args(out, min=-200, max=200, name="out") compare_tflite_with_tvm([data[0]], ['inq_0:0'], [inq_data[0]], [out], quantized=True, input_range=input_range) ####################################################################### # Reduce_min # ---------- def _test_reduce_min(data, keep_dims=None): """ One iteration of reduce_min """ return _test_reduce(math_ops.reduce_min, data, keep_dims) ####################################################################### # Reduce_max # ---------- def _test_reduce_max(data, keep_dims=None): """ One iteration of reduce_max """ return _test_reduce(math_ops.reduce_max, data, keep_dims) ####################################################################### # Reduce_mean # ----------- def _test_reduce_mean(data, keep_dims=None, quantized=False): """ One iteration of reduce_mean """ if quantized: return _test_reduce_quantize(math_ops.reduce_mean, data, keep_dims) else: return _test_reduce(math_ops.reduce_mean, data, keep_dims) ####################################################################### # Reduce_prod # ----------- def _test_reduce_prod(data, keep_dims=None): """ One iteration of reduce_prod """ return _test_reduce(math_ops.reduce_prod, data, keep_dims) ####################################################################### # Reduce_sum # ----------- def _test_reduce_sum(data, keep_dims=None): """ One iteration of reduce_sum """ return _test_reduce(math_ops.reduce_sum, data, keep_dims) def _test_forward_reduce(testop): """ Reduce """ data0 = [np.random.rand(16, 16, 16, 16).astype("float32"), None] data1 = [np.random.rand(16, 16, 16, 16).astype("float32"), np.array([1, 2], dtype=np.int32)] testop(data0) testop(data0, keep_dims=False) testop(data0, keep_dims=True) testop(data1) testop(data1, keep_dims=False) testop(data1, keep_dims=True) def _test_forward_reduce_quantized(testop): data0 = [np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), np.array([1, 2], dtype=np.int32)] testop(data0, quantized=True) testop(data0, keep_dims=False, quantized=True) testop(data0, keep_dims=True, quantized=True) def test_all_reduce(): _test_forward_reduce(_test_reduce_min) _test_forward_reduce(_test_reduce_max) _test_forward_reduce(_test_reduce_mean) _test_forward_reduce_quantized(_test_reduce_mean) _test_forward_reduce(_test_reduce_prod) _test_forward_reduce(_test_reduce_sum) ####################################################################### # Squeeze # ------- def _test_squeeze(data, squeeze_dims=None): """ One iteration of squeeze """ if squeeze_dims is None: squeeze_dims = [] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) if squeeze_dims: out = array_ops.squeeze(in_data, squeeze_dims) else: out = array_ops.squeeze(in_data) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_squeeze(): """ Squeeze """ _test_squeeze(np.arange(6).reshape((1, 2, 1, 3)), [0, 2]) _test_squeeze(np.arange(6).reshape((2, 1, 3, 1)), [1, 3]) ####################################################################### # Pad # --- def _test_pad(data, mode="CONSTANT", quantized=False): """ One iteration of PAD """ assert len(data) == 2 # Test with tensor and constant with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[0].shape, dtype='float32', name='in')] if quantized: # fake_quant will keep the tensors in float32 until the conversion in the session input_range = {'inq_0': (-100, 100)} inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0], min=-100, max=100, name="inq_0")] out = array_ops.pad(inq_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode) compare_tflite_with_tvm([data[0]], ['inq_0:0'], inq_data, [out], quantized=True, input_range=input_range) else: out = array_ops.pad(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode) compare_tflite_with_tvm([data[0]], ['in:0'], in_data, [out]) def test_forward_pad(): """ Pad """ _test_pad([np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3)), np.array([[1, 1], [2, 2], [1, 1], [2, 2]], dtype=np.int32)]) _test_pad([np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 3)), np.array([[2, 2], [1, 1], [1, 1]], dtype=np.int32)]) _test_pad([np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32)]) _test_pad([np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32)]) _test_pad([np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32)], mode="REFLECT") _test_pad([np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32)], mode="SYMMETRIC") _test_pad([np.arange(0, 256, dtype=np.uint8).reshape((1, 256)), np.array([[1, 1], [2, 2]], dtype=np.int32)], quantized=True) ####################################################################### # Pack # ------------- def _test_pack(data, axis): """ One iteration of pack """ assert len(data) >= 1 with tf.Graph().as_default(): in_data = [ array_ops.placeholder(shape=tensor.shape, dtype=tensor.dtype, name="in_{}".format(idx)) for idx, tensor in enumerate(data)] out = array_ops.pack(in_data, axis=axis) name = ["in_{}:0".format(idx) for idx in range(len(data))] compare_tflite_with_tvm(data, name, in_data, [out]) def test_forward_pack(): """ Pack """ _test_pack( [np.arange(6).reshape((1, 2, 1, 3)), np.arange(6).reshape((1, 2, 1, 3))], 1) _test_pack( [np.arange(6).reshape((3, 2)), np.arange(6).reshape((3, 2))], 1) _test_pack( [np.arange(6).reshape((2, 1, 1, 3)), np.arange(6).reshape((2, 1, 1, 3)), np.arange(6).reshape((2, 1, 1, 3))], 1) ####################################################################### # Unpack # ------ def _test_unpack(data, axis, num_unpacks): """ One iteration of UNPACK """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = gen_array_ops.unpack(in_data, num=num_unpacks, axis=axis, name='unpack') out_names = ['out_' + str(n) + ':0' for n in range(num_unpacks)] compare_tflite_with_tvm([data], 'Placeholder:0', [in_data], out, out_names=out_names) def test_forward_unpack(): """ UNPACK """ _test_unpack(np.array(np.random.uniform(0, 5, (3, 1)), dtype=np.int32), axis=1, num_unpacks=1) _test_unpack(np.array(np.random.uniform(0, 5, (3, 4)), dtype=np.float32), axis=0, num_unpacks=3) # tflite 1.13 doesn't accept negative axis if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'): _test_unpack(np.array(np.random.uniform(0, 5, (3, 6)), dtype=np.int32), axis=-2, num_unpacks=3) _test_unpack(np.array(np.random.uniform(0, 5, (2, 3, 4)), dtype=np.int32), axis=-3, num_unpacks=2) ####################################################################### # Logistic # -------- def _test_logistic(data, quantized=False): """ One iteration of LOGISTIC """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype='float32', name='in_0') if quantized: inq_data = tf.quantization.fake_quant_with_min_max_args(in_data, min=-5, max=5, name="inq_0") input_range = {'inq_0': (-5, 5)} out = math_ops.sigmoid(inq_data) out = tf.quantization.fake_quant_with_min_max_args(out, min=0, max=1, name="out") compare_tflite_with_tvm(data, 'inq_0:0', [inq_data], [out], quantized=True, input_range=input_range) else: out = math_ops.sigmoid(in_data) compare_tflite_with_tvm(data, 'in_0:0', [in_data], [out]) def test_forward_logistic(): """ LOGISTIC """ _test_logistic(np.arange(6.0, dtype=np.float32).reshape((1, 6))) _test_logistic(np.random.uniform(0, 255, (3, 6)).astype(np.uint8), quantized=True) ####################################################################### # Softmax # ------- def _test_softmax(data): """ One iteration of softmax """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = nn_ops.softmax(in_data) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_softmax(): """ Softmax """ _test_softmax(np.arange(6.0, dtype=np.float32).reshape((1, 6))) ####################################################################### # Tanh # -------- def _test_tanh(data): """ One iteration of TANH """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = math_ops.tanh(in_data) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_tanh(): """ TANH """ _test_tanh(np.arange(6.0, dtype=np.float32).reshape((1, 6))) ####################################################################### # ReLu # -------- def _test_relu(data): """ One iteration of ReLU """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = nn_ops.relu(in_data) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_relu(): """ ReLU """ _test_relu(np.arange(6.0, dtype=np.float32).reshape((1, 6))) def _test_prelu(data, alpha): """ One iteration of PReLU """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) # This specific pattern will be replaced into PRelu by tflite out = nn_ops.relu(in_data) + (-alpha * nn_ops.relu(-in_data)) compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) def test_forward_prelu(): """ PReLU """ _test_prelu(np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((3,), 0.2, dtype="float32")) _test_prelu(np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((1, 1, 3), 0.2, dtype="float32")) ####################################################################### # Fully Connected # ------- def _test_fully_connected(tensor_in_sizes, filter_in_sizes, bias_in_size=None): """ One iteration of fully connected """ total_size_1 = 1 total_size_2 = 1 for s in tensor_in_sizes: total_size_1 *= s for s in filter_in_sizes: total_size_2 *= s # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] assert int(total_size_1 / tensor_in_sizes[0]) == filter_in_sizes[0], \ "input size and filter size are mismatched" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype='float32') in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype='float32') # reshape N H W C into N H*W*C in_data_reshape = array_ops.reshape(in_data, [tensor_in_sizes[0], -1]) out = math_ops.mat_mul(in_data_reshape, in_filter) # if we have bias if bias_in_size: assert bias_in_size[0] == filter_in_sizes[1], "bias and filter size are mismatched" bias_array = [f * 1.0 for f in range(1, bias_in_size[0] + 1)] in_bias = constant_op.constant(bias_array, shape=bias_in_size, dtype='float32') out = nn_ops.bias_add(out, in_bias) data_array = np.reshape(data_array, tensor_in_sizes).astype('float32') compare_tflite_with_tvm(data_array, 'Placeholder:0', [in_data], [out]) def test_forward_fully_connected(): """ Fully Connected """ _test_fully_connected([1, 1, 1, 150], [150, 100]) _test_fully_connected([1, 1, 1, 150], [150, 100], [100]) _test_fully_connected([5, 1, 1, 150], [150, 100]) _test_fully_connected([5, 1, 1, 150], [150, 100], [100]) ####################################################################### # Custom Operators # ---------------- def test_detection_postprocess(): tf_model_file = tf_testing.get_workload_official( "http://download.tensorflow.org/models/object_detection/" "ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz", "ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03/tflite_graph.pb" ) converter = tf.lite.TFLiteConverter.from_frozen_graph( tf_model_file, input_arrays=["raw_outputs/box_encodings", "raw_outputs/class_predictions"], output_arrays=[ "TFLite_Detection_PostProcess", "TFLite_Detection_PostProcess:1", "TFLite_Detection_PostProcess:2", "TFLite_Detection_PostProcess:3" ], input_shapes={ "raw_outputs/box_encodings": (1, 1917, 4), "raw_outputs/class_predictions": (1, 1917, 91), }, ) converter.allow_custom_ops = True converter.inference_type = tf.lite.constants.FLOAT tflite_model = converter.convert() np.random.seed(0) box_encodings = np.random.uniform(size=(1, 1917, 4)).astype('float32') class_predictions = np.random.uniform(size=(1, 1917, 91)).astype('float32') tflite_output = run_tflite_graph(tflite_model, [box_encodings, class_predictions]) tvm_output = run_tvm_graph(tflite_model, [box_encodings, class_predictions], ["raw_outputs/box_encodings", "raw_outputs/class_predictions"], num_output=4) # check valid count is the same assert tvm_output[3] == tflite_output[3] valid_count = tvm_output[3][0] tvm_boxes = tvm_output[0][0][:valid_count] tvm_classes = tvm_output[1][0][:valid_count] tvm_scores = tvm_output[2][0][:valid_count] # check the output data is correct tvm.testing.assert_allclose(np.squeeze(tvm_boxes), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5) tvm.testing.assert_allclose(np.squeeze(tvm_classes), np.squeeze(tflite_output[1]), rtol=1e-5, atol=1e-5) tvm.testing.assert_allclose(np.squeeze(tvm_scores), np.squeeze(tflite_output[2]), rtol=1e-5, atol=1e-5) ####################################################################### # Mobilenet # --------- def test_forward_mobilenet_v1(): """Test the Mobilenet V1 TF Lite model.""" # MobilenetV1 tflite_model_file = tf_testing.get_workload_official( "http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz", "mobilenet_v1_1.0_224.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32') tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, 'input') tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5) def test_forward_mobilenet_v2(): """Test the Mobilenet V2 TF Lite model.""" # MobilenetV2 tflite_model_file = tf_testing.get_workload_official( "http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224.tgz", "mobilenet_v2_1.0_224.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32') tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, 'input') tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5) ####################################################################### # Inception # ------------ def test_forward_inception_v3_net(): """Test the Inception V3 TF Lite model.""" # InceptionV3 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_v3_2018_04_27.tgz", "inception_v3.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 299, 299, 3)).astype('float32') tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, 'input') tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5) def test_forward_inception_v4_net(): """Test the Inception V4 TF Lite model.""" # InceptionV4 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_v4_2018_04_27.tgz", "inception_v4.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 299, 299, 3)).astype('float32') tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, 'input') tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5) def test_forward_qnn_inception_v1_net(): """Test the Quantized TFLite Inception model.""" # InceptionV1 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/inception_v1_224_quant_20181026.tgz", "inception_v1_224_quant.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. data = get_real_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, 'input') tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) def test_forward_qnn_mobilenet_v1_net(): """Test the Quantized TFLite Mobilenet V1 model.""" # MobilenetV1 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz", "mobilenet_v1_1.0_224_quant.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. data = get_real_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, 'input') tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) def test_forward_qnn_mobilenet_v2_net(): """Test the Quantized TFLite Mobilenet V2 model.""" # MobilenetV2 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz", "mobilenet_v2_1.0_224_quant.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. data = get_real_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, 'input') tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) ####################################################################### # SSD Mobilenet # ------------- def test_forward_ssd_mobilenet_v1(): """Test the SSD Mobilenet V1 TF Lite model.""" # SSD MobilenetV1 tflite_model_file = tf_testing.get_workload_official( "https://raw.githubusercontent.com/dmlc/web-data/master/tensorflow/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28_nopp.tgz", "ssd_mobilenet_v1_coco_2018_01_28_nopp.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() np.random.seed(0) data = np.random.uniform(size=(1, 300, 300, 3)).astype('float32') tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, 'normalized_input_image_tensor', num_output=2) for i in range(2): tvm.testing.assert_allclose(np.squeeze(tvm_output[i]), np.squeeze(tflite_output[i]), rtol=1e-5, atol=2e-5) ####################################################################### # MediaPipe # ------------- def test_forward_mediapipe_hand_landmark(): """Test MediaPipe 2D hand landmark TF Lite model.""" # MediaPipe 2D hand landmark TF tflite_model_file = download_testdata( "https://github.com/google/mediapipe/raw/master/mediapipe/models/hand_landmark.tflite", "hand_landmark.tflite") with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 256, 256, 3)).astype('float32') tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, 'input_1', num_output=2) for i in range(2): tvm.testing.assert_allclose(np.squeeze(tvm_output[i]), np.squeeze(tflite_output[i]), rtol=1e-5, atol=1e-5) ####################################################################### # Main # ---- if __name__ == '__main__': # BatchToSpaceND test_forward_batch_to_space_nd() # SpaceToBatchND test_forward_space_to_batch_nd() # Split test_forward_split() # Transpose test_forward_transpose() # Cast test_forward_cast() # Tile test_forward_tile() # Transforms test_forward_concatenation() test_forward_pad() test_forward_pack() test_forward_unpack() test_forward_reshape() test_all_resize() test_forward_squeeze() test_forward_slice() # NN test_forward_convolution() test_forward_transpose_conv() test_forward_logistic() test_forward_pooling() test_forward_softmax() test_forward_tanh() test_forward_relu() test_forward_prelu() test_forward_fully_connected() # Elemwise test_all_elemwise() # Unary elemwise test_all_unary_elemwise() # Zeros Like test_forward_zeros_like() # Reduce test_all_reduce() # Logical test_all_logical() # Detection_PostProcess test_detection_postprocess() # End to End test_forward_mobilenet_v1() test_forward_mobilenet_v2() test_forward_inception_v3_net() test_forward_inception_v4_net() test_forward_ssd_mobilenet_v1() test_forward_mediapipe_hand_landmark() # End to End quantized test_forward_qnn_inception_v1_net() test_forward_qnn_mobilenet_v1_net() test_forward_qnn_mobilenet_v2_net()
39.40404
142
0.603345
4a1633057533cf831ba8641c633d34527ffb8934
442
py
Python
core/cogs/info.py
yxqsnz/Ark
6842b652a582b06da2ec71bc6e2c7e3f5a9fc3f8
[ "MIT" ]
null
null
null
core/cogs/info.py
yxqsnz/Ark
6842b652a582b06da2ec71bc6e2c7e3f5a9fc3f8
[ "MIT" ]
null
null
null
core/cogs/info.py
yxqsnz/Ark
6842b652a582b06da2ec71bc6e2c7e3f5a9fc3f8
[ "MIT" ]
null
null
null
from discord.ext import commands from discord.ext.commands.context import Context from ark.settings import __version__, DRAGON_IMG class Botinfo(commands.Cog): def __init__(self, bot): self.bot = bot self.description = "BotInfo Commands" @commands.command(aliases=['v'],pass_context=True) async def version(self,ctx:Context): return await ctx.send(__version__) def setup(bot): bot.add_cog(Botinfo(bot))
36.833333
54
0.726244
4a1634fa052dd32daeb29a4201c371879c9e9fcc
725
py
Python
Etap 3/Logia12/Zad3.py
aszokalski/Logia
5e29745b01623df8a2f162f143656a76056af407
[ "MIT" ]
null
null
null
Etap 3/Logia12/Zad3.py
aszokalski/Logia
5e29745b01623df8a2f162f143656a76056af407
[ "MIT" ]
null
null
null
Etap 3/Logia12/Zad3.py
aszokalski/Logia
5e29745b01623df8a2f162f143656a76056af407
[ "MIT" ]
null
null
null
def kulki(lk): war.clear() zrodlo = 'r' * lk[0] + 'g' * lk[1] + 'b' * lk[2] + 'y' * lk[3] wariacjabezpowt(zrodlo, len(zrodlo), "") lista = war[:] wynik = [] for w in lista: keep = True for i in range(len(w) - 1): if w[i] == w[i+1]: keep = False break if keep and w not in wynik: wynik.append(w) wynik.sort() return wynik war = [] def wariacjabezpowt(zrodlo, n, wariacja): if n == 0: war.append(wariacja) return for litera in zrodlo: if wariacja.count(litera) < zrodlo.count(litera): wariacjabezpowt(zrodlo, n-1, wariacja+litera) return
23.387097
66
0.485517
4a16352797a087a8385e3c49a4e6f04443c50b25
1,848
py
Python
facerecognition/recognition/FaceRecognition.py
LEGaTO-SmartMirror/SmartMirror-Facerecognition
65b87528b5f64a94b9352134712ff4ca404294a1
[ "MIT" ]
null
null
null
facerecognition/recognition/FaceRecognition.py
LEGaTO-SmartMirror/SmartMirror-Facerecognition
65b87528b5f64a94b9352134712ff4ca404294a1
[ "MIT" ]
null
null
null
facerecognition/recognition/FaceRecognition.py
LEGaTO-SmartMirror/SmartMirror-Facerecognition
65b87528b5f64a94b9352134712ff4ca404294a1
[ "MIT" ]
1
2019-06-12T21:13:22.000Z
2019-06-12T21:13:22.000Z
import os import cv2 import numpy as np import tensorflow as tf if (tf.__version__ == "1.15.1"): import tensorflow.compat.v1 as tf from recognition import facenet #CUDA_VISIBLE_DEVICES=1 os.environ["CUDA_VISIBLE_DEVICES"]="1" BASE_DIR = os.path.dirname(__file__) + '/' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = 'model/20170512-110547.pb' input_image_size = 160 class FaceRecognition: def __init__(self): # Load models self.recognition_graph = tf.Graph() config = tf.ConfigProto(device_count = {'GPU': 1}) #config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.3 self.sess = tf.Session(graph=self.recognition_graph,config=config) #print('Loading feature extraction model') with self.sess.as_default(): with self.recognition_graph.as_default(): facenet.load_model(BASE_DIR + PATH_TO_CKPT) def __del__(self): self.sess.close() def recognize(self, image): images_placeholder = self.recognition_graph.get_tensor_by_name("input:0") embeddings = self.recognition_graph.get_tensor_by_name("embeddings:0") phase_train_placeholder = self.recognition_graph.get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] emb_array = np.zeros((1, embedding_size)) image = facenet.prewhiten(image) #image = cv2.resize(image, (input_image_size, input_image_size), interpolation=cv2.INTER_AREA) image = image.reshape(-1, input_image_size, input_image_size, 3) feed_dict = {images_placeholder: image, phase_train_placeholder: False} emb_array[0, :] = self.sess.run(embeddings, feed_dict=feed_dict) return emb_array.squeeze()
37.714286
102
0.706169
4a163563bb937b817dbbdfdc242cc936a4d4ca4d
2,019
py
Python
app/service/auth_service.py
WishesFire/Epam-Python-Project
d54bbe48d539b0810d9b42b0839a64b035021c6d
[ "Apache-2.0" ]
1
2021-11-18T11:57:02.000Z
2021-11-18T11:57:02.000Z
app/service/auth_service.py
WishesFire/Epam-project
d54bbe48d539b0810d9b42b0839a64b035021c6d
[ "Apache-2.0" ]
null
null
null
app/service/auth_service.py
WishesFire/Epam-project
d54bbe48d539b0810d9b42b0839a64b035021c6d
[ "Apache-2.0" ]
null
null
null
""" Requires user registration and login utilities: - `util_signup`: validation data form and create new user in database - `util_login`: requirement validation parameters """ # pylint: disable=unused-variable # pylint: disable=inconsistent-return-statements import logging from typing import Union from werkzeug.security import generate_password_hash from sqlalchemy import exc from app.models.model import User from app.service.validartors import RegistrationFormValidator, LoginFormValidator from app.service.user_service import UserService def util_signup(email: str, password_1: str, password_2: str) -> Union[bool, User]: """ Validation and create new user :param email: user mail :param password_1: first password :param password_2: second similar password :return: Status False or new_user """ validator = RegistrationFormValidator(email, password_1, password_2) email_status, email_error_msg = validator.check_exists_email() password_status, password_error_msg = validator.check_password_similar() logging.info("Validation id DONE") if email_status and password_status: secure_password = generate_password_hash(password_1, method="sha256") try: new_user = UserService.create_new_user(email, secure_password) logging.info("New user is created") return new_user except (ValueError, exc.DataError): return False elif not email_status or not password_status: return False def util_login(email: str, password: str): """ Validation user and prepare data for login in system :param email: user mail :param password: user password :return: validation user status, msg about error, user from bd """ user = UserService.find_user_by_email(email) validator = LoginFormValidator(password, user) user_status, user_error_msg = validator.check_user_exists() logging.info("Validation is DONE") return user_status, user_error_msg, user
35.421053
83
0.738484
4a16367b79e9453774507aed9353525b37dea2ed
1,302
py
Python
cfn_transform_library/always_update.py
benkehoe/cfn-transform-lib
587155f1b184e416fedec83be1dfdd9b48c70b44
[ "Apache-2.0" ]
2
2020-04-07T12:43:10.000Z
2021-08-20T16:59:48.000Z
cfn_transform_library/always_update.py
benkehoe/cfn-transform-lib
587155f1b184e416fedec83be1dfdd9b48c70b44
[ "Apache-2.0" ]
1
2018-02-08T19:06:19.000Z
2018-02-08T19:06:19.000Z
cfn_transform_library/always_update.py
benkehoe/cfn-transform-library
587155f1b184e416fedec83be1dfdd9b48c70b44
[ "Apache-2.0" ]
null
null
null
"""Make a resource's properties always different if needed. Look for AlwaysUpdate set to True in a resource's metadata, and if so, put AlwaysUpdateNonce in the resource's properties. Copyright 2018 iRobot Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import, print_function import datetime from cfn_transform import CloudFormationTemplateTransform class AlwaysUpdate(CloudFormationTemplateTransform): def process_resource(self, resource_name, resource): if resource.get('Metadata', {}).get('AlwaysUpdate', False): if 'Properties' not in resource: resource['Properties'] = {} resource['Properties']['AlwaysUpdateNonce'] = datetime.datetime.utcnow().isoformat() + 'Z' if __name__ == '__main__': AlwaysUpdate.main()
37.2
102
0.757296
4a1636bab322ea6f4c64a46395477a3fd3e50183
366
py
Python
Arase/PWE/__init__.py
mattkjames7/Arase
996167be35a13bbb1fdddfbe75e3a06d124b1d25
[ "MIT" ]
null
null
null
Arase/PWE/__init__.py
mattkjames7/Arase
996167be35a13bbb1fdddfbe75e3a06d124b1d25
[ "MIT" ]
1
2021-06-10T22:51:09.000Z
2021-06-10T22:51:09.000Z
Arase/PWE/__init__.py
mattkjames7/Arase
996167be35a13bbb1fdddfbe75e3a06d124b1d25
[ "MIT" ]
null
null
null
from .DownloadData import DownloadData from .ReadEFD import ReadEFD from .ReadHFA import ReadHFA from .ReadHFALow import ReadHFALow from .ReadHFAHigh import ReadHFAHigh from .ReadUHDensity import ReadUHDensity from .RebuildDataIndex import RebuildDataIndex from .ReadCDF import ReadCDF from .ReadIndex import ReadIndex from .DataAvailability import DataAvailability
33.272727
46
0.863388
4a16376ccad7478656e538acef0418e7fdfcf31b
10,550
py
Python
networkx/algorithms/traversal/breadth_first_search.py
LorenzoCancello/networkx
3a0b782c21f0d99ca7154ae8322292ec571e4a04
[ "BSD-3-Clause" ]
null
null
null
networkx/algorithms/traversal/breadth_first_search.py
LorenzoCancello/networkx
3a0b782c21f0d99ca7154ae8322292ec571e4a04
[ "BSD-3-Clause" ]
null
null
null
networkx/algorithms/traversal/breadth_first_search.py
LorenzoCancello/networkx
3a0b782c21f0d99ca7154ae8322292ec571e4a04
[ "BSD-3-Clause" ]
null
null
null
"""Basic algorithms for breadth-first searching the nodes of a graph.""" import networkx as nx from collections import deque __all__ = [ 'bfs_edges', 'bfs_tree', 'bfs_predecessors', 'bfs_successors', 'descendants_at_distance' ] def generic_bfs_edges(G, source, neighbors=None, depth_limit=None): """Iterate over edges in a breadth-first search. The breadth-first search begins at `source` and enqueues the neighbors of newly visited nodes specified by the `neighbors` function. Parameters ---------- G : NetworkX graph source : node Starting node for the breadth-first search; this function iterates over only those edges in the component reachable from this node. neighbors : function A function that takes a newly visited node of the graph as input and returns an *iterator* (not just a list) of nodes that are neighbors of that node. If not specified, this is just the ``G.neighbors`` method, but in general it can be any function that returns an iterator over some or all of the neighbors of a given node, in any order. depth_limit : int, optional(default=len(G)) Specify the maximum search depth Yields ------ edge Edges in the breadth-first search starting from `source`. Examples -------- >>> G = nx.path_graph(3) >>> print(list(nx.bfs_edges(G,0))) [(0, 1), (1, 2)] >>> print(list(nx.bfs_edges(G, source=0, depth_limit=1))) [(0, 1)] Notes ----- This implementation is from `PADS`_, which was in the public domain when it was first accessed in July, 2004. The modifications to allow depth limits are based on the Wikipedia article "`Depth-limited-search`_". .. _PADS: http://www.ics.uci.edu/~eppstein/PADS/BFS.py .. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search """ visited = {source} if depth_limit is None: depth_limit = len(G) queue = deque([(source, depth_limit, neighbors(source))]) print(source) while queue: parent, depth_now, children = queue[0] try: child = next(children) if child not in visited: yield parent, child visited.add(child) if depth_now > 1: queue.append((child, depth_now - 1, neighbors(child))) print(child) except StopIteration: queue.popleft() def bfs_edges(G, source, reverse=False, depth_limit=None): """Iterate over edges in a breadth-first-search starting at source. Parameters ---------- G : NetworkX graph source : node Specify starting node for breadth-first search; this function iterates over only those edges in the component reachable from this node. reverse : bool, optional If True traverse a directed graph in the reverse direction depth_limit : int, optional(default=len(G)) Specify the maximum search depth Returns ------- edges: generator A generator of edges in the breadth-first-search. Examples -------- To get the edges in a breadth-first search:: >>> G = nx.path_graph(3) >>> list(nx.bfs_edges(G, 0)) [(0, 1), (1, 2)] >>> list(nx.bfs_edges(G, source=0, depth_limit=1)) [(0, 1)] To get the nodes in a breadth-first search order:: >>> G = nx.path_graph(3) >>> root = 2 >>> edges = nx.bfs_edges(G, root) >>> nodes = [root] + [v for u, v in edges] >>> nodes [2, 1, 0] Notes ----- The naming of this function is very similar to edge_bfs. The difference is that 'edge_bfs' yields edges even if they extend back to an already explored node while 'bfs_edges' yields the edges of the tree that results from a breadth-first-search (BFS) so no edges are reported if they extend to already explored nodes. That means 'edge_bfs' reports all edges while 'bfs_edges' only reports those traversed by a node-based BFS. Yet another description is that 'bfs_edges' reports the edges traversed during BFS while 'edge_bfs' reports all edges in the order they are explored. Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py. by D. Eppstein, July 2004. The modifications to allow depth limits based on the Wikipedia article "`Depth-limited-search`_". .. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search See Also -------- bfs_tree dfs_edges edge_bfs """ if reverse and G.is_directed(): successors = G.predecessors else: successors = G.neighbors yield from generic_bfs_edges(G, source, successors, depth_limit) def bfs_tree(G, source, reverse=False, depth_limit=None): """Returns an oriented tree constructed from of a breadth-first-search starting at source. Parameters ---------- G : NetworkX graph source : node Specify starting node for breadth-first search reverse : bool, optional If True traverse a directed graph in the reverse direction depth_limit : int, optional(default=len(G)) Specify the maximum search depth Returns ------- T: NetworkX DiGraph An oriented tree Examples -------- >>> G = nx.path_graph(3) >>> print(list(nx.bfs_tree(G,1).edges())) [(1, 0), (1, 2)] >>> H = nx.Graph() >>> nx.add_path(H, [0, 1, 2, 3, 4, 5, 6]) >>> nx.add_path(H, [2, 7, 8, 9, 10]) >>> print(sorted(list(nx.bfs_tree(H, source=3, depth_limit=3).edges()))) [(1, 0), (2, 1), (2, 7), (3, 2), (3, 4), (4, 5), (5, 6), (7, 8)] Notes ----- Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. The modifications to allow depth limits based on the Wikipedia article "`Depth-limited-search`_". .. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search See Also -------- dfs_tree bfs_edges edge_bfs """ T = nx.DiGraph() T.add_node(source) edges_gen = bfs_edges(G, source, reverse=reverse, depth_limit=depth_limit) T.add_edges_from(edges_gen) return T def bfs_predecessors(G, source, depth_limit=None): """Returns an iterator of predecessors in breadth-first-search from source. Parameters ---------- G : NetworkX graph source : node Specify starting node for breadth-first search depth_limit : int, optional(default=len(G)) Specify the maximum search depth Returns ------- pred: iterator (node, predecessors) iterator where predecessors is the list of predecessors of the node. Examples -------- >>> G = nx.path_graph(3) >>> print(dict(nx.bfs_predecessors(G, 0))) {1: 0, 2: 1} >>> H = nx.Graph() >>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]) >>> print(dict(nx.bfs_predecessors(H, 0))) {1: 0, 2: 0, 3: 1, 4: 1, 5: 2, 6: 2} >>> M = nx.Graph() >>> nx.add_path(M, [0, 1, 2, 3, 4, 5, 6]) >>> nx.add_path(M, [2, 7, 8, 9, 10]) >>> print(sorted(nx.bfs_predecessors(M, source=1, depth_limit=3))) [(0, 1), (2, 1), (3, 2), (4, 3), (7, 2), (8, 7)] Notes ----- Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. The modifications to allow depth limits based on the Wikipedia article "`Depth-limited-search`_". .. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search See Also -------- bfs_tree bfs_edges edge_bfs """ for s, t in bfs_edges(G, source, depth_limit=depth_limit): yield (t, s) def bfs_successors(G, source, depth_limit=None): """Returns an iterator of successors in breadth-first-search from source. Parameters ---------- G : NetworkX graph source : node Specify starting node for breadth-first search depth_limit : int, optional(default=len(G)) Specify the maximum search depth Returns ------- succ: iterator (node, successors) iterator where successors is the list of successors of the node. Examples -------- >>> G = nx.path_graph(3) >>> print(dict(nx.bfs_successors(G,0))) {0: [1], 1: [2]} >>> H = nx.Graph() >>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]) >>> print(dict(nx.bfs_successors(H, 0))) {0: [1, 2], 1: [3, 4], 2: [5, 6]} >>> G = nx.Graph() >>> nx.add_path(G, [0, 1, 2, 3, 4, 5, 6]) >>> nx.add_path(G, [2, 7, 8, 9, 10]) >>> print(dict(nx.bfs_successors(G, source=1, depth_limit=3))) {1: [0, 2], 2: [3, 7], 3: [4], 7: [8]} Notes ----- Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004.The modifications to allow depth limits based on the Wikipedia article "`Depth-limited-search`_". .. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search See Also -------- bfs_tree bfs_edges edge_bfs """ parent = source children = [] for p, c in bfs_edges(G, source, depth_limit=depth_limit): if p == parent: children.append(c) continue yield (parent, children) children = [c] parent = p yield (parent, children) def descendants_at_distance(G, source, distance): """Returns all nodes at a fixed `distance` from `source` in `G`. Parameters ---------- G : NetworkX DiGraph A directed graph source : node in `G` distance : the distance of the wanted nodes from `source` Returns ------- set() The descendants of `source` in `G` at the given `distance` from `source` """ if not G.has_node(source): raise nx.NetworkXError(f"The node {source} is not in the graph.") current_distance = 0 queue = {source} visited = {source} # this is basically BFS, except that the queue only stores the nodes at # current_distance from source at each iteration while queue: if current_distance == distance: return queue current_distance += 1 next_vertices = set() for vertex in queue: for child in G[vertex]: if child not in visited: visited.add(child) next_vertices.add(child) queue = next_vertices return set()
28.90411
80
0.602844
4a1637879158b4035d697b49d749bae39ffd50a9
350
py
Python
00-basics/00-function_default_value.py
ralexrivero/python_fundation
34a855db7380d3d91db6a8f02d97f287d038ef5f
[ "Apache-2.0" ]
1
2021-09-19T04:09:48.000Z
2021-09-19T04:09:48.000Z
00-basics/00-function_default_value.py
ralexrivero/python_fundation
34a855db7380d3d91db6a8f02d97f287d038ef5f
[ "Apache-2.0" ]
null
null
null
00-basics/00-function_default_value.py
ralexrivero/python_fundation
34a855db7380d3d91db6a8f02d97f287d038ef5f
[ "Apache-2.0" ]
null
null
null
# # function with default value # def power(num, x=1): result = 1 for i in range(x): result = result * num return result # if dont pass x, the default will be 1 print(power(2)) print(power(2,3)) print(power(3,4)) # supply the name of the values. Dont need to pass in a particular order if use names print(power(x = 4, num = 3))
21.875
86
0.651429
4a1638358f59fe67e43fc55f0a6ba6b656be94ae
17,083
py
Python
tests/zero_code_change/tensorflow_integration_tests.py
vandanavk/sagemaker-debugger
5246cda198295aa1dd1656ad32b30c4bb1e2aec4
[ "Apache-2.0" ]
null
null
null
tests/zero_code_change/tensorflow_integration_tests.py
vandanavk/sagemaker-debugger
5246cda198295aa1dd1656ad32b30c4bb1e2aec4
[ "Apache-2.0" ]
null
null
null
tests/zero_code_change/tensorflow_integration_tests.py
vandanavk/sagemaker-debugger
5246cda198295aa1dd1656ad32b30c4bb1e2aec4
[ "Apache-2.0" ]
null
null
null
""" WARNING: This must be run manually, with the custom TensorFlow fork installed. Not used in CI/CD. May be useful for DLC testing. Be sure to run with Python2 (/usr/bin/python) and Python3. Run with and without the flag --zcc. Test with DNNClassifier and raw Estimator. Test with Session. Test with Keras. Test with AdamOptimizer and SGD. We check that certain tensors are saved. Here in the test suite we delete the hook after every script. """ # Standard Library import argparse # Third Party import tensorflow as tf import tensorflow_datasets as tfds from tests.tensorflow.hooks.test_mirrored_strategy import test_basic from tests.tensorflow.keras.test_keras_mirrored import test_tf_keras # First Party import smdebug.tensorflow as smd from smdebug.core.utils import SagemakerSimulator # Local from .tf_utils import ( get_data, get_estimator, get_input_fns, get_keras_data, get_keras_model_v1, get_train_op_and_placeholders, ) def test_estimator(script_mode: bool = False): """ Works as intended. """ smd.del_hook() tf.reset_default_graph() with SagemakerSimulator() as sim: # Setup mnist_classifier = get_estimator() train_input_fn, eval_input_fn = get_input_fns() # Train and evaluate train_steps, eval_steps = 80, 20 if script_mode: hook = smd.EstimatorHook(out_dir=sim.out_dir) hook.set_mode(mode=smd.modes.TRAIN) mnist_classifier.train(input_fn=train_input_fn, steps=train_steps, hooks=[hook]) hook.set_mode(mode=smd.modes.EVAL) mnist_classifier.evaluate(input_fn=eval_input_fn, steps=eval_steps, hooks=[hook]) else: mnist_classifier.train(input_fn=train_input_fn, steps=train_steps) mnist_classifier.evaluate(input_fn=eval_input_fn, steps=eval_steps) # Check that hook created and tensors saved trial = smd.create_trial(path=sim.out_dir) print(trial) assert smd.get_hook() is not None, "Hook was not created." assert len(trial.steps()) > 0, "Nothing saved at any step." assert len(trial.tensor_names()) > 0, "Tensors were not saved." assert trial.steps() == [0, train_steps], "Wrong step count for trial." def test_estimator_gradients_zcc(nested=False, mirrored=False): """ Works as intended. """ smd.del_hook() tf.reset_default_graph() json_file_contents = """ { "S3OutputPath": "s3://sagemaker-test", "LocalPath": "/opt/ml/output/tensors", "HookParameters" : { "save_interval": "2", "include_workers": "all" }, "CollectionConfigurations": [ { "CollectionName": "gradients" }, { "CollectionName": "weights" }, { "CollectionName": "losses" }, { "CollectionName": "biases" } ] } """ with SagemakerSimulator(json_file_contents=json_file_contents) as sim: if mirrored: test_basic("/opt/ml/output/tensors", zcc=True) else: # Setup mnist_classifier = get_estimator(nested_optimizer=nested, mirrored=mirrored) train_input_fn, eval_input_fn = get_input_fns() # Train and evaluate train_steps, eval_steps = 10, 10 mnist_classifier.train(input_fn=train_input_fn, steps=train_steps) mnist_classifier.evaluate(input_fn=eval_input_fn, steps=eval_steps) # Check that hook created and tensors saved trial = smd.create_trial(path=sim.out_dir) print(trial) assert smd.get_hook() is not None, "Hook was not created." assert len(trial.steps()) > 0, "Nothing saved at any step." assert len(trial.tensor_names()) > 0, "Tensors were not saved." assert trial.steps() == [ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, ], "Wrong step count for trial." print(trial.tensor_names(collection="gradients")) assert len(trial.tensor_names(collection="gradients")) > 0 assert len(trial.tensor_names(collection="weights")) > 0 assert len(trial.tensor_names(collection="losses")) > 0 assert len(trial.tensor(trial.tensor_names(collection="gradients")[0]).steps()) > 0 assert len(trial.modes()) == 2 def test_estimator_gradients_zcc_nested(): test_estimator_gradients_zcc(nested=True) def test_estimator_gradients_zcc_mirrored(): test_estimator_gradients_zcc(nested=False, mirrored=True) def test_linear_classifier(script_mode: bool = False): """ Works as intended. """ smd.del_hook() tf.reset_default_graph() with SagemakerSimulator() as sim: # Setup train_input_fn, eval_input_fn = get_input_fns() x_feature = tf.feature_column.numeric_column("x", shape=(28, 28)) estimator = tf.compat.v1.estimator.LinearClassifier( feature_columns=[x_feature], model_dir="/tmp/mnist_linear_classifier", n_classes=10 ) # Train if script_mode: hook = smd.EstimatorHook(out_dir=sim.out_dir) estimator.train(input_fn=train_input_fn, steps=100, hooks=[hook]) else: estimator.train(input_fn=train_input_fn, steps=100) # Check that hook created and tensors saved trial = smd.create_trial(path=sim.out_dir) assert smd.get_hook() is not None, "Hook was not created." assert len(trial.steps()) > 0, "Nothing saved at any step." assert len(trial.tensor_names()) > 0, "Tensors were not saved." def test_monitored_session(script_mode: bool = False): """ Works as intended. """ smd.del_hook() tf.reset_default_graph() json_file_contents = """ { "S3OutputPath": "s3://sagemaker-test", "LocalPath": "/opt/ml/output/tensors", "HookParameters" : { "save_interval": "100" } } """ with SagemakerSimulator(json_file_contents=json_file_contents) as sim: train_op, X, Y = get_train_op_and_placeholders() init = tf.compat.v1.global_variables_initializer() mnist = get_data() if script_mode: hook = smd.SessionHook(out_dir=sim.out_dir) sess = tf.train.MonitoredSession(hooks=[hook]) else: sess = tf.train.MonitoredSession() with sess: sess.run(init) for step in range(1, 101): batch_x, batch_y = mnist.train.next_batch(32) sess.run(train_op, feed_dict={X: batch_x, Y: batch_y}) # Check that hook created and tensors saved trial = smd.create_trial(path=sim.out_dir) assert smd.get_hook() is not None, "Hook was not created." assert len(trial.steps()) > 0, "Nothing saved at any step." assert len(trial.tensor_names()) > 0, "Tensors were not saved." def test_monitored_session_gradients_zcc(): """ Works as intended. """ smd.del_hook() json_file_contents = """ { "S3OutputPath": "s3://sagemaker-test", "LocalPath": "/opt/ml/output/tensors", "HookParameters" : { "save_interval": "100" }, "CollectionConfigurations": [ { "CollectionName": "gradients" }, { "CollectionName": "losses" } ] } """ tf.reset_default_graph() with SagemakerSimulator(json_file_contents=json_file_contents) as sim: train_op, X, Y = get_train_op_and_placeholders() init = tf.compat.v1.global_variables_initializer() mnist = get_data() sess = tf.train.MonitoredSession() with sess: sess.run(init) for step in range(1, 101): batch_x, batch_y = mnist.train.next_batch(32) sess.run(train_op, feed_dict={X: batch_x, Y: batch_y}) # Check that hook created and tensors saved trial = smd.create_trial(path=sim.out_dir) assert smd.get_hook() is not None, "Hook was not created." assert len(trial.steps()) > 0, "Nothing saved at any step." assert len(trial.tensor_names()) > 0, "Tensors were not saved." assert len(trial.tensor_names(collection="gradients")) > 0 def test_keras_v1(script_mode: bool = False): """ Works as intended. """ smd.del_hook() tf.reset_default_graph() tf.keras.backend.clear_session() with SagemakerSimulator() as sim: model = get_keras_model_v1() (x_train, y_train), (x_test, y_test) = get_keras_data() model.compile( loss="sparse_categorical_crossentropy", optimizer=tf.keras.optimizers.RMSprop(), metrics=["accuracy"], ) if script_mode: hook = smd.KerasHook(out_dir=sim.out_dir) history = model.fit( x_train, y_train, batch_size=64, epochs=5, validation_split=0.2, callbacks=[hook] ) test_scores = model.evaluate(x_test, y_test, verbose=2, callbacks=[hook]) else: history = model.fit(x_train, y_train, batch_size=64, epochs=5, validation_split=0.2) test_scores = model.evaluate(x_test, y_test, verbose=2) # Check that hook created and tensors saved trial = smd.create_trial(path=sim.out_dir) assert smd.get_hook() is not None, "Hook was not created." assert len(trial.steps()) > 0, "Nothing saved at any step." assert len(trial.tensor_names()) > 0, "Tensors were not saved." def test_keras_gradients(script_mode: bool = False, tf_optimizer: bool = False): """ Works as intended. """ smd.del_hook() tf.reset_default_graph() tf.keras.backend.clear_session() json_file_contents = """ { "S3OutputPath": "s3://sagemaker-test", "LocalPath": "/opt/ml/output/tensors", "CollectionConfigurations": [ { "CollectionName": "gradients" }, { "CollectionName": "optimizer_variables" }, { "CollectionName": "losses" } ] } """ with SagemakerSimulator(json_file_contents=json_file_contents) as sim: model = get_keras_model_v1() (x_train, y_train), (x_test, y_test) = get_keras_data() if tf_optimizer: opt = tf.train.RMSPropOptimizer(0.1) else: opt = tf.keras.optimizers.RMSprop() if script_mode: hook = smd.KerasHook( out_dir=sim.out_dir, include_collections=["gradients", "optimizer_variables", "losses"], ) opt = hook.wrap_optimizer(opt) model.compile( loss="sparse_categorical_crossentropy", optimizer=opt, metrics=["accuracy"] ) history = model.fit( x_train, y_train, batch_size=16, epochs=5, validation_split=0.2, callbacks=[hook] ) test_scores = model.evaluate(x_test, y_test, verbose=2, callbacks=[hook]) else: model.compile( loss="sparse_categorical_crossentropy", optimizer=opt, metrics=["accuracy"] ) history = model.fit(x_train, y_train, batch_size=16, epochs=5, validation_split=0.2) test_scores = model.evaluate(x_test, y_test, verbose=2) # Check that hook created and tensors saved trial = smd.create_trial(path=sim.out_dir) assert smd.get_hook() is not None, "Hook was not created." assert len(trial.steps()) > 0, "Nothing saved at any step." assert len(trial.tensor_names()) > 0, "Tensors were not saved." assert len(trial.tensor_names(collection="gradients")) > 0 if not tf_optimizer: # as this is only supported for keras optimizers currently assert len(trial.tensor_names(collection="optimizer_variables")) > 0 def test_keras_gradients_tf_opt(script_mode: bool = False): test_keras_gradients(script_mode=script_mode, tf_optimizer=True) def test_keras_gradients_mirrored(include_workers="one"): """ Works as intended. """ smd.del_hook() tf.reset_default_graph() tf.keras.backend.clear_session() json_file_contents_p1 = """ { "S3OutputPath": "s3://sagemaker-test", "LocalPath": "/opt/ml/output/tensors", "HookParameters" : { """ json_file_contents_p2 = f'"include_workers": "{include_workers}",' json_file_contents_p3 = """ "save_interval": "3" }, "CollectionConfigurations": [ { "CollectionName": "gradients" }, { "CollectionName": "optimizer_variables" }, { "CollectionName": "losses" }, { "CollectionName": "weights" }, { "CollectionName": "biases" }, { "CollectionName": "outputs" }, { "CollectionName": "metrics" } ] } """ json_file_contents = json_file_contents_p1 + json_file_contents_p2 + json_file_contents_p3 with SagemakerSimulator(json_file_contents=json_file_contents) as sim: test_tf_keras("/opt/ml/output/tensors", zcc=True, include_workers=include_workers) def test_keras_gradients_mirrored_all_workers(): test_keras_gradients_mirrored(include_workers="all") def test_keras_to_estimator(script_mode: bool = False): """ Works as intended. """ import tensorflow.compat.v1.keras as keras tf.reset_default_graph() smd.del_hook() keras.backend.clear_session() with SagemakerSimulator() as sim: model = keras.models.Sequential( [ keras.layers.Dense(16, activation="relu", input_shape=(4,)), keras.layers.Dropout(0.2), keras.layers.Dense(1, activation="sigmoid"), ] ) def input_fn(): split = tfds.Split.TRAIN dataset = tfds.load("iris", split=split, as_supervised=True) dataset = dataset.map(lambda features, labels: ({"dense_input": features}, labels)) dataset = dataset.batch(32).repeat() return dataset model.compile(loss="categorical_crossentropy", optimizer="adam") model.summary() keras_estimator = tf.keras.estimator.model_to_estimator( keras_model=model, model_dir=sim.out_dir ) if script_mode: hook = smd.EstimatorHook(sim.out_dir) hook.set_mode(smd.modes.TRAIN) keras_estimator.train(input_fn=input_fn, steps=25, hooks=[hook]) hook.set_mode(smd.modes.EVAL) eval_result = keras_estimator.evaluate(input_fn=input_fn, steps=10, hooks=[hook]) else: keras_estimator.train(input_fn=input_fn, steps=25) keras_estimator.evaluate(input_fn=input_fn, steps=10) tr = smd.create_trial(sim.out_dir) assert len(tr.tensor_names()) == 1 assert tr.steps() == [0, 25] assert len(tr.steps(smd.modes.TRAIN)) == 1 assert len(tr.steps(smd.modes.EVAL)) == 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--script-mode", help="Manually create hooks instead of relying on ZCC", action="store_true" ) args = parser.parse_args() script_mode = args.script_mode test_monitored_session(script_mode=script_mode) if not script_mode: test_monitored_session_gradients_zcc() test_estimator(script_mode=script_mode) if not script_mode: test_estimator_gradients_zcc() test_estimator_gradients_zcc_nested() test_estimator_gradients_zcc_mirrored() test_linear_classifier(script_mode=script_mode) test_keras_v1(script_mode=script_mode) test_keras_gradients(script_mode=script_mode) test_keras_gradients_tf_opt(script_mode=script_mode) test_keras_to_estimator(script_mode=script_mode) if not script_mode: test_keras_gradients_mirrored_all_workers() test_keras_gradients_mirrored()
36.346809
100
0.593338
4a1638b2e2d95c0a3a544b68e79c087f2739dc5b
14,152
py
Python
nssrc/com/citrix/netscaler/nitro/resource/config/authentication/authenticationvserver_authenticationsamlpolicy_binding.py
benfinke/ns_python
d651d7aa01d7dc63c1cd435c7b3314d7f5b26659
[ "Apache-2.0" ]
1
2015-04-05T21:21:26.000Z
2015-04-05T21:21:26.000Z
nssrc/com/citrix/netscaler/nitro/resource/config/authentication/authenticationvserver_authenticationsamlpolicy_binding.py
benfinke/ns_python
d651d7aa01d7dc63c1cd435c7b3314d7f5b26659
[ "Apache-2.0" ]
1
2017-01-20T22:56:58.000Z
2017-01-20T22:56:58.000Z
nssrc/com/citrix/netscaler/nitro/resource/config/authentication/authenticationvserver_authenticationsamlpolicy_binding.py
benfinke/ns_python
d651d7aa01d7dc63c1cd435c7b3314d7f5b26659
[ "Apache-2.0" ]
6
2015-04-21T13:14:08.000Z
2020-12-03T07:27:52.000Z
# # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class authenticationvserver_authenticationsamlpolicy_binding(base_resource) : """ Binding class showing the authenticationsamlpolicy that can be bound to authenticationvserver. """ def __init__(self) : self._policy = "" self._priority = 0 self._acttype = 0 self._secondary = False self._name = "" self._groupextraction = False self._nextfactor = "" self._gotopriorityexpression = "" self.___count = 0 @property def priority(self) : ur"""The priority, if any, of the vpn vserver policy. """ try : return self._priority except Exception as e: raise e @priority.setter def priority(self, priority) : ur"""The priority, if any, of the vpn vserver policy. """ try : self._priority = priority except Exception as e: raise e @property def name(self) : ur"""Name of the authentication virtual server to which to bind the policy.<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : ur"""Name of the authentication virtual server to which to bind the policy.<br/>Minimum length = 1 """ try : self._name = name except Exception as e: raise e @property def nextfactor(self) : ur"""Applicable only while binding advance authentication policy as classic authentication policy does not support nFactor. """ try : return self._nextfactor except Exception as e: raise e @nextfactor.setter def nextfactor(self, nextfactor) : ur"""Applicable only while binding advance authentication policy as classic authentication policy does not support nFactor """ try : self._nextfactor = nextfactor except Exception as e: raise e @property def gotopriorityexpression(self) : ur"""Applicable only to advance authentication policy. Expression or other value specifying the next policy to be evaluated if the current policy evaluates to TRUE. Specify one of the following values: * NEXT - Evaluate the policy with the next higher priority number. * END - End policy evaluation. * USE_INVOCATION_RESULT - Applicable if this policy invokes another policy label. If the final goto in the invoked policy label has a value of END, the evaluation stops. If the final goto is anything other than END, the current policy label performs a NEXT. * A default syntax expression that evaluates to a number. If you specify an expression, the number to which it evaluates determines the next policy to evaluate, as follows: * If the expression evaluates to a higher numbered priority, the policy with that priority is evaluated next. * If the expression evaluates to the priority of the current policy, the policy with the next higher numbered priority is evaluated next. * If the expression evaluates to a priority number that is numerically higher than the highest numbered priority, policy evaluation ends. An UNDEF event is triggered if: * The expression is invalid. * The expression evaluates to a priority number that is numerically lower than the current policy's priority. * The expression evaluates to a priority number that is between the current policy's priority number (say, 30) and the highest priority number (say, 100), but does not match any configured priority number (for example, the expression evaluates to the number 85). This example assumes that the priority number increments by 10 for every successive policy, and therefore a priority number of 85 does not exist in the policy label. """ try : return self._gotopriorityexpression except Exception as e: raise e @gotopriorityexpression.setter def gotopriorityexpression(self, gotopriorityexpression) : ur"""Applicable only to advance authentication policy. Expression or other value specifying the next policy to be evaluated if the current policy evaluates to TRUE. Specify one of the following values: * NEXT - Evaluate the policy with the next higher priority number. * END - End policy evaluation. * USE_INVOCATION_RESULT - Applicable if this policy invokes another policy label. If the final goto in the invoked policy label has a value of END, the evaluation stops. If the final goto is anything other than END, the current policy label performs a NEXT. * A default syntax expression that evaluates to a number. If you specify an expression, the number to which it evaluates determines the next policy to evaluate, as follows: * If the expression evaluates to a higher numbered priority, the policy with that priority is evaluated next. * If the expression evaluates to the priority of the current policy, the policy with the next higher numbered priority is evaluated next. * If the expression evaluates to a priority number that is numerically higher than the highest numbered priority, policy evaluation ends. An UNDEF event is triggered if: * The expression is invalid. * The expression evaluates to a priority number that is numerically lower than the current policy's priority. * The expression evaluates to a priority number that is between the current policy's priority number (say, 30) and the highest priority number (say, 100), but does not match any configured priority number (for example, the expression evaluates to the number 85). This example assumes that the priority number increments by 10 for every successive policy, and therefore a priority number of 85 does not exist in the policy label. """ try : self._gotopriorityexpression = gotopriorityexpression except Exception as e: raise e @property def secondary(self) : ur"""Bind the authentication policy to the secondary chain. Provides for multifactor authentication in which a user must authenticate via both a primary authentication method and, afterward, via a secondary authentication method. Because user groups are aggregated across authentication systems, usernames must be the same on all authentication servers. Passwords can be different. """ try : return self._secondary except Exception as e: raise e @secondary.setter def secondary(self, secondary) : ur"""Bind the authentication policy to the secondary chain. Provides for multifactor authentication in which a user must authenticate via both a primary authentication method and, afterward, via a secondary authentication method. Because user groups are aggregated across authentication systems, usernames must be the same on all authentication servers. Passwords can be different. """ try : self._secondary = secondary except Exception as e: raise e @property def policy(self) : ur"""The name of the policy, if any, bound to the authentication vserver. """ try : return self._policy except Exception as e: raise e @policy.setter def policy(self, policy) : ur"""The name of the policy, if any, bound to the authentication vserver. """ try : self._policy = policy except Exception as e: raise e @property def groupextraction(self) : ur"""Applicable only while bindind classic authentication policy as advance authentication policy use nFactor. """ try : return self._groupextraction except Exception as e: raise e @groupextraction.setter def groupextraction(self, groupextraction) : ur"""Applicable only while bindind classic authentication policy as advance authentication policy use nFactor """ try : self._groupextraction = groupextraction except Exception as e: raise e @property def acttype(self) : try : return self._acttype except Exception as e: raise e def _get_nitro_response(self, service, response) : ur""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(authenticationvserver_authenticationsamlpolicy_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.authenticationvserver_authenticationsamlpolicy_binding except Exception as e : raise e def _get_object_name(self) : ur""" Returns the value of object identifier argument """ try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def add(cls, client, resource) : try : if resource and type(resource) is not list : updateresource = authenticationvserver_authenticationsamlpolicy_binding() updateresource.name = resource.name updateresource.policy = resource.policy updateresource.priority = resource.priority updateresource.secondary = resource.secondary updateresource.groupextraction = resource.groupextraction updateresource.nextfactor = resource.nextfactor updateresource.gotopriorityexpression = resource.gotopriorityexpression return updateresource.update_resource(client) else : if resource and len(resource) > 0 : updateresources = [authenticationvserver_authenticationsamlpolicy_binding() for _ in range(len(resource))] for i in range(len(resource)) : updateresources[i].name = resource[i].name updateresources[i].policy = resource[i].policy updateresources[i].priority = resource[i].priority updateresources[i].secondary = resource[i].secondary updateresources[i].groupextraction = resource[i].groupextraction updateresources[i].nextfactor = resource[i].nextfactor updateresources[i].gotopriorityexpression = resource[i].gotopriorityexpression return cls.update_bulk_request(client, updateresources) except Exception as e : raise e @classmethod def delete(cls, client, resource) : try : if resource and type(resource) is not list : deleteresource = authenticationvserver_authenticationsamlpolicy_binding() deleteresource.name = resource.name deleteresource.policy = resource.policy deleteresource.secondary = resource.secondary deleteresource.groupextraction = resource.groupextraction return deleteresource.delete_resource(client) else : if resource and len(resource) > 0 : deleteresources = [authenticationvserver_authenticationsamlpolicy_binding() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i].name = resource[i].name deleteresources[i].policy = resource[i].policy deleteresources[i].secondary = resource[i].secondary deleteresources[i].groupextraction = resource[i].groupextraction return cls.delete_bulk_request(client, deleteresources) except Exception as e : raise e @classmethod def get(cls, service, name) : ur""" Use this API to fetch authenticationvserver_authenticationsamlpolicy_binding resources. """ try : obj = authenticationvserver_authenticationsamlpolicy_binding() obj.name = name response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, name, filter_) : ur""" Use this API to fetch filtered set of authenticationvserver_authenticationsamlpolicy_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = authenticationvserver_authenticationsamlpolicy_binding() obj.name = name option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, name) : ur""" Use this API to count authenticationvserver_authenticationsamlpolicy_binding resources configued on NetScaler. """ try : obj = authenticationvserver_authenticationsamlpolicy_binding() obj.name = name option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, name, filter_) : ur""" Use this API to count the filtered set of authenticationvserver_authenticationsamlpolicy_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = authenticationvserver_authenticationsamlpolicy_binding() obj.name = name option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class authenticationvserver_authenticationsamlpolicy_binding_response(base_response) : def __init__(self, length=1) : self.authenticationvserver_authenticationsamlpolicy_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.authenticationvserver_authenticationsamlpolicy_binding = [authenticationvserver_authenticationsamlpolicy_binding() for _ in range(length)]
40.666667
430
0.759327
4a1639c03c4272df2e3f1348fd446f04d01a8fa0
1,430
py
Python
examples/pylab_examples/pcolor_demo.py
SoftwareDev/mat-plot-lib
abaf94859d5ef6e653a4d8a7ce2c59cea1724a57
[ "MIT", "BSD-3-Clause" ]
16
2016-06-14T19:45:35.000Z
2020-11-30T19:02:58.000Z
lib/mpl_examples/pylab_examples/pcolor_demo.py
yingkailiang/matplotlib
255a79b106c98c1904489afe6a754e4d943179d6
[ "MIT", "BSD-3-Clause" ]
7
2015-05-08T19:36:25.000Z
2015-06-30T15:32:17.000Z
lib/mpl_examples/pylab_examples/pcolor_demo.py
yingkailiang/matplotlib
255a79b106c98c1904489afe6a754e4d943179d6
[ "MIT", "BSD-3-Clause" ]
6
2015-06-05T03:34:06.000Z
2022-01-25T09:07:10.000Z
""" Demonstrates similarities between pcolor, pcolormesh, imshow and pcolorfast for drawing quadrilateral grids. """ import matplotlib.pyplot as plt import numpy as np # make these smaller to increase the resolution dx, dy = 0.15, 0.05 # generate 2 2d grids for the x & y bounds y, x = np.mgrid[slice(-3, 3 + dy, dy), slice(-3, 3 + dx, dx)] z = (1 - x / 2. + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2) # x and y are bounds, so z should be the value *inside* those bounds. # Therefore, remove the last value from the z array. z = z[:-1, :-1] z_min, z_max = -np.abs(z).max(), np.abs(z).max() plt.subplot(2, 2, 1) plt.pcolor(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max) plt.title('pcolor') # set the limits of the plot to the limits of the data plt.axis([x.min(), x.max(), y.min(), y.max()]) plt.colorbar() plt.subplot(2, 2, 2) plt.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max) plt.title('pcolormesh') # set the limits of the plot to the limits of the data plt.axis([x.min(), x.max(), y.min(), y.max()]) plt.colorbar() plt.subplot(2, 2, 3) plt.imshow(z, cmap='RdBu', vmin=z_min, vmax=z_max, extent=[x.min(), x.max(), y.min(), y.max()], interpolation='nearest', origin='lower') plt.title('image (interp. nearest)') plt.colorbar() ax = plt.subplot(2, 2, 4) ax.pcolorfast(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max) plt.title('pcolorfast') plt.colorbar() plt.show()
25.087719
75
0.632168
4a1639c330ae085f7fbdbd6206b78bacc3efb0d7
16,552
py
Python
localstack/services/iam/iam_starter.py
VanRoy/localstack
39f1a1c034ae345f87a1485d717428b59308e6fc
[ "Apache-2.0" ]
1
2022-01-05T10:10:38.000Z
2022-01-05T10:10:38.000Z
localstack/services/iam/iam_starter.py
VanRoy/localstack
39f1a1c034ae345f87a1485d717428b59308e6fc
[ "Apache-2.0" ]
null
null
null
localstack/services/iam/iam_starter.py
VanRoy/localstack
39f1a1c034ae345f87a1485d717428b59308e6fc
[ "Apache-2.0" ]
null
null
null
import json import re from copy import deepcopy from urllib.parse import quote import xmltodict from moto.iam.models import ( AWSManagedPolicy, IAMNotFoundException, InlinePolicy, Policy, Role, aws_managed_policies, aws_managed_policies_data_parsed, ) from moto.iam.models import iam_backend as moto_iam_backend from moto.iam.policy_validation import VALID_STATEMENT_ELEMENTS, IAMPolicyDocumentValidator from moto.iam.responses import ( GENERIC_EMPTY_TEMPLATE, GET_ROLE_TEMPLATE, LIST_ROLES_TEMPLATE, IamResponse, ) from localstack import config, constants from localstack.services.infra import start_moto_server from localstack.utils.common import short_uid from localstack.utils.patch import patch XMLNS_IAM = "https://iam.amazonaws.com/doc/2010-05-08/" USER_RESPONSE_TEMPLATE = """<{{ action }}UserResponse> <{{ action }}UserResult> <User> <Path>{{ user.path }}</Path> <UserName>{{ user.name }}</UserName> <UserId>{{ user.id }}</UserId> <Arn>{{ user.arn }}</Arn> <CreateDate>{{ user.created_iso_8601 }}</CreateDate> <Tags> {% for tag in user.tags %}<member> <Key>{{ tag.Key }}</Key> <Value>{{ tag.Value }}</Value> </member>{% endfor %} </Tags> </User> </{{ action }}UserResult> <ResponseMetadata> <RequestId>{{request_id}}</RequestId> </ResponseMetadata> </{{ action }}UserResponse>""" ADDITIONAL_MANAGED_POLICIES = { "AWSLambdaExecute": { "Arn": "arn:aws:iam::aws:policy/AWSLambdaExecute", "Path": "/", "CreateDate": "2017-10-20T17:23:10+00:00", "DefaultVersionId": "v4", "Document": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": ["logs:*"], "Resource": "arn:aws:logs:*:*:*", }, { "Effect": "Allow", "Action": ["s3:GetObject", "s3:PutObject"], "Resource": "arn:aws:s3:::*", }, ], }, "UpdateDate": "2019-05-20T18:22:18+00:00", } } SIMULATE_PRINCIPAL_POLICY_RESPONSE = """ <SimulatePrincipalPolicyResponse xmlns="__xmlns__"> <SimulatePrincipalPolicyResult> <IsTruncated>false</IsTruncated> <EvaluationResults> {% for eval in evaluations %} <member> <MatchedStatements> <member> <SourcePolicyId>PolicyInputList.1</SourcePolicyId> <EndPosition> <Column>4</Column> <Line>7</Line> </EndPosition> <StartPosition> <Column>16</Column> <Line>3</Line> </StartPosition> </member> </MatchedStatements> <MissingContextValues/> <EvalResourceName>{{eval.resourceName}}</EvalResourceName> <EvalDecision>{{eval.decision}}</EvalDecision> <EvalActionName>{{eval.actionName}}</EvalActionName> </member> {% endfor %} </EvaluationResults> </SimulatePrincipalPolicyResult> <ResponseMetadata> <RequestId>004d7059-4c14-11e5-b121-bd8c7EXAMPLE</RequestId> </ResponseMetadata> </SimulatePrincipalPolicyResponse>""".replace( "__xmlns__", XMLNS_IAM ) class AWSManagedPolicyUSGov(AWSManagedPolicy): # Fix missing regions in managed policies (e.g., aws-us-gov). Note: make sure to keep at global scope here # TODO: possibly find a more efficient way for this - e.g., lazy loading of policies in special regions @property def arn(self): return "arn:aws-us-gov:iam::aws:policy{0}{1}".format(self.path, self.name) def apply_patches(): # Add missing managed polices aws_managed_policies.extend( [AWSManagedPolicy.from_data(k, v) for k, v in ADDITIONAL_MANAGED_POLICIES.items()] ) if "Principal" not in VALID_STATEMENT_ELEMENTS: VALID_STATEMENT_ELEMENTS.append("Principal") @patch(IAMPolicyDocumentValidator._validate_resource_syntax, pass_target=False) def _validate_resource_syntax(statement, *args, **kwargs): # Note: Serverless generates policies without "Resource" section (only "Effect"/"Principal"/"Action"), # which causes several policy validators in moto to fail if statement.get("Resource") in [None, [None]]: statement["Resource"] = ["*"] # patch get_user to include tags @patch(IamResponse.get_user) def iam_response_get_user(fn, self): result = fn(self) regex = r"(.*<UserName>\s*)([^\s]+)(\s*</UserName>.*)" regex2 = r"(.*<UserId>\s*)([^\s]+)(\s*</UserId>.*)" flags = re.MULTILINE | re.DOTALL user_name = re.match(regex, result, flags=flags).group(2) # replace default user id/name in response if config.TEST_IAM_USER_NAME: result = re.sub(regex, r"\g<1>%s\3" % config.TEST_IAM_USER_NAME, result) user_name = config.TEST_IAM_USER_NAME if config.TEST_IAM_USER_ID: result = re.sub(regex2, r"\g<1>%s\3" % config.TEST_IAM_USER_ID, result) user = moto_iam_backend.users.get(user_name) if not user: return result tags = moto_iam_backend.tagger.list_tags_for_resource(user.arn) if tags and "<Tags>" not in result: tags_str = "".join( [ "<member><Key>%s</Key><Value>%s</Value></member>" % (t["Key"], t["Value"]) for t in tags["Tags"] ] ) result = result.replace("</Arn>", "</Arn><Tags>%s</Tags>" % tags_str) return result # patch delete_policy @patch(IamResponse.delete_policy, pass_target=False) def iam_response_delete_policy(self): policy_arn = self._get_param("PolicyArn") if moto_iam_backend.managed_policies.get(policy_arn): moto_iam_backend.managed_policies.pop(policy_arn, None) template = self.response_template(GENERIC_EMPTY_TEMPLATE) return template.render(name="DeletePolicy") else: raise IAMNotFoundException("Policy {0} was not found.".format(policy_arn)) # patch detach_role_policy @patch(moto_iam_backend.detach_role_policy, pass_target=False) def iam_backend_detach_role_policy(policy_arn, role_name): try: role = moto_iam_backend.get_role(role_name) policy = role.managed_policies[policy_arn] policy.detach_from(role) except KeyError: raise IAMNotFoundException("Policy {0} was not found.".format(policy_arn)) # patch/implement simulate_principal_policy def iam_response_simulate_principal_policy(self): def build_evaluation(action_name, resource_name, policy_statements): for statement in policy_statements: # TODO Implement evaluation logic here if ( action_name in statement["Action"] and resource_name in statement["Resource"] and statement["Effect"] == "Allow" ): return { "actionName": action_name, "resourceName": resource_name, "decision": "allowed", "matchedStatements": [], } return { "actionName": action_name, "resourceName": resource_name, "decision": "explicitDeny", } policy = moto_iam_backend.get_policy(self._get_param("PolicySourceArn")) policy_statements = json.loads(policy.document)["Statement"] actions = self._get_multi_param("ActionNames.member") resource_arns = self._get_multi_param("ResourceArns.member") evaluations = [] for action in actions: for resource_arn in resource_arns: evaluations.append(build_evaluation(action, resource_arn, policy_statements)) template = self.response_template(SIMULATE_PRINCIPAL_POLICY_RESPONSE) return template.render(evaluations=evaluations) if not hasattr(IamResponse, "simulate_principal_policy"): IamResponse.simulate_principal_policy = iam_response_simulate_principal_policy # patch policy __init__ to set document as attribute @patch(Policy.__init__) def policy__init__( fn, self, name, default_version_id=None, description=None, document=None, **kwargs ): fn(self, name, default_version_id, description, document, **kwargs) self.document = document # patch list_roles @patch(IamResponse.list_roles, pass_target=False) def iam_response_list_roles(self): roles = moto_iam_backend.get_roles() items = [] for role in roles: item = deepcopy(role) item.assume_role_policy_document = quote( json.dumps(item.assume_role_policy_document or {}) ) items.append(item) prefix = self._get_param("PathPrefix") if prefix: filtered_roles = [] for role in roles: if role.path.startswith(prefix): filtered_roles.append(role) items = filtered_roles template = self.response_template(LIST_ROLES_TEMPLATE) return template.render(roles=items) # patch unapply_policy @patch(InlinePolicy.unapply_policy) def inline_policy_unapply_policy(fn, self, backend): try: fn(self, backend) except Exception: # Actually role can be deleted before policy being deleted in cloudformation pass # support update_group def update_group(self): group_name = self._get_param("GroupName") new_path = self._get_param("NewPath") new_group_name = self._get_param("NewGroupName") or group_name group = moto_iam_backend.get_group(group_name) group.path = new_path group.name = new_group_name moto_iam_backend.groups[new_group_name] = moto_iam_backend.groups.pop(group_name) return "" # TODO: potentially extend @patch utility to allow "conditional" patches like below ... if not hasattr(IamResponse, "update_group"): IamResponse.update_group = update_group # support instance profile tags def list_instance_profile_tags(self): profile_name = self._get_param("InstanceProfileName") profile = moto_iam_backend.get_instance_profile(profile_name) result = { "ListInstanceProfileTagsResponse": { "@xmlns": XMLNS_IAM, "ListInstanceProfileTagsResult": {"Tags": profile.tags}, } } return xmltodict.unparse(result) if not hasattr(IamResponse, "list_instance_profile_tags"): IamResponse.list_instance_profile_tags = list_instance_profile_tags # patch/implement tag_instance_profile def tag_instance_profile(self): profile_name = self._get_param("InstanceProfileName") tags = self._get_multi_param("Tags.member") tags = {tag["Key"]: tag["Value"] for tag in tags or []} profile = moto_iam_backend.get_instance_profile(profile_name) profile.tags.update(tags) return "" if not hasattr(IamResponse, "tag_instance_profile"): IamResponse.tag_instance_profile = tag_instance_profile # patch/implement untag_instance_profile def untag_instance_profile(self): profile_name = self._get_param("InstanceProfileName") tag_keys = self._get_multi_param("TagKeys.member") profile = moto_iam_backend.get_instance_profile(profile_name) profile.tags = {k: v for k, v in profile.tags.items() if k not in tag_keys} return "" if not hasattr(IamResponse, "untag_instance_profile"): IamResponse.untag_instance_profile = untag_instance_profile # support policy tags def tag_policy(self): policy_arn = self._get_param("PolicyArn") tags = self._get_multi_param("Tags.member") tags = {tag["Key"]: tag["Value"] for tag in tags or []} policy = moto_iam_backend.get_policy(policy_arn) policy.tags.update(tags) return "" if not hasattr(IamResponse, "tag_policy"): IamResponse.tag_policy = tag_policy def untag_policy(self): policy_arn = self._get_param("PolicyArn") tag_keys = self._get_multi_param("TagKeys.member") policy = moto_iam_backend.get_policy(policy_arn) policy.tags = {k: v for k, v in policy.tags.items() if k not in tag_keys} return "" if not hasattr(IamResponse, "untag_policy"): IamResponse.untag_policy = untag_policy # support service linked roles if not hasattr(IamResponse, "create_service_linked_role"): @property def role_arn(self): return getattr(self, "service_linked_role_arn", None) or role_arn_orig.__get__(self) role_arn_orig = Role.arn Role.arn = role_arn def create_service_linked_role(self): name_prefix = "service-linked-role" service_name = self._get_param("AWSServiceName") description = self._get_param("Description") # TODO: how to support "CustomSuffix" API request parameter? policy_doc = json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": {"Service": service_name}, "Action": "sts:AssumeRole", } ], } ) role = moto_iam_backend.create_role( role_name="%s-%s" % (name_prefix, short_uid()), assume_role_policy_document=policy_doc, path="/", permissions_boundary="", description=description, tags={}, max_session_duration=3600, ) template = self.response_template(GET_ROLE_TEMPLATE) role.service_linked_role_arn = "arn:aws:iam::{0}:role/aws-service-role/{1}/{2}".format( constants.TEST_AWS_ACCOUNT_ID, service_name, role.name ) result = re.sub( r"<(/)?GetRole", r"<\1CreateServiceLinkedRole", template.render(role=role), ) return result IamResponse.create_service_linked_role = create_service_linked_role if not hasattr(IamResponse, "delete_service_linked_role"): def delete_service_linked_role(self): role_name = self._get_param("RoleName") moto_iam_backend.delete_role(role_name) result = { "DeleteServiceLinkedRoleResponse": { "@xmlns": XMLNS_IAM, "DeleteServiceLinkedRoleResult": {"DeletionTaskId": short_uid()}, } } return xmltodict.unparse(result) IamResponse.delete_service_linked_role = delete_service_linked_role if not hasattr(IamResponse, "get_service_linked_role_deletion_status"): def get_service_linked_role_deletion_status(self): result = { "GetServiceLinkedRoleDeletionStatusResponse": { "@xmlns": XMLNS_IAM, "GetServiceLinkedRoleDeletionStatusResult": {"Status": "SUCCEEDED"}, } } return xmltodict.unparse(result) IamResponse.get_service_linked_role_deletion_status = ( get_service_linked_role_deletion_status ) managed_policies = moto_iam_backend.managed_policies if "arn:aws-us-gov:iam::aws:policy/AmazonRDSFullAccess" not in managed_policies: for name, data in aws_managed_policies_data_parsed.items(): policy = AWSManagedPolicyUSGov.from_data(name, data) if policy.arn not in moto_iam_backend.managed_policies: moto_iam_backend.managed_policies[policy.arn] = policy def start_iam(port=None, asynchronous=False, update_listener=None): port = port or config.PORT_IAM apply_patches() return start_moto_server( "iam", port, name="IAM", asynchronous=asynchronous, update_listener=update_listener, )
36.378022
110
0.615636
4a163a994467f842fc7c92c8fb4d308e24ed3d7c
1,156
py
Python
main/slang/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
null
null
null
main/slang/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
null
null
null
main/slang/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
null
null
null
pkgname = "slang" pkgver = "2.3.2" pkgrel = 0 build_style = "gnu_configure" make_cmd = "gmake" make_dir = "." hostmakedepends = ["gmake", "pkgconf", "ncurses-devel"] makedepends = [ "ncurses-devel", "zlib-devel", "pcre-devel", "libpng-devel", "oniguruma-devel" ] pkgdesc = "S-Lang programming library" maintainer = "q66 <q66@chimera-linux.org>" license = "GPL-2.0-or-later" url = "https://www.jedsoft.org/slang" source = f"https://www.jedsoft.org/releases/{pkgname}/{pkgname}-{pkgver}.tar.bz2" sha256 = "fc9e3b0fc4f67c3c1f6d43c90c16a5c42d117b8e28457c5b46831b8b5d3ae31a" # racey options = ["!parallel"] def init_configure(self): sroot = str(self.profile().sysroot / "usr") self.configure_args += [ f"--with-z={sroot}", f"--with-pcre={sroot}", f"--with-png={sroot}", f"--with-onig={sroot}" ] # force it to use CFLAGS too during linking self.configure_env = { "LDFLAGS": self.get_cflags(shell = True) + " " + \ self.get_ldflags(shell = True) } def post_install(self): self.install_license("COPYING") @subpackage("slang-devel") def _devel(self): return self.default_devel()
29.641026
81
0.656574
4a163aad983f267602f530c6aa186eb0402edadd
4,476
py
Python
python/tests/test_logger_interceptors.py
meyskens/lookout-sdk
805d0d61ca97120a257283780790ff2458a6ef29
[ "Apache-2.0" ]
5
2018-12-17T11:22:31.000Z
2019-03-14T02:50:43.000Z
python/tests/test_logger_interceptors.py
meyskens/lookout-sdk
805d0d61ca97120a257283780790ff2458a6ef29
[ "Apache-2.0" ]
64
2018-08-31T10:41:36.000Z
2019-12-14T15:01:13.000Z
python/tests/test_logger_interceptors.py
meyskens/lookout-sdk
805d0d61ca97120a257283780790ff2458a6ef29
[ "Apache-2.0" ]
16
2018-08-30T20:33:55.000Z
2021-08-09T05:37:06.000Z
from concurrent.futures import ThreadPoolExecutor import unittest import grpc from lookout.sdk import pb from lookout.sdk.service_data import DataStub from lookout.sdk.grpc import create_channel, create_server, \ LogUnaryServerInterceptor, \ LogStreamServerInterceptor, \ LogUnaryClientInterceptor, \ LogStreamClientInterceptor from lookout.sdk import event_pb2 from lookout.sdk.test import mixins class DummyAnalyzer(pb.AnalyzerServicer): def notify_review_event(self, request, context): return pb.EventResponse() def notify_push_event(self, request, context): return pb.EventResponse() class DummyDataServicer(pb.DataServicer): def GetChanges(self, request, context): return pb.Change() def GetFiles(self, request, context): return pb.File() class TestServerLoggerInterceptors(mixins.TestWithRunningServicerMixin, unittest.TestCase): def build_server(self): server = create_server(10, interceptors=[ LogUnaryServerInterceptor(self._tracker.unary), LogStreamServerInterceptor(self._tracker.stream), ]) pb.add_analyzer_to_server(DummyAnalyzer(), server) return server def test_interceptors_called(self): with create_channel(self._target) as channel: stub = pb.AnalyzerStub(channel) stub.NotifyReviewEvent(event_pb2.ReviewEvent()) self.assertEqual(self._tracker.counter, {"unary": 2, "stream": 0}) first_unary = self._tracker.logs[0] first_log_fields = first_unary[0] self.assertEqual(first_log_fields, { "system": "grpc", "span.kind": "server", "grpc.service": "pb.Analyzer", "grpc.method": "NotifyReviewEvent", }) self.assertEqual(first_unary[1], "gRPC unary server call started") second_unary = self._tracker.logs[1] second_log_fields = second_unary[0] self.assertEqual(set(second_log_fields.keys()), {"system", "span.kind", "grpc.service", "grpc.method", "grpc.code", "grpc.start_time", "duration"}) second_log_fields.pop("grpc.start_time") second_log_fields.pop("duration") self.assertEqual(second_log_fields, { "system": "grpc", "span.kind": "server", "grpc.service": "pb.Analyzer", "grpc.method": "NotifyReviewEvent", "grpc.code": "OK" }) self.assertEqual(second_unary[1], "gRPC unary server call finished") class TestClientLoggerInterceptors(mixins.TestWithRunningServicerMixin, unittest.TestCase): def build_server(self): server = grpc.server(ThreadPoolExecutor(max_workers=10)) pb.add_dataservicer_to_server(DummyDataServicer(), server) return server def test_interceptors_called(self): with create_channel(self._target, interceptors=[ LogUnaryClientInterceptor(self._tracker.unary), LogStreamClientInterceptor(self._tracker.stream), ]) as channel: stub = DataStub(channel) stub.get_changes(None, pb.ChangesRequest()) self.assertEqual(self._tracker.counter, {"unary": 0, "stream": 2}) first_streaming = self._tracker.logs[0] first_log_fields = first_streaming[0] self.assertEqual(first_log_fields, { "system": "grpc", "span.kind": "client", "grpc.service": "pb.Data", "grpc.method": "GetChanges", }) self.assertEqual(first_streaming[1], "gRPC streaming client call started") second_streaming = self._tracker.logs[1] second_log_fields = second_streaming[0] self.assertEqual(set(second_log_fields.keys()), {"system", "span.kind", "grpc.service", "grpc.method", "grpc.code", "grpc.start_time", "duration"}) second_log_fields.pop("grpc.start_time") second_log_fields.pop("duration") self.assertEqual(second_log_fields, { "system": "grpc", "span.kind": "client", "grpc.service": "pb.Data", "grpc.method": "GetChanges", "grpc.code": "OK" }) self.assertEqual(second_streaming[1], "gRPC streaming client call finished")
34.430769
79
0.621314
4a163ae1135a7594307b5a8d3fa3c8d961198b4c
520
py
Python
Python/Exercícios_Python/034_maior_e_menor_valor.py
vdonoladev/aprendendo-programacao
83abbcd6701b2105903b28fd549738863418cfb8
[ "MIT" ]
null
null
null
Python/Exercícios_Python/034_maior_e_menor_valor.py
vdonoladev/aprendendo-programacao
83abbcd6701b2105903b28fd549738863418cfb8
[ "MIT" ]
null
null
null
Python/Exercícios_Python/034_maior_e_menor_valor.py
vdonoladev/aprendendo-programacao
83abbcd6701b2105903b28fd549738863418cfb8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """034 - Maior e menor valor Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1tR5I-76SVFX8tPZ8l2JrakHqZregyIRU """ primeiro = int(input('Digite o primeiro número: ')) segundo = int(input('Digite o segundo número: ')) terceiro = int(input('Digite o terceiro número: ')) numeros = [primeiro, segundo, terceiro] print('O maior valor digitado foi {}'.format(max(numeros))) print('O menor valor digitado foi {}'.format(min(numeros)))
34.666667
77
0.725
4a163c31d64452f163118d42d84d5f171f047ce0
5,135
py
Python
tasrif/processing_pipeline/pandas/json_normalize_operator.py
qcri/tasrif
327bc1eccb8f8e11d8869ba65a7c72ad038aa094
[ "BSD-3-Clause" ]
20
2021-12-06T10:41:54.000Z
2022-03-13T16:25:43.000Z
tasrif/processing_pipeline/pandas/json_normalize_operator.py
qcri/tasrif
327bc1eccb8f8e11d8869ba65a7c72ad038aa094
[ "BSD-3-Clause" ]
33
2021-12-06T08:27:18.000Z
2022-03-14T05:07:53.000Z
tasrif/processing_pipeline/pandas/json_normalize_operator.py
qcri/tasrif
327bc1eccb8f8e11d8869ba65a7c72ad038aa094
[ "BSD-3-Clause" ]
2
2022-02-07T08:06:48.000Z
2022-02-14T07:13:42.000Z
""" Normalize semi-structured JSON data into a flat table. """ import warnings import pandas as pd from tasrif.processing_pipeline import PandasOperator class JsonNormalizeOperator(PandasOperator): """ Examples -------- >>> from tasrif.processing_pipeline.pandas import JsonNormalizeOperator >>> data = [ ... { ... "date": "2019-05-02", ... "main_sleep": True, ... "data": { ... "total_sleep": 365, ... "time_series": [{ ... "dateTime" : "2019-05-02T00:18:00.000", ... "level" : "light", ... "seconds" : 2130 ... },{ ... "dateTime" : "2019-05-02T00:53:30.000", ... "level" : "deep", ... "seconds" : 540 ... },{ ... "dateTime" : "2019-05-02T01:02:30.000", ... "level" : "light", ... "seconds" : 870 ... },{ ... "dateTime" : "2019-05-02T01:17:00.000", ... "level" : "rem", ... "seconds" : 660 ... },{ ... "dateTime" : "2019-05-02T01:28:00.000", ... "level" : "light", ... "seconds" : 1230 ... },{ ... "dateTime" : "2019-05-02T01:48:30.000", ... "level" : "wake", ... "seconds" : 210 ... }] ... } ... }, ... { ... "date": "2019-04-29", ... "main_sleep": True, ... "data": { ... "total_sleep": 456, ... "time_series": [{ ... "dateTime" : "2019-04-29T23:46:00.000", ... "level" : "wake", ... "seconds" : 300 ... },{ ... "dateTime" : "2019-04-29T23:51:00.000", ... "level" : "light", ... "seconds" : 660 ... },{ ... "dateTime" : "2019-04-30T00:02:00.000", ... "level" : "deep", ... "seconds" : 450 ... },{ ... "dateTime" : "2019-04-30T00:09:30.000", ... "level" : "light", ... "seconds" : 2070 ... }] ... } ... } ... ] >>> >>> op = JsonNormalizeOperator(record_path=['data', 'time_series'], ... meta=['date', 'main_sleep', ['data', 'total_sleep']]) >>> >>> df = op.process(data) >>> print(df) [ dateTime level seconds date main_sleep data.total_sleep 0 2019-05-02T00:18:00.000 light 2130 2019-05-02 True 365 1 2019-05-02T00:53:30.000 deep 540 2019-05-02 True 365 2 2019-05-02T01:02:30.000 light 870 2019-05-02 True 365 3 2019-05-02T01:17:00.000 rem 660 2019-05-02 True 365 4 2019-05-02T01:28:00.000 light 1230 2019-05-02 True 365 5 2019-05-02T01:48:30.000 wake 210 2019-05-02 True 365 6 2019-04-29T23:46:00.000 wake 300 2019-04-29 True 456 7 2019-04-29T23:51:00.000 light 660 2019-04-29 True 456 8 2019-04-30T00:02:00.000 deep 450 2019-04-29 True 456 9 2019-04-30T00:09:30.000 light 2070 2019-04-29 True 456 ] """ def __init__(self, **kwargs): """ Initializes the operator Args: **kwargs: key word arguments passed to pandas DataFrame.dropna method """ super().__init__(kwargs) self.kwargs = kwargs def _process(self, *data_frames): """Process the passed data using the processing configuration specified in the constructor Args: data_frames (list of pd.DataFrame): Variable number of arrays of python dictionaries (representing JSON data) to be processed Returns: data_frames (list of pd.DataFrame): Processed data frames """ processed = [] for dataframe in data_frames: if ( isinstance(dataframe, list) and len(dataframe) == 1 and isinstance(dataframe[0], list) ): dataframe = dataframe[0] dataframe = pd.json_normalize(dataframe, **self.kwargs) processed.append(dataframe) return processed def _validate(self, *data_frames): """ Validation hook that is run before any processing happens. Checks if any input is not a dict or list. """ for data_frame in data_frames: if not isinstance(data_frame, (dict, list)): warnings.warn('One or more inputs are not dict in JsonNormalizeOperator.')
36.678571
103
0.42999
4a163c3b81574feeb16084479b4df6f5eff34b61
2,319
py
Python
kalman_test_script.py
cunningham-lab/cyclic-gps
b11fa959afb0dc50e83e5c8c679981a74dc28f2a
[ "MIT" ]
null
null
null
kalman_test_script.py
cunningham-lab/cyclic-gps
b11fa959afb0dc50e83e5c8c679981a74dc28f2a
[ "MIT" ]
null
null
null
kalman_test_script.py
cunningham-lab/cyclic-gps
b11fa959afb0dc50e83e5c8c679981a74dc28f2a
[ "MIT" ]
1
2022-02-19T22:36:14.000Z
2022-02-19T22:36:14.000Z
import torch from torch.utils.data import DataLoader import pytorch_lightning as pl import scipy as sp import scipy.ndimage from cyclic_gps.models import LEGFamily from cyclic_gps.data_utils import time_series_dataset import matplotlib.pyplot as plt from cyclic_gps.kalman import init_kalman_filter, get_state_estimates import filterpy from filterpy.kalman import KalmanFilter num_datapoints = 100 sample1_ts = torch.empty(num_datapoints) #sample1_ts = torch.cumsum(sample1_ts.exponential_(lambd=1) + 0.01, dim=0) sample1_ts = torch.cumsum(torch.ones(num_datapoints), dim=0) #starting with uniform time steps sample1_vals = torch.tensor( sp.ndimage.gaussian_filter1d(torch.randn(num_datapoints), 10, axis=0)[:, None] ) sample2_vals = torch.tensor( sp.ndimage.gaussian_filter1d(torch.randn(num_datapoints), 10, axis=0)[:, None] ) vals = torch.cat([sample1_vals, sample2_vals], dim=-1) assert vals.shape == (num_datapoints, 2) assert sample1_ts.shape == (num_datapoints,) # plt.scatter(sample1_ts, vals[:, 0]) # plt.scatter(sample1_ts, vals[:, 1]) # plt.show() dataset = time_series_dataset(sample1_ts.unsqueeze(0), vals.unsqueeze(0)) example = dataset[0] assert torch.allclose(example[0], sample1_ts.unsqueeze(0)) # we're getting our data plus one batch element dl = DataLoader(dataset=dataset, batch_size=1) RANK = 5 MAX_EPOCHS = 1000 #for testing purposes LEG_model = LEGFamily(rank=RANK, obs_dim=vals.shape[1], train=True) # logger = pl.loggers.TensorBoardLogger("tb_logs", name="first_pass_model") # trainer = pl.Trainer(max_epochs=MAX_EPOCHS, logger=logger, log_every_n_steps=1) # trainer.fit(model=LEG_model, train_dataloaders=dl) TIME_STEP = 1 #time step for kalman predictions kf = init_kalman_filter(LEG_model, TIME_STEP) kf_state_ests = torch.from_numpy(get_state_estimates(kf, vals.numpy())).float().squeeze(-1) leg_state_ests, _ = LEG_model.compute_insample_posterior(ts=sample1_ts, xs=vals) print(kf_state_ests.shape, leg_state_ests.shape) print(kf_state_ests[0], leg_state_ests[0]) reconstructed_data_kf = kf_state_ests @ LEG_model.B.T reconstructed_data_leg = leg_state_ests @ LEG_model.B.T print("KF LOSS:") print(torch.norm(reconstructed_data_kf - vals)) print("LEG LOSS:") print(torch.norm(reconstructed_data_leg - vals)) #assert torch.allclose(kf_state_ests, leg_state_ests)
34.102941
106
0.787408
4a163e6197c65d806b523c68f143680f891bca4d
1,172
py
Python
common/exploration_strategies/base.py
SharathRaparthy/efficient-mrl
a1667019bc9a849639fba55825fef865967b6d7d
[ "MIT" ]
1
2020-01-17T00:26:25.000Z
2020-01-17T00:26:25.000Z
common/exploration_strategies/base.py
SharathRaparthy/efficient-mrl
a1667019bc9a849639fba55825fef865967b6d7d
[ "MIT" ]
null
null
null
common/exploration_strategies/base.py
SharathRaparthy/efficient-mrl
a1667019bc9a849639fba55825fef865967b6d7d
[ "MIT" ]
null
null
null
import abc from common.policies.base import ExplorationPolicy class ExplorationStrategy(object, metaclass=abc.ABCMeta): @abc.abstractmethod def get_action(self, t, observation, policy, **kwargs): pass def reset(self): pass class RawExplorationStrategy(ExplorationStrategy, metaclass=abc.ABCMeta): @abc.abstractmethod def get_action_from_raw_action(self, action, **kwargs): pass def get_action(self, t, policy, *args, **kwargs): action, agent_info = policy.get_action(*args, **kwargs) return self.get_action_from_raw_action(action, t=t), agent_info def reset(self): pass class PolicyWrappedWithExplorationStrategy(ExplorationPolicy): def __init__( self, exploration_strategy: ExplorationStrategy, policy, ): self.es = exploration_strategy self.policy = policy self.t = 0 def set_num_steps_total(self, t): self.t = t def get_action(self, *args, **kwargs): return self.es.get_action(self.t, self.policy, *args, **kwargs) def reset(self): self.es.reset() self.policy.reset()
24.93617
73
0.656143
4a163efa6a87d681bed9d997361ac7de5218c862
6,275
py
Python
pykrita/layer_extra_properties/ui/data_editors/dict_editor.py
akirfin/krita_python_fun
74173d140b39f7f80f43f9474381e4adfa3b5f01
[ "MIT" ]
1
2021-10-01T00:25:43.000Z
2021-10-01T00:25:43.000Z
pykrita/layer_extra_properties/ui/data_editors/dict_editor.py
akirfin/krita_python_fun
74173d140b39f7f80f43f9474381e4adfa3b5f01
[ "MIT" ]
null
null
null
pykrita/layer_extra_properties/ui/data_editors/dict_editor.py
akirfin/krita_python_fun
74173d140b39f7f80f43f9474381e4adfa3b5f01
[ "MIT" ]
null
null
null
from collections import OrderedDict as oDict try: from collections.abc import MutableMapping except: from collections import MutableMapping from PyQt5.QtCore import Qt from PyQt5.QtCore import pyqtSlot as QSlot from PyQt5.QtCore import pyqtSignal as QSignal from PyQt5.QtCore import pyqtProperty as QProperty from PyQt5.QtWidgets import \ QWidget, QFormLayout, QLabel from .abc_editor_container import AbcEditorContainer from .data_editor_mapper import data_editor_mapper class DictEditor(AbcEditorContainer, MutableMapping): def __init__(self, parent=None): AbcEditorContainer.__init__(self, parent=parent) self._label_width = 110 def create_ui(self): # super calls this create_ui AbcEditorContainer.create_ui(self) # this calls super create_ui content = QWidget() content.setObjectName("dict_content") content.setStyleSheet(""" .QWidget#dict_content { background-color: palette(window); border: 1px outset rgba(0, 0, 0, 10%); border-radius: 3px; }""") self._content_layout = QFormLayout() self._content_layout.setContentsMargins(40, 10, 4, 10) content.setLayout(self._content_layout) self.set_content(content) def __len__(self): return self._content_layout.rowCount() def __iter__(self): layout = self._content_layout for row in range(layout.rowCount()): span_item = layout.itemAt(row, QFormLayout.SpanningRole) if span_item is not None: yield span_item.widget().objectName() else: field_item = layout.itemAt(row, QFormLayout.FieldRole) yield field_item.widget().objectName() def __getitem__(self, key): layout = self._content_layout for row in range(layout.rowCount()): editor = None span_item = layout.itemAt(row, QFormLayout.SpanningRole) if span_item is not None: editor = span_item.widget() else: field_item = layout.itemAt(row, QFormLayout.FieldRole) editor = field_item.widget() if (editor is not None) and (editor.objectName() == key): return editor raise KeyError("{key!r}".format(**locals())) def __setitem__(self, key, editor): layout = self._content_layout for row in range(layout.rowCount()): found = False span_item = layout.itemAt(row, QFormLayout.SpanningRole) if span_item is not None: if span_item.widget().objectName() == key: found = True else: field_item = layout.itemAt(row, QFormLayout.FieldRole) if field_item.widget().objectName() == key: found = True if found: layout.removeRow(row) if isinstance(editor, AbcEditorContainer): editor.title = key editor.setObjectName(key) layout.insertRow(row, editor) else: editor.setObjectName(key) layout.insertRow(row, key, editor) label_item = layout.itemAt(row, QFormLayout.LabelRole) label_widget = label_item.widget() label_widget.setAlignment(Qt.AlignRight | Qt.AlignVCenter) label_widget.setFixedWidth(self._label_width) # elide right missing... break else: if isinstance(editor, AbcEditorContainer): editor.title = key editor.setObjectName(key) layout.addRow(editor) else: editor.setObjectName(key) key_label = QLabel(key) key_label.setAlignment(Qt.AlignRight | Qt.AlignVCenter) key_label.setFixedWidth(self._label_width) # elide right missing... layout.addRow(key_label, editor) def __delitem__(self, key): layout = self._content_layout for row in range(layout.rowCount()): span_item = layout.itemAt(row, QFormLayout.SpanningRole) if span_item is not None: if span_item.widget().objectName() == key: layout.removeRow(row) break else: field_item = layout.itemAt(row, QFormLayout.FieldRole) if field_item.widget().objectName() == key: layout.removeRow(row) break else: raise KeyError("{key!r}".format(**locals())) def _refresh_rows(self): layout = self._content_layout for row in range(layout.rowCount()): label_item = layout.itemAt(row, QFormLayout.LabelRole) if label_item is not None: label_widget = label_item.widget() label_widget.setAlignment(Qt.AlignRight | Qt.AlignVCenter) label_widget.setFixedWidth(self._label_width) # elide right missing... def get_label_width(self): return self._label_width @QSlot(int) def set_label_width(self, new_label_width): new_label_width = int(new_label_width) old_label_width = self.get_label_width() if new_label_width != old_label_width: self._label_width = new_label_width self._refresh_rows() self.label_width_changed.emit(self.get_label_width()) label_width_changed = QSignal(int) label_width = QProperty(int, fget=get_label_width, fset=set_label_width, notify=label_width_changed) def get_data(self): return oDict((name, data_editor.data) for name, data_editor in self.items()) QSlot(oDict) def set_data(self, new_data): self.clear() for key, value in new_data.items(): self[key] = data_editor_mapper.create_editor(value, title=key) self.data_changed.emit(self.get_data()) data_changed = QSignal(oDict) data = QProperty(oDict, fget=get_data, fset=set_data, notify=data_changed, user=True) data_editor_mapper.register(oDict, DictEditor)
36.271676
104
0.6051
4a163fb68ef532739896cdec84218ee0b66718a2
3,999
py
Python
dvc/data_cloud.py
hfchong/dvc
2e3ce3b3dbb02f6524b0383e3f599c4561413634
[ "Apache-2.0" ]
null
null
null
dvc/data_cloud.py
hfchong/dvc
2e3ce3b3dbb02f6524b0383e3f599c4561413634
[ "Apache-2.0" ]
null
null
null
dvc/data_cloud.py
hfchong/dvc
2e3ce3b3dbb02f6524b0383e3f599c4561413634
[ "Apache-2.0" ]
null
null
null
import re from multiprocessing.pool import ThreadPool from dvc.logger import Logger from dvc.exceptions import DvcException from dvc.config import Config, ConfigError from dvc.remote.s3 import RemoteS3 from dvc.remote.gs import RemoteGS from dvc.remote.azure import RemoteAzure from dvc.remote.ssh import RemoteSSH from dvc.remote.hdfs import RemoteHDFS from dvc.remote.local import RemoteLOCAL from dvc.remote.base import RemoteBase class DataCloud(object): """ Generic class to do initial config parsing and redirect to proper DataCloud methods """ CLOUD_MAP = { 'aws' : RemoteS3, 'gcp' : RemoteGS, 'azure' : RemoteAzure, 'ssh' : RemoteSSH, 'hdfs' : RemoteHDFS, 'local' : RemoteLOCAL, } def __init__(self, project, config=None): self.project = project self._config = config remote = self._config[Config.SECTION_CORE].get(Config.SECTION_CORE_REMOTE, '') if remote == '': if config[Config.SECTION_CORE].get(Config.SECTION_CORE_CLOUD, None): # backward compatibility Logger.warn('Using obsoleted config format. Consider updating.') self._cloud = self.__init__compat() else: self._cloud = None return self._cloud = self._init_remote(remote) @staticmethod def supported(config): for cloud in DataCloud.CLOUD_MAP.values(): if cloud.supported(config): return cloud return None def _init_remote(self, remote): section = Config.SECTION_REMOTE_FMT.format(remote) cloud_config = self._config.get(section, None) if not cloud_config: raise ConfigError("Can't find remote section '{}' in config".format(section)) cloud_type = self.supported(cloud_config) if not cloud_type: raise ConfigError("Unsupported cloud '{}'".format(cloud_config)) return self._init_cloud(cloud_config, cloud_type) def __init__compat(self): cloud_name = self._config[Config.SECTION_CORE].get(Config.SECTION_CORE_CLOUD, '').strip().lower() if cloud_name == '': self._cloud = None return cloud_type = self.CLOUD_MAP.get(cloud_name, None) if not cloud_type: raise ConfigError('Wrong cloud type %s specified' % cloud_name) cloud_config = self._config.get(cloud_name, None) if not cloud_config: raise ConfigError('Can\'t find cloud section \'[%s]\' in config' % cloud_name) return self._init_cloud(cloud_config, cloud_type) def _init_cloud(self, cloud_config, cloud_type): global_storage_path = self._config[Config.SECTION_CORE].get(Config.SECTION_CORE_STORAGEPATH, None) if global_storage_path: Logger.warn('Using obsoleted config format. Consider updating.') cloud = cloud_type(self.project, cloud_config) return cloud def _get_cloud(self, remote): if remote: return self._init_remote(remote) if self._cloud: return self._cloud raise ConfigError("No remote repository specified. Setup default repository " \ "with 'dvc config core.remote <name>' or use '-r <name>'.") def push(self, targets, jobs=1, remote=None): """ Push data items in a cloud-agnostic way. """ return self.project.cache.local.push(targets, jobs=jobs, remote=self._get_cloud(remote)) def pull(self, targets, jobs=1, remote=None): """ Pull data items in a cloud-agnostic way. """ return self.project.cache.local.pull(targets, jobs=jobs, remote=self._get_cloud(remote)) def status(self, targets, jobs=1, remote=None): """ Check status of data items in a cloud-agnostic way. """ return self.project.cache.local.status(targets, jobs=jobs, remote=self._get_cloud(remote))
34.773913
106
0.644911
4a1640ac42f4dd31310c5148c627e17c21c53f92
2,582
py
Python
setup.py
Jaikinator/dqc
47c964c7d1323a35f4f69521d40476c41843810e
[ "Apache-2.0" ]
null
null
null
setup.py
Jaikinator/dqc
47c964c7d1323a35f4f69521d40476c41843810e
[ "Apache-2.0" ]
null
null
null
setup.py
Jaikinator/dqc
47c964c7d1323a35f4f69521d40476c41843810e
[ "Apache-2.0" ]
null
null
null
import os import sys import re import subprocess as sp import shutil from setuptools import setup, find_packages, Extension from setuptools.command.build_ext import build_ext # module's descriptor module_name = "dqc" github_url = "https://github.com/diffqc/dqc/tree/master/" raw_github_url = "https://raw.githubusercontent.com/diffqc/dqc/master/" file_dir = os.path.dirname(os.path.realpath(__file__)) absdir = lambda p: os.path.join(file_dir, p) # get the long description from README # open readme and convert all relative path to absolute path with open("README.md", "r") as f: long_desc = f.read() link_pattern = re.compile(r"\]\(([\w\-/]+)\)") img_pattern = re.compile(r"\]\(([\w\-/\.]+)\)") link_repl = r"](%s\1)" % github_url img_repl = r"](%s\1)" % raw_github_url long_desc = re.sub(link_pattern, link_repl, long_desc) long_desc = re.sub(img_pattern, img_repl, long_desc) ############### versioning ############### verfile = os.path.abspath(os.path.join(module_name, "_version.py")) version = {"__file__": verfile} with open(verfile, "r") as fp: exec(fp.read(), version) # execute _version.py to create _version.txt cmd = [sys.executable, verfile] sp.run(cmd) vers = version["get_version"]() setup( name=module_name, version=vers, description='Differentiable Quantum Chemistry', url='https://github.com/diffqc/dqc/', long_description=long_desc, long_description_content_type="text/markdown", author='mfkasim1', author_email='firman.kasim@gmail.com', license='Apache License 2.0', packages=find_packages(), package_data={module_name: ["_version.txt", "datasets/lebedevquad/lebedev_*.txt"]}, python_requires=">=3.7", install_requires=[ "numpy>=1.8.2", "scipy>=0.15", "basis_set_exchange", "h5py==3.1.0", # temporary == because pyscf 1.7.6 is not compatible to 3.4.0 "pylibxc2>=6.0.0", "dqclibs>=0.1.0", "xitorch>=0.3.0", "torch>=1.8", # ideally the nightly build ], classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Mathematics", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], keywords="project library deep-learning dft quantum-chemistry", zip_safe=False )
33.102564
87
0.657242
4a16432dd794e554fed596c06b795788a508fa01
11,316
py
Python
src/controller/WASH/Query_WaMDaM_for_WASH/QueryWAMDAM.py
WamdamProject/WaMDaM_Wizard
f8f5a830464f3c8f45e4eb0557833eefb267d7b2
[ "BSD-3-Clause" ]
null
null
null
src/controller/WASH/Query_WaMDaM_for_WASH/QueryWAMDAM.py
WamdamProject/WaMDaM_Wizard
f8f5a830464f3c8f45e4eb0557833eefb267d7b2
[ "BSD-3-Clause" ]
3
2018-11-17T05:49:18.000Z
2020-12-31T15:57:14.000Z
src/controller/WASH/Query_WaMDaM_for_WASH/QueryWAMDAM.py
WamdamProject/WaMDaM_Wizard
f8f5a830464f3c8f45e4eb0557833eefb267d7b2
[ "BSD-3-Clause" ]
null
null
null
# call these functions from here. the result will save excel data in the second function of each. from QueryMultiAttributes import * from QueryTimeSeries import * from QueryDescriptor import * from QuerySeasonal import * from QueryNumeric import * # from controller.WEAP_exporter.ExtractWeapArea import WEAP_export from controller.ConnectDB_ParseExcel import DB_Setup from controller.ConnectDB_ParseExcel import SqlAlchemy as sq from sqlalchemy.orm import aliased import sqlite3 import pandas as pd # fileDir = "" # weap_export = WEAP_export(textCtrl_AreaNameOnText, fileDir) # textCtrl_AreaNameOnText = "BearRiverFeb2018_V1" # # ActiveArea = WEAP.ActiveArea.Name # Scenario = WEAP.ActiveScenario.Name # # WEAPAreasDirectory = WEAP.AreasDirectory # # print ActiveArea # print Scenario # print WEAPAreasDirectory # SourceName = WEAP.ActiveArea.Name def Read_provided_file_query_Required(): Network_input = pd.read_excel('./WASH_Network_input.xlsx', sheetname=None) sheetnames = Network_input.keys() sheet = Network_input[sheetnames[0]] keys = sheet.columns query_data_list = [] # for column in keys: # query_data_list[column] = [] for i in sheet.index: row = {} for column in keys: row[column] = sheet[column][i] query_data_list.append(row) # print query_data_list # based on the selected model (WEAP) or (WASH), ModelName = 'WASH' # Query WaMDaM db to get the list of Object types and their Attributes Model_required_attributes = ''' SELECT DISTINCT ObjectType as Required_ObjectType,ObjectTypeCV as Required_ObjectTypeCV , AttributeName as Required_AttributeName, AttributeNameCV Required_AttributeNameCV, AttributeDataTypeCV as Required_AttributeDataTypeCV, UnitName as Required_UnitName FROM ResourceTypes LEFT JOIN "ObjectTypes" ON "ObjectTypes"."ResourceTypeID"="ResourceTypes"."ResourceTypeID" LEFT JOIN "ObjectCategories" ON "ObjectCategories"."ObjectCategoryID"="ObjectTypes"."ObjectCategoryID" LEFT JOIN "Attributes" ON "Attributes"."ObjectTypeID"="ObjectTypes"."ObjectTypeID" LEFT JOIN "AttributeCategories" ON "AttributeCategories"."AttributeCategoryID"="Attributes"."AttributeCategoryID" -- Provide the model name WHERE "ResourceTypeAcronym"='%s' --exclude the dummy attributes that are just used to connect Object Types with their Instances. AND AttributeName!='ObjectTypeInstances' '''%(ModelName) # df_Model_required_attributes = session.execute(Model_required_attributes) conn = sqlite3.connect("WaMDaM_db_WASH.sqlite") df_Model_required_attributes = pd.read_sql_query(Model_required_attributes, conn) # Model_required_attributes.keys() # # Required_ObjectType=df_Model_required_attributes['Required_ObjectType'] # Required_AttributeName=df_Model_required_attributes['Required_AttributeName'] # Required_AttributeDataTypeCV=df_Model_required_attributes['Required_AttributeDataTypeCV'] # Required_UnitName=df_Model_required_attributes['Required_UnitName'] Query_Load_params_list = [] # loop over the provided Object Types in Excel. # loop over the Required ObjectTypes from the db query # If the provided Object Type equals the required object type, then get the for prov_objs in query_data_list: for i, req_objs in enumerate(df_Model_required_attributes['Required_ObjectType']): # get the string value inside each column if prov_objs['Provided_ObjectType'] == req_objs: Query_Load_params = {} Query_Load_params['Required_AttributeName'] = df_Model_required_attributes['Required_AttributeName'][i] Query_Load_params['Required_AttributeDataTypeCV'] = df_Model_required_attributes['Required_AttributeDataTypeCV'][i] Query_Load_params['Required_UnitName'] = df_Model_required_attributes['Required_UnitName'][i] Query_Load_params['Required_ObjectType'] = req_objs Query_Load_params['Provided_ObjectType'] = prov_objs['Provided_ObjectType'] # Query_Load_params['Provided_InstanceName'] = prov_objs['Provided_InstanceName'] Query_Load_params['Provided_FullBranch'] = prov_objs['Provided_FullBranch'] Query_Load_params_list.append(Query_Load_params) # print Query_Load_params_list # return Query_Load_params_list # iterate over the rows and get the string value of each Required_AttributeDataTypeCV setup = DB_Setup() session = setup.get_session() multi_timeseries = [] multi_AttributeSeries = [] multi_Seasonal = [] multi_Numeric=[] multi_Descriptor=[] for input_param in Query_Load_params_list: if input_param['Required_AttributeDataTypeCV']=='TimeSeries': #call the time series function #pass the input_param value to the time series function multi_timeseries.append(input_param) elif input_param['Required_AttributeDataTypeCV'] == 'SeasonalNumericValues': multi_Seasonal.append(input_param) # elif input_param['Required_AttributeDataTypeCV'] == 'NumericValues': multi_Numeric.append(input_param) elif input_param['Required_AttributeDataTypeCV'] == 'DescriptorValues': multi_Descriptor.append(input_param) # # elif input_param['Required_AttributeDataTypeCV'] == 'MultiAttributeSeries': multi_AttributeSeries.append(input_param) else: continue # Execute the time series function (for both the query and write csv) total_df_TimeSeries,Metadata_TimeSeries =execute_TimeSeries_query(conn, multi_timeseries) # Execute the seasonal query total_df_Seasonal,Metadata_seasonal = execute_Seasonal_query(conn, multi_Seasonal) # Execute the multi attributes series query total_df_MultiColumns,Metadata_multi_att = execute_MultiAtt_query(conn, multi_AttributeSeries) # Execute the numeric attributes query total_df_Numeric,Metadata_multi_numeric = execute_Numeric_query(conn, multi_Numeric) # Execute the descriptor attributes query total_df_Descriptor,Metadata_multi_descriptor = execute_Descriptor_query(conn, multi_Descriptor) # Execute the metadata file InputFile_list = execute_WriteMetadataFile(total_df_TimeSeries, total_df_Seasonal,total_df_MultiColumns,total_df_Numeric,total_df_Descriptor, Metadata_TimeSeries , Metadata_seasonal,Metadata_multi_att,Metadata_multi_numeric,Metadata_multi_descriptor) return total_df_Seasonal, total_df_MultiColumns, total_df_Descriptor, total_df_Numeric,total_df_TimeSeries # just these # load_InputTo_WEAP(InputFile_list) def execute_TimeSeries_query(conn, multi_timeseries): # setup = DB_Setup() # session = setup.get_session() df_TimeSeries,TimeSeries_Full_Branch_total = TimeSeries_query(conn,multi_timeseries) total_df_TimeSeries,Metadata_TimeSeries =Timeseries_csv_file(df_TimeSeries,TimeSeries_Full_Branch_total) return (total_df_TimeSeries,Metadata_TimeSeries) #total_df_TimeSeries # def execute_MultiAtt_query(conn, multi_AttributeSeries): # setup = DB_Setup() # session = setup.get_session() df_MultiColumns,Multi_Full_Branch_total = MultiAttributes_query(conn,multi_AttributeSeries) total_df_MultiColumns,Metadata_multi_att = MultiAttributes_csv_file(df_MultiColumns,Multi_Full_Branch_total) return (total_df_MultiColumns,Metadata_multi_att) #total_df_Seasonal # csv_file_path_or_value_seasonal_all def execute_Seasonal_query(conn, multi_Seasonal): # setup = DB_Setup() # session = setup.get_session() df_Seasonal,Seasonal_Full_Branch_total = Seasonal_query(conn, multi_Seasonal) total_df_Seasonal,Metadata_seasonal = Seasonal_csv_file(df_Seasonal,Seasonal_Full_Branch_total) return (total_df_Seasonal,Metadata_seasonal) # def execute_Numeric_query(conn, multi_Numeric): # setup = DB_Setup() # session = setup.get_session() # df_Numeric = Numeric_query(session) total_df_Numeric,Metadata_multi_numeric = Numeric_query(conn, multi_Numeric) return (total_df_Numeric, Metadata_multi_numeric) # total_df_Numeric,Metadata_multi_descriptor = execute_Descriptor_query(conn, multi_Descriptor) # def execute_Descriptor_query(conn, multi_Descriptor): # setup = DB_Setup() # session = setup.get_session() # df_Descriptor = Descriptor_query(session) total_df_Descriptor,Metadata_multi_descriptor = Descriptor_query(conn, multi_Descriptor) return (total_df_Descriptor, Metadata_multi_descriptor) # store these as lists (matrix) then pass it to the write it all once into the input file or make def execute_WriteMetadataFile(total_df_TimeSeries, total_df_MultiColumns,total_df_Seasonal,total_df_Numeric,total_df_Descriptor, Metadata_TimeSeries,Metadata_seasonal,Metadata_multi_att,Metadata_multi_numeric,Metadata_multi_descriptor ): # multi_AttributeSeries # from Read_provided_file_query_Required import * # from execute_TimeSeries_query import total_csv_file_name from ExportWASH_Inputfile_metadata import WriteMetadataFile return WriteMetadataFile(total_df_TimeSeries,total_df_MultiColumns,total_df_Seasonal,total_df_Numeric,total_df_Descriptor, Metadata_TimeSeries,Metadata_seasonal,Metadata_multi_att,Metadata_multi_numeric,Metadata_multi_descriptor) # # def load_InputTo_WEAP(InputFile_list): # # WEAP.Branch("Supply and Resources\River\Little Bear River\Reservoirs\Hyrum Reservoir").Variable("Volume Elevation Curve").Expression = "VolumeElevation(0.0,4590.0,130.0,4600.0,649.0,4610.0,1739.0,4620.0,3456.0,4630.0,5937.0,4640.0,9236.0,4650.0,13206.0,4660.0,17721.0,4670.0,18684.0,4672.0,22600.0,4680.0,28100.0,4690.0,34100.0,4700.0,40700.0,4710.0,47900.0,4720.0,55800.0,4730.0,64500.0,4740.0,73900.0,4750.0" # # WEAP.Branch(BranchFullName).Variable(Required_AttributeName).Expression = InputFile # # for InputFile in InputFile_list: # BranchName = InputFile['FullBranch'] # Required_AttributeName = InputFile['VariableName'] # Value = InputFile['Value'] # if Required_AttributeName=='Model Water Quality?': continue # for Branch in WEAP.Branches: # if Branch.FullName == BranchName: # for V in Branch.Variables: # # check if the provided attribute from WAMDAM matches the one used in WEAP # if Required_AttributeName == V.Name: # WEAP.Branch(BranchName).Variable(Required_AttributeName).Expression = Value # print BranchName,Required_AttributeName,Value # # if Branch.TypeName=='Demand Site': # # for V in Branch.Variables: # # if V.Name=='Method' and V.Expression == 'Specify monthly demand': # # InputFile['VariableName']='Monthly Demand' # # 'Consumption' # # Execute loading data to WEAP # load_InputTo_WEAP(WEAP,InputFile_list) # # Option 2: Read network from a provided excel file # # # Read the excel file # Read_provided_file_query_Required()
39.291667
418
0.743549
4a1643f0dfbd3d535616fafe11b012ba1b1f45a1
7,153
py
Python
pymoo/algorithms/rnsga2.py
gabicavalcante/pymoo
1711ce3a96e5ef622d0116d6c7ea4d26cbe2c846
[ "Apache-2.0" ]
11
2018-05-22T17:38:02.000Z
2022-02-28T03:34:33.000Z
pymoo/algorithms/rnsga2.py
gabicavalcante/pymoo
1711ce3a96e5ef622d0116d6c7ea4d26cbe2c846
[ "Apache-2.0" ]
15
2022-01-03T19:36:36.000Z
2022-03-30T03:57:58.000Z
pymoo/algorithms/rnsga2.py
gabicavalcante/pymoo
1711ce3a96e5ef622d0116d6c7ea4d26cbe2c846
[ "Apache-2.0" ]
3
2021-11-22T08:01:47.000Z
2022-03-11T08:53:58.000Z
import numpy as np from pymoo.algorithms.nsga2 import NSGA2 from pymoo.algorithms.nsga3 import get_extreme_points_c from pymoo.docs import parse_doc_string from pymoo.model.survival import Survival from pymoo.operators.selection.random_selection import RandomSelection from pymoo.util.nds.non_dominated_sorting import NonDominatedSorting # ========================================================================================================= # Implementation # ========================================================================================================= class RNSGA2(NSGA2): def __init__(self, ref_points, epsilon=0.001, normalization="front", weights=None, extreme_points_as_reference_points=False, **kwargs): """ Parameters ---------- ref_points : {ref_points} epsilon : float weights : np.array normalization : {{'no', 'front', 'ever'}} extreme_points_as_reference_points : bool """ self.epsilon = epsilon self.weights = weights self.normalization = normalization self.selection = RandomSelection() super().__init__(**kwargs) self.survival = RankAndModifiedCrowdingSurvival(ref_points, epsilon, weights, normalization, extreme_points_as_reference_points) class RankAndModifiedCrowdingSurvival(Survival): def __init__(self, ref_points, epsilon, weights, normalization, extreme_points_as_reference_points ) -> None: super().__init__(True) self.n_obj = ref_points.shape[1] self.ref_points = ref_points self.epsilon = epsilon self.extreme_points_as_reference_points = extreme_points_as_reference_points self.weights = weights if self.weights is None: self.weights = np.full(self.n_obj, 1 / self.n_obj) self.normalization = normalization self.ideal_point = np.full(self.n_obj, np.inf) self.nadir_point = np.full(self.n_obj, -np.inf) def _do(self, problem, pop, n_survive, **kwargs): # get the objective space values and objects F = pop.get("F") # the final indices of surviving individuals survivors = [] # do the non-dominated sorting until splitting front fronts = NonDominatedSorting().do(F) if self.normalization == "ever": # find or usually update the new ideal point - from feasible solutions self.ideal_point = np.min(np.vstack((self.ideal_point, F)), axis=0) self.nadir_point = np.max(np.vstack((self.nadir_point, F)), axis=0) elif self.normalization == "front": front = fronts[0] if len(front) > 1: self.ideal_point = np.min(F[front], axis=0) self.nadir_point = np.max(F[front], axis=0) elif self.normalization == "no": self.ideal_point = np.zeros(self.n_obj) self.nadir_point = np.ones(self.n_obj) if self.extreme_points_as_reference_points: self.ref_points = np.row_stack([self.ref_points, get_extreme_points_c(F, self.ideal_point)]) # calculate the distance matrix from ever solution to all reference point dist_to_ref_points = calc_norm_pref_distance(F, self.ref_points, self.weights, self.ideal_point, self.nadir_point) for k, front in enumerate(fronts): # save rank attributes to the individuals - rank = front here pop[front].set("rank", np.full(len(front), k)) # number of individuals remaining n_remaining = n_survive - len(survivors) # the ranking of each point regarding each reference point (two times argsort is necessary) rank_by_distance = np.argsort(np.argsort(dist_to_ref_points[front], axis=0), axis=0) # the reference point where the best ranking is coming from ref_point_of_best_rank = np.argmin(rank_by_distance, axis=1) # the actual ranking which is used as crowding ranking = rank_by_distance[np.arange(len(front)), ref_point_of_best_rank] if len(front) <= n_remaining: # we can simply copy the crowding to ranking. not epsilon selection here crowding = ranking I = np.arange(len(front)) else: # Distance from solution to every other solution and set distance to itself to infinity dist_to_others = calc_norm_pref_distance(F[front], F[front], self.weights, self.ideal_point, self.nadir_point) np.fill_diagonal(dist_to_others, np.inf) # the crowding that will be used for selection crowding = np.full(len(front), np.nan) # solutions which are not already selected - for not_selected = np.argsort(ranking) # until we have saved a crowding for each solution while len(not_selected) > 0: # select the closest solution idx = not_selected[0] # set crowding for that individual crowding[idx] = ranking[idx] # need to remove myself from not-selected array to_remove = [idx] # Group of close solutions dist = dist_to_others[idx][not_selected] group = not_selected[np.where(dist < self.epsilon)[0]] # if there exists solution with a distance less than epsilon if len(group): # discourage them by giving them a high crowding crowding[group] = ranking[group] + np.round(len(front) / 2) # remove group from not_selected array to_remove.extend(group) not_selected = np.array([i for i in not_selected if i not in to_remove]) # now sort by the crowding (actually modified rank) ascending and let the best survive I = np.argsort(crowding)[:n_remaining] # set the crowding to all individuals pop[front].set("crowding", crowding) # extend the survivors by all or selected individuals survivors.extend(front[I]) # inverse of crowding because nsga2 does maximize it (then tournament selection can stay the same) pop.set("crowding", -pop.get("crowding")) return pop[survivors] def calc_norm_pref_distance(A, B, weights, ideal, nadir): D = np.repeat(A, B.shape[0], axis=0) - np.tile(B, (A.shape[0], 1)) N = ((D / (nadir - ideal)) ** 2) * weights N = np.sqrt(np.sum(N, axis=1) * len(weights)) return np.reshape(N, (A.shape[0], B.shape[0])) parse_doc_string(RNSGA2.__init__)
37.846561
108
0.573745
4a164421a1c8ce87412eafcc934520a29e57ebfe
522
py
Python
efls-console/alembic/versions/3900a6b99e7e_init.py
universe-hcy/Elastic-Federated-Learning-Solution
4e047fbbe6ae9809cd631499b7d3a3855dfe2208
[ "Apache-2.0" ]
65
2021-09-30T01:54:34.000Z
2022-03-26T13:57:15.000Z
efls-console/alembic/versions/3900a6b99e7e_init.py
universe-hcy/Elastic-Federated-Learning-Solution
4e047fbbe6ae9809cd631499b7d3a3855dfe2208
[ "Apache-2.0" ]
24
2021-09-30T09:25:43.000Z
2022-03-29T06:33:44.000Z
efls-console/alembic/versions/3900a6b99e7e_init.py
universe-hcy/Elastic-Federated-Learning-Solution
4e047fbbe6ae9809cd631499b7d3a3855dfe2208
[ "Apache-2.0" ]
18
2021-09-30T09:04:08.000Z
2022-03-31T10:17:27.000Z
"""init Revision ID: 3900a6b99e7e Revises: Create Date: 2021-08-11 15:28:48.507537 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '3900a6b99e7e' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ###
18
65
0.67433
4a164473a3357ef5ef91f68514e5475421f94cd2
552
py
Python
electrical_test/limelight.py
frc1418/2020-robot
027a7b7f02bd48ade79a18c6b2a48d165cd4017c
[ "MIT" ]
3
2020-07-14T23:28:30.000Z
2020-07-14T23:28:35.000Z
electrical_test/limelight.py
AndrewLester/2020-robot
f3c03e72bcf106f5752e443b7a3a6eb87bc0bff2
[ "MIT" ]
2
2020-03-14T19:13:25.000Z
2020-10-19T16:29:32.000Z
electrical_test/limelight.py
frc1418/2020-robot
027a7b7f02bd48ade79a18c6b2a48d165cd4017c
[ "MIT" ]
null
null
null
from networktables.util import ntproperty import math class Limelight(): YAW_ANGLE = ntproperty('/limelight/tx',0) PITCH_ANGLE = ntproperty('/limelight/ty',0) # change with new robot; UNIT = inches CAMERA_HEIGHT = 43 TARGET_HEIGHT = 98.25 # UNIT = degrees CAMERA_ANGLE = 0 def findDistance(self): if self.YAW_ANGLE == 0 or self.PITCH_ANGLE == 0: return 0 else: distance = (self.TARGET_HEIGHT/self.CAMERA_HEIGHT)/math.tan(self.CAMERA_ANGLE + self.TY) return distance
29.052632
100
0.648551
4a16450a1562ed3ee3c1d6b3652c762863389faf
387
py
Python
src/models/predict_model.py
gagan3012/summarization
5bfeb087feb3379ec41849e4125081c1e351971b
[ "MIT" ]
2
2021-07-31T08:27:01.000Z
2021-11-01T07:42:58.000Z
src/models/predict_model.py
gagan3012/summarization
5bfeb087feb3379ec41849e4125081c1e351971b
[ "MIT" ]
null
null
null
src/models/predict_model.py
gagan3012/summarization
5bfeb087feb3379ec41849e4125081c1e351971b
[ "MIT" ]
null
null
null
import yaml from .model import Summarization def predict_model(text: str): """ Predict the summary of the given text. """ with open("model_params.yml") as f: params = yaml.safe_load(f) model = Summarization() model.load_model(model_type=params["model_type"], model_dir=params["model_dir"]) pre_summary = model.predict(text) return pre_summary
22.764706
84
0.684755
4a16456257af3ef0250db171a68b96585d81755e
270
py
Python
quantpy/conf.py
iamxiatian/quantpy
316580c575207f7af836e6c784de0351762f748b
[ "Apache-2.0" ]
2
2016-06-21T08:11:10.000Z
2020-06-25T14:34:46.000Z
quantpy/conf.py
iamxiatian/quantpy
316580c575207f7af836e6c784de0351762f748b
[ "Apache-2.0" ]
null
null
null
quantpy/conf.py
iamxiatian/quantpy
316580c575207f7af836e6c784de0351762f748b
[ "Apache-2.0" ]
null
null
null
import configparser cfg = configparser.ConfigParser() cfg.read('settings.cfg') MONGODB_DB_NAME = cfg['db']['dbname'] MONGODB_USER_NAME = cfg['db']['user'] MONGODB_PASSWORD = cfg['db']['password'] MONGODB_HOST = cfg['db']['host'] MONGODB_PORT = int(cfg['db']['port'])
22.5
40
0.7
4a1645c08015de2aaf710b0be1ee5d12a9a86a90
2,370
py
Python
examples/crawler_brohltal.py
Hadryan/NewsBot
e6a28f96857c608abddc6eeafdcf765ffde74461
[ "MIT" ]
1
2021-09-04T01:12:02.000Z
2021-09-04T01:12:02.000Z
examples/crawler_brohltal.py
Hadryan/NewsBot
e6a28f96857c608abddc6eeafdcf765ffde74461
[ "MIT" ]
null
null
null
examples/crawler_brohltal.py
Hadryan/NewsBot
e6a28f96857c608abddc6eeafdcf765ffde74461
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), "../")) import logging import re from _datetime import datetime from urllib.request import urlopen from telegramnews import Site logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO ) def main(): site = Site() site.name = "brohltal" site.alias = "BrohltalInfo24" site.base_url = "http://www.brohltal-info24.de/" site.channel_id = -1001131410143 site.short = "brohl" for article in get_data(site.base_url): text, tags = create_hashtag(article[2]) site.add_article( img=site.base_url + article[0], title=article[1], text=text, tags=tags, date=article[4], link=site.base_url + article[3], ) site.post(variant=3) def create_hashtag(text): text_list = re.split("[.:]", text, maxsplit=1) tags = re.split("[/-]", text_list[0]) tags = [tag.replace(" ", "") for tag in tags] new_text = text_list[1] for tag in tags: if len(tag) > 15: return text, [] return new_text, tags def read_data(url, site, limit=None): add = "&limit=" + str(limit) if limit else "" response = urlopen(url + site + add).read().decode("cp1252").replace("–", "-") data = re.findall( 'img src="([^"]*)".*\r\n.*\r\n.*\r\n[ ]*(.*?)[ ]*<.*?<br>[ \r\n]*(.*) <a href=([^>]*)>.*\r\n' + "[ ]*([0-9\.]* [0-9\:]*)", response, )[::-1] return list(data) def read_all_data(url, site): limit = 0 result = 1 data = [] while result > 0: adata = read_data(url, site, limit=limit) data = data + adata result = len(adata) limit = limit + 30 return data def get_data(base_url): data_list = [] url = base_url + "index.php?site=" sites = ["newsregio-direkt", "newsaw-direkt", "news-direkt"] for site in sites: data_list = data_list + read_data(url, site) data_list = [list(item) for item in data_list] for item in data_list: item[4] = datetime.strptime(item[4], "%d.%m.%y %H:%M") data_list.sort(key=lambda r: r[4]) for x in data_list: x[4] = None return data_list[::-1] if __name__ == "__main__": main()
25.76087
101
0.567089
4a1645dd1e858dfcc339cee408c118a4ff650f55
5,885
py
Python
bindings/python/ensmallen_graph/datasets/networkrepository/orkut.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/networkrepository/orkut.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/networkrepository/orkut.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
""" This file offers the methods to automatically retrieve the graph orkut. The graph is automatically retrieved from the NetworkRepository repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-04 01:49:39.921874 The undirected graph orkut has 11803298 nodes with 2 different node types: 2 (nodes number 8730857) and 1 (nodes number 3072441) and 444222386 unweighted edges, of which none are self-loops. The graph is extremely sparse as it has a density of 0.00001 and is connected, as it has a single component. The graph median node degree is 7, the mean node degree is 75.27 and the node degree mode is 1. The top 5 most central nodes are 3079078 (degree 318240), 3079778 (degree 284401), 3079189 (degree 221523), 3080210 (degree 213394) and 3080202 (degree 208310). References --------------------- Please cite the following if you use the data: @inproceedings{nr, title = {The Network Data Repository with Interactive Graph Analytics and Visualization}, author={Ryan A. Rossi and Nesreen K. Ahmed}, booktitle = {AAAI}, url={http://networkrepository.com}, year={2015} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.networkrepository import Orkut # Then load the graph graph = Orkut() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def Orkut( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/networkrepository", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the orkut graph. The graph is automatically retrieved from the NetworkRepository repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of orkut graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-04 01:49:39.921874 The undirected graph orkut has 11803298 nodes with 2 different node types: 2 (nodes number 8730857) and 1 (nodes number 3072441) and 444222386 unweighted edges, of which none are self-loops. The graph is extremely sparse as it has a density of 0.00001 and is connected, as it has a single component. The graph median node degree is 7, the mean node degree is 75.27 and the node degree mode is 1. The top 5 most central nodes are 3079078 (degree 318240), 3079778 (degree 284401), 3079189 (degree 221523), 3080210 (degree 213394) and 3080202 (degree 208310). References --------------------- Please cite the following if you use the data: @inproceedings{nr, title = {The Network Data Repository with Interactive Graph Analytics and Visualization}, author={Ryan A. Rossi and Nesreen K. Ahmed}, booktitle = {AAAI}, url={http://networkrepository.com}, year={2015} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.networkrepository import Orkut # Then load the graph graph = Orkut() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="Orkut", dataset="networkrepository", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
32.15847
94
0.68921
4a1646b122580893d02eeb0cd28e8c6abcae6db4
4,916
py
Python
tutorials/gpt2_e2e.py
Zuwei-Zhao/ort-customops
4e78e9651bdcbe8518448c3cbeab90eb92a1be05
[ "MIT" ]
null
null
null
tutorials/gpt2_e2e.py
Zuwei-Zhao/ort-customops
4e78e9651bdcbe8518448c3cbeab90eb92a1be05
[ "MIT" ]
null
null
null
tutorials/gpt2_e2e.py
Zuwei-Zhao/ort-customops
4e78e9651bdcbe8518448c3cbeab90eb92a1be05
[ "MIT" ]
1
2021-09-21T00:47:16.000Z
2021-09-21T00:47:16.000Z
import os import numpy from transformers import AutoConfig from onnxruntime_customops import mytorch as torch from onnxruntime_customops.utils import trace_for_onnx, op_from_model, build_customop_model device = 'cpu' model_name_or_path = 'gpt2' gpt2_core_model_path = './gpt2.onnx' gpt2_encoder_model_path = './gpt2_tok.onnx' gpt2_decoder_model_path = './gpt2_dec.onnx' gpt2_full_model_path = './gpt2_full.onnx' # input_text = ['best hotel in bay area', 'here is an example of gpt2 model'] input_text = ['best hotel in bay area'] num_tokens_to_produce = 10 def get_cache_directory(): cache_dir = os.path.join("../..", "cache_models") if not os.path.exists(cache_dir): os.makedirs(cache_dir) return cache_dir def convert_models(): from transformers import GPT2Tokenizer # noqa from onnxruntime.transformers.gpt2_helper import Gpt2Helper, MyGPT2LMHeadModel # noqa cache_dir = get_cache_directory() tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path, cache_dir=cache_dir) build_customop_model('GPT2Tokenizer', gpt2_encoder_model_path, model=tokenizer) build_customop_model('VectorToString', gpt2_decoder_model_path, decoder=tokenizer.decoder) config = AutoConfig.from_pretrained(model_name_or_path, cache_dir=cache_dir) # remove the dependency from onnxruntime-tools. model = MyGPT2LMHeadModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir) Gpt2Helper.export_onnx(model, device, gpt2_core_model_path) def inference_and_dump_full_model(inputs): config = AutoConfig.from_pretrained(model_name_or_path, cache_dir=get_cache_directory()) core_model = op_from_model(gpt2_core_model_path) gpt2_tokenizer = op_from_model(gpt2_encoder_model_path) with trace_for_onnx(inputs, names=gpt2_tokenizer.input_names) as tc_sess: num_attention_heads = config.n_head hidden_size = config.n_embd num_layer = config.n_layer eos_token_id = config.eos_token_id input_ids, attention_mask = gpt2_tokenizer(*tc_sess.get_inputs(), padding=True, padding_side='left') position_ids = (attention_mask.long().cumsum(-1) - 1) # position_ids.masked_fill_(position_ids < 0, 0) # Empty Past State for generating first word batch_size = input_ids.size()[0] past_shape = [2, batch_size, num_attention_heads, 0, hidden_size // num_attention_heads] empty_past = [torch.empty(*past_shape).type(torch.float32).to(device)] * num_layer has_eos = torch.zeros(batch_size, dtype=torch.bool) all_token_ids = input_ids.clone() all_eos = torch.tensor(False, dtype=torch.bool) past = empty_past for step in torch.onnx_loop(num_tokens_to_produce, all_eos, past): outputs = core_model(input_ids, position_ids, attention_mask.type(torch.float32), *past) next_token_logits = outputs[0][:, -1, :] next_tokens = torch.argmax(next_token_logits, dim=-1) has_eos = has_eos | (next_tokens == eos_token_id) tokens_to_add = next_tokens.masked_fill(has_eos, eos_token_id) all_token_ids = torch.cat([all_token_ids, tokens_to_add.unsqueeze(-1)], dim=-1) # FIXME: not support the loop yet. break # Update input_ids, attention_mask, position_ids and past input_ids = tokens_to_add.clone().detach().reshape([batch_size, 1]).to(device) position_ids = (position_ids[:, -1] + 1).reshape(batch_size, 1) attention_mask = torch.cat([attention_mask, torch.ones([batch_size, 1]).type_as(attention_mask)], 1).to(device) past = [] for i in range(num_layer): past_i = torch.from_numpy(outputs[i + 1]) if \ isinstance(outputs[i + 1], numpy.ndarray) else outputs[i + 1].clone().detach() past.append(past_i.to(device)) all_eos = torch.all(has_eos) gpt2_decoder = torch.op_from_model(gpt2_decoder_model_path) output_text = gpt2_decoder(all_token_ids.squeeze(0)) tc_sess.save_as_onnx(gpt2_full_model_path, output_text) return output_text # 1. Check if the gpt2 models is already exported, otherwise, they are converted. if not os.path.exists(gpt2_core_model_path): convert_models() # 2. Run the inference with the pre and post process, trace the computation graph and build the all-in-one ONNX model output_ms = inference_and_dump_full_model(input_text) # 3. Inference on the all-in-one model full_model = torch.op_from_model(gpt2_full_model_path) outputs = full_model(input_text) # 4. Test the result for n_, tx_ in enumerate(outputs): if output_ms[n_] != outputs[n_]: import warnings # noqa warnings.warn("{}: The all-in-one model output is not the same\t{}".format(n_, output_ms[n_])) print("{}: {}\n\t{}".format(n_, input_text, tx_))
40.966667
123
0.711554
4a16473e564b0489533beaa91121d0aaf9146307
263
py
Python
src/sentry/tagstore/legacy/__init__.py
AlexWayfer/sentry
ef935cda2b2e960bd602fda590540882d1b0712d
[ "BSD-3-Clause" ]
4
2019-05-27T13:55:07.000Z
2021-03-30T07:05:09.000Z
src/sentry/tagstore/legacy/__init__.py
AlexWayfer/sentry
ef935cda2b2e960bd602fda590540882d1b0712d
[ "BSD-3-Clause" ]
196
2019-06-10T08:34:10.000Z
2022-02-22T01:26:13.000Z
src/sentry/tagstore/legacy/__init__.py
AlexWayfer/sentry
ef935cda2b2e960bd602fda590540882d1b0712d
[ "BSD-3-Clause" ]
1
2018-07-02T09:46:44.000Z
2018-07-02T09:46:44.000Z
""" sentry.tagstore.legacy ~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2017 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import from .backend import LegacyTagStorage # NOQA
23.909091
75
0.695817
4a164834d9678a949efc55e3fc62a45a5fbc2936
32,625
py
Python
synapse/storage/persist_events.py
schildbach/synapse
3aa36b782c715a2d3c965d5d9b37f7a49a5f17e1
[ "Apache-2.0" ]
1
2020-10-10T13:23:05.000Z
2020-10-10T13:23:05.000Z
synapse/storage/persist_events.py
schildbach/synapse
3aa36b782c715a2d3c965d5d9b37f7a49a5f17e1
[ "Apache-2.0" ]
null
null
null
synapse/storage/persist_events.py
schildbach/synapse
3aa36b782c715a2d3c965d5d9b37f7a49a5f17e1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2014-2016 OpenMarket Ltd # Copyright 2018-2019 New Vector Ltd # Copyright 2019 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import logging from collections import deque, namedtuple from typing import Iterable, List, Optional, Set, Tuple from prometheus_client import Counter, Histogram from twisted.internet import defer from synapse.api.constants import EventTypes, Membership from synapse.events import EventBase from synapse.events.snapshot import EventContext from synapse.logging.context import PreserveLoggingContext, make_deferred_yieldable from synapse.metrics.background_process_metrics import run_as_background_process from synapse.storage.data_stores import DataStores from synapse.storage.data_stores.main.events import DeltaState from synapse.types import StateMap from synapse.util.async_helpers import ObservableDeferred from synapse.util.metrics import Measure logger = logging.getLogger(__name__) # The number of times we are recalculating the current state state_delta_counter = Counter("synapse_storage_events_state_delta", "") # The number of times we are recalculating state when there is only a # single forward extremity state_delta_single_event_counter = Counter( "synapse_storage_events_state_delta_single_event", "" ) # The number of times we are reculating state when we could have resonably # calculated the delta when we calculated the state for an event we were # persisting. state_delta_reuse_delta_counter = Counter( "synapse_storage_events_state_delta_reuse_delta", "" ) # The number of forward extremities for each new event. forward_extremities_counter = Histogram( "synapse_storage_events_forward_extremities_persisted", "Number of forward extremities for each new event", buckets=(1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"), ) # The number of stale forward extremities for each new event. Stale extremities # are those that were in the previous set of extremities as well as the new. stale_forward_extremities_counter = Histogram( "synapse_storage_events_stale_forward_extremities_persisted", "Number of unchanged forward extremities for each new event", buckets=(0, 1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"), ) class _EventPeristenceQueue(object): """Queues up events so that they can be persisted in bulk with only one concurrent transaction per room. """ _EventPersistQueueItem = namedtuple( "_EventPersistQueueItem", ("events_and_contexts", "backfilled", "deferred") ) def __init__(self): self._event_persist_queues = {} self._currently_persisting_rooms = set() def add_to_queue(self, room_id, events_and_contexts, backfilled): """Add events to the queue, with the given persist_event options. NB: due to the normal usage pattern of this method, it does *not* follow the synapse logcontext rules, and leaves the logcontext in place whether or not the returned deferred is ready. Args: room_id (str): events_and_contexts (list[(EventBase, EventContext)]): backfilled (bool): Returns: defer.Deferred: a deferred which will resolve once the events are persisted. Runs its callbacks *without* a logcontext. """ queue = self._event_persist_queues.setdefault(room_id, deque()) if queue: # if the last item in the queue has the same `backfilled` setting, # we can just add these new events to that item. end_item = queue[-1] if end_item.backfilled == backfilled: end_item.events_and_contexts.extend(events_and_contexts) return end_item.deferred.observe() deferred = ObservableDeferred(defer.Deferred(), consumeErrors=True) queue.append( self._EventPersistQueueItem( events_and_contexts=events_and_contexts, backfilled=backfilled, deferred=deferred, ) ) return deferred.observe() def handle_queue(self, room_id, per_item_callback): """Attempts to handle the queue for a room if not already being handled. The given callback will be invoked with for each item in the queue, of type _EventPersistQueueItem. The per_item_callback will continuously be called with new items, unless the queue becomnes empty. The return value of the function will be given to the deferreds waiting on the item, exceptions will be passed to the deferreds as well. This function should therefore be called whenever anything is added to the queue. If another callback is currently handling the queue then it will not be invoked. """ if room_id in self._currently_persisting_rooms: return self._currently_persisting_rooms.add(room_id) async def handle_queue_loop(): try: queue = self._get_drainining_queue(room_id) for item in queue: try: ret = await per_item_callback(item) except Exception: with PreserveLoggingContext(): item.deferred.errback() else: with PreserveLoggingContext(): item.deferred.callback(ret) finally: queue = self._event_persist_queues.pop(room_id, None) if queue: self._event_persist_queues[room_id] = queue self._currently_persisting_rooms.discard(room_id) # set handle_queue_loop off in the background run_as_background_process("persist_events", handle_queue_loop) def _get_drainining_queue(self, room_id): queue = self._event_persist_queues.setdefault(room_id, deque()) try: while True: yield queue.popleft() except IndexError: # Queue has been drained. pass class EventsPersistenceStorage(object): """High level interface for handling persisting newly received events. Takes care of batching up events by room, and calculating the necessary current state and forward extremity changes. """ def __init__(self, hs, stores: DataStores): # We ultimately want to split out the state store from the main store, # so we use separate variables here even though they point to the same # store for now. self.main_store = stores.main self.state_store = stores.state self.persist_events_store = stores.persist_events self._clock = hs.get_clock() self.is_mine_id = hs.is_mine_id self._event_persist_queue = _EventPeristenceQueue() self._state_resolution_handler = hs.get_state_resolution_handler() async def persist_events( self, events_and_contexts: List[Tuple[EventBase, EventContext]], backfilled: bool = False, ) -> int: """ Write events to the database Args: events_and_contexts: list of tuples of (event, context) backfilled: Whether the results are retrieved from federation via backfill or not. Used to determine if they're "new" events which might update the current state etc. Returns: the stream ordering of the latest persisted event """ partitioned = {} for event, ctx in events_and_contexts: partitioned.setdefault(event.room_id, []).append((event, ctx)) deferreds = [] for room_id, evs_ctxs in partitioned.items(): d = self._event_persist_queue.add_to_queue( room_id, evs_ctxs, backfilled=backfilled ) deferreds.append(d) for room_id in partitioned: self._maybe_start_persisting(room_id) await make_deferred_yieldable( defer.gatherResults(deferreds, consumeErrors=True) ) return self.main_store.get_current_events_token() async def persist_event( self, event: EventBase, context: EventContext, backfilled: bool = False ) -> Tuple[int, int]: """ Returns: The stream ordering of `event`, and the stream ordering of the latest persisted event """ deferred = self._event_persist_queue.add_to_queue( event.room_id, [(event, context)], backfilled=backfilled ) self._maybe_start_persisting(event.room_id) await make_deferred_yieldable(deferred) max_persisted_id = self.main_store.get_current_events_token() return (event.internal_metadata.stream_ordering, max_persisted_id) def _maybe_start_persisting(self, room_id: str): async def persisting_queue(item): with Measure(self._clock, "persist_events"): await self._persist_events( item.events_and_contexts, backfilled=item.backfilled ) self._event_persist_queue.handle_queue(room_id, persisting_queue) async def _persist_events( self, events_and_contexts: List[Tuple[EventBase, EventContext]], backfilled: bool = False, ): """Calculates the change to current state and forward extremities, and persists the given events and with those updates. """ if not events_and_contexts: return chunks = [ events_and_contexts[x : x + 100] for x in range(0, len(events_and_contexts), 100) ] for chunk in chunks: # We can't easily parallelize these since different chunks # might contain the same event. :( # NB: Assumes that we are only persisting events for one room # at a time. # map room_id->list[event_ids] giving the new forward # extremities in each room new_forward_extremeties = {} # map room_id->(type,state_key)->event_id tracking the full # state in each room after adding these events. # This is simply used to prefill the get_current_state_ids # cache current_state_for_room = {} # map room_id->(to_delete, to_insert) where to_delete is a list # of type/state keys to remove from current state, and to_insert # is a map (type,key)->event_id giving the state delta in each # room state_delta_for_room = {} # Set of remote users which were in rooms the server has left. We # should check if we still share any rooms and if not we mark their # device lists as stale. potentially_left_users = set() # type: Set[str] if not backfilled: with Measure(self._clock, "_calculate_state_and_extrem"): # Work out the new "current state" for each room. # We do this by working out what the new extremities are and then # calculating the state from that. events_by_room = {} for event, context in chunk: events_by_room.setdefault(event.room_id, []).append( (event, context) ) for room_id, ev_ctx_rm in events_by_room.items(): latest_event_ids = await self.main_store.get_latest_event_ids_in_room( room_id ) new_latest_event_ids = await self._calculate_new_extremities( room_id, ev_ctx_rm, latest_event_ids ) latest_event_ids = set(latest_event_ids) if new_latest_event_ids == latest_event_ids: # No change in extremities, so no change in state continue # there should always be at least one forward extremity. # (except during the initial persistence of the send_join # results, in which case there will be no existing # extremities, so we'll `continue` above and skip this bit.) assert new_latest_event_ids, "No forward extremities left!" new_forward_extremeties[room_id] = new_latest_event_ids len_1 = ( len(latest_event_ids) == 1 and len(new_latest_event_ids) == 1 ) if len_1: all_single_prev_not_state = all( len(event.prev_event_ids()) == 1 and not event.is_state() for event, ctx in ev_ctx_rm ) # Don't bother calculating state if they're just # a long chain of single ancestor non-state events. if all_single_prev_not_state: continue state_delta_counter.inc() if len(new_latest_event_ids) == 1: state_delta_single_event_counter.inc() # This is a fairly handwavey check to see if we could # have guessed what the delta would have been when # processing one of these events. # What we're interested in is if the latest extremities # were the same when we created the event as they are # now. When this server creates a new event (as opposed # to receiving it over federation) it will use the # forward extremities as the prev_events, so we can # guess this by looking at the prev_events and checking # if they match the current forward extremities. for ev, _ in ev_ctx_rm: prev_event_ids = set(ev.prev_event_ids()) if latest_event_ids == prev_event_ids: state_delta_reuse_delta_counter.inc() break logger.debug("Calculating state delta for room %s", room_id) with Measure( self._clock, "persist_events.get_new_state_after_events" ): res = await self._get_new_state_after_events( room_id, ev_ctx_rm, latest_event_ids, new_latest_event_ids, ) current_state, delta_ids = res # If either are not None then there has been a change, # and we need to work out the delta (or use that # given) delta = None if delta_ids is not None: # If there is a delta we know that we've # only added or replaced state, never # removed keys entirely. delta = DeltaState([], delta_ids) elif current_state is not None: with Measure( self._clock, "persist_events.calculate_state_delta" ): delta = await self._calculate_state_delta( room_id, current_state ) if delta: # If we have a change of state then lets check # whether we're actually still a member of the room, # or if our last user left. If we're no longer in # the room then we delete the current state and # extremities. is_still_joined = await self._is_server_still_joined( room_id, ev_ctx_rm, delta, current_state, potentially_left_users, ) if not is_still_joined: logger.info("Server no longer in room %s", room_id) latest_event_ids = [] current_state = {} delta.no_longer_in_room = True state_delta_for_room[room_id] = delta # If we have the current_state then lets prefill # the cache with it. if current_state is not None: current_state_for_room[room_id] = current_state await self.persist_events_store._persist_events_and_state_updates( chunk, current_state_for_room=current_state_for_room, state_delta_for_room=state_delta_for_room, new_forward_extremeties=new_forward_extremeties, backfilled=backfilled, ) await self._handle_potentially_left_users(potentially_left_users) async def _calculate_new_extremities( self, room_id: str, event_contexts: List[Tuple[EventBase, EventContext]], latest_event_ids: List[str], ): """Calculates the new forward extremities for a room given events to persist. Assumes that we are only persisting events for one room at a time. """ # we're only interested in new events which aren't outliers and which aren't # being rejected. new_events = [ event for event, ctx in event_contexts if not event.internal_metadata.is_outlier() and not ctx.rejected and not event.internal_metadata.is_soft_failed() ] latest_event_ids = set(latest_event_ids) # start with the existing forward extremities result = set(latest_event_ids) # add all the new events to the list result.update(event.event_id for event in new_events) # Now remove all events which are prev_events of any of the new events result.difference_update( e_id for event in new_events for e_id in event.prev_event_ids() ) # Remove any events which are prev_events of any existing events. existing_prevs = await self.persist_events_store._get_events_which_are_prevs( result ) result.difference_update(existing_prevs) # Finally handle the case where the new events have soft-failed prev # events. If they do we need to remove them and their prev events, # otherwise we end up with dangling extremities. existing_prevs = await self.persist_events_store._get_prevs_before_rejected( e_id for event in new_events for e_id in event.prev_event_ids() ) result.difference_update(existing_prevs) # We only update metrics for events that change forward extremities # (e.g. we ignore backfill/outliers/etc) if result != latest_event_ids: forward_extremities_counter.observe(len(result)) stale = latest_event_ids & result stale_forward_extremities_counter.observe(len(stale)) return result async def _get_new_state_after_events( self, room_id: str, events_context: List[Tuple[EventBase, EventContext]], old_latest_event_ids: Iterable[str], new_latest_event_ids: Iterable[str], ) -> Tuple[Optional[StateMap[str]], Optional[StateMap[str]]]: """Calculate the current state dict after adding some new events to a room Args: room_id (str): room to which the events are being added. Used for logging etc events_context (list[(EventBase, EventContext)]): events and contexts which are being added to the room old_latest_event_ids (iterable[str]): the old forward extremities for the room. new_latest_event_ids (iterable[str]): the new forward extremities for the room. Returns: Returns a tuple of two state maps, the first being the full new current state and the second being the delta to the existing current state. If both are None then there has been no change. If there has been a change then we only return the delta if its already been calculated. Conversely if we do know the delta then the new current state is only returned if we've already calculated it. """ # map from state_group to ((type, key) -> event_id) state map state_groups_map = {} # Map from (prev state group, new state group) -> delta state dict state_group_deltas = {} for ev, ctx in events_context: if ctx.state_group is None: # This should only happen for outlier events. if not ev.internal_metadata.is_outlier(): raise Exception( "Context for new event %s has no state " "group" % (ev.event_id,) ) continue if ctx.state_group in state_groups_map: continue # We're only interested in pulling out state that has already # been cached in the context. We'll pull stuff out of the DB later # if necessary. current_state_ids = ctx.get_cached_current_state_ids() if current_state_ids is not None: state_groups_map[ctx.state_group] = current_state_ids if ctx.prev_group: state_group_deltas[(ctx.prev_group, ctx.state_group)] = ctx.delta_ids # We need to map the event_ids to their state groups. First, let's # check if the event is one we're persisting, in which case we can # pull the state group from its context. # Otherwise we need to pull the state group from the database. # Set of events we need to fetch groups for. (We know none of the old # extremities are going to be in events_context). missing_event_ids = set(old_latest_event_ids) event_id_to_state_group = {} for event_id in new_latest_event_ids: # First search in the list of new events we're adding. for ev, ctx in events_context: if event_id == ev.event_id and ctx.state_group is not None: event_id_to_state_group[event_id] = ctx.state_group break else: # If we couldn't find it, then we'll need to pull # the state from the database missing_event_ids.add(event_id) if missing_event_ids: # Now pull out the state groups for any missing events from DB event_to_groups = await self.main_store._get_state_group_for_events( missing_event_ids ) event_id_to_state_group.update(event_to_groups) # State groups of old_latest_event_ids old_state_groups = { event_id_to_state_group[evid] for evid in old_latest_event_ids } # State groups of new_latest_event_ids new_state_groups = { event_id_to_state_group[evid] for evid in new_latest_event_ids } # If they old and new groups are the same then we don't need to do # anything. if old_state_groups == new_state_groups: return None, None if len(new_state_groups) == 1 and len(old_state_groups) == 1: # If we're going from one state group to another, lets check if # we have a delta for that transition. If we do then we can just # return that. new_state_group = next(iter(new_state_groups)) old_state_group = next(iter(old_state_groups)) delta_ids = state_group_deltas.get((old_state_group, new_state_group), None) if delta_ids is not None: # We have a delta from the existing to new current state, # so lets just return that. If we happen to already have # the current state in memory then lets also return that, # but it doesn't matter if we don't. new_state = state_groups_map.get(new_state_group) return new_state, delta_ids # Now that we have calculated new_state_groups we need to get # their state IDs so we can resolve to a single state set. missing_state = new_state_groups - set(state_groups_map) if missing_state: group_to_state = await self.state_store._get_state_for_groups(missing_state) state_groups_map.update(group_to_state) if len(new_state_groups) == 1: # If there is only one state group, then we know what the current # state is. return state_groups_map[new_state_groups.pop()], None # Ok, we need to defer to the state handler to resolve our state sets. state_groups = {sg: state_groups_map[sg] for sg in new_state_groups} events_map = {ev.event_id: ev for ev, _ in events_context} # We need to get the room version, which is in the create event. # Normally that'd be in the database, but its also possible that we're # currently trying to persist it. room_version = None for ev, _ in events_context: if ev.type == EventTypes.Create and ev.state_key == "": room_version = ev.content.get("room_version", "1") break if not room_version: room_version = await self.main_store.get_room_version_id(room_id) logger.debug("calling resolve_state_groups from preserve_events") # Avoid a circular import. from synapse.state import StateResolutionStore res = await self._state_resolution_handler.resolve_state_groups( room_id, room_version, state_groups, events_map, state_res_store=StateResolutionStore(self.main_store), ) return res.state, None async def _calculate_state_delta( self, room_id: str, current_state: StateMap[str] ) -> DeltaState: """Calculate the new state deltas for a room. Assumes that we are only persisting events for one room at a time. """ existing_state = await self.main_store.get_current_state_ids(room_id) to_delete = [key for key in existing_state if key not in current_state] to_insert = { key: ev_id for key, ev_id in current_state.items() if ev_id != existing_state.get(key) } return DeltaState(to_delete=to_delete, to_insert=to_insert) async def _is_server_still_joined( self, room_id: str, ev_ctx_rm: List[Tuple[EventBase, EventContext]], delta: DeltaState, current_state: Optional[StateMap[str]], potentially_left_users: Set[str], ) -> bool: """Check if the server will still be joined after the given events have been persised. Args: room_id ev_ctx_rm delta: The delta of current state between what is in the database and what the new current state will be. current_state: The new current state if it already been calculated, otherwise None. potentially_left_users: If the server has left the room, then joined remote users will be added to this set to indicate that the server may no longer be sharing a room with them. """ if not any( self.is_mine_id(state_key) for typ, state_key in itertools.chain(delta.to_delete, delta.to_insert) if typ == EventTypes.Member ): # There have been no changes to membership of our users, so nothing # has changed and we assume we're still in the room. return True # Check if any of the given events are a local join that appear in the # current state events_to_check = [] # Event IDs that aren't an event we're persisting for (typ, state_key), event_id in delta.to_insert.items(): if typ != EventTypes.Member or not self.is_mine_id(state_key): continue for event, _ in ev_ctx_rm: if event_id == event.event_id: if event.membership == Membership.JOIN: return True # The event is not in `ev_ctx_rm`, so we need to pull it out of # the DB. events_to_check.append(event_id) # Check if any of the changes that we don't have events for are joins. if events_to_check: rows = await self.main_store.get_membership_from_event_ids(events_to_check) is_still_joined = any(row["membership"] == Membership.JOIN for row in rows) if is_still_joined: return True # None of the new state events are local joins, so we check the database # to see if there are any other local users in the room. We ignore users # whose state has changed as we've already their new state above. users_to_ignore = [ state_key for typ, state_key in itertools.chain(delta.to_insert, delta.to_delete) if typ == EventTypes.Member and self.is_mine_id(state_key) ] if await self.main_store.is_local_host_in_room_ignoring_users( room_id, users_to_ignore ): return True # The server will leave the room, so we go and find out which remote # users will still be joined when we leave. if current_state is None: current_state = await self.main_store.get_current_state_ids(room_id) current_state = dict(current_state) for key in delta.to_delete: current_state.pop(key, None) current_state.update(delta.to_insert) remote_event_ids = [ event_id for (typ, state_key,), event_id in current_state.items() if typ == EventTypes.Member and not self.is_mine_id(state_key) ] rows = await self.main_store.get_membership_from_event_ids(remote_event_ids) potentially_left_users.update( row["user_id"] for row in rows if row["membership"] == Membership.JOIN ) return False async def _handle_potentially_left_users(self, user_ids: Set[str]): """Given a set of remote users check if the server still shares a room with them. If not then mark those users' device cache as stale. """ if not user_ids: return joined_users = await self.main_store.get_users_server_still_shares_room_with( user_ids ) left_users = user_ids - joined_users for user_id in left_users: await self.main_store.mark_remote_user_device_list_as_unsubscribed(user_id)
41.56051
94
0.599479
4a164943225ecb64c0a3ab746a0d066bbdb0712e
37,252
py
Python
google/cloud/aiplatform_v1beta1/services/endpoint_service/async_client.py
Nawod/python-aiplatform
ffc70d148868489161797cc25a63298dda322d5f
[ "Apache-2.0" ]
1
2021-11-27T00:41:48.000Z
2021-11-27T00:41:48.000Z
google/cloud/aiplatform_v1beta1/services/endpoint_service/async_client.py
orionnye/python-aiplatform
e3ea683bf754832340853a15bdb0a0662500a70f
[ "Apache-2.0" ]
null
null
null
google/cloud/aiplatform_v1beta1/services/endpoint_service/async_client.py
orionnye/python-aiplatform
e3ea683bf754832340853a15bdb0a0662500a70f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict import functools import re from typing import Dict, Sequence, Tuple, Type, Union import pkg_resources import google.api_core.client_options as ClientOptions # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.api_core import operation as gac_operation # type: ignore from google.api_core import operation_async # type: ignore from google.cloud.aiplatform_v1beta1.services.endpoint_service import pagers from google.cloud.aiplatform_v1beta1.types import encryption_spec from google.cloud.aiplatform_v1beta1.types import endpoint from google.cloud.aiplatform_v1beta1.types import endpoint as gca_endpoint from google.cloud.aiplatform_v1beta1.types import endpoint_service from google.cloud.aiplatform_v1beta1.types import operation as gca_operation from google.protobuf import empty_pb2 # type: ignore from google.protobuf import field_mask_pb2 # type: ignore from google.protobuf import timestamp_pb2 # type: ignore from .transports.base import EndpointServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc_asyncio import EndpointServiceGrpcAsyncIOTransport from .client import EndpointServiceClient class EndpointServiceAsyncClient: """A service for managing Vertex AI's Endpoints.""" _client: EndpointServiceClient DEFAULT_ENDPOINT = EndpointServiceClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = EndpointServiceClient.DEFAULT_MTLS_ENDPOINT endpoint_path = staticmethod(EndpointServiceClient.endpoint_path) parse_endpoint_path = staticmethod(EndpointServiceClient.parse_endpoint_path) model_path = staticmethod(EndpointServiceClient.model_path) parse_model_path = staticmethod(EndpointServiceClient.parse_model_path) model_deployment_monitoring_job_path = staticmethod( EndpointServiceClient.model_deployment_monitoring_job_path ) parse_model_deployment_monitoring_job_path = staticmethod( EndpointServiceClient.parse_model_deployment_monitoring_job_path ) network_path = staticmethod(EndpointServiceClient.network_path) parse_network_path = staticmethod(EndpointServiceClient.parse_network_path) common_billing_account_path = staticmethod( EndpointServiceClient.common_billing_account_path ) parse_common_billing_account_path = staticmethod( EndpointServiceClient.parse_common_billing_account_path ) common_folder_path = staticmethod(EndpointServiceClient.common_folder_path) parse_common_folder_path = staticmethod( EndpointServiceClient.parse_common_folder_path ) common_organization_path = staticmethod( EndpointServiceClient.common_organization_path ) parse_common_organization_path = staticmethod( EndpointServiceClient.parse_common_organization_path ) common_project_path = staticmethod(EndpointServiceClient.common_project_path) parse_common_project_path = staticmethod( EndpointServiceClient.parse_common_project_path ) common_location_path = staticmethod(EndpointServiceClient.common_location_path) parse_common_location_path = staticmethod( EndpointServiceClient.parse_common_location_path ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: EndpointServiceAsyncClient: The constructed client. """ return EndpointServiceClient.from_service_account_info.__func__(EndpointServiceAsyncClient, info, *args, **kwargs) # type: ignore @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: EndpointServiceAsyncClient: The constructed client. """ return EndpointServiceClient.from_service_account_file.__func__(EndpointServiceAsyncClient, filename, *args, **kwargs) # type: ignore from_service_account_json = from_service_account_file @property def transport(self) -> EndpointServiceTransport: """Returns the transport used by the client instance. Returns: EndpointServiceTransport: The transport used by the client instance. """ return self._client.transport get_transport_class = functools.partial( type(EndpointServiceClient).get_transport_class, type(EndpointServiceClient) ) def __init__( self, *, credentials: ga_credentials.Credentials = None, transport: Union[str, EndpointServiceTransport] = "grpc_asyncio", client_options: ClientOptions = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the endpoint service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.EndpointServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = EndpointServiceClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, ) async def create_endpoint( self, request: endpoint_service.CreateEndpointRequest = None, *, parent: str = None, endpoint: gca_endpoint.Endpoint = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Creates an Endpoint. Args: request (:class:`google.cloud.aiplatform_v1beta1.types.CreateEndpointRequest`): The request object. Request message for [EndpointService.CreateEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.CreateEndpoint]. parent (:class:`str`): Required. The resource name of the Location to create the Endpoint in. Format: ``projects/{project}/locations/{location}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. endpoint (:class:`google.cloud.aiplatform_v1beta1.types.Endpoint`): Required. The Endpoint to create. This corresponds to the ``endpoint`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.aiplatform_v1beta1.types.Endpoint` Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, endpoint]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = endpoint_service.CreateEndpointRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if endpoint is not None: request.endpoint = endpoint # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.create_endpoint, default_timeout=5.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, gca_endpoint.Endpoint, metadata_type=endpoint_service.CreateEndpointOperationMetadata, ) # Done; return the response. return response async def get_endpoint( self, request: endpoint_service.GetEndpointRequest = None, *, name: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> endpoint.Endpoint: r"""Gets an Endpoint. Args: request (:class:`google.cloud.aiplatform_v1beta1.types.GetEndpointRequest`): The request object. Request message for [EndpointService.GetEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.GetEndpoint] name (:class:`str`): Required. The name of the Endpoint resource. Format: ``projects/{project}/locations/{location}/endpoints/{endpoint}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1beta1.types.Endpoint: Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = endpoint_service.GetEndpointRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.get_endpoint, default_timeout=5.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # Done; return the response. return response async def list_endpoints( self, request: endpoint_service.ListEndpointsRequest = None, *, parent: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListEndpointsAsyncPager: r"""Lists Endpoints in a Location. Args: request (:class:`google.cloud.aiplatform_v1beta1.types.ListEndpointsRequest`): The request object. Request message for [EndpointService.ListEndpoints][google.cloud.aiplatform.v1beta1.EndpointService.ListEndpoints]. parent (:class:`str`): Required. The resource name of the Location from which to list the Endpoints. Format: ``projects/{project}/locations/{location}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1beta1.services.endpoint_service.pagers.ListEndpointsAsyncPager: Response message for [EndpointService.ListEndpoints][google.cloud.aiplatform.v1beta1.EndpointService.ListEndpoints]. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = endpoint_service.ListEndpointsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.list_endpoints, default_timeout=5.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListEndpointsAsyncPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response async def update_endpoint( self, request: endpoint_service.UpdateEndpointRequest = None, *, endpoint: gca_endpoint.Endpoint = None, update_mask: field_mask_pb2.FieldMask = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> gca_endpoint.Endpoint: r"""Updates an Endpoint. Args: request (:class:`google.cloud.aiplatform_v1beta1.types.UpdateEndpointRequest`): The request object. Request message for [EndpointService.UpdateEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.UpdateEndpoint]. endpoint (:class:`google.cloud.aiplatform_v1beta1.types.Endpoint`): Required. The Endpoint which replaces the resource on the server. This corresponds to the ``endpoint`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (:class:`google.protobuf.field_mask_pb2.FieldMask`): Required. The update mask applies to the resource. See [google.protobuf.FieldMask][google.protobuf.FieldMask]. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1beta1.types.Endpoint: Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([endpoint, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = endpoint_service.UpdateEndpointRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if endpoint is not None: request.endpoint = endpoint if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.update_endpoint, default_timeout=5.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("endpoint.name", request.endpoint.name),) ), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # Done; return the response. return response async def delete_endpoint( self, request: endpoint_service.DeleteEndpointRequest = None, *, name: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Deletes an Endpoint. Args: request (:class:`google.cloud.aiplatform_v1beta1.types.DeleteEndpointRequest`): The request object. Request message for [EndpointService.DeleteEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.DeleteEndpoint]. name (:class:`str`): Required. The name of the Endpoint resource to be deleted. Format: ``projects/{project}/locations/{location}/endpoints/{endpoint}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = endpoint_service.DeleteEndpointRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.delete_endpoint, default_timeout=5.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=gca_operation.DeleteOperationMetadata, ) # Done; return the response. return response async def deploy_model( self, request: endpoint_service.DeployModelRequest = None, *, endpoint: str = None, deployed_model: gca_endpoint.DeployedModel = None, traffic_split: Sequence[ endpoint_service.DeployModelRequest.TrafficSplitEntry ] = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Deploys a Model into this Endpoint, creating a DeployedModel within it. Args: request (:class:`google.cloud.aiplatform_v1beta1.types.DeployModelRequest`): The request object. Request message for [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel]. endpoint (:class:`str`): Required. The name of the Endpoint resource into which to deploy a Model. Format: ``projects/{project}/locations/{location}/endpoints/{endpoint}`` This corresponds to the ``endpoint`` field on the ``request`` instance; if ``request`` is provided, this should not be set. deployed_model (:class:`google.cloud.aiplatform_v1beta1.types.DeployedModel`): Required. The DeployedModel to be created within the Endpoint. Note that [Endpoint.traffic_split][google.cloud.aiplatform.v1beta1.Endpoint.traffic_split] must be updated for the DeployedModel to start receiving traffic, either as part of this call, or via [EndpointService.UpdateEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.UpdateEndpoint]. This corresponds to the ``deployed_model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. traffic_split (:class:`Sequence[google.cloud.aiplatform_v1beta1.types.DeployModelRequest.TrafficSplitEntry]`): A map from a DeployedModel's ID to the percentage of this Endpoint's traffic that should be forwarded to that DeployedModel. If this field is non-empty, then the Endpoint's [traffic_split][google.cloud.aiplatform.v1beta1.Endpoint.traffic_split] will be overwritten with it. To refer to the ID of the just being deployed Model, a "0" should be used, and the actual ID of the new DeployedModel will be filled in its place by this method. The traffic percentage values must add up to 100. If this field is empty, then the Endpoint's [traffic_split][google.cloud.aiplatform.v1beta1.Endpoint.traffic_split] is not updated. This corresponds to the ``traffic_split`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.aiplatform_v1beta1.types.DeployModelResponse` Response message for [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel]. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([endpoint, deployed_model, traffic_split]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = endpoint_service.DeployModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if endpoint is not None: request.endpoint = endpoint if deployed_model is not None: request.deployed_model = deployed_model if traffic_split: request.traffic_split.update(traffic_split) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.deploy_model, default_timeout=5.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("endpoint", request.endpoint),)), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, endpoint_service.DeployModelResponse, metadata_type=endpoint_service.DeployModelOperationMetadata, ) # Done; return the response. return response async def undeploy_model( self, request: endpoint_service.UndeployModelRequest = None, *, endpoint: str = None, deployed_model_id: str = None, traffic_split: Sequence[ endpoint_service.UndeployModelRequest.TrafficSplitEntry ] = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Undeploys a Model from an Endpoint, removing a DeployedModel from it, and freeing all resources it's using. Args: request (:class:`google.cloud.aiplatform_v1beta1.types.UndeployModelRequest`): The request object. Request message for [EndpointService.UndeployModel][google.cloud.aiplatform.v1beta1.EndpointService.UndeployModel]. endpoint (:class:`str`): Required. The name of the Endpoint resource from which to undeploy a Model. Format: ``projects/{project}/locations/{location}/endpoints/{endpoint}`` This corresponds to the ``endpoint`` field on the ``request`` instance; if ``request`` is provided, this should not be set. deployed_model_id (:class:`str`): Required. The ID of the DeployedModel to be undeployed from the Endpoint. This corresponds to the ``deployed_model_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. traffic_split (:class:`Sequence[google.cloud.aiplatform_v1beta1.types.UndeployModelRequest.TrafficSplitEntry]`): If this field is provided, then the Endpoint's [traffic_split][google.cloud.aiplatform.v1beta1.Endpoint.traffic_split] will be overwritten with it. If last DeployedModel is being undeployed from the Endpoint, the [Endpoint.traffic_split] will always end up empty when this call returns. A DeployedModel will be successfully undeployed only if it doesn't have any traffic assigned to it when this method executes, or if this field unassigns any traffic to it. This corresponds to the ``traffic_split`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.aiplatform_v1beta1.types.UndeployModelResponse` Response message for [EndpointService.UndeployModel][google.cloud.aiplatform.v1beta1.EndpointService.UndeployModel]. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([endpoint, deployed_model_id, traffic_split]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = endpoint_service.UndeployModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if endpoint is not None: request.endpoint = endpoint if deployed_model_id is not None: request.deployed_model_id = deployed_model_id if traffic_split: request.traffic_split.update(traffic_split) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.undeploy_model, default_timeout=5.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("endpoint", request.endpoint),)), ) # Send the request. response = await rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, endpoint_service.UndeployModelResponse, metadata_type=endpoint_service.UndeployModelOperationMetadata, ) # Done; return the response. return response try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-cloud-aiplatform", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() __all__ = ("EndpointServiceAsyncClient",)
43.518692
186
0.641335
4a16497bd347fcc6cc5058207cb329d5cdc942ee
3,010
py
Python
venv/Lib/site-packages/xero_python/payrolluk/models/leave_types.py
RobMilinski/Xero-Starter-Branched-Test
c82382e674b34c2336ee164f5a079d6becd1ed46
[ "MIT" ]
77
2020-02-16T03:50:18.000Z
2022-03-11T03:53:26.000Z
venv/Lib/site-packages/xero_python/payrolluk/models/leave_types.py
RobMilinski/Xero-Starter-Branched-Test
c82382e674b34c2336ee164f5a079d6becd1ed46
[ "MIT" ]
50
2020-04-06T10:15:52.000Z
2022-03-29T21:27:50.000Z
venv/Lib/site-packages/xero_python/payrolluk/models/leave_types.py
RobMilinski/Xero-Starter-Branched-Test
c82382e674b34c2336ee164f5a079d6becd1ed46
[ "MIT" ]
27
2020-06-04T11:16:17.000Z
2022-03-19T06:27:36.000Z
# coding: utf-8 """ Xero Payroll UK This is the Xero Payroll API for orgs in the UK region. # noqa: E501 Contact: api@xero.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 from xero_python.models import BaseModel class LeaveTypes(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { "pagination": "Pagination", "problem": "Problem", "leave_types": "list[LeaveType]", } attribute_map = { "pagination": "pagination", "problem": "problem", "leave_types": "leaveTypes", } def __init__(self, pagination=None, problem=None, leave_types=None): # noqa: E501 """LeaveTypes - a model defined in OpenAPI""" # noqa: E501 self._pagination = None self._problem = None self._leave_types = None self.discriminator = None if pagination is not None: self.pagination = pagination if problem is not None: self.problem = problem if leave_types is not None: self.leave_types = leave_types @property def pagination(self): """Gets the pagination of this LeaveTypes. # noqa: E501 :return: The pagination of this LeaveTypes. # noqa: E501 :rtype: Pagination """ return self._pagination @pagination.setter def pagination(self, pagination): """Sets the pagination of this LeaveTypes. :param pagination: The pagination of this LeaveTypes. # noqa: E501 :type: Pagination """ self._pagination = pagination @property def problem(self): """Gets the problem of this LeaveTypes. # noqa: E501 :return: The problem of this LeaveTypes. # noqa: E501 :rtype: Problem """ return self._problem @problem.setter def problem(self, problem): """Sets the problem of this LeaveTypes. :param problem: The problem of this LeaveTypes. # noqa: E501 :type: Problem """ self._problem = problem @property def leave_types(self): """Gets the leave_types of this LeaveTypes. # noqa: E501 :return: The leave_types of this LeaveTypes. # noqa: E501 :rtype: list[LeaveType] """ return self._leave_types @leave_types.setter def leave_types(self, leave_types): """Sets the leave_types of this LeaveTypes. :param leave_types: The leave_types of this LeaveTypes. # noqa: E501 :type: list[LeaveType] """ self._leave_types = leave_types
24.876033
86
0.599668
4a164a23d8ab43c21c16022f46f531866c88c393
73,751
py
Python
taxcalc/calcfunctions.py
adamoppenheimer/OG-USA
05926fd79ce2fd0e58e2f0088fd461445d862db5
[ "CC0-1.0" ]
null
null
null
taxcalc/calcfunctions.py
adamoppenheimer/OG-USA
05926fd79ce2fd0e58e2f0088fd461445d862db5
[ "CC0-1.0" ]
null
null
null
taxcalc/calcfunctions.py
adamoppenheimer/OG-USA
05926fd79ce2fd0e58e2f0088fd461445d862db5
[ "CC0-1.0" ]
null
null
null
""" Tax-Calculator functions that calculate payroll and individual income taxes. These functions are imported into the Calculator class. Note: the cpi_offset policy parameter is the only policy parameter that does not appear here; it is used in the policy.py file to possibly adjust the price inflation rate used to index policy parameters (as would be done in a reform that introduces chained-CPI indexing). """ # CODING-STYLE CHECKS: # pycodestyle calcfunctions.py # pylint --disable=locally-disabled calcfunctions.py # # pylint: disable=too-many-lines # pylint: disable=invalid-name # pylint: disable=too-many-arguments # pylint: disable=too-many-locals import math import copy import numpy as np from taxcalc.decorators import iterate_jit, JIT def BenefitPrograms(calc): """ Calculate total government cost and consumption value of benefits delivered by non-repealed benefit programs. """ # zero out benefits delivered by repealed programs zero = np.zeros(calc.array_len) if calc.policy_param('BEN_housing_repeal'): calc.array('housing_ben', zero) if calc.policy_param('BEN_ssi_repeal'): calc.array('ssi_ben', zero) if calc.policy_param('BEN_snap_repeal'): calc.array('snap_ben', zero) if calc.policy_param('BEN_tanf_repeal'): calc.array('tanf_ben', zero) if calc.policy_param('BEN_vet_repeal'): calc.array('vet_ben', zero) if calc.policy_param('BEN_wic_repeal'): calc.array('wic_ben', zero) if calc.policy_param('BEN_mcare_repeal'): calc.array('mcare_ben', zero) if calc.policy_param('BEN_mcaid_repeal'): calc.array('mcaid_ben', zero) if calc.policy_param('BEN_oasdi_repeal'): calc.array('e02400', zero) if calc.policy_param('BEN_ui_repeal'): calc.array('e02300', zero) if calc.policy_param('BEN_other_repeal'): calc.array('other_ben', zero) # calculate government cost of all benefits cost = np.array( calc.array('housing_ben') + calc.array('ssi_ben') + calc.array('snap_ben') + calc.array('tanf_ben') + calc.array('vet_ben') + calc.array('wic_ben') + calc.array('mcare_ben') + calc.array('mcaid_ben') + calc.array('e02400') + calc.array('e02300') + calc.array('other_ben') ) calc.array('benefit_cost_total', cost) # calculate consumption value of all benefits # (assuming that cash benefits have full value) value = np.array( calc.array('housing_ben') * calc.consump_param('BEN_housing_value') + calc.array('ssi_ben') + calc.array('snap_ben') * calc.consump_param('BEN_snap_value') + calc.array('tanf_ben') * calc.consump_param('BEN_tanf_value') + calc.array('vet_ben') * calc.consump_param('BEN_vet_value') + calc.array('wic_ben') * calc.consump_param('BEN_wic_value') + calc.array('mcare_ben') * calc.consump_param('BEN_mcare_value') + calc.array('mcaid_ben') * calc.consump_param('BEN_mcaid_value') + calc.array('e02400') + calc.array('e02300') + calc.array('other_ben') * calc.consump_param('BEN_other_value') ) calc.array('benefit_value_total', value) @iterate_jit(nopython=True) def EI_PayrollTax(SS_Earnings_c, e00200p, e00200s, pencon_p, pencon_s, FICA_ss_trt, FICA_mc_trt, ALD_SelfEmploymentTax_hc, e00900p, e00900s, e02100p, e02100s, k1bx14p, k1bx14s, payrolltax, ptax_was, setax, c03260, ptax_oasdi, sey, earned, earned_p, earned_s): """ Compute part of total OASDI+HI payroll taxes and earned income variables. """ # compute sey and its individual components sey_p = e00900p + e02100p + k1bx14p sey_s = e00900s + e02100s + k1bx14s sey = sey_p + sey_s # total self-employment income for filing unit # compute gross wage and salary income ('was' denotes 'wage and salary') gross_was_p = e00200p + pencon_p gross_was_s = e00200s + pencon_s # compute taxable earnings for OASDI FICA sey_frac = 1.0 - 0.5 * (FICA_ss_trt + FICA_mc_trt) txearn_was_p = min(SS_Earnings_c, gross_was_p) txearn_was_s = min(SS_Earnings_c, gross_was_s) txearn_sey_p = min(max(0., sey_p * sey_frac), SS_Earnings_c - txearn_was_p) txearn_sey_s = min(max(0., sey_s * sey_frac), SS_Earnings_c - txearn_was_s) # compute OASDI and HI payroll taxes on gross wage-and-salary income ptax_ss_was_p = FICA_ss_trt * txearn_was_p ptax_ss_was_s = FICA_ss_trt * txearn_was_s ptax_mc_was_p = FICA_mc_trt * gross_was_p ptax_mc_was_s = FICA_mc_trt * gross_was_s ptax_was = ptax_ss_was_p + ptax_ss_was_s + ptax_mc_was_p + ptax_mc_was_s # compute self-employment tax on taxable self-employment income setax_ss_p = FICA_ss_trt * txearn_sey_p setax_ss_s = FICA_ss_trt * txearn_sey_s setax_mc_p = FICA_mc_trt * max(0., sey_p * sey_frac) setax_mc_s = FICA_mc_trt * max(0., sey_s * sey_frac) setax_p = setax_ss_p + setax_mc_p setax_s = setax_ss_s + setax_mc_s setax = setax_p + setax_s # compute part of total regular payroll taxes for filing unit payrolltax = ptax_was + setax # compute OASDI part of payroll taxes ptax_oasdi = ptax_ss_was_p + ptax_ss_was_s + setax_ss_p + setax_ss_s # compute earned* variables and AGI deduction for # "employer share" of self-employment tax, c03260 # Note: c03260 is the amount on 2015 Form 1040, line 27 c03260 = (1. - ALD_SelfEmploymentTax_hc) * 0.5 * setax earned = max(0., e00200p + e00200s + sey - c03260) earned_p = max(0., (e00200p + sey_p - (1. - ALD_SelfEmploymentTax_hc) * 0.5 * setax_p)) earned_s = max(0., (e00200s + sey_s - (1. - ALD_SelfEmploymentTax_hc) * 0.5 * setax_s)) return (sey, payrolltax, ptax_was, setax, c03260, ptax_oasdi, earned, earned_p, earned_s) @iterate_jit(nopython=True) def DependentCare(nu13, elderly_dependents, earned, MARS, ALD_Dependents_thd, ALD_Dependents_hc, ALD_Dependents_Child_c, ALD_Dependents_Elder_c, care_deduction): """ Computes dependent-care above-the-line deduction. Parameters ---------- nu13: Number of dependents under 13 years old elderly_dependents: number of elderly dependents earned: Form 2441 earned income amount MARS: Marital Status ALD_Dependents_thd: Maximum income to qualify for deduction ALD_Dependents_hc: Deduction for dependent care haircut ALD_Dependents_Child_c: National weighted average cost of childcare ALD_Dependents_Elder_c: Eldercare deduction ceiling Returns ------- care_deduction: Total above the line deductions for dependent care. """ if earned <= ALD_Dependents_thd[MARS - 1]: care_deduction = (((1. - ALD_Dependents_hc) * nu13 * ALD_Dependents_Child_c) + ((1. - ALD_Dependents_hc) * elderly_dependents * ALD_Dependents_Elder_c)) else: care_deduction = 0. return care_deduction @iterate_jit(nopython=True) def Adj(e03150, e03210, c03260, e03270, e03300, e03400, e03500, e00800, e03220, e03230, e03240, e03290, care_deduction, ALD_StudentLoan_hc, ALD_SelfEmp_HealthIns_hc, ALD_KEOGH_SEP_hc, ALD_EarlyWithdraw_hc, ALD_AlimonyPaid_hc, ALD_AlimonyReceived_hc, ALD_EducatorExpenses_hc, ALD_HSADeduction_hc, ALD_IRAContributions_hc, ALD_DomesticProduction_hc, ALD_Tuition_hc, c02900): """ Adj calculates Form 1040 AGI adjustments (i.e., Above-the-Line Deductions). Notes ----- Taxpayer characteristics: e03210 : Student loan interest paid e03220 : Educator expenses e03150 : Total deductible IRA plan contributions e03230 : Tuition and fees (Form 8917) e03240 : Domestic production activity deduction (Form 8903) c03260 : Self-employment tax deduction (after haircut) e03270 : Self-employed health insurance premiums e03290 : HSA deduction (Form 8889) e03300 : Total deductible KEOGH/SEP/SIMPLE/etc. plan contributions e03400 : Penalty on early withdrawal of savings deduction e03500 : Alimony paid e00800 : Alimony received care_deduction : Dependent care expense deduction Tax law parameters: ALD_StudentLoan_hc : Student loan interest deduction haircut ALD_SelfEmp_HealthIns_hc : Self-employed h.i. deduction haircut ALD_KEOGH_SEP_hc : KEOGH/etc. plan contribution deduction haircut ALD_EarlyWithdraw_hc : Penalty on early withdrawal deduction haricut ALD_AlimonyPaid_hc : Alimony paid deduction haircut ALD_AlimonyReceived_hc : Alimony received deduction haircut ALD_EducatorExpenses_hc: Eductor expenses haircut ALD_HSADeduction_hc: HSA Deduction haircut ALD_IRAContributions_hc: IRA Contribution haircut ALD_DomesticProduction_hc: Domestic production haircut ALD_Tuition_hc: Tuition and fees haircut Returns ------- c02900 : total Form 1040 adjustments, which are not included in AGI """ # Form 2555 foreign earned income deduction is assumed to be zero # Form 1040 adjustments that are included in expanded income: c02900 = ((1. - ALD_StudentLoan_hc) * e03210 + c03260 + (1. - ALD_EarlyWithdraw_hc) * e03400 + (1. - ALD_AlimonyPaid_hc) * e03500 + (1. - ALD_AlimonyReceived_hc) * e00800 + (1. - ALD_EducatorExpenses_hc) * e03220 + (1. - ALD_Tuition_hc) * e03230 + (1. - ALD_DomesticProduction_hc) * e03240 + (1. - ALD_HSADeduction_hc) * e03290 + (1. - ALD_SelfEmp_HealthIns_hc) * e03270 + (1. - ALD_IRAContributions_hc) * e03150 + (1. - ALD_KEOGH_SEP_hc) * e03300 + care_deduction) return c02900 @iterate_jit(nopython=True) def ALD_InvInc_ec_base(p22250, p23250, sep, e00300, e00600, e01100, e01200, invinc_ec_base): """ Computes invinc_ec_base. """ # limitation on net short-term and long-term capital losses cgain = max((-3000. / sep), p22250 + p23250) # compute exclusion of investment income from AGI invinc_ec_base = e00300 + e00600 + cgain + e01100 + e01200 return invinc_ec_base @iterate_jit(nopython=True) def CapGains(p23250, p22250, sep, ALD_StudentLoan_hc, ALD_InvInc_ec_rt, invinc_ec_base, ALD_InvInc_ec_base_RyanBrady, e00200, e00300, e00600, e00650, e00700, e00800, CG_nodiff, CG_ec, CG_reinvest_ec_rt, ALD_BusinessLosses_c, MARS, e00900, e01100, e01200, e01400, e01700, e02000, e02100, e02300, e00400, e02400, c02900, e03210, e03230, e03240, c01000, c23650, ymod, ymod1, invinc_agi_ec): """ CapGains function: ... """ # net capital gain (long term + short term) before exclusion c23650 = p23250 + p22250 # limitation on capital losses c01000 = max((-3000. / sep), c23650) # compute total investment income invinc = e00300 + e00600 + c01000 + e01100 + e01200 # compute exclusion of investment income from AGI invinc_agi_ec = ALD_InvInc_ec_rt * max(0., invinc_ec_base) # compute exclusion of investment income for Ryan-Brady plan if ALD_InvInc_ec_base_RyanBrady: # This RyanBrady code interprets the Blueprint reform as providing # an investment income AGI exclusion for each of three investment # income types (e00300, e00650, p23250) separately. The alternative # interpretation (that is not adopted here) is that the investment # income AGI exclusion is calculated using a base that is the sum # of those three investment income types, with the base being zero # if the sum of the three is negative. CG_ec_RyanBrady = (c01000 - max(-3000. / sep, p22250 + ALD_InvInc_ec_rt * p23250)) invinc_agi_ec = ALD_InvInc_ec_rt * (e00300 + e00650) + CG_ec_RyanBrady # compute ymod1 variable that is included in AGI ymod1 = (e00200 + e00700 + e00800 + e01400 + e01700 + invinc - invinc_agi_ec + e02100 + e02300 + max(e00900 + e02000, -ALD_BusinessLosses_c[MARS - 1])) if CG_nodiff: # apply QDIV+CG exclusion if QDIV+LTCG receive no special tax treatment qdcg_pos = max(0., e00650 + c01000) qdcg_exclusion = (min(CG_ec, qdcg_pos) + CG_reinvest_ec_rt * max(0., qdcg_pos - CG_ec)) ymod1 = max(0., ymod1 - qdcg_exclusion) invinc_agi_ec += qdcg_exclusion # compute ymod variable that is used in OASDI benefit taxation logic ymod2 = e00400 + (0.50 * e02400) - c02900 ymod3 = (1. - ALD_StudentLoan_hc) * e03210 + e03230 + e03240 ymod = ymod1 + ymod2 + ymod3 return (c01000, c23650, ymod, ymod1, invinc_agi_ec) @iterate_jit(nopython=True) def SSBenefits(MARS, ymod, e02400, SS_thd50, SS_thd85, SS_percentage1, SS_percentage2, c02500): """ Calculates OASDI benefits included in AGI, c02500. """ if ymod < SS_thd50[MARS - 1]: c02500 = 0. elif ymod < SS_thd85[MARS - 1]: c02500 = SS_percentage1 * min(ymod - SS_thd50[MARS - 1], e02400) else: c02500 = min(SS_percentage2 * (ymod - SS_thd85[MARS - 1]) + SS_percentage1 * min(e02400, SS_thd85[MARS - 1] - SS_thd50[MARS - 1]), SS_percentage2 * e02400) return c02500 @iterate_jit(nopython=True) def UBI(nu18, n1820, n21, UBI_u18, UBI_1820, UBI_21, UBI_ecrt, ubi, taxable_ubi, nontaxable_ubi): """ Calculates total and taxable Universal Basic Income (UBI) amount. Parameters ---------- nu18: Number of people in the tax unit under 18 n1820: Number of people in the tax unit age 18-20 n21: Number of people in the tax unit age 21+ UBI_u18: UBI benefit for those under 18 UBI_1820: UBI benefit for those between 18 to 20 UBI_21: UBI benefit for those 21 or more UBI_ecrt: Fraction of UBI benefits that are not included in AGI Returns ------- ubi: total UBI received by the tax unit (is included in expanded_income) taxable_ubi: amount of UBI that is taxable (is added to AGI) nontaxable_ubi: amount of UBI that is nontaxable """ ubi = nu18 * UBI_u18 + n1820 * UBI_1820 + n21 * UBI_21 taxable_ubi = ubi * (1. - UBI_ecrt) nontaxable_ubi = ubi - taxable_ubi return ubi, taxable_ubi, nontaxable_ubi @iterate_jit(nopython=True) def AGI(ymod1, c02500, c02900, XTOT, MARS, sep, DSI, exact, nu18, taxable_ubi, II_em, II_em_ps, II_prt, II_no_em_nu18, c00100, pre_c04600, c04600): """ Computes Adjusted Gross Income (AGI), c00100, and compute personal exemption amount, c04600. """ # calculate AGI assuming no foreign earned income exclusion c00100 = ymod1 + c02500 - c02900 + taxable_ubi # calculate personal exemption amount if II_no_em_nu18: # repeal of personal exemptions for deps. under 18 pre_c04600 = max(0, XTOT - nu18) * II_em else: pre_c04600 = XTOT * II_em if DSI: pre_c04600 = 0. # phase-out personal exemption amount if exact == 1: # exact calculation as on tax forms line5 = max(0., c00100 - II_em_ps[MARS - 1]) line6 = math.ceil(line5 / (2500. / sep)) line7 = II_prt * line6 c04600 = max(0., pre_c04600 * (1. - line7)) else: # smoothed calculation needed for sensible mtr calculation dispc_numer = II_prt * (c00100 - II_em_ps[MARS - 1]) dispc_denom = 2500. / sep dispc = min(1., max(0., dispc_numer / dispc_denom)) c04600 = pre_c04600 * (1. - dispc) return (c00100, pre_c04600, c04600) @iterate_jit(nopython=True) def ItemDedCap(e17500, e18400, e18500, e19200, e19800, e20100, e20400, g20500, c00100, ID_AmountCap_rt, ID_AmountCap_Switch, e17500_capped, e18400_capped, e18500_capped, e19200_capped, e19800_capped, e20100_capped, e20400_capped, g20500_capped): """ Applies a cap to gross itemized deductions. Notes ----- Tax Law Parameters: ID_AmountCap_Switch : Indicator for which itemized deductions are capped ID_AmountCap_rt : Cap on itemized deductions; decimal fraction of AGI Taxpayer Characteristics: e17500 : Medical expenses e18400 : State and local taxes e18500 : Real-estate taxes e19200 : Interest paid e19800 : Charity cash contributions e20100 : Charity noncash contributions e20400 : Total miscellaneous expenses g20500 : Gross casualty or theft loss (before disregard) c00100: Adjusted Gross Income Returns ------- e17500_capped: Medical expenses, capped by ItemDedCap e18400_capped: State and local taxes, capped by ItemDedCap e18500_capped : Real-estate taxes, capped by ItemDedCap e19200_capped : Interest paid, capped by ItemDedCap e19800_capped : Charity cash contributions, capped by ItemDedCap e20100_capped : Charity noncash contributions, capped by ItemDedCap e20400_capped : Total miscellaneous expenses, capped by ItemDedCap g20500_capped : Gross casualty or theft loss (before disregard), capped by ItemDedCap """ # pylint: disable=too-many-branches cap = max(0., ID_AmountCap_rt * c00100) gross_ded_amt = 0 if ID_AmountCap_Switch[0]: # medical gross_ded_amt += e17500 if ID_AmountCap_Switch[1]: # statelocal gross_ded_amt += e18400 if ID_AmountCap_Switch[2]: # realestate gross_ded_amt += e18500 if ID_AmountCap_Switch[3]: # casualty gross_ded_amt += g20500 if ID_AmountCap_Switch[4]: # misc gross_ded_amt += e20400 if ID_AmountCap_Switch[5]: # interest gross_ded_amt += e19200 if ID_AmountCap_Switch[6]: # charity gross_ded_amt += e19800 + e20100 overage = max(0., gross_ded_amt - cap) e17500_capped = e17500 e18400_capped = e18400 e18500_capped = e18500 g20500_capped = g20500 e20400_capped = e20400 e19200_capped = e19200 e19800_capped = e19800 e20100_capped = e20100 if overage > 0. and c00100 > 0.: if ID_AmountCap_Switch[0]: # medical e17500_capped -= (e17500 / gross_ded_amt) * overage if ID_AmountCap_Switch[1]: # statelocal e18400_capped -= (e18400 / (gross_ded_amt) * overage) if ID_AmountCap_Switch[2]: # realestate e18500_capped -= (e18500 / gross_ded_amt) * overage if ID_AmountCap_Switch[3]: # casualty g20500_capped -= (g20500 / gross_ded_amt) * overage if ID_AmountCap_Switch[4]: # misc e20400_capped -= (e20400 / gross_ded_amt) * overage if ID_AmountCap_Switch[5]: # interest e19200_capped -= (e19200 / gross_ded_amt) * overage if ID_AmountCap_Switch[6]: # charity e19800_capped -= (e19800 / gross_ded_amt) * overage e20100_capped -= (e20100 / gross_ded_amt) * overage return (e17500_capped, e18400_capped, e18500_capped, g20500_capped, e20400_capped, e19200_capped, e19800_capped, e20100_capped) @iterate_jit(nopython=True) def ItemDed(e17500_capped, e18400_capped, e18500_capped, g20500_capped, e20400_capped, e19200_capped, e19800_capped, e20100_capped, MARS, age_head, age_spouse, c00100, c04470, c17000, c18300, c20500, c19200, c20800, c21040, c21060, c19700, ID_ps, ID_Medical_frt, ID_Medical_frt_add4aged, ID_Medical_hc, ID_Casualty_frt, ID_Casualty_hc, ID_Miscellaneous_frt, ID_Miscellaneous_hc, ID_Charity_crt_all, ID_Charity_crt_noncash, ID_prt, ID_crt, ID_c, ID_StateLocalTax_hc, ID_Charity_frt, ID_Charity_hc, ID_InterestPaid_hc, ID_RealEstate_hc, ID_Medical_c, ID_StateLocalTax_c, ID_RealEstate_c, ID_InterestPaid_c, ID_Charity_c, ID_Casualty_c, ID_Miscellaneous_c, ID_AllTaxes_c, ID_StateLocalTax_crt, ID_RealEstate_crt, ID_Charity_f): """ Calculates itemized deductions, Form 1040, Schedule A. Notes ----- Tax Law Parameters: ID_ps : Itemized deduction phaseout AGI start (Pease) ID_crt : Itemized deduction maximum phaseout as a decimal fraction of total itemized deduction (Pease) ID_prt : Itemized deduction phaseout rate (Pease) ID_c: Dollar limit on itemized deductions ID_Medical_frt : Deduction for medical expenses; floor as a decimal fraction of AGI ID_Medical_frt_add4aged : Addon for medical expenses deduction for elderly; addon as a decimal fraction of AGI ID_Casualty_frt : Deduction for casualty loss; floor as a decimal fraction of AGI ID_Miscellaneous_frt : Deduction for miscellaneous expenses; floor as a decimal fraction of AGI ID_Charity_crt_all : Deduction for all charitable contributions; ceiling as a decimal fraction of AGI ID_Charity_crt_noncash : Deduction for noncash charitable contributions; ceiling as a decimal fraction of AGI ID_Charity_frt : Disregard for charitable contributions; floor as a decimal fraction of AGI ID_Medical_c : Ceiling on medical expense deduction ID_StateLocalTax_c : Ceiling on state and local tax deduction ID_RealEstate_c : Ceiling on real estate tax deduction ID_AllTaxes_c: Ceiling combined state and local income/sales and real estate tax deductions ID_InterestPaid_c : Ceiling on interest paid deduction ID_Charity_c : Ceiling on charity expense deduction ID_Charity_f: Floor on charity expense deduction ID_Casualty_c : Ceiling on casuality expense deduction ID_Miscellaneous_c : Ceiling on miscellaneous expense deduction ID_StateLocalTax_crt : Deduction for state and local taxes; ceiling as a decimal fraction of AGI ID_RealEstate_crt : Deduction for real estate taxes; ceiling as a decimal fraction of AGI Taxpayer Characteristics: e17500_capped : Medical expenses, capped by ItemDedCap e18400_capped : State and local taxes, capped by ItemDedCap e18500_capped : Real-estate taxes, capped by ItemDedCap e19200_capped : Interest paid, capped by ItemDedCap e19800_capped : Charity cash contributions, capped by ItemDedCap e20100_capped : Charity noncash contributions, capped by ItemDedCap e20400_capped : Total miscellaneous expenses, capped by ItemDedCap g20500_capped : Gross casualty or theft loss (before disregard), capped by ItemDedCap Returns ------- c04470 : Itemized deduction amount (and other intermediate variables) """ posagi = max(c00100, 0.) # Medical medical_frt = ID_Medical_frt if age_head >= 65 or (MARS == 2 and age_spouse >= 65): medical_frt += ID_Medical_frt_add4aged c17750 = medical_frt * posagi c17000 = max(0., e17500_capped - c17750) * (1. - ID_Medical_hc) c17000 = min(c17000, ID_Medical_c[MARS - 1]) # State and local taxes c18400 = min((1. - ID_StateLocalTax_hc) * max(e18400_capped, 0.), ID_StateLocalTax_c[MARS - 1]) c18500 = min((1. - ID_RealEstate_hc) * e18500_capped, ID_RealEstate_c[MARS - 1]) # following two statements implement a cap on c18400 and c18500 in a way # that those with negative AGI, c00100, are not capped under current law, # hence the 0.0001 rather than zero c18400 = min(c18400, ID_StateLocalTax_crt * max(c00100, 0.0001)) c18500 = min(c18500, ID_RealEstate_crt * max(c00100, 0.0001)) c18300 = min(c18400 + c18500, ID_AllTaxes_c[MARS - 1]) # Interest paid c19200 = e19200_capped * (1. - ID_InterestPaid_hc) c19200 = min(c19200, ID_InterestPaid_c[MARS - 1]) # Charity lim30 = min(ID_Charity_crt_noncash * posagi, e20100_capped) c19700 = min(ID_Charity_crt_all * posagi, lim30 + e19800_capped) # charity floor is zero in present law charity_floor = max(ID_Charity_frt * posagi, ID_Charity_f[MARS - 1]) c19700 = max(0., c19700 - charity_floor) * (1. - ID_Charity_hc) c19700 = min(c19700, ID_Charity_c[MARS - 1]) # Casualty c20500 = (max(0., g20500_capped - ID_Casualty_frt * posagi) * (1. - ID_Casualty_hc)) c20500 = min(c20500, ID_Casualty_c[MARS - 1]) # Miscellaneous c20400 = e20400_capped c20750 = ID_Miscellaneous_frt * posagi c20800 = max(0., c20400 - c20750) * (1. - ID_Miscellaneous_hc) c20800 = min(c20800, ID_Miscellaneous_c[MARS - 1]) # Gross Itemized Deductions c21060 = c17000 + c18300 + c19200 + c19700 + c20500 + c20800 # Limitation on total itemized deductions nonlimited = c17000 + c20500 limitstart = ID_ps[MARS - 1] if c21060 > nonlimited and c00100 > limitstart: dedmin = ID_crt * (c21060 - nonlimited) dedpho = ID_prt * max(0., posagi - limitstart) c21040 = min(dedmin, dedpho) c04470 = c21060 - c21040 else: c21040 = 0. c04470 = c21060 c04470 = min(c04470, ID_c[MARS - 1]) return (c17000, c18300, c19200, c20500, c20800, c21040, c21060, c04470, c19700) @iterate_jit(nopython=True) def AdditionalMedicareTax(e00200, MARS, AMEDT_ec, sey, AMEDT_rt, FICA_mc_trt, FICA_ss_trt, ptax_amc, payrolltax): """ Computes Additional Medicare Tax (Form 8959) included in payroll taxes. Notes ----- Tax Law Parameters: AMEDT_ec : Additional Medicare Tax earnings exclusion AMEDT_rt : Additional Medicare Tax rate FICA_ss_trt : FICA Social Security tax rate FICA_mc_trt : FICA Medicare tax rate Taxpayer Charateristics: e00200 : Wages and salaries sey : Self-employment income Returns ------- ptax_amc : Additional Medicare Tax payrolltax : payroll tax augmented by Additional Medicare Tax """ line8 = max(0., sey) * (1. - 0.5 * (FICA_mc_trt + FICA_ss_trt)) line11 = max(0., AMEDT_ec[MARS - 1] - e00200) ptax_amc = AMEDT_rt * (max(0., e00200 - AMEDT_ec[MARS - 1]) + max(0., line8 - line11)) payrolltax = payrolltax + ptax_amc return (ptax_amc, payrolltax) @iterate_jit(nopython=True) def StdDed(DSI, earned, STD, age_head, age_spouse, STD_Aged, STD_Dep, MARS, MIDR, blind_head, blind_spouse, standard, c19700, STD_allow_charity_ded_nonitemizers): """ Calculates standard deduction, including standard deduction for dependents, aged and bind. Notes ----- Tax Law Parameters: STD : Standard deduction amount, filing status dependent STD_Dep : Standard deduction for dependents STD_Aged : Additional standard deduction for blind and aged Taxpayer Characteristics: earned : Form 2441 earned income amount e02400 : Gross Social Security Benefit DSI : Dependent Status Indicator: 0 - not being claimed as a dependent 1 - claimed as a dependent MIDR : Married filing separately itemized deductions requirement indicator: 0 - not necessary to itemize because of filing status 1 - necessary to itemize when filing separately Returns ------- standard : the standard deduction amount for filing unit """ # calculate deduction for dependents if DSI == 1: c15100 = max(350. + earned, STD_Dep) basic_stded = min(STD[MARS - 1], c15100) else: c15100 = 0. if MIDR == 1: basic_stded = 0. else: basic_stded = STD[MARS - 1] # calculate extra standard deduction for aged and blind num_extra_stded = blind_head + blind_spouse if age_head >= 65: num_extra_stded += 1 if MARS == 2 and age_spouse >= 65: num_extra_stded += 1 extra_stded = num_extra_stded * STD_Aged[MARS - 1] # calculate the total standard deduction standard = basic_stded + extra_stded if MARS == 3 and MIDR == 1: standard = 0. if STD_allow_charity_ded_nonitemizers: standard += c19700 return standard @iterate_jit(nopython=True) def TaxInc(c00100, standard, c04470, c04600, c04800, MARS, PT_excl_rt, PT_excl_wagelim_rt, PT_excl_wagelim_thd, PT_excl_wagelim_prt, e00900, e26270, e00200): """ Calculates taxable income, c04800. """ pt_excl_pre = max(0., PT_excl_rt * (e00900 + e26270)) wagelim_pre = e00200 * PT_excl_wagelim_rt taxinc_pre = max(0., c00100 - max(c04470, standard) - c04600) # calculate business income exclusion excess = max(taxinc_pre - PT_excl_wagelim_thd[MARS - 1], 0.) wagelim_rt = min(excess * PT_excl_wagelim_prt[MARS - 1], 1.) limit = wagelim_rt * max(pt_excl_pre - wagelim_pre, 0.) pt_excl = pt_excl_pre - limit c04800 = max(0., taxinc_pre - pt_excl) return c04800 @JIT(nopython=True) def SchXYZ(taxable_income, MARS, e00900, e26270, e02000, e00200, PT_rt1, PT_rt2, PT_rt3, PT_rt4, PT_rt5, PT_rt6, PT_rt7, PT_rt8, PT_brk1, PT_brk2, PT_brk3, PT_brk4, PT_brk5, PT_brk6, PT_brk7, II_rt1, II_rt2, II_rt3, II_rt4, II_rt5, II_rt6, II_rt7, II_rt8, II_brk1, II_brk2, II_brk3, II_brk4, II_brk5, II_brk6, II_brk7, PT_EligibleRate_active, PT_EligibleRate_passive, PT_wages_active_income, PT_top_stacking): """ Returns Schedule X, Y, Z tax amount for specified taxable_income. """ # separate non-negative taxable income into two non-negative components, # doing this in a way so that the components add up to taxable income # define pass-through income eligible for PT schedule pt_passive = PT_EligibleRate_passive * (e02000 - e26270) pt_active_gross = e00900 + e26270 if (pt_active_gross > 0) and PT_wages_active_income: pt_active_gross = pt_active_gross + e00200 pt_active = PT_EligibleRate_active * pt_active_gross pt_active = min(pt_active, e00900 + e26270) pt_taxinc = max(0., pt_passive + pt_active) if pt_taxinc >= taxable_income: pt_taxinc = taxable_income reg_taxinc = 0. else: # pt_taxinc is unchanged reg_taxinc = taxable_income - pt_taxinc # determine stacking order if PT_top_stacking: reg_tbase = 0. pt_tbase = reg_taxinc else: reg_tbase = pt_taxinc pt_tbase = 0. # compute Schedule X,Y,Z tax using the two components of taxable income if reg_taxinc > 0.: reg_tax = Taxes(reg_taxinc, MARS, reg_tbase, II_rt1, II_rt2, II_rt3, II_rt4, II_rt5, II_rt6, II_rt7, II_rt8, II_brk1, II_brk2, II_brk3, II_brk4, II_brk5, II_brk6, II_brk7) else: reg_tax = 0. if pt_taxinc > 0.: pt_tax = Taxes(pt_taxinc, MARS, pt_tbase, PT_rt1, PT_rt2, PT_rt3, PT_rt4, PT_rt5, PT_rt6, PT_rt7, PT_rt8, PT_brk1, PT_brk2, PT_brk3, PT_brk4, PT_brk5, PT_brk6, PT_brk7) else: pt_tax = 0. return reg_tax + pt_tax @iterate_jit(nopython=True) def SchXYZTax(c04800, MARS, e00900, e26270, e02000, e00200, PT_rt1, PT_rt2, PT_rt3, PT_rt4, PT_rt5, PT_rt6, PT_rt7, PT_rt8, PT_brk1, PT_brk2, PT_brk3, PT_brk4, PT_brk5, PT_brk6, PT_brk7, II_rt1, II_rt2, II_rt3, II_rt4, II_rt5, II_rt6, II_rt7, II_rt8, II_brk1, II_brk2, II_brk3, II_brk4, II_brk5, II_brk6, II_brk7, PT_EligibleRate_active, PT_EligibleRate_passive, PT_wages_active_income, PT_top_stacking, c05200): """ SchXYZTax calls SchXYZ function and sets c05200 to returned amount. """ c05200 = SchXYZ(c04800, MARS, e00900, e26270, e02000, e00200, PT_rt1, PT_rt2, PT_rt3, PT_rt4, PT_rt5, PT_rt6, PT_rt7, PT_rt8, PT_brk1, PT_brk2, PT_brk3, PT_brk4, PT_brk5, PT_brk6, PT_brk7, II_rt1, II_rt2, II_rt3, II_rt4, II_rt5, II_rt6, II_rt7, II_rt8, II_brk1, II_brk2, II_brk3, II_brk4, II_brk5, II_brk6, II_brk7, PT_EligibleRate_active, PT_EligibleRate_passive, PT_wages_active_income, PT_top_stacking) return c05200 @iterate_jit(nopython=True) def GainsTax(e00650, c01000, c23650, p23250, e01100, e58990, e00200, e24515, e24518, MARS, c04800, c05200, e00900, e26270, e02000, II_rt1, II_rt2, II_rt3, II_rt4, II_rt5, II_rt6, II_rt7, II_rt8, II_brk1, II_brk2, II_brk3, II_brk4, II_brk5, II_brk6, II_brk7, PT_rt1, PT_rt2, PT_rt3, PT_rt4, PT_rt5, PT_rt6, PT_rt7, PT_rt8, PT_brk1, PT_brk2, PT_brk3, PT_brk4, PT_brk5, PT_brk6, PT_brk7, CG_nodiff, PT_EligibleRate_active, PT_EligibleRate_passive, PT_wages_active_income, PT_top_stacking, CG_rt1, CG_rt2, CG_rt3, CG_rt4, CG_brk1, CG_brk2, CG_brk3, dwks10, dwks13, dwks14, dwks19, c05700, taxbc): """ GainsTax function implements (2015) Schedule D Tax Worksheet logic for the special taxation of long-term capital gains and qualified dividends if CG_nodiff is false. """ # pylint: disable=too-many-statements if c01000 > 0. or c23650 > 0. or p23250 > 0. or e01100 > 0. or e00650 > 0.: hasqdivltcg = 1 # has qualified dividends or long-term capital gains else: hasqdivltcg = 0 # no qualified dividends or long-term capital gains if CG_nodiff: hasqdivltcg = 0 # no special taxation of qual divids and l-t cap gains if hasqdivltcg == 1: dwks1 = c04800 dwks2 = e00650 dwks3 = e58990 dwks4 = 0. # always assumed to be zero dwks5 = max(0., dwks3 - dwks4) dwks6 = max(0., dwks2 - dwks5) dwks7 = min(p23250, c23650) # SchD lines 15 and 16, respectively # dwks8 = min(dwks3, dwks4) # dwks9 = max(0., dwks7 - dwks8) # BELOW TWO STATEMENTS ARE UNCLEAR IN LIGHT OF dwks9=... COMMENT if e01100 > 0.: c24510 = e01100 else: c24510 = max(0., dwks7) + e01100 dwks9 = max(0., c24510 - min(0., e58990)) # ABOVE TWO STATEMENTS ARE UNCLEAR IN LIGHT OF dwks9=... COMMENT dwks10 = dwks6 + dwks9 dwks11 = e24515 + e24518 # SchD lines 18 and 19, respectively dwks12 = min(dwks9, dwks11) dwks13 = dwks10 - dwks12 dwks14 = max(0., dwks1 - dwks13) dwks16 = min(CG_brk1[MARS - 1], dwks1) dwks17 = min(dwks14, dwks16) dwks18 = max(0., dwks1 - dwks10) dwks19 = max(dwks17, dwks18) dwks20 = dwks16 - dwks17 lowest_rate_tax = CG_rt1 * dwks20 # break in worksheet lines dwks21 = min(dwks1, dwks13) dwks22 = dwks20 dwks23 = max(0., dwks21 - dwks22) dwks25 = min(CG_brk2[MARS - 1], dwks1) dwks26 = dwks19 + dwks20 dwks27 = max(0., dwks25 - dwks26) dwks28 = min(dwks23, dwks27) dwks29 = CG_rt2 * dwks28 dwks30 = dwks22 + dwks28 dwks31 = dwks21 - dwks30 dwks32 = CG_rt3 * dwks31 hi_base = max(0., dwks31 - CG_brk3[MARS - 1]) hi_incremental_rate = CG_rt4 - CG_rt3 highest_rate_incremental_tax = hi_incremental_rate * hi_base # break in worksheet lines dwks33 = min(dwks9, e24518) dwks34 = dwks10 + dwks19 dwks36 = max(0., dwks34 - dwks1) dwks37 = max(0., dwks33 - dwks36) dwks38 = 0.25 * dwks37 # break in worksheet lines dwks39 = dwks19 + dwks20 + dwks28 + dwks31 + dwks37 dwks40 = dwks1 - dwks39 dwks41 = 0.28 * dwks40 dwks42 = SchXYZ(dwks19, MARS, e00900, e26270, e02000, e00200, PT_rt1, PT_rt2, PT_rt3, PT_rt4, PT_rt5, PT_rt6, PT_rt7, PT_rt8, PT_brk1, PT_brk2, PT_brk3, PT_brk4, PT_brk5, PT_brk6, PT_brk7, II_rt1, II_rt2, II_rt3, II_rt4, II_rt5, II_rt6, II_rt7, II_rt8, II_brk1, II_brk2, II_brk3, II_brk4, II_brk5, II_brk6, II_brk7, PT_EligibleRate_active, PT_EligibleRate_passive, PT_wages_active_income, PT_top_stacking) dwks43 = (dwks29 + dwks32 + dwks38 + dwks41 + dwks42 + lowest_rate_tax + highest_rate_incremental_tax) dwks44 = c05200 dwks45 = min(dwks43, dwks44) c24580 = dwks45 else: # if hasqdivltcg is zero c24580 = c05200 dwks10 = max(0., min(p23250, c23650)) + e01100 dwks13 = 0. dwks14 = 0. dwks19 = 0. # final calculations done no matter what the value of hasqdivltcg c05100 = c24580 # because no foreign earned income deduction c05700 = 0. # no Form 4972, Lump Sum Distributions taxbc = c05700 + c05100 return (dwks10, dwks13, dwks14, dwks19, c05700, taxbc) @iterate_jit(nopython=True) def AGIsurtax(c00100, MARS, AGI_surtax_trt, AGI_surtax_thd, taxbc, surtax): """ Computes surtax on AGI above some threshold. """ if AGI_surtax_trt > 0.: hiAGItax = AGI_surtax_trt * max(c00100 - AGI_surtax_thd[MARS - 1], 0.) taxbc += hiAGItax surtax += hiAGItax return (taxbc, surtax) @iterate_jit(nopython=True) def AMT(e07300, dwks13, standard, f6251, c00100, c18300, taxbc, c04470, c17000, c20800, c21040, e24515, MARS, sep, dwks19, dwks14, c05700, e62900, e00700, dwks10, age_head, age_spouse, earned, cmbtp, AMT_child_em_c_age, AMT_brk1, AMT_em, AMT_prt, AMT_rt1, AMT_rt2, AMT_child_em, AMT_em_ps, AMT_em_pe, AMT_CG_brk1, AMT_CG_brk2, AMT_CG_brk3, AMT_CG_rt1, AMT_CG_rt2, AMT_CG_rt3, AMT_CG_rt4, c05800, c09600, c62100): """ Computes Alternative Minimum Tax (AMT) taxable income and liability, where c62100 is AMT taxable income, c09600 is AMT tax liability, and c05800 is total (regular + AMT) income tax liability before credits. Note that line-number variable names refer to 2015 Form 6251. """ # pylint: disable=too-many-statements,too-many-branches # Form 6251, Part I if standard == 0.0: c62100 = (c00100 - e00700 - c04470 + max(0., min(c17000, 0.025 * c00100)) + c18300 + c20800 - c21040) if standard > 0.0: c62100 = c00100 - e00700 c62100 += cmbtp # add income not in AGI but considered income for AMT if MARS == 3: amtsepadd = max(0., min(AMT_em[MARS - 1], AMT_prt * (c62100 - AMT_em_pe))) else: amtsepadd = 0. c62100 = c62100 + amtsepadd # AMT taxable income, which is line28 # Form 6251, Part II top line29 = max(0., AMT_em[MARS - 1] - AMT_prt * max(0., c62100 - AMT_em_ps[MARS - 1])) young_head = age_head != 0 and age_head < AMT_child_em_c_age no_or_young_spouse = age_spouse < AMT_child_em_c_age if young_head and no_or_young_spouse: line29 = min(line29, earned + AMT_child_em) line30 = max(0., c62100 - line29) line3163 = (AMT_rt1 * line30 + AMT_rt2 * max(0., (line30 - (AMT_brk1 / sep)))) if dwks10 > 0. or dwks13 > 0. or dwks14 > 0. or dwks19 > 0. or e24515 > 0.: # complete Form 6251, Part III (line36 is equal to line30) line37 = dwks13 line38 = e24515 line39 = min(line37 + line38, dwks10) line40 = min(line30, line39) line41 = max(0., line30 - line40) line42 = (AMT_rt1 * line41 + AMT_rt2 * max(0., (line41 - (AMT_brk1 / sep)))) line44 = dwks14 line45 = max(0., AMT_CG_brk1[MARS - 1] - line44) line46 = min(line30, line37) line47 = min(line45, line46) # line47 is amount taxed at AMT_CG_rt1 cgtax1 = line47 * AMT_CG_rt1 line48 = line46 - line47 line51 = dwks19 line52 = line45 + line51 line53 = max(0., AMT_CG_brk2[MARS - 1] - line52) line54 = min(line48, line53) # line54 is amount taxed at AMT_CG_rt2 cgtax2 = line54 * AMT_CG_rt2 line56 = line47 + line54 # total amount in lower two brackets if line41 == line56: line57 = 0. # line57 is amount taxed at AMT_CG_rt3 linex2 = 0. # linex2 is amount taxed at AMT_CG_rt4 else: line57 = line46 - line56 linex1 = min(line48, max(0., AMT_CG_brk3[MARS - 1] - line44 - line45)) linex2 = max(0., line54 - linex1) cgtax3 = line57 * AMT_CG_rt3 cgtax4 = linex2 * AMT_CG_rt4 if line38 == 0.: line61 = 0. else: line61 = 0.25 * max(0., line30 - line41 - line56 - line57 - linex2) line62 = line42 + cgtax1 + cgtax2 + cgtax3 + cgtax4 + line61 line64 = min(line3163, line62) line31 = line64 else: # if not completing Form 6251, Part III line31 = line3163 # Form 6251, Part II bottom if f6251 == 1: line32 = e62900 else: line32 = e07300 line33 = line31 - line32 c09600 = max(0., line33 - max(0., taxbc - e07300 - c05700)) c05800 = taxbc + c09600 return (c62100, c09600, c05800) @iterate_jit(nopython=True) def NetInvIncTax(e00300, e00600, e02000, e26270, c01000, c00100, NIIT_thd, MARS, NIIT_PT_taxed, NIIT_rt, niit): """ Computes Net Investment Income Tax (NIIT) amount assuming that all annuity income is excluded from net investment income. """ modAGI = c00100 # no deducted foreign earned income to add if not NIIT_PT_taxed: NII = max(0., e00300 + e00600 + c01000 + e02000 - e26270) else: # do not subtract e26270 from e02000 NII = max(0., e00300 + e00600 + c01000 + e02000) niit = NIIT_rt * min(NII, max(0., modAGI - NIIT_thd[MARS - 1])) return niit @iterate_jit(nopython=True) def F2441(MARS, earned_p, earned_s, f2441, CDCC_c, e32800, exact, c00100, CDCC_ps, CDCC_crt, c05800, e07300, c07180): """ Calculates Form 2441 child and dependent care expense credit, c07180. """ # credit for at most two cared-for individuals and for actual expenses max_credit = min(f2441, 2) * CDCC_c c32800 = max(0., min(e32800, max_credit)) # credit is limited to minimum of individuals' earned income c32880 = earned_p # earned income of taxpayer if MARS == 2: c32890 = earned_s # earned income of spouse when present else: c32890 = earned_p c33000 = max(0., min(c32800, min(c32880, c32890))) # credit is limited by AGI-related fraction if exact == 1: # exact calculation as on tax forms tratio = math.ceil(max(((c00100 - CDCC_ps) / 2000.), 0.)) c33200 = c33000 * 0.01 * max(20., CDCC_crt - min(15., tratio)) else: c33200 = c33000 * 0.01 * max(20., CDCC_crt - max(((c00100 - CDCC_ps) / 2000.), 0.)) # credit is limited by tax liability c07180 = min(max(0., c05800 - e07300), c33200) return c07180 @JIT(nopython=True) def EITCamount(basic_frac, phasein_rate, earnings, max_amount, phaseout_start, agi, phaseout_rate): """ Returns EITC amount given specified parameters. English parameter names are used in this function because the EITC formula is not available on IRS forms or in IRS instructions; the extensive IRS EITC look-up table does not reveal the formula. """ eitc = min((basic_frac * max_amount + (1.0 - basic_frac) * phasein_rate * earnings), max_amount) if earnings > phaseout_start or agi > phaseout_start: eitcx = max(0., (max_amount - phaseout_rate * max(0., max(earnings, agi) - phaseout_start))) eitc = min(eitc, eitcx) return eitc @iterate_jit(nopython=True) def EITC(MARS, DSI, EIC, c00100, e00300, e00400, e00600, c01000, e27200, age_head, age_spouse, earned, earned_p, earned_s, EITC_ps, EITC_MinEligAge, EITC_MaxEligAge, EITC_ps_MarriedJ, EITC_rt, EITC_c, EITC_prt, EITC_basic_frac, EITC_InvestIncome_c, EITC_excess_InvestIncome_rt, EITC_indiv, c59660): """ Computes EITC amount, c59660. """ # pylint: disable=too-many-branches if not EITC_indiv: # filing-unit and number-of-kids based EITC (rather than indiv EITC) if MARS == 3 or DSI == 1: c59660 = 0. else: po_start = EITC_ps[EIC] if MARS == 2: po_start += EITC_ps_MarriedJ[EIC] eitc = EITCamount(EITC_basic_frac, EITC_rt[EIC], earned, EITC_c[EIC], po_start, c00100, EITC_prt[EIC]) if EIC == 0: # enforce age eligibility rule for those with no EITC-eligible # kids assuming that an unknown age_* value implies EITC age # eligibility h_age_elig = EITC_MinEligAge <= age_head <= EITC_MaxEligAge s_age_elig = EITC_MinEligAge <= age_spouse <= EITC_MaxEligAge if MARS == 2: if (age_head == 0 or age_spouse == 0 or h_age_elig or s_age_elig): c59660 = eitc else: c59660 = 0. else: # if MARS != 2 if (age_head == 0 or h_age_elig): c59660 = eitc else: c59660 = 0. else: # if EIC != 0 c59660 = eitc # reduce positive EITC if investment income exceeds ceiling if c59660 > 0.: invinc = (e00400 + e00300 + e00600 + max(0., c01000) + max(0., e27200)) if invinc > EITC_InvestIncome_c: eitc = (c59660 - EITC_excess_InvestIncome_rt * (invinc - EITC_InvestIncome_c)) c59660 = max(0., eitc) else: # individual EITC rather than a filing-unit EITC # .. calculate eitc amount for taxpayer eitc_p = EITCamount(EITC_basic_frac, EITC_rt[EIC], earned_p, EITC_c[EIC], EITC_ps[EIC], earned_p, EITC_prt[EIC]) # .. calculate eitc amount for spouse if MARS == 2: eitc_s = EITCamount(EITC_basic_frac, EITC_rt[EIC], earned_s, EITC_c[EIC], EITC_ps[EIC], earned_s, EITC_prt[EIC]) else: eitc_s = 0. # .. combine taxpayer and spouse individual EITC amounts c59660 = eitc_p + eitc_s return c59660 @iterate_jit(nopython=True) def ChildDepTaxCredit(n24, MARS, c00100, exact, CTC_c, CTC_ps, CTC_prt, prectc, nu05, CTC_c_under5_bonus, XTOT, num, DependentCredit_Child_c, DependentCredit_Nonchild_c, FilerCredit_c, dep_credit): """ Computes pre-CTC amount (prectc) and nonrefundable dependent credit. """ modAGI = c00100 # no foreign earned income deduction to add to AGI # calculate and phase-out pre-CTC amount base_ctc = CTC_c * n24 + CTC_c_under5_bonus * nu05 prectc = base_ctc if prectc > 0. and modAGI > CTC_ps[MARS - 1]: excess = modAGI - CTC_ps[MARS - 1] if exact == 1: # exact calculation as on tax forms excess = 1000. * math.ceil(excess / 1000.) prectc = max(0., prectc - CTC_prt * excess) # calculate and phase-out dependent credit after pre-CTC is phased out dep_credit = (DependentCredit_Child_c * n24 + DependentCredit_Nonchild_c * max(0, XTOT - n24 - num) + FilerCredit_c[MARS - 1]) if dep_credit > 0. and CTC_prt > 0.: thresh = CTC_ps[MARS - 1] + base_ctc / CTC_prt if modAGI > thresh: excess = modAGI - thresh if exact == 1: # exact calculation as on tax forms excess = 1000. * math.ceil(excess / 1000.) dep_credit = max(0., dep_credit - CTC_prt * excess) return (prectc, dep_credit) @iterate_jit(nopython=True) def PersonalTaxCredit(MARS, c00100, II_credit, II_credit_ps, II_credit_prt, II_credit_nr, II_credit_nr_ps, II_credit_nr_prt, personal_refundable_credit, personal_nonrefundable_credit): """ Computes personal_refundable_credit and personal_nonrefundable_credit, neither of which are part of current-law policy. """ # calculate personal refundable credit amount with phase-out personal_refundable_credit = II_credit[MARS - 1] if II_credit_prt > 0. and c00100 > II_credit_ps[MARS - 1]: pout = II_credit_prt * (c00100 - II_credit_ps[MARS - 1]) fully_phasedout = personal_refundable_credit - pout personal_refundable_credit = max(0., fully_phasedout) # calculate personal nonrefundable credit amount with phase-out personal_nonrefundable_credit = II_credit_nr[MARS - 1] if II_credit_nr_prt > 0. and c00100 > II_credit_nr_ps[MARS - 1]: pout = II_credit_nr_prt * (c00100 - II_credit_nr_ps[MARS - 1]) fully_phasedout = personal_nonrefundable_credit - pout personal_nonrefundable_credit = max(0., fully_phasedout) return (personal_refundable_credit, personal_nonrefundable_credit) @iterate_jit(nopython=True) def AmOppCreditParts(exact, e87521, num, c00100, CR_AmOppRefundable_hc, CR_AmOppNonRefundable_hc, c10960, c87668): """ Applies a phaseout to the Form 8863, line 1, American Opportunity Credit amount, e87521, and then applies the 0.4 refundable rate. Logic corresponds to Form 8863, Part I. Notes ----- Tax Law Parameters that are not parameterized: 90000 : American Opportunity Credit phaseout income base 10000 : American Opportunity Credit phaseout income range length 1/1000 : American Opportunity Credit phaseout rate 0.4 : American Opportunity Credit refundable rate Parameters ---------- exact : whether or not to do rounding of phaseout fraction e87521 : total tentative American Opportunity Credit for all students, Form 8863, line 1 num : number of people filing jointly c00100 : AGI CR_AmOppRefundable_hc: haircut for the refundable portion of the American Opportunity Credit CR_AmOppNonRefundable_hc: haircut for the nonrefundable portion of the American Opportunity Credit Returns ------- c10960 : Refundable part of American Opportunity Credit c87668 : Tentative nonrefundable part of American Opportunity Credit """ if e87521 > 0.: c87658 = max(0., 90000. * num - c00100) c87660 = 10000. * num if exact == 1: # exact calculation as on tax forms c87662 = 1000. * min(1., round(c87658 / c87660, 3)) else: c87662 = 1000. * min(1., c87658 / c87660) c87664 = c87662 * e87521 / 1000. c10960 = 0.4 * c87664 * (1. - CR_AmOppRefundable_hc) c87668 = c87664 - c10960 * (1. - CR_AmOppNonRefundable_hc) else: c10960 = 0. c87668 = 0. return (c10960, c87668) @iterate_jit(nopython=True) def SchR(age_head, age_spouse, MARS, c00100, c05800, e07300, c07180, e02400, c02500, e01500, e01700, CR_SchR_hc, c07200): """ Calculates Schedule R credit for the elderly and the disabled, c07200. Note that no Schedule R policy parameters are inflation indexed. Note that all Schedule R policy parameters are hard-coded, and therefore, are not able to be changed using Policy class parameters. Note that the CR_SchR_hc policy parameter allows the user to eliminate or reduce total schedule R credits. """ if age_head >= 65 or (MARS == 2 and age_spouse >= 65): # calculate credit assuming nobody is disabled (so line12 = line10) if MARS == 2: if age_head >= 65 and age_spouse >= 65: schr12 = 7500. else: schr12 = 5000. schr15 = 10000. elif MARS == 3: schr12 = 3750. schr15 = 5000. elif MARS in (1, 4): schr12 = 5000. schr15 = 7500. else: schr12 = 0. schr15 = 0. # nontaxable portion of OASDI benefits, line 13a schr13a = max(0., e02400 - c02500) # nontaxable portion of pension benefits, line 13b # NOTE: the following approximation (required because of inadequate IRS # data) will be accurate if all pensions are partially taxable # or if all pensions are fully taxable. But if a filing unit # receives at least one partially taxable pension and at least # one fully taxable pension, then the approximation in the # following line is not exactly correct. schr13b = max(0., e01500 - e01700) schr13c = schr13a + schr13b schr16 = max(0., c00100 - schr15) schr17 = 0.5 * schr16 schr18 = schr13c + schr17 schr19 = max(0., schr12 - schr18) schr20 = 0.15 * schr19 schr21 = max(0., (c05800 - e07300 - c07180)) c07200 = min(schr20, schr21) * (1. - CR_SchR_hc) else: # if not calculating Schedule R credit c07200 = 0. return c07200 @iterate_jit(nopython=True) def EducationTaxCredit(exact, e87530, MARS, c00100, num, c05800, e07300, c07180, c07200, c87668, LLC_Expense_c, ETC_pe_Single, ETC_pe_Married, CR_Education_hc, c07230): """ Computes Education Tax Credits (Form 8863) nonrefundable amount, c07230. Logic corresponds to Form 8863, Part II. Notes ----- Tax Law Parameters that are not parameterized: 0.2 : Lifetime Learning Credit ratio against expense Tax Law Parameters that are parameterized: LLC_Expense_c : Lifetime Learning Credit expense limit ETC_pe_Married : Education Tax Credit phaseout end for married ETC_pe_Single : Education Tax Credit phaseout end for single Taxpayer Charateristics: exact : whether or not to do rounding of phaseout fraction e87530 : Lifetime Learning Credit total qualified expenses, Form 8863, line 10 e07300 : Foreign tax credit - Form 1116 c07180 : Child/dependent care expense credit - Form 2441 c07200 : Schedule R credit Returns ------- c07230 : Education Tax Credits (Form 8863) nonrefundable amount """ c87560 = 0.2 * min(e87530, LLC_Expense_c) if MARS == 2: c87570 = ETC_pe_Married * 1000. else: c87570 = ETC_pe_Single * 1000. c87590 = max(0., c87570 - c00100) c87600 = 10000. * num if exact == 1: # exact calculation as on tax forms c87610 = min(1., round(c87590 / c87600, 3)) else: c87610 = min(1., c87590 / c87600) c87620 = c87560 * c87610 xline4 = max(0., c05800 - (e07300 + c07180 + c07200)) xline5 = min(c87620, xline4) xline9 = max(0., c05800 - (e07300 + c07180 + c07200 + xline5)) xline10 = min(c87668, xline9) c87680 = xline5 + xline10 c07230 = c87680 * (1. - CR_Education_hc) return c07230 @iterate_jit(nopython=True) def CharityCredit(e19800, e20100, c00100, CR_Charity_rt, CR_Charity_f, CR_Charity_frt, MARS, charity_credit): """ Computes nonrefundable charity credit, charity_credit. This credit is not part of current-law policy. """ total_charity = e19800 + e20100 floor = max(CR_Charity_frt * c00100, CR_Charity_f[MARS - 1]) charity_cr_floored = max(total_charity - floor, 0) charity_credit = CR_Charity_rt * (charity_cr_floored) return charity_credit @iterate_jit(nopython=True) def NonrefundableCredits(c05800, e07240, e07260, e07300, e07400, e07600, p08000, prectc, dep_credit, personal_nonrefundable_credit, CR_RetirementSavings_hc, CR_ForeignTax_hc, CR_ResidentialEnergy_hc, CR_GeneralBusiness_hc, CR_MinimumTax_hc, CR_OtherCredits_hc, charity_credit, c07180, c07200, c07220, c07230, c07240, c07260, c07300, c07400, c07600, c08000, DependentCredit_before_CTC): """ NonRefundableCredits function sequentially limits credits to tax liability. Parameters ---------- CR_RetirementSavings_hc: Retirement savings credit haircut CR_ForeignTax_hc: Foreign tax credit haircut CR_ResidentialEnergy_hc: Residential energy credit haircut CR_GeneralBusiness_hc: General business credit haircut CR_MinimumTax_hc: Minimum tax credit haircut CR_OtherCredits_hc: Other credits haircut """ # limit tax credits to tax liability in order they are on 2015 1040 form avail = c05800 # Foreign tax credit - Form 1116 c07300 = min(e07300 * (1. - CR_ForeignTax_hc), avail) avail = avail - c07300 # Child & dependent care expense credit c07180 = min(c07180, avail) avail = avail - c07180 # Education tax credit c07230 = min(c07230, avail) avail = avail - c07230 # Retirement savings credit - Form 8880 c07240 = min(e07240 * (1. - CR_RetirementSavings_hc), avail) avail = avail - c07240 if DependentCredit_before_CTC: # Dependent credit dep_credit = min(dep_credit, avail) avail = avail - dep_credit # Child tax credit c07220 = min(prectc, avail) avail = avail - c07220 # Residential energy credit - Form 5695 c07260 = min(e07260 * (1. - CR_ResidentialEnergy_hc), avail) avail = avail - c07260 # General business credit - Form 3800 c07400 = min(e07400 * (1. - CR_GeneralBusiness_hc), avail) avail = avail - c07400 # Prior year minimum tax credit - Form 8801 c07600 = min(e07600 * (1. - CR_MinimumTax_hc), avail) avail = avail - c07600 # Schedule R credit c07200 = min(c07200, avail) avail = avail - c07200 if not DependentCredit_before_CTC: # Dependent credit dep_credit = min(dep_credit, avail) avail = avail - dep_credit # Other credits c08000 = min(p08000 * (1. - CR_OtherCredits_hc), avail) avail = avail - c08000 charity_credit = min(charity_credit, avail) avail = avail - charity_credit # Personal nonrefundable credit personal_nonrefundable_credit = min(personal_nonrefundable_credit, avail) avail = avail - personal_nonrefundable_credit return (c07180, c07200, c07220, c07230, c07240, dep_credit, c07260, c07300, c07400, c07600, c08000, charity_credit, personal_nonrefundable_credit) @iterate_jit(nopython=True) def AdditionalCTC(n24, prectc, earned, c07220, ptax_was, ACTC_Income_thd, ACTC_rt, ACTC_ChildNum, c03260, e09800, c59660, e11200, c11070, nu05, ACTC_rt_bonus_under5family): """ Calculates Additional (refundable) Child Tax Credit, c11070. """ c82925 = 0. c82930 = 0. c82935 = 0. c82880 = 0. c82885 = 0. c82890 = 0. c82900 = 0. c82905 = 0. c82910 = 0. c82915 = 0. c82920 = 0. c82937 = 0. c82940 = 0. c11070 = 0. # Part I of 2005 Form 8812 if n24 > 0: c82925 = prectc c82930 = c07220 c82935 = c82925 - c82930 # CTC not applied to tax c82880 = max(0., earned) c82885 = max(0., c82880 - ACTC_Income_thd) # Accomodate ACTC rate bonus for families with children under 5 if nu05 == 0: ACTC_rate = ACTC_rt else: ACTC_rate = ACTC_rt + ACTC_rt_bonus_under5family c82890 = ACTC_rate * c82885 # Part II of 2005 Form 8812 if n24 >= ACTC_ChildNum and c82890 < c82935: c82900 = 0.5 * ptax_was c82905 = c03260 + e09800 c82910 = c82900 + c82905 c82915 = c59660 + e11200 c82920 = max(0., c82910 - c82915) c82937 = max(c82890, c82920) # Part II of 2005 Form 8812 if n24 < ACTC_ChildNum: if n24 > 0 and c82890 > 0: c82940 = min(c82890, c82935) else: # if n24 >= ACTC_ChildNum if c82890 >= c82935: c82940 = c82935 else: c82940 = min(c82935, c82937) c11070 = c82940 return c11070 @iterate_jit(nopython=True) def C1040(c05800, c07180, c07200, c07220, c07230, c07240, c07260, c07300, c07400, c07600, c08000, e09700, e09800, e09900, niit, othertaxes, c07100, c09200, dep_credit, charity_credit, personal_nonrefundable_credit): """ Computes total used nonrefundable credits, c07100, othertaxes, and income tax before refundable credits, c09200. """ # total used nonrefundable credits (as computed in NonrefundableCredits) c07100 = (c07180 + c07200 + c07600 + c07300 + c07400 + c07220 + c08000 + c07230 + c07240 + c07260 + dep_credit + charity_credit + personal_nonrefundable_credit) # tax after credits (2016 Form 1040, line 56) tax_net_nonrefundable_credits = max(0., c05800 - c07100) # tax (including othertaxes) before refundable credits othertaxes = e09700 + e09800 + e09900 + niit c09200 = othertaxes + tax_net_nonrefundable_credits return (c07100, othertaxes, c09200) @iterate_jit(nopython=True) def CTC_new(CTC_new_c, CTC_new_rt, CTC_new_c_under5_bonus, CTC_new_ps, CTC_new_prt, CTC_new_for_all, CTC_new_refund_limited, CTC_new_refund_limit_payroll_rt, CTC_new_refund_limited_all_payroll, payrolltax, n24, nu05, c00100, MARS, ptax_oasdi, c09200, ctc_new): """ Computes new refundable child tax credit using specified parameters. """ if n24 > 0: posagi = max(c00100, 0.) ctc_new = CTC_new_c * n24 + CTC_new_c_under5_bonus * nu05 if not CTC_new_for_all: ctc_new = min(CTC_new_rt * posagi, ctc_new) ymax = CTC_new_ps[MARS - 1] if posagi > ymax: ctc_new_reduced = max(0., ctc_new - CTC_new_prt * (posagi - ymax)) ctc_new = min(ctc_new, ctc_new_reduced) if ctc_new > 0. and CTC_new_refund_limited: refund_new = max(0., ctc_new - c09200) if not CTC_new_refund_limited_all_payroll: limit_new = CTC_new_refund_limit_payroll_rt * ptax_oasdi if CTC_new_refund_limited_all_payroll: limit_new = CTC_new_refund_limit_payroll_rt * payrolltax limited_new = max(0., refund_new - limit_new) ctc_new = max(0., ctc_new - limited_new) else: ctc_new = 0. return ctc_new @iterate_jit(nopython=True) def IITAX(c59660, c11070, c10960, personal_refundable_credit, ctc_new, c09200, payrolltax, eitc, refund, iitax, combined): """ Computes final taxes. """ eitc = c59660 refund = eitc + c11070 + c10960 + personal_refundable_credit + ctc_new iitax = c09200 - refund combined = iitax + payrolltax return (eitc, refund, iitax, combined) @JIT(nopython=True) def Taxes(income, MARS, tbrk_base, rate1, rate2, rate3, rate4, rate5, rate6, rate7, rate8, tbrk1, tbrk2, tbrk3, tbrk4, tbrk5, tbrk6, tbrk7): """ Taxes function returns tax amount given the progressive tax rate schedule specified by the rate* and (upper) tbrk* parameters and given income, filing status (MARS), and tax bracket base (tbrk_base). """ if tbrk_base > 0.: brk1 = max(tbrk1[MARS - 1] - tbrk_base, 0.) brk2 = max(tbrk2[MARS - 1] - tbrk_base, 0.) brk3 = max(tbrk3[MARS - 1] - tbrk_base, 0.) brk4 = max(tbrk4[MARS - 1] - tbrk_base, 0.) brk5 = max(tbrk5[MARS - 1] - tbrk_base, 0.) brk6 = max(tbrk6[MARS - 1] - tbrk_base, 0.) brk7 = max(tbrk7[MARS - 1] - tbrk_base, 0.) else: brk1 = tbrk1[MARS - 1] brk2 = tbrk2[MARS - 1] brk3 = tbrk3[MARS - 1] brk4 = tbrk4[MARS - 1] brk5 = tbrk5[MARS - 1] brk6 = tbrk6[MARS - 1] brk7 = tbrk7[MARS - 1] return (rate1 * min(income, brk1) + rate2 * min(brk2 - brk1, max(0., income - brk1)) + rate3 * min(brk3 - brk2, max(0., income - brk2)) + rate4 * min(brk4 - brk3, max(0., income - brk3)) + rate5 * min(brk5 - brk4, max(0., income - brk4)) + rate6 * min(brk6 - brk5, max(0., income - brk5)) + rate7 * min(brk7 - brk6, max(0., income - brk6)) + rate8 * max(0., income - brk7)) def ComputeBenefit(calc, ID_switch): """ Calculates the value of the benefits accrued from itemizing. """ # compute income tax liability with no itemized deductions allowed for # the types of itemized deductions covered under the BenefitSurtax no_ID_calc = copy.deepcopy(calc) if ID_switch[0]: no_ID_calc.policy_param('ID_Medical_hc', 1.) if ID_switch[1]: no_ID_calc.policy_param('ID_StateLocalTax_hc', 1.) if ID_switch[2]: no_ID_calc.policy_param('ID_RealEstate_hc', 1.) if ID_switch[3]: no_ID_calc.policy_param('ID_Casualty_hc', 1.) if ID_switch[4]: no_ID_calc.policy_param('ID_Miscellaneous_hc', 1.) if ID_switch[5]: no_ID_calc.policy_param('ID_InterestPaid_hc', 1.) if ID_switch[6]: no_ID_calc.policy_param('ID_Charity_hc', 1.) no_ID_calc._calc_one_year() # pylint: disable=protected-access diff_iitax = no_ID_calc.array('iitax') - calc.array('iitax') benefit = np.where(diff_iitax > 0., diff_iitax, 0.) return benefit def BenefitSurtax(calc): """ Computes itemized-deduction-benefit surtax and adds the surtax amount to income tax, combined tax, and surtax liabilities. """ if calc.policy_param('ID_BenefitSurtax_crt') != 1.: ben = ComputeBenefit(calc, calc.policy_param('ID_BenefitSurtax_Switch')) agi = calc.array('c00100') ben_deduct = calc.policy_param('ID_BenefitSurtax_crt') * agi ben_exempt_array = calc.policy_param('ID_BenefitSurtax_em') ben_exempt = ben_exempt_array[calc.array('MARS') - 1] ben_dedem = ben_deduct + ben_exempt ben_surtax = (calc.policy_param('ID_BenefitSurtax_trt') * np.where(ben > ben_dedem, ben - ben_dedem, 0.)) # add ben_surtax to income & combined taxes and to surtax subtotal calc.incarray('iitax', ben_surtax) calc.incarray('combined', ben_surtax) calc.incarray('surtax', ben_surtax) def BenefitLimitation(calc): """ Limits the benefits of select itemized deductions to a fraction of deductible expenses. """ if calc.policy_param('ID_BenefitCap_rt') != 1.: benefit = ComputeBenefit(calc, calc.policy_param('ID_BenefitCap_Switch')) # Calculate total deductible expenses under the cap deduct_exps = 0. if calc.policy_param('ID_BenefitCap_Switch')[0]: # medical deduct_exps += calc.array('c17000') if calc.policy_param('ID_BenefitCap_Switch')[1]: # statelocal one_minus_hc = 1. - calc.policy_param('ID_StateLocalTax_hc') deduct_exps += (one_minus_hc * np.maximum(calc.array('e18400_capped'), 0.)) if calc.policy_param('ID_BenefitCap_Switch')[2]: # realestate one_minus_hc = 1. - calc.policy_param('ID_RealEstate_hc') deduct_exps += one_minus_hc * calc.array('e18500_capped') if calc.policy_param('ID_BenefitCap_Switch')[3]: # casualty deduct_exps += calc.array('c20500') if calc.policy_param('ID_BenefitCap_Switch')[4]: # misc deduct_exps += calc.array('c20800') if calc.policy_param('ID_BenefitCap_Switch')[5]: # interest deduct_exps += calc.array('c19200') if calc.policy_param('ID_BenefitCap_Switch')[6]: # charity deduct_exps += calc.array('c19700') # Calculate cap value for itemized deductions benefit_limit = deduct_exps * calc.policy_param('ID_BenefitCap_rt') # Add the difference between the actual benefit and capped benefit # to income tax and combined tax liabilities. excess_benefit = np.maximum(benefit - benefit_limit, 0) calc.incarray('iitax', excess_benefit) calc.incarray('surtax', excess_benefit) calc.incarray('combined', excess_benefit) @iterate_jit(nopython=True) def FairShareTax(c00100, MARS, ptax_was, setax, ptax_amc, FST_AGI_trt, FST_AGI_thd_lo, FST_AGI_thd_hi, fstax, iitax, combined, surtax): """ Computes Fair Share Tax, or "Buffet Rule", types of reforms. Taxpayer Characteristics ------------------------ c00100 : AGI MARS : filing (marital) status ptax_was : payroll tax on wages and salaries setax : self-employment tax ptax_amc : Additional Medicare Tax on high earnings Returns ------- fstax : Fair Share Tax amount iitax : individual income tax augmented by fstax combined : individual income tax plus payroll taxes augmented by fstax surtax : individual income tax subtotal augmented by fstax """ if FST_AGI_trt > 0. and c00100 >= FST_AGI_thd_lo[MARS - 1]: employee_share = 0.5 * ptax_was + 0.5 * setax + ptax_amc fstax = max(c00100 * FST_AGI_trt - iitax - employee_share, 0.) thd_gap = max(FST_AGI_thd_hi[MARS - 1] - FST_AGI_thd_lo[MARS - 1], 0.) if thd_gap > 0. and c00100 < FST_AGI_thd_hi[MARS - 1]: fstax *= (c00100 - FST_AGI_thd_lo[MARS - 1]) / thd_gap iitax += fstax combined += fstax surtax += fstax else: fstax = 0. return (fstax, iitax, combined, surtax) @iterate_jit(nopython=True) def LumpSumTax(DSI, num, XTOT, LST, lumpsum_tax, combined): """ Computes lump-sum tax and add it to combined taxes. """ if LST == 0.0 or DSI == 1: lumpsum_tax = 0. else: lumpsum_tax = LST * max(num, XTOT) combined += lumpsum_tax return (lumpsum_tax, combined) @iterate_jit(nopython=True) def ExpandIncome(e00200, pencon_p, pencon_s, e00300, e00400, e00600, e00700, e00800, e00900, e01100, e01200, e01400, e01500, e02000, e02100, p22250, p23250, cmbtp, ptax_was, benefit_value_total, ubi, expanded_income): """ Calculates expanded_income from component income types. """ expanded_income = ( e00200 + # wage and salary income net of DC pension contributions pencon_p + # DC pension contributions for taxpayer pencon_s + # DC pension contributions for spouse e00300 + # taxable interest income e00400 + # non-taxable interest income e00600 + # dividends e00700 + # state and local income tax refunds e00800 + # alimony received e00900 + # Sch C business net income/loss e01100 + # capital gain distributions not reported on Sch D e01200 + # Form 4797 other net gain/loss e01400 + # taxable IRA distributions e01500 + # total pension and annuity income e02000 + # Sch E total rental, ..., partnership, S-corp income/loss e02100 + # Sch F farm net income/loss p22250 + # Sch D: net short-term capital gain/loss p23250 + # Sch D: net long-term capital gain/loss cmbtp + # other AMT taxable income items from Form 6251 0.5 * ptax_was + # employer share of FICA taxes benefit_value_total + # consumption value of all benefits received ubi # total UBI benefit ) return expanded_income @iterate_jit(nopython=True) def AfterTaxIncome(combined, expanded_income, aftertax_income): """ Calculates after-tax expanded income. Parameters ---------- combined: combined tax liability expanded_income: expanded income Returns ------- aftertax_income: expanded_income minus combined """ aftertax_income = expanded_income - combined return aftertax_income
38.755123
79
0.632615
4a164a58e6d45421f862feede2c107ecd104cbab
3,139
py
Python
src/pybullet_planning/interfaces/robots/dynamics.py
logan-dunbar/pybullet_planning
3b25fc7a0f350f4b46048be5c42f9cbf3ab2d6fb
[ "MIT" ]
null
null
null
src/pybullet_planning/interfaces/robots/dynamics.py
logan-dunbar/pybullet_planning
3b25fc7a0f350f4b46048be5c42f9cbf3ab2d6fb
[ "MIT" ]
null
null
null
src/pybullet_planning/interfaces/robots/dynamics.py
logan-dunbar/pybullet_planning
3b25fc7a0f350f4b46048be5c42f9cbf3ab2d6fb
[ "MIT" ]
null
null
null
from collections import defaultdict, deque, namedtuple import numpy as np import pybullet as p from pybullet_planning.utils import get_client, BASE_LINK, STATIC_MASS ##################################### # https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit# DynamicsInfo = namedtuple('DynamicsInfo', ['mass', 'lateral_friction', 'local_inertia_diagonal', 'local_inertial_pos', 'local_inertial_orn', 'restitution', 'rolling_friction', 'spinning_friction', 'contact_damping', 'contact_stiffness', 'body_type', 'collision_margin']) def get_dynamics_info(body, link=BASE_LINK): return DynamicsInfo(*p.getDynamicsInfo(body, link, physicsClientId=get_client())) get_link_info = get_dynamics_info def get_mass(body, link=BASE_LINK): # TOOD: get full mass return get_dynamics_info(body, link).mass def set_dynamics(body, link=BASE_LINK, **kwargs): # TODO: iterate over all links p.changeDynamics(body, link, physicsClientId=get_client(), **kwargs) def set_mass(body, mass, link=BASE_LINK): set_dynamics(body, link=link, mass=mass) def set_static(body): """set all the body's links to be static (infinite mass, doesn't move under gravity) Parameters ---------- body : int [description] """ from pybullet_planning.interfaces.robots.link import get_all_links for link in get_all_links(body): set_mass(body, mass=STATIC_MASS, link=link) def set_all_static(): from pybullet_planning.interfaces.env_manager.simulation import disable_gravity from pybullet_planning.interfaces.robots.body import get_bodies # TODO: mass saver disable_gravity() for body in get_bodies(): set_static(body) def get_joint_inertial_pose(body, joint): dynamics_info = get_dynamics_info(body, joint) return dynamics_info.local_inertial_pos, dynamics_info.local_inertial_orn def get_local_link_pose(body, joint): from pybullet_planning.interfaces.env_manager.pose_transformation import Pose, multiply, invert from pybullet_planning.interfaces.robots.joint import get_joint_parent_frame from pybullet_planning.interfaces.robots.link import parent_link_from_joint parent_joint = parent_link_from_joint(body, joint) #world_child = get_link_pose(body, joint) #world_parent = get_link_pose(body, parent_joint) ##return multiply(invert(world_parent), world_child) #return multiply(world_child, invert(world_parent)) # https://github.com/bulletphysics/bullet3/blob/9c9ac6cba8118544808889664326fd6f06d9eeba/examples/pybullet/gym/pybullet_utils/urdfEditor.py#L169 parent_com = get_joint_parent_frame(body, joint) tmp_pose = invert(multiply(get_joint_inertial_pose(body, joint), parent_com)) parent_inertia = get_joint_inertial_pose(body, parent_joint) #return multiply(parent_inertia, tmp_pose) # TODO: why is this wrong... _, orn = multiply(parent_inertia, tmp_pose) pos, _ = multiply(parent_inertia, Pose(parent_com[0])) return (pos, orn)
41.853333
148
0.727302
4a164a93a0a735136b2c34105a07f3ef835cbb67
793
py
Python
03.Layout/06.Size.py
sarincr/Python-App-Development-using-Kivy
bc5d40efa29ddf59042a85e0e908657590149d6f
[ "MIT" ]
1
2021-11-10T11:31:23.000Z
2021-11-10T11:31:23.000Z
03.Layout/06.Size.py
sarincr/Python-App-Development-using-Kivy
bc5d40efa29ddf59042a85e0e908657590149d6f
[ "MIT" ]
null
null
null
03.Layout/06.Size.py
sarincr/Python-App-Development-using-Kivy
bc5d40efa29ddf59042a85e0e908657590149d6f
[ "MIT" ]
null
null
null
import kivy from kivy.app import App from kivy.uix.button import Button from kivy.uix.gridlayout import GridLayout class Grid_LayoutApp(App): def build(self): layout = GridLayout(cols = 2) layout.add_widget(Button(text ='Element A 1', size_hint_x = None, width = 100)) layout.add_widget(Button(text ='Element B 1')) layout.add_widget(Button(text ='Element A 2')) layout.add_widget(Button(text ='Element B 2')) layout.add_widget(Button(text ='Element A 3', size_hint_x = None, width = 100)) layout.add_widget(Button(text ='Element B 3')) layout.add_widget(Button(text ='Element A 4')) layout.add_widget(Button(text ='Element B 4')) return layout root = Grid_LayoutApp() root.run()
20.868421
88
0.648172
4a164b9b1e26a4b21469d1ae3c063dfa59190d16
3,116
py
Python
LC/08-tring-to-integer-atoi.py
brunodleite2/python
72c21239869747c36cdee8a23dbabfd8bc78e480
[ "MIT" ]
null
null
null
LC/08-tring-to-integer-atoi.py
brunodleite2/python
72c21239869747c36cdee8a23dbabfd8bc78e480
[ "MIT" ]
null
null
null
LC/08-tring-to-integer-atoi.py
brunodleite2/python
72c21239869747c36cdee8a23dbabfd8bc78e480
[ "MIT" ]
null
null
null
'FIRST SOLUTION - NO BULTIN FUNCTIONS USED - FASTER' class Solution: MAX = 2**31 - 1 MIN = 2**31 * -1 def __is_sign(self, char: str) -> bool: if char in ['-', '+']: return True return False def __is_number(self, char: str) -> bool: if char in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: return True return False def __is_whitespace(self, char: str) -> bool: if char == ' ': return True return False def __convert_to_int(self, str: str) -> int: if not len(str) or (len(str) == 1 and not self.__is_number(str[0])): return 0 integer = int(str) if integer > Solution.MAX: return Solution.MAX if integer < Solution.MIN: return Solution.MIN return integer def myAtoi(self, str: str) -> int: number_has_started = False response = "" for char in str: if not number_has_started: if self.__is_whitespace(char): continue if self.__is_sign(char) or self.__is_number(char): response += char number_has_started = True continue # Letter!! return 0 # number has started if self.__is_number(char): response += char continue # number has finished return self.__convert_to_int(response) return self.__convert_to_int(response) 'SECOND SOLUTION - STR BULTIN FUNCTIONS USED - SLOWER' class Solution: MAX = 2**31 - 1 MIN = 2**31 * -1 def __is_sign(self, char: str) -> bool: if char in ['-', '+']: return True return False def __convert_to_int(self, str: str) -> int: str_len = len(str) if not str_len or (str_len == 1 and not str[0].isnumeric()): return 0 integer = int(str) if integer > Solution.MAX: return Solution.MAX if integer < Solution.MIN: return Solution.MIN return integer def myAtoi(self, str: str) -> int: number_has_started = False response = "" #str = str.lstrip() for char in str: if not number_has_started: if char.isspace(): continue if self.__is_sign(char) or char.isnumeric(): response += char number_has_started = True continue # Letter!! return 0 # number has started if char.isnumeric(): response += char continue # number has finished return self.__convert_to_int(response) return self.__convert_to_int(response) solution = Solution() assert solution.myAtoi('42') == 42 assert solution.myAtoi(' -42') == -42 assert solution.myAtoi('words and 987') == 0 assert solution.myAtoi('-91283472332') == -2147483648
24.928
76
0.511553
4a164d05265ea9904ed1e3d011109aa3e6414ee1
747
py
Python
setup.py
chenbowen/py-thin-plate-spline
e82af945a30b229887807594ea26f43e511f3754
[ "MIT" ]
null
null
null
setup.py
chenbowen/py-thin-plate-spline
e82af945a30b229887807594ea26f43e511f3754
[ "MIT" ]
null
null
null
setup.py
chenbowen/py-thin-plate-spline
e82af945a30b229887807594ea26f43e511f3754
[ "MIT" ]
null
null
null
# Copyright 2018 Christoph Heindl. # # Licensed under MIT License # ============================================================ import os try: from setuptools import setup except ImportError: from distutils.core import setup with open('requirements.txt') as f: required = f.read().splitlines() setup( name='thinplate', version=open('thinplate/__init__.py').readlines()[-1].split()[-1].strip('\''), description='Thin plate splines for numpy and pytorch', author='Christoph Heindl', url='https://github.com/cheind/py-thin-plate-spline', license='MIT', install_requires=required, packages=['thinplate'], include_package_data=True, keywords='thin plate spline spatial transformer network' )
27.666667
82
0.641232
4a164d786d324bbacd828f751fe19d861e14d010
3,296
py
Python
mars/scheduler/service.py
sighingnow/mars
c7897fbd144d230fff5edabc1494fb3ff44aa0d2
[ "Apache-2.0" ]
null
null
null
mars/scheduler/service.py
sighingnow/mars
c7897fbd144d230fff5edabc1494fb3ff44aa0d2
[ "Apache-2.0" ]
null
null
null
mars/scheduler/service.py
sighingnow/mars
c7897fbd144d230fff5edabc1494fb3ff44aa0d2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging from .. import kvstore from ..config import options from .session import SessionManagerActor from .resource import ResourceActor from .chunkmeta import ChunkMetaActor from .kvstore import KVStoreActor from .node_info import NodeInfoActor from .utils import SchedulerClusterInfoActor logger = logging.getLogger(__name__) class SchedulerService(object): def __init__(self): self._cluster_info_ref = None self._session_manager_ref = None self._assigner_ref = None self._resource_ref = None self._chunk_meta_ref = None self._kv_store_ref = None self._node_info_ref = None self._result_receiver_ref = None def start(self, endpoint, discoverer, pool): """ there are two way to start a scheduler 1) if options.kv_store is specified as an etcd address, the endpoint will be written into kv-storage to indicate that this scheduler is one the schedulers, and the etcd is used as a service discover. 2) if options.kv_store is not an etcd address, there will be only one scheduler """ kv_store = kvstore.get(options.kv_store) kv_store.write('/schedulers/%s' % endpoint, dir=True) if not isinstance(kv_store, kvstore.LocalKVStore): # set etcd as service discover logger.info('Mars Scheduler started with kv store %s.', options.kv_store) # create KVStoreActor when there is a distributed KV store self._kv_store_ref = pool.create_actor(KVStoreActor, uid=KVStoreActor.default_uid()) else: # single scheduler logger.info('Mars Scheduler started in standalone mode.') # create ClusterInfoActor self._cluster_info_ref = pool.create_actor( SchedulerClusterInfoActor, discoverer, uid=SchedulerClusterInfoActor.default_uid()) # create ChunkMetaActor self._chunk_meta_ref = pool.create_actor(ChunkMetaActor, uid=ChunkMetaActor.default_uid()) # create SessionManagerActor self._session_manager_ref = pool.create_actor( SessionManagerActor, uid=SessionManagerActor.default_uid()) # create ResourceActor self._resource_ref = pool.create_actor(ResourceActor, uid=ResourceActor.default_uid()) # create NodeInfoActor self._node_info_ref = pool.create_actor(NodeInfoActor, uid=NodeInfoActor.default_uid()) kv_store.write('/schedulers/%s/meta' % endpoint, json.dumps(self._resource_ref.get_workers_meta())) def stop(self, pool): pool.destroy_actor(self._resource_ref)
40.691358
98
0.707221
4a164da6565e0ab422f64e32d093d86c8f112f6a
16,553
py
Python
utils/eval_tool.py
wen0618/simple-faster-rcnn-pytorch
b5c41eeaf9f0641f65bdd6fe0d7f1301bd1cabf3
[ "MIT" ]
null
null
null
utils/eval_tool.py
wen0618/simple-faster-rcnn-pytorch
b5c41eeaf9f0641f65bdd6fe0d7f1301bd1cabf3
[ "MIT" ]
null
null
null
utils/eval_tool.py
wen0618/simple-faster-rcnn-pytorch
b5c41eeaf9f0641f65bdd6fe0d7f1301bd1cabf3
[ "MIT" ]
null
null
null
from __future__ import division from collections import defaultdict import itertools import numpy as np import six from model.utils.bbox_tools import bbox_iou #根据PASCAL VOC的evaluation code 计算平均精度 def eval_detection_voc( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults=None, iou_thresh=0.5, use_07_metric=False): """Calculate average precisions based on evaluation code of PASCAL VOC. This function evaluates predicted bounding boxes obtained from a dataset which has :math:`N` images by using average precision for each class. The code is based on the evaluation code used in PASCAL VOC Challenge. #test_num张图片(图片数据来自测试数据testdata)的预测框,标签,分数,和真实的框,标签和分数。 # 所有参数都是list len(list)=opt.test_num(default=10000) # pred_boxes:[(A,4),(B,4),(C,4)....共test_num个] 输入源gt_数据 经过train.predict函数预测出的结果框 # pred_labels[(A,),(B,),(C,)...共test_num个] pred_scores同pred_labels # A,B,C,D是由nms决定的个数,即预测的框个数,不确定。 # gt_bboxes:[(a,4),(b,4)....共test_num个] a b...是每张图片标注真实框的个数 # gt_labels与gt_difficults同理 # use_07_metric (bool): 是否使用PASCAL VOC 2007 evaluation metric计算平均精度 Args: pred_bboxes (iterable of numpy.ndarray): An iterable of :math:`N` sets of bounding boxes. Its index corresponds to an index for the base dataset. Each element of :obj:`pred_bboxes` is a set of coordinates of bounding boxes. This is an array whose shape is :math:`(R, 4)`, where :math:`R` corresponds to the number of bounding boxes, which may vary among boxes. The second axis corresponds to :math:`y_{min}, x_{min}, y_{max}, x_{max}` of a bounding box. pred_labels (iterable of numpy.ndarray): An iterable of labels. Similar to :obj:`pred_bboxes`, its index corresponds to an index for the base dataset. Its length is :math:`N`. pred_scores (iterable of numpy.ndarray): An iterable of confidence scores for predicted bounding boxes. Similar to :obj:`pred_bboxes`, its index corresponds to an index for the base dataset. Its length is :math:`N`. gt_bboxes (iterable of numpy.ndarray): An iterable of ground truth bounding boxes whose length is :math:`N`. An element of :obj:`gt_bboxes` is a bounding box whose shape is :math:`(R, 4)`. Note that the number of bounding boxes in each image does not need to be same as the number of corresponding predicted boxes. gt_labels (iterable of numpy.ndarray): An iterable of ground truth labels which are organized similarly to :obj:`gt_bboxes`. gt_difficults (iterable of numpy.ndarray): An iterable of boolean arrays which is organized similarly to :obj:`gt_bboxes`. This tells whether the corresponding ground truth bounding box is difficult or not. By default, this is :obj:`None`. In that case, this function considers all bounding boxes to be not difficult. iou_thresh (float): A prediction is correct if its Intersection over Union with the ground truth is above this value. use_07_metric (bool): Whether to use PASCAL VOC 2007 evaluation metric for calculating average precision. The default value is :obj:`False`. Returns: dict: The keys, value-types and the description of the values are listed below. * **ap** (*numpy.ndarray*): An array of average precisions. \ The :math:`l`-th value corresponds to the average precision \ for class :math:`l`. If class :math:`l` does not exist in \ either :obj:`pred_labels` or :obj:`gt_labels`, the corresponding \ value is set to :obj:`numpy.nan`. * **map** (*float*): The average of Average Precisions over classes. """ prec, rec = calc_detection_voc_prec_rec( #函数算出每个label类的准确率和召回率,定义见下 pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults, iou_thresh=iou_thresh) ap = calc_detection_voc_ap(prec, rec, use_07_metric=use_07_metric) #根据prec和rec 计算ap和map return {'ap': ap, 'map': np.nanmean(ap)} def calc_detection_voc_prec_rec( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults=None, iou_thresh=0.5): """Calculate precision and recall based on evaluation code of PASCAL VOC. This function calculates precision and recall of predicted bounding boxes obtained from a dataset which has :math:`N` images. The code is based on the evaluation code used in PASCAL VOC Challenge. Args: pred_bboxes (iterable of numpy.ndarray): An iterable of :math:`N` sets of bounding boxes. Its index corresponds to an index for the base dataset. Each element of :obj:`pred_bboxes` is a set of coordinates of bounding boxes. This is an array whose shape is :math:`(R, 4)`, where :math:`R` corresponds to the number of bounding boxes, which may vary among boxes. The second axis corresponds to :math:`y_{min}, x_{min}, y_{max}, x_{max}` of a bounding box. pred_labels (iterable of numpy.ndarray): An iterable of labels. Similar to :obj:`pred_bboxes`, its index corresponds to an index for the base dataset. Its length is :math:`N`. pred_scores (iterable of numpy.ndarray): An iterable of confidence scores for predicted bounding boxes. Similar to :obj:`pred_bboxes`, its index corresponds to an index for the base dataset. Its length is :math:`N`. gt_bboxes (iterable of numpy.ndarray): An iterable of ground truth bounding boxes whose length is :math:`N`. An element of :obj:`gt_bboxes` is a bounding box whose shape is :math:`(R, 4)`. Note that the number of bounding boxes in each image does not need to be same as the number of corresponding predicted boxes. gt_labels (iterable of numpy.ndarray): An iterable of ground truth labels which are organized similarly to :obj:`gt_bboxes`. gt_difficults (iterable of numpy.ndarray): An iterable of boolean arrays which is organized similarly to :obj:`gt_bboxes`. This tells whether the corresponding ground truth bounding box is difficult or not. By default, this is :obj:`None`. In that case, this function considers all bounding boxes to be not difficult. iou_thresh (float): A prediction is correct if its Intersection over Union with the ground truth is above this value.. Returns: tuple of two lists: This function returns two lists: :obj:`prec` and :obj:`rec`. * :obj:`prec`: A list of arrays. :obj:`prec[l]` is precision \ for class :math:`l`. If class :math:`l` does not exist in \ either :obj:`pred_labels` or :obj:`gt_labels`, :obj:`prec[l]` is \ set to :obj:`None`. * :obj:`rec`: A list of arrays. :obj:`rec[l]` is recall \ for class :math:`l`. If class :math:`l` that is not marked as \ difficult does not exist in \ :obj:`gt_labels`, :obj:`rec[l]` is \ set to :obj:`None`. """ pred_bboxes = iter(pred_bboxes) #iter()生成迭代器 eg.lst = [1, 2, 3] for i in iter(lst): print(i) 1 2 3 pred_labels = iter(pred_labels) pred_scores = iter(pred_scores) gt_bboxes = iter(gt_bboxes) gt_labels = iter(gt_labels) if gt_difficults is None: gt_difficults = itertools.repeat(None) #/itertools.repeat生成一个重复的迭代器 None是每次迭代获得的数据 else: gt_difficults = iter(gt_difficults) n_pos = defaultdict(int) #defaultdict():defaultdict的作用是在于,当字典里的key不存在但被查找时,返回的不是keyError而是一个默认值, #dict[key]=default(int)=0 default(list)=[] default(dict)={} score = defaultdict(list) match = defaultdict(list) for pred_bbox, pred_label, pred_score, gt_bbox, gt_label, gt_difficult in \ six.moves.zip( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults): #six.move.zip()==zip():函数用于将可迭代的对象作为参数,将对象中||对应的||元素打包成一个个元组,然后返回由这些元组组成的列表。 *zip()解压 if gt_difficult is None: gt_difficult = np.zeros(gt_bbox.shape[0], dtype=bool)#全部设置为非difficult #遍历一张图片中 所有出现的label: for l in np.unique(np.concatenate((pred_label, gt_label)).astype(int)): #拼接后返回无重复的从小到大排序的一维numpy ,如[2,3,4,5,6] 并遍历这个一维数组,即遍历这张图片出现过的标签数字(gt_label+pred_label) #对于其中的每一个标签l: pred_mask_l = pred_label == l #广播(对矩阵中每个元素执行相同的操作) #pred_mask_l=[eg. T,F,T,T,F,F,F,T..] 所有预测label中等于L的为T 否则F pred_bbox_l = pred_bbox[pred_mask_l] #选出label=L的所有pre_box pred_score_l = pred_score[pred_mask_l]#label=L 对应所有pre_score # sort by score order = pred_score_l.argsort()[::-1] #获得score降序排序 索引||argsort()返回的是索引 pred_bbox_l = pred_bbox_l[order] #按照分数从高到低 对box进行排序 pred_score_l = pred_score_l[order]#对score进行排序 gt_mask_l = gt_label == l #广播gt_mask_l =[eg. T,F,T,T,F,F,F,T..] 所有真实label中等于L的为T 否则F gt_bbox_l = gt_bbox[gt_mask_l]#选出label=L的所有gt_box gt_difficult_l = gt_difficult[gt_mask_l]#选出label=L的所有difficult n_pos[l] += np.logical_not(gt_difficult_l).sum()#对T,F取反求和 即统计difficult=0的个数 score[l].extend(pred_score_l) #score={l:predscore_1,....} extend是针对list的方法 if len(pred_bbox_l) == 0: #没有预测的label=L的box 即真实label有L,我们全没有预测到 continue #跳过这张图片 此时没有对match字典操作 之前score[l].extend操作也为空 保持了match和score形状一致 if len(gt_bbox_l) == 0: #没有真实的label=L的box 即预测label有L,真实中没有 我们都预测错了 match[l].extend((0,) #pred_bbox_l.shape[0]) #match{L:[0,0,0,.. n_pred_box个0]} continue #预测错label就是0 已不需要后续操作 跳过此图片 # VOC evaluation follows integer typed bounding boxes. # 我不太懂这么做的目的,作者给的注释是follows integer typed bounding boxes # 但是只改变了ymax,xmax的值,重要的是这样做并不能转化为整数 pred_bbox和gt_bbox只 # 参与了IOU计算且后面没有参与其他计算 有待解答。 pred_bbox_l = pred_bbox_l.copy() pred_bbox_l[:, 2:] += 1 #ymax,xmax +=1 gt_bbox_l = gt_bbox_l.copy() gt_bbox_l[:, 2:] += 1 #ymax,xmax +=1 iou = bbox_iou(pred_bbox_l, gt_bbox_l) #计算两个box的IOU gt_index = iou.argmax(axis=1) #argmax(axis=1)按照a[0][1]中的a[1]方向,即行方向搜索最大值 #有len(pred_bbox_l)个索引 第i个索引值n表示 gt_box[n]与pred_box[i] IOU最大? # set -1 if there is no matching ground truth gt_index[iou.max(axis=1) < iou_thresh] = -1 #将gt_box与pred_box iou<thresh的索引值置为-1 #即针对每个pred_bbox,与每个gt_bbox IOU的最大值 如果最大值小于阀值则置为-1 #即我们预测的这个box效果并不理想 后续会将index=-1的 matchlabel=0 del iou selec = np.zeros(gt_bbox_l.shape[0], dtype=bool) for gt_idx in gt_index: #遍历gt_index索引值 if gt_idx >= 0: #即IOU满足条件 if gt_difficult_l[gt_idx]: #对应的gt_difficult =1 即困难标识 match[l].append(-1) #match[l]追加一个-1 else: #不是困难标识 if not selec[gt_idx]: #没有被选过 select[gt_idx]=0时 match[l].append(1) #match[l]追加一个1 else: #对应的gt_box已经被选择过一次 即已经和前面某pred_box IOU最大 match[l].append(0) #match[l]追加一个0 selec[gt_idx] = True #select[gt_idx]=1 置为1,表示已经被选过一次 else: #不满足IOU>thresh 效果并不理想 match[l].append(0) #match[l]追加一个0 #我们注意到 上面为每个pred_box都打了label 0,1,-1 len(match[l])=len(score[l])=len(pred_bbox_l) for iter_ in ( #上面的 six.moves.zip遍历会在某一iter遍历到头后停止,由于pred_bboxes等是全局iter对象 #我们此时继续调用next取下一数据,如果有任一数据不为None,那么说明他们的len是不相等的 有悖常理,数据错误 pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults): if next(iter_, None) is not None: #next(iter,None) 表示调用next 如果已经遍历到头 不抛出异常而是返回None raise ValueError('Length of input iterables need to be same.') #注意pr曲线与roc曲线的区别 n_fg_class = max(n_pos.keys()) + 1 #有n_fg_class个类 prec = [None] * n_fg_class #list[None,.....len(n_fg_class)] rec = [None] * n_fg_class for l in n_pos.keys(): #遍历所有Label score_l = np.array(score[l]) #list to np.array match_l = np.array(match[l], dtype=np.int8) order = score_l.argsort()[::-1] match_l = match_l[order] #对应match按照 score由大到小排序 tp = np.cumsum(match_l == 1) #统计累计 match_1=1的个数 fp = np.cumsum(match_l == 0) #统计累计 match_1=0的个数 #tp eg. [1 2 3 3 4 5 5 6 7 8 8 9 10 11........] #fp eg. [0 0 0 0 0 0 0 1 1 1 1 1 1 2 ......] # 如果 fp + tp = 0, 那么计算出的prec[l] = nan # If an element of fp + tp is 0, # the corresponding element of prec[l] is nan. prec[l] = tp / (fp + tp) //计算准确率 # If n_pos[l] is 0, rec[l] is None. if n_pos[l] > 0: #w/如果n_pos[l] = 0,那么rec[l] =Non rec[l] = tp / n_pos[l] #/计算召回率 return prec, rec def calc_detection_voc_ap(prec, rec, use_07_metric=False): """Calculate average precisions based on evaluation code of PASCAL VOC. This function calculates average precisions from given precisions and recalls. The code is based on the evaluation code used in PASCAL VOC Challenge. Args: prec (list of numpy.array): A list of arrays. :obj:`prec[l]` indicates precision for class :math:`l`. If :obj:`prec[l]` is :obj:`None`, this function returns :obj:`numpy.nan` for class :math:`l`. rec (list of numpy.array): A list of arrays. :obj:`rec[l]` indicates recall for class :math:`l`. If :obj:`rec[l]` is :obj:`None`, this function returns :obj:`numpy.nan` for class :math:`l`. use_07_metric (bool): Whether to use PASCAL VOC 2007 evaluation metric for calculating average precision. The default value is :obj:`False`. Returns: ~numpy.ndarray: This function returns an array of average precisions. The :math:`l`-th value corresponds to the average precision for class :math:`l`. If :obj:`prec[l]` or :obj:`rec[l]` is :obj:`None`, the corresponding value is set to :obj:`numpy.nan`. """ n_fg_class = len(prec) ap = np.empty(n_fg_class) for l in six.moves.range(n_fg_class): #遍历每个label if prec[l] is None or rec[l] is None: #如果为None 则ap置为np.nan ap[l] = np.nan continue if use_07_metric: # 11 point metric ap[l] = 0 for t in np.arange(0., 1.1, 0.1): # //t=0 0.1 0.2 ....1.0 if np.sum(rec[l] >= t) == 0:#这个标签的召回率没有>=t的 p = 0 else: p = np.max(np.nan_to_num(prec[l])[rec[l] >= t])#p=(rec>=t时 对应index:prec中的最大值) # P=(X>t时,X对应的Y:Y的最大值) np.nan_to_num 是为了让None=0 以便计算 ap[l] += p / 11 else: # correct AP calculation # first append sentinel values at the end mpre = np.concatenate(([0], np.nan_to_num(prec[l]), [0])) #头尾填0 mrec = np.concatenate(([0], rec[l], [1])) #头填0 尾填1 mpre = np.maximum.accumulate(mpre[::-1])[::-1]#我们知道 我们是按score由高到低排序的 而且我们给box打了label # 0,1,-1 score高时1的概率会大,所以pre是累计降序的 # 而rec是累积升序的,那么此时将pre倒序再maxuim.ac # 获得累积最大值,再倒序后 从小到大排序的累积最大值 # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] #差位比较,看哪里改变了recall的值 记录Index (x轴) # and sum (\Delta recall) * prec ap[l] = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) #差值*mpre_max值 (x轴差值*y_max) return ap
48.973373
106
0.604362
4a164e79f594e409266fc65a805a343d7352aa70
2,152
py
Python
setup.py
samrui/reelog
807a1caf0bacdf60366ca14e3dd84435acc3491e
[ "Apache-2.0" ]
null
null
null
setup.py
samrui/reelog
807a1caf0bacdf60366ca14e3dd84435acc3491e
[ "Apache-2.0" ]
null
null
null
setup.py
samrui/reelog
807a1caf0bacdf60366ca14e3dd84435acc3491e
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 import os import io import sys from setuptools import setup, find_packages, Command from shutil import rmtree NAME = 'reelog' DESCRIPTION = 'python log best practice.' URL = '' EMAIL = 'samrui0129@gmail.com' AUTHOR = 'Sam Rui' REQUIRES_PYTHON = '>=2.7.0' VERSION = '1.6.7' REQUIRED = [ ] EXTRAS = { } here = os.path.abspath(os.path.dirname(__file__)) try: with io.open(os.path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = '\n' + f.read() except FileNotFoundError: long_description = DESCRIPTION class UploadCommand(Command): """Support setup.py upload.""" description = 'Build and publish the package.' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): try: print('Removing previous builds…') rmtree(os.path.join(here, 'dist')) except OSError: pass print('Building Source and Wheel (universal) distribution…') os.system('{0} setup.py sdist bdist_wheel --universal'.format(sys.executable)) print('Uploading the package to PyPI via Twine…') os.system('twine upload dist/*') # print('Pushing git tags…') # os.system('git tag v{0}'.format(VERSION)) # os.system('git push --tags') sys.exit() setup( name=NAME, version=VERSION, description=DESCRIPTION, long_description=long_description, long_description_content_type='text/x-rst', author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, packages=find_packages(exclude=('tests',)), install_requires=REQUIRED, extras_require=EXTRAS, include_package_data=True, zip_safe=False, license='Apache License', classifiers=[ 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: Implementation :: CPython', ], cmdclass={ 'upload': UploadCommand, } )
23.911111
86
0.63987
4a164ec7c129376f5fb83e072b0dc5a660562daa
167
py
Python
general-practice/Exercises solved/w3resource/basic/Exercise52.py
lugabrielbueno/Projeto
f012c5bb9ce6f6d7c9e8196cc7986127dba3eba0
[ "MIT" ]
null
null
null
general-practice/Exercises solved/w3resource/basic/Exercise52.py
lugabrielbueno/Projeto
f012c5bb9ce6f6d7c9e8196cc7986127dba3eba0
[ "MIT" ]
null
null
null
general-practice/Exercises solved/w3resource/basic/Exercise52.py
lugabrielbueno/Projeto
f012c5bb9ce6f6d7c9e8196cc7986127dba3eba0
[ "MIT" ]
null
null
null
#Write a Python program to print to stderr import sys def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) eprint("abc", "efg", "xyz", sep="--")
20.875
43
0.646707
4a164ecc7631250db45f87cf9aacc31fa97b0fe8
8,442
py
Python
lib/python2.7/site-packages/pyscope/falconframe.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
null
null
null
lib/python2.7/site-packages/pyscope/falconframe.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
null
null
null
lib/python2.7/site-packages/pyscope/falconframe.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
1
2019-09-05T20:58:37.000Z
2019-09-05T20:58:37.000Z
#!/usr/bin/env python import math import sys import os import time import xml.dom.minidom import xml.etree.ElementTree as et import itertools class FalconFrameConfigXmlMaker(object): ''' Create Falcon IntermediateConfig.xml for given exposure time either when frames to be saved and not. The raw frames are put in limited number of bins. ''' def __init__(self,simu=False): ''' i/o time unit is second ''' self.simulation = simu self.idcounter = itertools.cycle(range(100)) self.base_frame_time = 0.055771 self.format_version = 1.0 self.no_save_frame_path = 'E:\\not_a_real_path' self.base_frame_path = 'E:\\frames' self.configxml_path = 'C:\Titan\Data\Falcon' # Falcon 2 software can save frames in at most 7 bins self.output_bin_limit = 7 self.output_bins = self.output_bin_limit + 0 self.equal_distributed_frame = 0 self.resetParams() def resetParams(self): self.frame_path = self.no_save_frame_path self.frames_name = '' # Readout delay of one means frame 0 (shutter roll-in) is not readout self.internal_readout_delay = 1 self.frame_readout_delay = 1 self.equally_distributed_frame = 0 def getBaseFrameTime(self): return self.base_frame_time def getNumberOfBinLimit(self): return self.output_bin_limit def makeFrameDirName(self,use_timestamp): if use_timestamp: frames_name = time.strftime('%Y%m%d_%H%M%S', time.localtime()) self.frames_name = frames_name + '%02d' % (self.idcounter.next(),) else: self.frames_name = 'dummy' return self.frames_name def getFrameDirName(self): return self.frames_name def createFramePath(self,base_path): if os.path.isdir(base_path) or self.simulation: # real path below existing base_path becomes the frame path self.frame_path = os.path.join(base_path,self.makeFrameDirName(True)) if not self.simulation: os.makedirs(self.frame_path) else: # dummy path will keep the frames from being written self.makeFrameDirName(False) self.frame_path = base_path def getFramePath(self): return self.frame_path def validateExposureTime(self,second): ''' Exposure time in second is valid only if it allows one frame to be saved after readout delay. ''' if second < self.base_frame_time * (self.frame_readout_delay - 0.5): return False return True def setExposureTime(self,second): ''' Set Exposure Time in second. The time must be validated first. ''' self.exposure_time = second def setMaxNumberOfFrameBins(self,nframes): ''' Set maximal bins to output frames ''' self.output_bins = min(self.output_bin_limit,nframes) def setEquallyDistributedStartFrame(self,frame_number): ''' Set start of equal distribution to output frames ''' self.equally_distributed_frame = frame_number def getNumberOfFrameBins(self): ''' Get number of frame bins saved without running self.distributeFramesInBins() Exposure time must be set first. ''' available_nframes = self.getNumberOfAvailableFrames() usable_nframes = available_nframes -self.frame_readout_delay return min(self.output_bins,max(usable_nframes,1)) def setFrameReadoutDelay(self,value=1): self.frame_readout_delay = value def getFrameReadoutDelay(self): return self.frame_readout_delay def getNumberOfAvailableFrames(self): ''' Available frames include the roll-in frame since exposure time does not include that. ''' half_frame_time = self.base_frame_time / 2.0 return int((self.exposure_time + half_frame_time) / self.base_frame_time) + self.internal_readout_delay def distributeFramesInBins(self): ''' return list of number of frames in each output bin. ''' eframe = max((self.equally_distributed_frame - self.frame_readout_delay,0)) available_nframes = self.getNumberOfAvailableFrames() # usable number of frames does not include those not read for output usable_nframes = available_nframes -self.frame_readout_delay # initialize with single frames frames_in_bins = map((lambda x:1),range(eframe)) # equally distribute the rest usable_equal_frames = usable_nframes - len(frames_in_bins) equal_bins = self.output_bins - len(frames_in_bins) frames_in_bins.extend(self._distributeItemsInBins(usable_equal_frames, equal_bins)) return frames_in_bins def _distributeItemsInBins(self,n_items,bins): ''' Distribute items in bins as evenly as possible. Fill spare items from the end ''' # keep bin as equally occupied as possible equal_step = n_items / bins spare_frames = n_items - equal_step * bins n_items_in_bins = [] if equal_step > 0: n_items_in_bins = bins * [equal_step,] # spare items are filled-in from the last bins for i in range(1,spare_frames+1): n_items_in_bins[-1*i] += 1 else: # not enough items to fill all bins n_items_in_bins = n_items * [1,] return n_items_in_bins def setFrameRange(self): ''' frame number range to output. Frame 0 is the first frame with shutter roll-in. ''' nframe_in_bins = self.distributeFramesInBins() if self.simulation: print nframe_in_bins end_frames = [] offset = self.frame_readout_delay - self.internal_readout_delay if False: return [0],[0] else: end_frames = map((lambda x:offset+sum(nframe_in_bins[:x+1])),range(len(nframe_in_bins))) start_frames = map((lambda x:end_frames[x]+1),range(len(end_frames)-1)) start_frames.insert(0,self.frame_readout_delay) self.output_bins = len(start_frames) return start_frames, end_frames def writeConfigXml(self,start_frames,end_frames): rt = et.Element('IntermediateConfig') fv = et.SubElement(rt,'FormatVersion') fv.text = '%.1f' % self.format_version sp = et.SubElement(rt,'StoragePath') sp.text = self.frame_path ifb = {} for i in range(len(start_frames)): ifb[i] = et.SubElement(rt,'InterFrameBoundary') start = self.base_frame_time * (start_frames[i]+0.5) end = self.base_frame_time * (end_frames[i]+0.5) ifb[i].text = '%.3f - %.3f' % (start, end) # pretty print roughstr = et.tostring(rt,'utf-8') reparsed = xml.dom.minidom.parseString(roughstr) xmlstr = reparsed.toprettyxml(indent="\t",newl='\n',encoding="utf-8") if not self.simulation: f = open(os.path.join(self.configxml_path,'IntermediateConfig.xml'),'w') f.write(xmlstr) f.close() else: print xmlstr def makeConfigXML(self): start_frames,end_frames = self.setFrameRange() self.writeConfigXml(start_frames,end_frames) def makeRealConfigFromExposureTime(self,second,equal_distr_frame=0,delay=None): ''' Make Useful Frame saving config.xml. Minimal is 2 base_frame_time ''' self.resetParams() self.setMaxNumberOfFrameBins(7) self.setEquallyDistributedStartFrame(equal_distr_frame) if delay is not None: self.setFrameReadoutDelay(delay) status = self.validateExposureTime(second) if status is False: return False self.setExposureTime(second) self.createFramePath(self.base_frame_path) self.makeConfigXML() return True def makeDummyConfig(self,second): ''' Non-frame saving can be achieved by saving the frames to a directory under a non-existing directory ''' self.resetParams() self.setMaxNumberOfFrameBins(1) self.setFrameReadoutDelay(1) status = self.validateExposureTime(second) if status is False: return status self.setExposureTime(self.base_frame_time) # self.no_save_frame_path needs to be on not existing # since FalconIntermediateImage program is capable of # making a directory below existing ones self.createFramePath(os.path.join(self.no_save_frame_path,'dummy')) self.makeConfigXML() return True if __name__ == '__main__': equal_distr_frame = 0 if len(sys.argv) < 2: print 'usage: falconframe.py exposure_time_in_second equal_distr_frame delay_number_frames' print 'default to 0.5 second' print 'default equal_distr_frame is the first non-single frame' print ' including which will be equally distributed' print 'delay_number_frames default is 1' exposure_second = 0.5 delay = 1 else: exposure_second = float(sys.argv[1]) if len(sys.argv) >= 3: equal_distr_frame = int(sys.argv[2]) else: equal_distr_frame = 0 if len(sys.argv) == 4: delay = int(sys.argv[3]) else: delay = 1 app = FalconFrameConfigXmlMaker(True) #is_success = app.makeDummyConfig(exposure_second) is_success = app.makeRealConfigFromExposureTime(exposure_second, equal_distr_frame,delay) print is_success print app.getFrameDirName()
31.617978
105
0.74461
4a164ecc9bf3379193920e2e5114bc71f30596c9
8,110
py
Python
DexiNed Files/imageSVHN.py
cschwa11/Data502FP
5255118eeca0e482474ae1119057b60ac013d61c
[ "MIT" ]
null
null
null
DexiNed Files/imageSVHN.py
cschwa11/Data502FP
5255118eeca0e482474ae1119057b60ac013d61c
[ "MIT" ]
null
null
null
DexiNed Files/imageSVHN.py
cschwa11/Data502FP
5255118eeca0e482474ae1119057b60ac013d61c
[ "MIT" ]
2
2021-11-23T16:59:08.000Z
2021-11-23T17:01:43.000Z
import os import cv2 import numpy as np import torch import kornia as kn def image_normalization(img, img_min=0, img_max=255, epsilon=1e-12): """This is a typical image normalization function where the minimum and maximum of the image is needed source: https://en.wikipedia.org/wiki/Normalization_(image_processing) :param img: an image could be gray scale or color :param img_min: for default is 0 :param img_max: for default is 255 :return: a normalized image, if max is 255 the dtype is uint8 """ img = np.float32(img) # whenever an inconsistent image img = (img - np.min(img)) * (img_max - img_min) / \ ((np.max(img) - np.min(img)) + epsilon) + img_min return img def count_parameters(model=None): if model is not None: return sum(p.numel() for p in model.parameters() if p.requires_grad) else: print("Error counting model parameters line 32 img_processing.py") raise NotImplementedError def save_image_batch_to_disk(tensor, output_dir, file_names, img_shape=None, arg=None, is_inchannel=False): os.makedirs(output_dir, exist_ok=True) if not arg.is_testing: assert len(tensor.shape) == 4, tensor.shape img_shape = np.array(img_shape) for tensor_image, file_name in zip(tensor, file_names): image_vis = kn.utils.tensor_to_image( torch.sigmoid(tensor_image))#[..., 0] image_vis = (255.0*(1.0 - image_vis)).astype(np.uint8) output_file_name = os.path.join(output_dir, file_name) image_vis =cv2.resize(image_vis, dsize=(img_shape[1], img_shape[0])) assert cv2.imwrite(output_file_name, image_vis) else: if is_inchannel: tensor, tensor2 = tensor fuse_name = 'fusedCH' av_name='avgCH' is_2tensors=True edge_maps2 = [] for i in tensor2: tmp = torch.sigmoid(i).cpu().detach().numpy() edge_maps2.append(tmp) tensor2 = np.array(edge_maps2) else: fuse_name = 'fused' av_name = 'avg' tensor2=None tmp_img2 = None output_dir_f = os.path.join(output_dir, fuse_name) output_dir_a = os.path.join(output_dir, av_name) os.makedirs(output_dir_f, exist_ok=True) os.makedirs(output_dir_a, exist_ok=True) # 255.0 * (1.0 - em_a) edge_maps = [] for i in tensor: tmp = torch.sigmoid(i).cpu().detach().numpy() edge_maps.append(tmp) tensor = np.array(edge_maps) # print(f"tensor shape: {tensor.shape}") image_shape = [x.cpu().detach().numpy() for x in img_shape] # (H, W) -> (W, H) image_shape = [[y, x] for x, y in zip(image_shape[1], image_shape[2])] assert len(image_shape) == len(file_names) idx = 0 for i_shape, file_name in zip(image_shape, file_names): tmp = tensor[:, idx, ...] tmp2 = tensor2[:, idx, ...] if tensor2 is not None else None # tmp = np.transpose(np.squeeze(tmp), [0, 1, 2]) tmp = np.squeeze(tmp) tmp2 = np.squeeze(tmp2) if tensor2 is not None else None # Iterate our all 7 NN outputs for a particular image preds = [] for i in range(tmp.shape[0]): tmp_img = tmp[i] tmp_img = np.uint8(image_normalization(tmp_img)) tmp_img = cv2.bitwise_not(tmp_img) # tmp_img[tmp_img < 0.0] = 0.0 # tmp_img = 255.0 * (1.0 - tmp_img) if tmp2 is not None: tmp_img2 = tmp2[i] tmp_img2 = np.uint8(image_normalization(tmp_img2)) tmp_img2 = cv2.bitwise_not(tmp_img2) # Resize prediction to match input image size if not tmp_img.shape[1] == i_shape[0] or not tmp_img.shape[0] == i_shape[1]: tmp_img = cv2.resize(tmp_img, (i_shape[0], i_shape[1])) tmp_img2 = cv2.resize(tmp_img2, (i_shape[0], i_shape[1])) if tmp2 is not None else None if tmp2 is not None: tmp_mask = np.logical_and(tmp_img>128,tmp_img2<128) tmp_img= np.where(tmp_mask, tmp_img2, tmp_img) preds.append(tmp_img) else: preds.append(tmp_img) if i == 6: fuse = tmp_img fuse = fuse.astype(np.uint8) if tmp_img2 is not None: fuse2 = tmp_img2 fuse2 = fuse2.astype(np.uint8) # fuse = fuse-fuse2 fuse_mask=np.logical_and(fuse>128,fuse2<128) fuse = np.where(fuse_mask,fuse2, fuse) # print(fuse.shape, fuse_mask.shape) # Get the mean prediction of all the 7 outputs average = np.array(preds, dtype=np.float32) average = np.uint8(np.mean(average, axis=0)) output_file_name_f = os.path.join('/content/SVHN_Edge/f/test/', file_name) output_file_name_a = os.path.join('/content/SVHN_Edge/a/test/', file_name) cv2.imwrite(output_file_name_f, fuse) cv2.imwrite(output_file_name_a, average) idx += 1 def restore_rgb(config, I, restore_rgb=False): """ :param config: [args.channel_swap, args.mean_pixel_value] :param I: and image or a set of images :return: an image or a set of images restored """ if len(I) > 3 and not type(I) == np.ndarray: I = np.array(I) I = I[:, :, :, 0:3] n = I.shape[0] for i in range(n): x = I[i, ...] x = np.array(x, dtype=np.float32) x += config[1] if restore_rgb: x = x[:, :, config[0]] x = image_normalization(x) I[i, :, :, :] = x elif len(I.shape) == 3 and I.shape[-1] == 3: I = np.array(I, dtype=np.float32) I += config[1] if restore_rgb: I = I[:, :, config[0]] I = image_normalization(I) else: print("Sorry the input data size is out of our configuration") return I def visualize_result(imgs_list, arg): """ data 2 image in one matrix :param imgs_list: a list of prediction, gt and input data :param arg: :return: one image with the whole of imgs_list data """ n_imgs = len(imgs_list) data_list = [] for i in range(n_imgs): tmp = imgs_list[i] # print(tmp.shape) if tmp.shape[0] == 3: tmp = np.transpose(tmp, [1, 2, 0]) tmp = restore_rgb([ arg.channel_swap, arg.mean_pixel_values[:3] ], tmp) tmp = np.uint8(image_normalization(tmp)) else: tmp = np.squeeze(tmp) if len(tmp.shape) == 2: tmp = np.uint8(image_normalization(tmp)) tmp = cv2.bitwise_not(tmp) tmp = cv2.cvtColor(tmp, cv2.COLOR_GRAY2BGR) else: tmp = np.uint8(image_normalization(tmp)) data_list.append(tmp) # print(i,tmp.shape) img = data_list[0] if n_imgs % 2 == 0: imgs = np.zeros((img.shape[0] * 2 + 10, img.shape[1] * (n_imgs // 2) + ((n_imgs // 2 - 1) * 5), 3)) else: imgs = np.zeros((img.shape[0] * 2 + 10, img.shape[1] * ((1 + n_imgs) // 2) + ((n_imgs // 2) * 5), 3)) n_imgs += 1 k = 0 imgs = np.uint8(imgs) i_step = img.shape[0] + 10 j_step = img.shape[1] + 5 for i in range(2): for j in range(n_imgs // 2): if k < len(data_list): imgs[i * i_step:i * i_step+img.shape[0], j * j_step:j * j_step+img.shape[1], :] = data_list[k] k += 1 else: pass return imgs
36.367713
107
0.535018
4a164fabbbf2d98362f99c47750ec364d7c292ba
630
py
Python
pfm/pf_command/base.py
takahi-i/pfm
224ca961ca43f50bd877789e2d8659ae838d517f
[ "MIT" ]
9
2018-01-06T05:44:43.000Z
2020-06-24T00:15:16.000Z
pfm/pf_command/base.py
takahi-i/pfm
224ca961ca43f50bd877789e2d8659ae838d517f
[ "MIT" ]
27
2018-01-06T09:29:48.000Z
2020-04-10T16:11:59.000Z
pfm/pf_command/base.py
takahi-i/pfm
224ca961ca43f50bd877789e2d8659ae838d517f
[ "MIT" ]
1
2018-01-09T01:33:42.000Z
2018-01-09T01:33:42.000Z
from abc import abstractmethod import os from pfm.util.log import logger class BaseCommand(object): def __init__(self, config_path): self.config_path = config_path if self.config_path is None: logger.info('config_path set to None...') logger.info('Skip creating setting file...') return if not os.path.exists(self.config_path): logger.info('Creating setting file of pfm in ' + self.config_path + '...') f = open(self.config_path, 'w') f.write('{}') f.close() @abstractmethod def run(self): pass
24.230769
86
0.588889
4a164fe62f91734e448d14c0eabf53a79897b3a8
12,606
py
Python
intersight/model/adapter_ext_eth_interface_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
5
2021-12-16T15:13:32.000Z
2022-03-29T16:09:54.000Z
intersight/model/adapter_ext_eth_interface_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
4
2022-01-25T19:05:51.000Z
2022-03-29T20:18:37.000Z
intersight/model/adapter_ext_eth_interface_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
2
2020-07-07T15:01:08.000Z
2022-01-31T04:27:35.000Z
""" Cisco Intersight Cisco Intersight is a management platform delivered as a service with embedded analytics for your Cisco and 3rd party IT infrastructure. This platform offers an intelligent level of management that enables IT organizations to analyze, simplify, and automate their environments in more advanced ways than the prior generations of tools. Cisco Intersight provides an integrated and intuitive management experience for resources in the traditional data center as well as at the edge. With flexible deployment options to address complex security needs, getting started with Intersight is quick and easy. Cisco Intersight has deep integration with Cisco UCS and HyperFlex systems allowing for remote deployment, configuration, and ongoing maintenance. The model-based deployment works for a single system in a remote location or hundreds of systems in a data center and enables rapid, standardized configuration and deployment. It also streamlines maintaining those systems whether you are working with small or very large configurations. The Intersight OpenAPI document defines the complete set of properties that are returned in the HTTP response. From that perspective, a client can expect that no additional properties are returned, unless these properties are explicitly defined in the OpenAPI document. However, when a client uses an older version of the Intersight OpenAPI document, the server may send additional properties because the software is more recent than the client. In that case, the client may receive properties that it does not know about. Some generated SDKs perform a strict validation of the HTTP response body against the OpenAPI document. # noqa: E501 The version of the OpenAPI document: 1.0.9-4950 Contact: intersight@cisco.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from intersight.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from intersight.model.adapter_unit_relationship import AdapterUnitRelationship from intersight.model.asset_device_registration_relationship import AssetDeviceRegistrationRelationship from intersight.model.inventory_device_info_relationship import InventoryDeviceInfoRelationship globals()['AdapterUnitRelationship'] = AdapterUnitRelationship globals()['AssetDeviceRegistrationRelationship'] = AssetDeviceRegistrationRelationship globals()['InventoryDeviceInfoRelationship'] = InventoryDeviceInfoRelationship class AdapterExtEthInterfaceAllOf(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('class_id',): { 'ADAPTER.EXTETHINTERFACE': "adapter.ExtEthInterface", }, ('object_type',): { 'ADAPTER.EXTETHINTERFACE': "adapter.ExtEthInterface", }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'class_id': (str,), # noqa: E501 'object_type': (str,), # noqa: E501 'admin_state': (str,), # noqa: E501 'ep_dn': (str,), # noqa: E501 'ext_eth_interface_id': (str,), # noqa: E501 'interface_type': (str,), # noqa: E501 'mac_address': (str,), # noqa: E501 'peer_aggr_port_id': (int,), # noqa: E501 'peer_dn': (str,), # noqa: E501 'peer_port_id': (int,), # noqa: E501 'peer_slot_id': (int,), # noqa: E501 'switch_id': (str,), # noqa: E501 'adapter_unit': (AdapterUnitRelationship,), # noqa: E501 'inventory_device_info': (InventoryDeviceInfoRelationship,), # noqa: E501 'registered_device': (AssetDeviceRegistrationRelationship,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'class_id': 'ClassId', # noqa: E501 'object_type': 'ObjectType', # noqa: E501 'admin_state': 'AdminState', # noqa: E501 'ep_dn': 'EpDn', # noqa: E501 'ext_eth_interface_id': 'ExtEthInterfaceId', # noqa: E501 'interface_type': 'InterfaceType', # noqa: E501 'mac_address': 'MacAddress', # noqa: E501 'peer_aggr_port_id': 'PeerAggrPortId', # noqa: E501 'peer_dn': 'PeerDn', # noqa: E501 'peer_port_id': 'PeerPortId', # noqa: E501 'peer_slot_id': 'PeerSlotId', # noqa: E501 'switch_id': 'SwitchId', # noqa: E501 'adapter_unit': 'AdapterUnit', # noqa: E501 'inventory_device_info': 'InventoryDeviceInfo', # noqa: E501 'registered_device': 'RegisteredDevice', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """AdapterExtEthInterfaceAllOf - a model defined in OpenAPI Args: Keyword Args: class_id (str): The fully-qualified name of the instantiated, concrete type. This property is used as a discriminator to identify the type of the payload when marshaling and unmarshaling data.. defaults to "adapter.ExtEthInterface", must be one of ["adapter.ExtEthInterface", ] # noqa: E501 object_type (str): The fully-qualified name of the instantiated, concrete type. The value should be the same as the 'ClassId' property.. defaults to "adapter.ExtEthInterface", must be one of ["adapter.ExtEthInterface", ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) admin_state (str): Admin configured state of an External Ethernet Interface.. [optional] # noqa: E501 ep_dn (str): Endpoint Config DN of an External Ethernet Interface.. [optional] # noqa: E501 ext_eth_interface_id (str): Unique Identifier for an External Ethernet Interface within the adapter object.. [optional] # noqa: E501 interface_type (str): Type of an External Ethernet Interface.. [optional] # noqa: E501 mac_address (str): MAC address of an External Ethernet Interface.. [optional] # noqa: E501 peer_aggr_port_id (int): Peer Aggregate Port Id attached to an External Ethernet Interface.. [optional] # noqa: E501 peer_dn (str): DN of peer end-point attached to an External Ethernet Interface.. [optional] # noqa: E501 peer_port_id (int): Peer Port Id attached to an External Ethernet Interface.. [optional] # noqa: E501 peer_slot_id (int): Peer Slot Id attached to an External Ethernet Interface.. [optional] # noqa: E501 switch_id (str): SwitchId attached to an External Ethernet Interface.. [optional] # noqa: E501 adapter_unit (AdapterUnitRelationship): [optional] # noqa: E501 inventory_device_info (InventoryDeviceInfoRelationship): [optional] # noqa: E501 registered_device (AssetDeviceRegistrationRelationship): [optional] # noqa: E501 """ class_id = kwargs.get('class_id', "adapter.ExtEthInterface") object_type = kwargs.get('object_type', "adapter.ExtEthInterface") _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.class_id = class_id self.object_type = object_type for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
54.571429
1,678
0.644138
4a1650294cc39e69e2c3a591f942fef999e8736c
391
py
Python
pyobs/interfaces/ISyncTarget.py
pyobs/pyobs-core
e3401e63eb31587c2bc535f7346b7e4ef69d64ab
[ "MIT" ]
4
2020-02-14T10:50:03.000Z
2022-03-25T04:15:06.000Z
pyobs/interfaces/ISyncTarget.py
pyobs/pyobs-core
e3401e63eb31587c2bc535f7346b7e4ef69d64ab
[ "MIT" ]
60
2020-09-14T09:10:20.000Z
2022-03-25T17:51:42.000Z
pyobs/interfaces/ISyncTarget.py
pyobs/pyobs-core
e3401e63eb31587c2bc535f7346b7e4ef69d64ab
[ "MIT" ]
2
2020-10-14T09:34:57.000Z
2021-04-27T09:35:57.000Z
from .interface import * class ISyncTarget(Interface): """The module can synchronize a target, e.g. via a telescope control software behinde an :class:`~pyobs.interfaces.ITelescope`.""" __module__ = 'pyobs.interfaces' def sync_target(self, *args, **kwargs): """Synchronize device on current target.""" raise NotImplementedError __all__ = ['ISyncTarget']
26.066667
92
0.690537
4a1650ec73309cef25c00fa227626ba4a042de5f
316
py
Python
tests/utils.py
acutexyz/monkeyideas
062ffa16f3bdf1fa57338837b50bfddfebdecdac
[ "MIT" ]
null
null
null
tests/utils.py
acutexyz/monkeyideas
062ffa16f3bdf1fa57338837b50bfddfebdecdac
[ "MIT" ]
null
null
null
tests/utils.py
acutexyz/monkeyideas
062ffa16f3bdf1fa57338837b50bfddfebdecdac
[ "MIT" ]
null
null
null
from app.models import Idea def create_idea_by_monkey(session, monkey): """Creates and returns new idea authored by given monkey """ idea = Idea( title='-', body='-', author_id=monkey.id, is_public=True ) session.add(idea) session.commit() return idea
21.066667
60
0.598101
4a165206245bb09480355c46293bd577294b422a
3,149
py
Python
src/annalist_root/utils/StdoutContext.py
gklyne/annalist
82e7ef2d56a400325e7618fa9e590072ee8a71d3
[ "MIT" ]
18
2015-02-20T23:09:13.000Z
2020-11-13T06:06:43.000Z
src/annalist_root/utils/StdoutContext.py
gklyne/annalist
82e7ef2d56a400325e7618fa9e590072ee8a71d3
[ "MIT" ]
30
2015-01-03T09:56:28.000Z
2021-06-10T20:58:55.000Z
src/annalist_root/utils/StdoutContext.py
gklyne/annalist
82e7ef2d56a400325e7618fa9e590072ee8a71d3
[ "MIT" ]
5
2015-02-02T09:01:23.000Z
2018-06-14T20:05:28.000Z
#!/usr/bin/python """ Context managers for redirecting stdout and stderr to a supplied file or stream """ from __future__ import unicode_literals from __future__ import absolute_import, division, print_function __author__ = "Graham Klyne (GK@ACM.ORG)" __copyright__ = "Copyright 2011-2014, University of Oxford" __license__ = "MIT (http://opensource.org/licenses/MIT)" import sys from utils.py3porting import is_string, to_unicode class SwitchStdout: """ Context handler class that swiches standard output to a named file or supplied stream. See also http://code.activestate.com/recipes/577564-context-manager-for-low-level-redirection-of-stdou/ I didn't use this because I wanted to be able to catch output to a StringIO stream for testing. """ def __init__(self, fileorstr): self.fileorstr = fileorstr self.opened = False return def __enter__(self): if is_string(self.fileorstr): self.outstr = open(self.fileorstr, "w") self.opened = True else: self.outstr = self.fileorstr self.savestdout = sys.stdout sys.stdout = self.outstr return def __exit__(self, exctype, excval, exctraceback): if self.opened: self.outstr.close() sys.stdout = self.savestdout return False class SwitchStderr(object): """ Context handler class that swiches standard error to a named file or supplied stream. (Same as SwitchStdout, but swiches stderr) """ def __init__(self, fileorstr): self.fileorstr = fileorstr self.opened = False return def __enter__(self): if is_string(self.fileorstr): self.outstr = open(self.fileorstr, "w") self.opened = True else: self.outstr = self.fileorstr self.savestderr = sys.stderr sys.stderr = self.outstr return def __exit__(self, exctype, excval, exctraceback): if self.opened: self.outstr.close() sys.stderr = self.savestderr return False class SwitchStdin(object): """ Context handler class that swiches standard input to a named file or supplied stream. """ def __init__(self, fileorstr): self.fileorstr = fileorstr self.opened = False return def __enter__(self): if is_string(self.fileorstr): self.instr = open(self.fileorstr, "w") self.opened = True else: self.instr = self.fileorstr self.savestdin = sys.stdin sys.stdin = self.instr return def __exit__(self, exctype, excval, exctraceback): if self.opened: self.outin.close() sys.stdin = self.savestdin return False if __name__ == "__main__": import StringIO outstr = StringIO.StringIO() with SwitchStdout(outstr) as mystdout: print("Hello, ") print("world", file=mystdout) outtxt = outstr.getvalue() print(repr(outtxt)) assert outtxt == "Hello, \nworld\n" outstr.close() # End.
28.369369
107
0.625913
4a16523e660f07f3d1680937e1726082b4b6792a
470
py
Python
sync/rest/list-permissions/delete-permission/delete-permission.6.x.py
azaddeveloper/api-snippets
f88b153cd7186fa70b33733b205886502db0d1f2
[ "MIT" ]
3
2020-05-05T10:01:02.000Z
2021-02-06T14:23:13.000Z
sync/rest/list-permissions/delete-permission/delete-permission.6.x.py
azaddeveloper/api-snippets
f88b153cd7186fa70b33733b205886502db0d1f2
[ "MIT" ]
null
null
null
sync/rest/list-permissions/delete-permission/delete-permission.6.x.py
azaddeveloper/api-snippets
f88b153cd7186fa70b33733b205886502db0d1f2
[ "MIT" ]
1
2019-10-02T14:36:36.000Z
2019-10-02T14:36:36.000Z
# Download the Python helper library from twilio.com/docs/python/install from twilio.rest import Client # Your Account Sid and Auth Token from twilio.com/console account_sid = "ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" auth_token = "your_auth_token" client = Client(account_sid, auth_token) did_delete = client.sync \ .services("ISXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .sync_lists("MyFirstList") \ .sync_list_permissions("bob") \ .delete() print(did_delete)
29.375
72
0.77234
4a16536df294a27d8dbb39b18a23a820ba21eda7
1,104
py
Python
registersKtob.py
Gyrst/HyperLogLog
73b485999ed4dd9657fbcbbc7f0ca5b7d0b17449
[ "Apache-2.0" ]
null
null
null
registersKtob.py
Gyrst/HyperLogLog
73b485999ed4dd9657fbcbbc7f0ca5b7d0b17449
[ "Apache-2.0" ]
null
null
null
registersKtob.py
Gyrst/HyperLogLog
73b485999ed4dd9657fbcbbc7f0ca5b7d0b17449
[ "Apache-2.0" ]
null
null
null
from hashSuggested import hash_A from rhoSuggested import rho import fileinput def f(x): res = ((x*0xbc164501) & 0x7fffffff) >> 21 return res A = [0x21ae4036, 0x32435171, 0xac3338cf, 0xea97b40c, 0x0e504b22, 0x9ff9a4ef, 0x111d014d, 0x934f3787, 0x6cd079bf, 0x69db5c31, 0xdf3c28ed, 0x40daf2ad, 0x82a5891c, 0x4659c7b0, 0x73dc0ca8, 0xdad3aca2, 0x00c74c7e, 0x9a2521e2, 0xf38eb6aa, 0x64711ab6, 0x5823150a, 0xd13a3a9a, 0x30a5aa04, 0x0fb9a1da, 0xef785119, 0xc9f0b067, 0x1e7dde42, 0xdda4a7b2, 0x1a1c2640, 0x297c0633, 0x744edb48, 0x19adce93 ] M = [0]*1024 def registers(x: int): resF = f(x) resHash = hash_A(A, x) resRho = rho(resHash) if(resRho > M[resF]): M[resF] = resRho
22.08
45
0.464674
4a1654d228f0f58fe1bf5f492b681c8065bf45eb
2,577
py
Python
examples/model_selection/plot_train_error_vs_test_error.py
DeuroIO/Deuro-scikit-learn
9dd09a19593d1224077fe0d1a754aed936269528
[ "MIT" ]
5
2018-07-04T22:13:54.000Z
2018-07-04T22:21:29.000Z
examples/model_selection/plot_train_error_vs_test_error.py
DeuroIO/Deuro-scikit-learn
9dd09a19593d1224077fe0d1a754aed936269528
[ "MIT" ]
null
null
null
examples/model_selection/plot_train_error_vs_test_error.py
DeuroIO/Deuro-scikit-learn
9dd09a19593d1224077fe0d1a754aed936269528
[ "MIT" ]
1
2018-02-25T21:40:51.000Z
2018-02-25T21:40:51.000Z
""" ========================= Train error vs Test error ========================= Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases the performance on train decreases while the performance on test is optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model and the performance is measured using the explained variance a.k.a. R^2. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np from sklearn import linear_model # ############################################################################# # Generate sample data n_samples_train, n_samples_test, n_features = 75, 150, 500 np.random.seed(0) coef = np.random.randn(n_features) coef[50:] = 0.0 # only the top 10 features are impacting the model X = np.random.randn(n_samples_train + n_samples_test, n_features) y = np.dot(X, coef) # Split train and test data X_train, X_test = X[:n_samples_train], X[n_samples_train:] y_train, y_test = y[:n_samples_train], y[n_samples_train:] # ############################################################################# # Compute train and test errors alphas = np.logspace(-5, 1, 60) enet = linear_model.ElasticNet(l1_ratio=0.7) train_errors = list() test_errors = list() for alpha in alphas: enet.set_params(alpha=alpha) enet.fit(X_train, y_train) train_errors.append(enet.score(X_train, y_train)) test_errors.append(enet.score(X_test, y_test)) i_alpha_optim = np.argmax(test_errors) alpha_optim = alphas[i_alpha_optim] print("Optimal regularization parameter : %s" % alpha_optim) # Estimate the coef_ on full data with optimal regularization parameter enet.set_params(alpha=alpha_optim) coef_ = enet.fit(X, y).coef_ # ############################################################################# # Plot results functions import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.semilogx(alphas, train_errors, label='Train') plt.semilogx(alphas, test_errors, label='Test') plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k', linewidth=3, label='Optimum on test') plt.legend(loc='lower left') plt.ylim([0, 1.2]) plt.xlabel('Regularization parameter') plt.ylabel('Performance') # Show estimated coef_ vs true coef plt.subplot(2, 1, 2) plt.plot(coef, label='True coef') plt.plot(coef_, label='Estimated coef') plt.legend() plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26) plt.show()
33.907895
79
0.670159
4a1654d50500fdf03c56cb4f92b199944fc58b3b
15,974
py
Python
deviceupdownstatus.py
zabrewer/automation-scripts
cd9f4ab8227333412baeba659d5a9fea4343e78f
[ "MIT" ]
1
2021-01-09T21:18:52.000Z
2021-01-09T21:18:52.000Z
deviceupdownstatus.py
zabrewer/automation-scripts
cd9f4ab8227333412baeba659d5a9fea4343e78f
[ "MIT" ]
null
null
null
deviceupdownstatus.py
zabrewer/automation-scripts
cd9f4ab8227333412baeba659d5a9fea4343e78f
[ "MIT" ]
1
2020-12-02T19:51:43.000Z
2020-12-02T19:51:43.000Z
# This is a script to print a list of all devices in a organization's inventory and their up/down status. # The script will not return up/down status for MV security cameras, as this was not supported at time of writing. # # To run the script, enter: # python deviceupdownstatus.py -k <api key> -o <org name> [-a <snmp auth key> -p <snmp priv key>] # # Mandatory arguments: # -k <api key> : Your Meraki Dashboard API key # -o <org name> : Your Dashboard Organization name # Optional arguments to use SNMPv3: # -a <snmp auth key> : SNMPv3 authentication key. Required for SNMPv3 # -p <snmp priv key> : SNMPv3 privacy key. Required for SNMPv3 # # Example: # python deviceupdownstatus.py -k 1234 -o "Meraki Inc" -a authpass123 -p privpass123 # # This script was developed using Python 3.6.4. You will need the Requests and PySNMP modules to run it. You can install # these modules via pip: # pip install requests # pip install pysnmp # # More info on these modules: # http://python-requests.org # http://pysnmp.sourceforge.net # # To make script chaining easier, all lines containing informational messages to the user # start with the character @ # # This file was last modified on 2018-03-01 import sys, getopt, requests, json, time from pysnmp.hlapi import * from datetime import datetime #Used for time.sleep(API_EXEC_DELAY). Delay added to avoid hitting dashboard API max request rate API_EXEC_DELAY = 0.21 #connect and read timeouts for the Requests module REQUESTS_CONNECT_TIMEOUT = 30 REQUESTS_READ_TIMEOUT = 30 #used by merakirequestthrottler(). DO NOT MODIFY LAST_MERAKI_REQUEST = datetime.now() class c_serialstatus: def __init__(self): self.serial = '' self.status = '' class c_deviceinfo: def __init__(self): self.serial = '' self.model = '' self.name = '' self.networkId = '' self.status = '' #this will be filled via SNMP class c_snmpinfo: def __init__(self): self.host = '' self.usercommunity = '' # SNMPv3 user / SNMPv2c community. Same in Meraki Dashboard self.v3enabled = False self.v2cenabled = False self.authkey = '' #not returned by API self.privkey = '' #not returned by API def printusertext(p_message): #prints a line of text that is meant for the user to read #do not process these lines when chaining scripts print('@ %s' % p_message) def printhelp(): #prints help text printusertext('This is a script to print a list of all devices in a organization\'s inventory and their up/down status.') printusertext(' The script will not return up/down status for MV security cameras, as this was not supported at time of writing.') printusertext('') printusertext('To run the script, enter:') printusertext(' python deviceupdownstatus.py -k <api key> -o <org name> [-a <snmp auth key> -p <snmp priv key>]') printusertext('') printusertext('Mandatory argument:s') printusertext(' -k <key> : Your Meraki Dashboard API key') printusertext(' -o <org name> : Your Dashboard Organization name') printusertext('Optional arguments to use SNMPv3:') printusertext(' -a <snmp auth key> : SNMPv3 authentication key. Required for SNMPv3') printusertext(' -p <snmp priv key> : SNMPv3 privacy key. Required for SNMPv3') printusertext('') printusertext('Example:') printusertext(' python deviceupdownstatus.py -k 1234 -o "Meraki Inc" -a authpass123 -p privpass123') printusertext('') printusertext('Use double quotes ("") in Windows to pass arguments containing spaces. Names are case-sensitive.') def snmppolldevicestatuses (p_shardhost, p_usercommunity, p_authkey = '', p_privkey = ''): #returns a list of c_serialstatus objects containing serial numbers of devices returned by SNMP and their up/down status #note that SNMP only returns status for devices assigned to a network, not the whole inventory returnlist = [] serialslist = [] statuslist = [] flag_snmpv3 = True if p_authkey == '' or p_privkey == '': flag_snmpv3 = False #snmp poll serials' list if flag_snmpv3: try: g = nextCmd(SnmpEngine(), UsmUserData(p_usercommunity, p_authkey, p_privkey, authProtocol=usmHMACSHAAuthProtocol, privProtocol=usmAesCfb128Protocol), UdpTransportTarget((p_shardhost, 16100)), ContextData(), ObjectType(ObjectIdentity('1.3.6.1.4.1.29671.1.1.4.1.8')), lexicographicMode = False, lookupMib = False) except: printusertext ("ERROR 01: SNMPv3 nextCmd failed") sys.exit(2) else: #using SNMPv2c try: g = nextCmd(SnmpEngine(), CommunityData(p_usercommunity), UdpTransportTarget((p_shardhost, 16100)), ContextData(), ObjectType(ObjectIdentity('1.3.6.1.4.1.29671.1.1.4.1.8')), lexicographicMode = False, lookupMib = False) except: printusertext ("ERROR 02: SNMPv2c nextCmd failed") sys.exit(2) flag_continue = True while flag_continue: try: errorIndication, errorStatus, errorIndex, varBinds = next(g) except StopIteration: flag_continue = False except: printusertext ("ERROR 03: SNMP next failed") sys.exit(2) if flag_continue: for vb in varBinds: try: #mash everything to a str and grab the right characters. this works more reliably crashbuffer = str(vb)[-17:-3] serialslist.append(crashbuffer) except: printusertext ('WARNING: SNMP poll for serials returned no data') #snmp poll statuses' list if flag_snmpv3: try: g = nextCmd(SnmpEngine(), UsmUserData(p_usercommunity, p_authkey, p_privkey, authProtocol=usmHMACSHAAuthProtocol, privProtocol=usmAesCfb128Protocol), UdpTransportTarget((p_shardhost, 16100)), ContextData(), ObjectType(ObjectIdentity('1.3.6.1.4.1.29671.1.1.4.1.3')), lexicographicMode = False, lookupMib = False) except: printusertext ("ERROR 04: SNMPv3 nextCmd failed") sys.exit(2) else: #using SNMPv2c try: g = nextCmd(SnmpEngine(), CommunityData(p_usercommunity), UdpTransportTarget((p_shardhost, 16100)), ContextData(), ObjectType(ObjectIdentity('1.3.6.1.4.1.29671.1.1.4.1.3')), lexicographicMode = False, lookupMib = False) except: printusertext ("ERROR 05: SNMPv2c nextCmd failed") sys.exit(2) flag_continue = True while flag_continue: try: errorIndication, errorStatus, errorIndex, varBinds = next(g) except StopIteration: flag_continue = False except: printusertext ("ERROR 06: SNMP next failed") sys.exit(2) if flag_continue: for vb in varBinds: try: crashbuffer = vb[len(vb)-1] statuslist.append(crashbuffer) except: printusertext ('WARNING: SNMP poll for statuses returned no data') lastitem = len(statuslist) for i in range (0, lastitem): returnlist.append(c_serialstatus()) returnlist[i].serial = serialslist[i] if statuslist[i] == 1: returnlist[i].status = 'up' else: returnlist[i].status = 'down' return (returnlist) def merakirequestthrottler(p_requestcount=1): #makes sure there is enough time between API requests to Dashboard not to hit shaper global LAST_MERAKI_REQUEST if (datetime.now()-LAST_MERAKI_REQUEST).total_seconds() < (API_EXEC_DELAY*p_requestcount): time.sleep(API_EXEC_DELAY*p_requestcount) LAST_MERAKI_REQUEST = datetime.now() return def getorgid(p_apikey, p_orgname): #looks up org id for a specific org name #on failure returns 'null' merakirequestthrottler() try: r = requests.get('https://api.meraki.com/api/v0/organizations', headers={'X-Cisco-Meraki-API-Key': p_apikey, 'Content-Type': 'application/json'}) except: printusertext('ERROR 07: Unable to contact Meraki cloud') sys.exit(2) if r.status_code != requests.codes.ok: return 'null' rjson = r.json() for record in rjson: if record['name'] == p_orgname: return record['id'] return('null') def getsnmpinfo(p_apikey, p_orgid): #Looks up shard URL for a specific org. Use this URL instead of 'dashboard.meraki.com' # when making API calls with API accounts that can access multiple orgs. #On failure returns 'null' merakirequestthrottler() try: r = requests.get('https://api.meraki.com/api/v0/organizations/%s/snmp' % p_orgid, headers={'X-Cisco-Meraki-API-Key': p_apikey, 'Content-Type': 'application/json'}, timeout=(REQUESTS_CONNECT_TIMEOUT, REQUESTS_READ_TIMEOUT)) except: printusertext('ERROR 08: Unable to contact Meraki cloud') sys.exit(2) returnobject = c_snmpinfo() if r.status_code != requests.codes.ok: returnobject.host = 'null' return (returnobject) rjson = r.json() returnobject.host = rjson['hostname'] returnobject.v3enabled = rjson['v3Enabled'] returnobject.v2cenabled = rjson['v2cEnabled'] if rjson['v2cEnabled']: returnobject.usercommunity = rjson['v2CommunityString'] elif rjson['v3Enabled']: returnobject.usercommunity = rjson['v3User'] return(returnobject) def getinventory(p_apikey, p_shardhost, p_orgid): #returns a list of all networks in an organization #on failure returns a single record with 'null' name and id merakirequestthrottler() try: r = requests.get('https://%s/api/v0/organizations/%s/inventory' % (p_shardhost, p_orgid), headers={'X-Cisco-Meraki-API-Key': p_apikey, 'Content-Type': 'application/json'}, timeout=(REQUESTS_CONNECT_TIMEOUT, REQUESTS_READ_TIMEOUT) ) except: printusertext('ERROR 09: Unable to contact Meraki cloud') sys.exit(2) returnvalue = [] if r.status_code != requests.codes.ok: returnvalue.append(c_deviceinfo()) returnvalue[0].serial = 'null' return(returnvalue) rjson = r.json() rjlen = len(rjson) for i in range (0, rjlen): returnvalue.append(c_deviceinfo()) returnvalue[i].serial = rjson[i]['serial'] returnvalue[i].model = rjson[i]['model'] if rjson[i]['networkId'] is None: returnvalue[i].networkId = '' else: returnvalue[i].networkId = rjson[i]['networkId'] return(returnvalue) def getdevicename(p_apikey, p_shardhost, p_nwid, p_serial): #returns a list of all networks in an organization #on failure returns a single record with 'null' name and id merakirequestthrottler() try: r = requests.get('https://%s/api/v0/networks/%s/devices/%s' % (p_shardhost, p_nwid, p_serial), headers={'X-Cisco-Meraki-API-Key': p_apikey, 'Content-Type': 'application/json'}, timeout=(REQUESTS_CONNECT_TIMEOUT, REQUESTS_READ_TIMEOUT) ) except: printusertext('ERROR 10: Unable to contact Meraki cloud') sys.exit(2) if r.status_code != requests.codes.ok: return('') rjson = r.json() if rjson['name'] is None: return(rjson['mac']) return(rjson['name']) def main(argv): #initialize variables for command line arguments arg_apikey = '' arg_orgname = '' arg_authkey = '' arg_privkey = '' #get command line arguments try: opts, args = getopt.getopt(argv, 'hk:o:a:p:') except getopt.GetoptError: printhelp() sys.exit(2) for opt, arg in opts: if opt == '-h': printhelp() sys.exit() elif opt == '-k': arg_apikey = arg elif opt == '-o': arg_orgname = arg elif opt == '-a': arg_authkey = arg elif opt == '-p': arg_privkey = arg #check if all parameters are required parameters have been given if arg_apikey == '': printhelp() sys.exit(2) #resolve orgid orgid = getorgid(arg_apikey, arg_orgname) #get SNMP info #this call sometimes fails. implementing a try-verify-wait-repeat loop MAX_SHARD_RESOLVE_TRIES = 10 flag_unabletoresolveshard = True for i in range (0, MAX_SHARD_RESOLVE_TRIES): snmpinfo = getsnmpinfo(arg_apikey, orgid) if snmpinfo.host == 'null': time.sleep(API_EXEC_DELAY*(i+1)) else: flag_unabletoresolveshard = False break if flag_unabletoresolveshard: printusertext('ERROR 11: Unable to read data for org "%s"' % record.name) sys.exit(2) #get device inventory inventory = getinventory(arg_apikey, snmpinfo.host, orgid) if inventory[0].serial == 'null': printusertext('ERROR 12: Unable to read inventory via API') sys.exit(2) #poll device up/down status via SNMP if arg_authkey != '' and arg_privkey != '': if snmpinfo.v3enabled: updownstatus = snmppolldevicestatuses(snmpinfo.host, snmpinfo.usercommunity, arg_authkey, arg_privkey) else: printusertext('ERROR 13: Unable to poll via SNMPv3 (not enabled in org)') sys.exit(2) else: if snmpinfo.v2cenabled: updownstatus = snmppolldevicestatuses(snmpinfo.host, snmpinfo.usercommunity) else: printusertext('ERROR 14: Unable to poll via SNMPv2c (not enabled in org)') sys.exit(2) for device in inventory: if device.networkId != '': if device.model[:2] == 'MV': device.status = 'n/a' #currently SNMP does not return up/down for MV cameras flag_devicelocated = False for state in updownstatus: if device.serial == state.serial: device.status = state.status flag_devicelocated = True break device.name = getdevicename(arg_apikey, snmpinfo.host, device.networkId, device.serial) else: device.status = "not in use" print ('DEVICE NAME MODEL SERIAL STATUS') for device in inventory: print('%-30s%-15s%-20s%-10s' % (device.name, device.model, device.serial, device.status)) if __name__ == '__main__': main(sys.argv[1:])
38.033333
245
0.585201
4a16552239e1dfdb75d4b0c2c660842d97a3492a
16,160
py
Python
plugins/modules/oci_compute_instance_agent_instance_agent_command_facts.py
LaudateCorpus1/oci-ansible-collection
2b1cd87b4d652a97c1ca752cfc4fdc4bdb37a7e7
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_compute_instance_agent_instance_agent_command_facts.py
LaudateCorpus1/oci-ansible-collection
2b1cd87b4d652a97c1ca752cfc4fdc4bdb37a7e7
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_compute_instance_agent_instance_agent_command_facts.py
LaudateCorpus1/oci-ansible-collection
2b1cd87b4d652a97c1ca752cfc4fdc4bdb37a7e7
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2020, 2022 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_compute_instance_agent_instance_agent_command_facts short_description: Fetches details about one or multiple InstanceAgentCommand resources in Oracle Cloud Infrastructure description: - Fetches details about one or multiple InstanceAgentCommand resources in Oracle Cloud Infrastructure - Lists the Oracle Cloud Agent commands issued in a compartment. - If I(instance_agent_command_id) is specified, the details of a single InstanceAgentCommand will be returned. version_added: "2.9.0" author: Oracle (@oracle) options: instance_agent_command_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the command. - Required to get a specific instance_agent_command. type: str aliases: ["id"] compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the compartment. - Required to list multiple instance_agent_commands. type: str sort_by: description: - The field to sort by. You can provide one sort order (`sortOrder`). Default order for `TIMECREATED` is descending. - "**Note:** In general, some \\"List\\" operations (for example, `ListInstances`) let you optionally filter by availability domain if the scope of the resource type is within a single availability domain. If you call one of these \\"List\\" operations without specifying an availability domain, the resources are grouped by availability domain, then sorted." type: str choices: - "TIMECREATED" - "DISPLAYNAME" sort_order: description: - The sort order to use, either ascending (`ASC`) or descending (`DESC`). The `DISPLAYNAME` sort order is case sensitive. type: str choices: - "ASC" - "DESC" extends_documentation_fragment: [ oracle.oci.oracle, oracle.oci.oracle_display_name_option ] """ EXAMPLES = """ - name: Get a specific instance_agent_command oci_compute_instance_agent_instance_agent_command_facts: # required instance_agent_command_id: "ocid1.instanceagentcommand.oc1..xxxxxxEXAMPLExxxxxx" - name: List instance_agent_commands oci_compute_instance_agent_instance_agent_command_facts: # required compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" # optional sort_by: TIMECREATED sort_order: ASC """ RETURN = """ instance_agent_commands: description: - List of InstanceAgentCommand resources returned: on success type: complex contains: id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the command. - Returned for get operation returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the compartment containing the command. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" display_name: description: - A user-friendly name. Does not have to be unique. Avoid entering confidential information. returned: on success type: str sample: display_name_example time_created: description: - The date and time the command was created, in the format defined by L(RFC3339,https://tools.ietf.org/html/rfc3339). returned: on success type: str sample: "2013-10-20T19:20:30+01:00" time_updated: description: - The date and time the command was last updated, in the format defined by L(RFC3339,https://tools.ietf.org/html/rfc3339). returned: on success type: str sample: "2013-10-20T19:20:30+01:00" is_canceled: description: - Whether a request was made to cancel the command. Canceling a command is a best-effort attempt. returned: on success type: bool sample: true execution_time_out_in_seconds: description: - The amount of time that Oracle Cloud Agent is given to run the command on the instance before timing out. The timer starts when Oracle Cloud Agent starts the command. Zero means no timeout. - Returned for get operation returned: on success type: int sample: 56 target: description: - The target instance that the command runs on. - Returned for get operation returned: on success type: complex contains: instance_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the target instance. returned: on success type: str sample: "ocid1.instance.oc1..xxxxxxEXAMPLExxxxxx" content: description: - The contents of the command. - Returned for get operation returned: on success type: complex contains: source: description: - The source of the command. returned: on success type: complex contains: source_type: description: - "The source type for the command. The following values are supported:" - "- `TEXT` - uses a plain text command that is specified inline with the request. - `OBJECT_STORAGE_URI` - imports a command from an Object Storage URL. - `OBJECT_STORAGE_TUPLE` - imports a command from an Object Storage bucket." - For background information about Object Storage buckets and URLs, see L(Overview of Object Storage,https://docs.cloud.oracle.com/Content/Object/Concepts/objectstorageoverview.htm). returned: on success type: str sample: TEXT bucket_name: description: - The Object Storage bucket for the command. returned: on success type: str sample: bucket_name_example namespace_name: description: - The Object Storage namespace for the command. returned: on success type: str sample: namespace_name_example object_name: description: - The Object Storage object name for the command. returned: on success type: str sample: object_name_example source_uri: description: - The Object Storage URL or pre-authenticated request (PAR) for the command. returned: on success type: str sample: source_uri_example text: description: - The plain text command. returned: on success type: str sample: text_example text_sha256: description: - SHA-256 checksum value of the text content. returned: on success type: str sample: text_sha256_example output: description: - The output destination for the command. returned: on success type: complex contains: output_type: description: - "The output type for the command. The following values are supported:" - "- `TEXT` - the command output is returned as plain text. - `OBJECT_STORAGE_URI` - the command output is saved to an Object Storage URL. - `OBJECT_STORAGE_TUPLE` - the command output is saved to an Object Storage bucket." - For background information about Object Storage buckets and URLs, see L(Overview of Object Storage,https://docs.cloud.oracle.com/Content/Object/Concepts/objectstorageoverview.htm). returned: on success type: str sample: TEXT bucket_name: description: - The Object Storage bucket for the command output. returned: on success type: str sample: bucket_name_example namespace_name: description: - The Object Storage namespace for the command output. returned: on success type: str sample: namespace_name_example object_name: description: - The Object Storage object name for the command output. returned: on success type: str sample: object_name_example output_uri: description: - The Object Storage URL or pre-authenticated request (PAR) for the command output. returned: on success type: str sample: output_uri_example instance_agent_command_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the command. - Returned for list operation returned: on success type: str sample: "ocid1.instanceagentcommand.oc1..xxxxxxEXAMPLExxxxxx" sample: [{ "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "display_name": "display_name_example", "time_created": "2013-10-20T19:20:30+01:00", "time_updated": "2013-10-20T19:20:30+01:00", "is_canceled": true, "execution_time_out_in_seconds": 56, "target": { "instance_id": "ocid1.instance.oc1..xxxxxxEXAMPLExxxxxx" }, "content": { "source": { "source_type": "TEXT", "bucket_name": "bucket_name_example", "namespace_name": "namespace_name_example", "object_name": "object_name_example", "source_uri": "source_uri_example", "text": "text_example", "text_sha256": "text_sha256_example" }, "output": { "output_type": "TEXT", "bucket_name": "bucket_name_example", "namespace_name": "namespace_name_example", "object_name": "object_name_example", "output_uri": "output_uri_example" } }, "instance_agent_command_id": "ocid1.instanceagentcommand.oc1..xxxxxxEXAMPLExxxxxx" }] """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import oci_common_utils from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceFactsHelperBase, get_custom_class, ) try: from oci.compute_instance_agent import ComputeInstanceAgentClient HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class InstanceAgentCommandFactsHelperGen(OCIResourceFactsHelperBase): """Supported operations: get, list""" def get_required_params_for_get(self): return [ "instance_agent_command_id", ] def get_required_params_for_list(self): return [ "compartment_id", ] def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_instance_agent_command, instance_agent_command_id=self.module.params.get( "instance_agent_command_id" ), ) def list_resources(self): optional_list_method_params = [ "sort_by", "sort_order", "display_name", ] optional_kwargs = dict( (param, self.module.params[param]) for param in optional_list_method_params if self.module.params.get(param) is not None ) return oci_common_utils.list_all_resources( self.client.list_instance_agent_commands, compartment_id=self.module.params.get("compartment_id"), **optional_kwargs ) InstanceAgentCommandFactsHelperCustom = get_custom_class( "InstanceAgentCommandFactsHelperCustom" ) class ResourceFactsHelper( InstanceAgentCommandFactsHelperCustom, InstanceAgentCommandFactsHelperGen ): pass def main(): module_args = oci_common_utils.get_common_arg_spec() module_args.update( dict( instance_agent_command_id=dict(aliases=["id"], type="str"), compartment_id=dict(type="str"), sort_by=dict(type="str", choices=["TIMECREATED", "DISPLAYNAME"]), sort_order=dict(type="str", choices=["ASC", "DESC"]), display_name=dict(type="str"), ) ) module = AnsibleModule(argument_spec=module_args) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_facts_helper = ResourceFactsHelper( module=module, resource_type="instance_agent_command", service_client_class=ComputeInstanceAgentClient, namespace="compute_instance_agent", ) result = [] if resource_facts_helper.is_get(): result = [resource_facts_helper.get()] elif resource_facts_helper.is_list(): result = resource_facts_helper.list() else: resource_facts_helper.fail() module.exit_json(instance_agent_commands=result) if __name__ == "__main__": main()
41.119593
144
0.559158
4a16570646470a41122dfc228149cf254c1cc807
1,989
py
Python
test_pypheus/test_pypheus_network.py
xod442/pypheus
11988d7c0efe2772bca80c2d40a71cc8ba707153
[ "Apache-2.0" ]
null
null
null
test_pypheus/test_pypheus_network.py
xod442/pypheus
11988d7c0efe2772bca80c2d40a71cc8ba707153
[ "Apache-2.0" ]
null
null
null
test_pypheus/test_pypheus_network.py
xod442/pypheus
11988d7c0efe2772bca80c2d40a71cc8ba707153
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Module for testing the functions in pypheus.network. """ import os import vcr from unittest import TestCase from unittest import mock from nose.plugins.skip import SkipTest import urllib3 urllib3.disable_warnings() import json import requests from pypheus.network import Network from pypheus.storage import Storage from pypheus.logs import Logs from pypheus.monitoring import Monitoring host = os.environ['HOST'] username = os.environ['USERNAME'] password = os.environ['PASSWORD'] nets = Network(host,username,password) SKIPTEST=True #TODO TAKE OUT HARDCODED DATA LATER my_vcr = vcr.VCR( serializer='json', cassette_library_dir='./test_pyhpecfm/fixtures/cassettes', record_mode='new_episodes', match_on=['uri', 'method'], ) class Networks(TestCase): """ Test Case for pypheus.network get_all_networks function """ @vcr.use_cassette(cassette_library_dir='./test_pypheus/fixtures/cassettes') def test_get_all_networks(self): """ Simple test to return networks. URL has an ID parameter that is optional :return: """ test_networks = nets.get_all_networks() self.assertIs(type(test_networks['networks']), list) self.assertIs(type(test_networks['networks'][0]), dict) def test_get_network_types(self): """ Simple test to return network-types. URL has an ID parameter that is optional :return: """ test_networks = nets.network_types() self.assertIs(type(test_networks['networkTypes']), list) self.assertIs(type(test_networks['networkTypes'][0]), dict) def test_get_network_routers(self): """ Simple test to return network-routers. URL has an ID parameter that is optional :return: """ test_networks = nets.network_routers() self.assertIs(type(test_networks['networkRouters']), list) self.assertIs(type(test_networks['networkRouters'][0]), dict)
28.414286
87
0.694822
4a16570c89a08877faed85f18323f571160971b3
425
py
Python
htf/__init__.py
oktak/hoomd-tf
357b5c365781612b574d8fb34592ab7247e611e6
[ "MIT" ]
null
null
null
htf/__init__.py
oktak/hoomd-tf
357b5c365781612b574d8fb34592ab7247e611e6
[ "MIT" ]
null
null
null
htf/__init__.py
oktak/hoomd-tf
357b5c365781612b574d8fb34592ab7247e611e6
[ "MIT" ]
null
null
null
# Copyright (c) 2018 Andrew White at the University of Rochester # This file is part of the Hoomd-Tensorflow plugin developed by Andrew White # need to import md to have library available. import hoomd.md # import make reverse for testing purposes from .tfcompute import tfcompute, _make_reverse_indices from .graphbuilder import graph_builder from .tfarraycomm import tf_array_comm from .utils import * __version__ = '0.4'
35.416667
76
0.807059
4a1658d900dce3c12cbf6de624e68fbbd6823352
15,868
py
Python
allennlp/models/semantic_role_labeler.py
loopylangur/allennlp
0fc695b08a0376317e45ae0a45584aa9eb14beb6
[ "Apache-2.0" ]
null
null
null
allennlp/models/semantic_role_labeler.py
loopylangur/allennlp
0fc695b08a0376317e45ae0a45584aa9eb14beb6
[ "Apache-2.0" ]
null
null
null
allennlp/models/semantic_role_labeler.py
loopylangur/allennlp
0fc695b08a0376317e45ae0a45584aa9eb14beb6
[ "Apache-2.0" ]
null
null
null
from typing import Dict, List, TextIO, Optional, Any import warnings from overrides import overrides import torch from torch.nn.modules import Linear, Dropout import torch.nn.functional as F from allennlp.common.checks import check_dimensions_match from allennlp.data import Vocabulary from allennlp.models.srl_util import ( convert_bio_tags_to_conll_format, write_bio_formatted_tags_to_file, ) from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder from allennlp.modules.token_embedders import Embedding from allennlp.models.model import Model from allennlp.nn import InitializerApplicator, RegularizerApplicator from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits from allennlp.nn.util import get_lengths_from_binary_sequence_mask, viterbi_decode from allennlp.training.metrics.srl_eval_scorer import SrlEvalScorer, DEFAULT_SRL_EVAL_PATH @Model.register("srl") class SemanticRoleLabeler(Model): """ This model performs semantic role labeling using BIO tags using Propbank semantic roles. Specifically, it is an implementation of [Deep Semantic Role Labeling - What works and what's next](https://www.aclweb.org/anthology/P17-1044). This implementation is effectively a series of stacked interleaved LSTMs with highway connections, applied to embedded sequences of words concatenated with a binary indicator containing whether or not a word is the verbal predicate to generate predictions for in the sentence. Additionally, during inference, Viterbi decoding is applied to constrain the predictions to contain valid BIO sequences. Specifically, the model expects and outputs IOB2-formatted tags, where the B- tag is used in the beginning of every chunk (i.e. all chunks start with the B- tag). # Parameters vocab : ``Vocabulary``, required A Vocabulary, required in order to compute sizes for input/output projections. text_field_embedder : ``TextFieldEmbedder``, required Used to embed the ``tokens`` ``TextField`` we get as input to the model. encoder : ``Seq2SeqEncoder`` The encoder (with its own internal stacking) that we will use in between embedding tokens and predicting output tags. binary_feature_dim : int, required. The dimensionality of the embedding of the binary verb predicate features. initializer : ``InitializerApplicator``, optional (default=``InitializerApplicator()``) Used to initialize the model parameters. regularizer : ``RegularizerApplicator``, optional (default=``None``) If provided, will be used to calculate the regularization penalty during training. label_smoothing : ``float``, optional (default = 0.0) Whether or not to use label smoothing on the labels when computing cross entropy loss. ignore_span_metric : ``bool``, optional (default = False) Whether to calculate span loss, which is irrelevant when predicting BIO for Open Information Extraction. srl_eval_path : ``str``, optional (default=``DEFAULT_SRL_EVAL_PATH``) The path to the srl-eval.pl script. By default, will use the srl-eval.pl included with allennlp, which is located at allennlp/tools/srl-eval.pl . If ``None``, srl-eval.pl is not used. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, binary_feature_dim: int, embedding_dropout: float = 0.0, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None, label_smoothing: float = None, ignore_span_metric: bool = False, srl_eval_path: str = DEFAULT_SRL_EVAL_PATH, ) -> None: super().__init__(vocab, regularizer) self.text_field_embedder = text_field_embedder self.num_classes = self.vocab.get_vocab_size("labels") if srl_eval_path is not None: # For the span based evaluation, we don't want to consider labels # for verb, because the verb index is provided to the model. self.span_metric = SrlEvalScorer(srl_eval_path, ignore_classes=["V"]) else: self.span_metric = None self.encoder = encoder # There are exactly 2 binary features for the verb predicate embedding. self.binary_feature_embedding = Embedding(2, binary_feature_dim) self.tag_projection_layer = TimeDistributed( Linear(self.encoder.get_output_dim(), self.num_classes) ) self.embedding_dropout = Dropout(p=embedding_dropout) self._label_smoothing = label_smoothing self.ignore_span_metric = ignore_span_metric check_dimensions_match( text_field_embedder.get_output_dim() + binary_feature_dim, encoder.get_input_dim(), "text embedding dim + verb indicator embedding dim", "encoder input dim", ) initializer(self) def forward( # type: ignore self, tokens: Dict[str, torch.LongTensor], verb_indicator: torch.LongTensor, tags: torch.LongTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters tokens : Dict[str, torch.LongTensor], required The output of ``TextField.as_array()``, which should typically be passed directly to a ``TextFieldEmbedder``. This output is a dictionary mapping keys to ``TokenIndexer`` tensors. At its most basic, using a ``SingleIdTokenIndexer`` this is : ``{"tokens": Tensor(batch_size, num_tokens)}``. This dictionary will have the same keys as were used for the ``TokenIndexers`` when you created the ``TextField`` representing your sequence. The dictionary is designed to be passed directly to a ``TextFieldEmbedder``, which knows how to combine different word representations into a single vector per token in your input. verb_indicator: torch.LongTensor, required. An integer ``SequenceFeatureField`` representation of the position of the verb in the sentence. This should have shape (batch_size, num_tokens) and importantly, can be all zeros, in the case that the sentence has no verbal predicate. tags : torch.LongTensor, optional (default = None) A torch tensor representing the sequence of integer gold class labels of shape ``(batch_size, num_tokens)`` metadata : ``List[Dict[str, Any]]``, optional, (default = None) metadata containg the original words in the sentence and the verb to compute the frame for, under 'words' and 'verb' keys, respectively. # Returns An output dictionary consisting of: logits : torch.FloatTensor A tensor of shape ``(batch_size, num_tokens, tag_vocab_size)`` representing unnormalised log probabilities of the tag classes. class_probabilities : torch.FloatTensor A tensor of shape ``(batch_size, num_tokens, tag_vocab_size)`` representing a distribution of the tag classes per word. loss : torch.FloatTensor, optional A scalar loss to be optimised. """ embedded_text_input = self.embedding_dropout(self.text_field_embedder(tokens)) mask = get_text_field_mask(tokens) embedded_verb_indicator = self.binary_feature_embedding(verb_indicator.long()) # Concatenate the verb feature onto the embedded text. This now # has shape (batch_size, sequence_length, embedding_dim + binary_feature_dim). embedded_text_with_verb_indicator = torch.cat( [embedded_text_input, embedded_verb_indicator], -1 ) batch_size, sequence_length, _ = embedded_text_with_verb_indicator.size() encoded_text = self.encoder(embedded_text_with_verb_indicator, mask) logits = self.tag_projection_layer(encoded_text) reshaped_log_probs = logits.view(-1, self.num_classes) class_probabilities = F.softmax(reshaped_log_probs, dim=-1).view( [batch_size, sequence_length, self.num_classes] ) output_dict = {"logits": logits, "class_probabilities": class_probabilities} # We need to retain the mask in the output dictionary # so that we can crop the sequences to remove padding # when we do viterbi inference in self.decode. output_dict["mask"] = mask if tags is not None: loss = sequence_cross_entropy_with_logits( logits, tags, mask, label_smoothing=self._label_smoothing ) if not self.ignore_span_metric and self.span_metric is not None and not self.training: batch_verb_indices = [ example_metadata["verb_index"] for example_metadata in metadata ] batch_sentences = [example_metadata["words"] for example_metadata in metadata] # Get the BIO tags from decode() # TODO (nfliu): This is kind of a hack, consider splitting out part # of decode() to a separate function. batch_bio_predicted_tags = self.decode(output_dict).pop("tags") batch_conll_predicted_tags = [ convert_bio_tags_to_conll_format(tags) for tags in batch_bio_predicted_tags ] batch_bio_gold_tags = [ example_metadata["gold_tags"] for example_metadata in metadata ] batch_conll_gold_tags = [ convert_bio_tags_to_conll_format(tags) for tags in batch_bio_gold_tags ] self.span_metric( batch_verb_indices, batch_sentences, batch_conll_predicted_tags, batch_conll_gold_tags, ) output_dict["loss"] = loss words, verbs = zip(*[(x["words"], x["verb"]) for x in metadata]) if metadata is not None: output_dict["words"] = list(words) output_dict["verb"] = list(verbs) return output_dict @overrides def decode(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Does constrained viterbi decoding on class probabilities output in :func:`forward`. The constraint simply specifies that the output tags must be a valid BIO sequence. We add a ``"tags"`` key to the dictionary with the result. """ all_predictions = output_dict["class_probabilities"] sequence_lengths = get_lengths_from_binary_sequence_mask(output_dict["mask"]).data.tolist() if all_predictions.dim() == 3: predictions_list = [ all_predictions[i].detach().cpu() for i in range(all_predictions.size(0)) ] else: predictions_list = [all_predictions] all_tags = [] transition_matrix = self.get_viterbi_pairwise_potentials() start_transitions = self.get_start_transitions() for predictions, length in zip(predictions_list, sequence_lengths): max_likelihood_sequence, _ = viterbi_decode( predictions[:length], transition_matrix, allowed_start_transitions=start_transitions ) tags = [ self.vocab.get_token_from_index(x, namespace="labels") for x in max_likelihood_sequence ] all_tags.append(tags) output_dict["tags"] = all_tags return output_dict def get_metrics(self, reset: bool = False): if self.ignore_span_metric: # Return an empty dictionary if ignoring the # span metric return {} else: metric_dict = self.span_metric.get_metric(reset=reset) # This can be a lot of metrics, as there are 3 per class. # we only really care about the overall metrics, so we filter for them here. return {x: y for x, y in metric_dict.items() if "overall" in x} def get_viterbi_pairwise_potentials(self): """ Generate a matrix of pairwise transition potentials for the BIO labels. The only constraint implemented here is that I-XXX labels must be preceded by either an identical I-XXX tag or a B-XXX tag. In order to achieve this constraint, pairs of labels which do not satisfy this constraint have a pairwise potential of -inf. # Returns transition_matrix : torch.Tensor A (num_labels, num_labels) matrix of pairwise potentials. """ all_labels = self.vocab.get_index_to_token_vocabulary("labels") num_labels = len(all_labels) transition_matrix = torch.zeros([num_labels, num_labels]) for i, previous_label in all_labels.items(): for j, label in all_labels.items(): # I labels can only be preceded by themselves or # their corresponding B tag. if i != j and label[0] == "I" and not previous_label == "B" + label[1:]: transition_matrix[i, j] = float("-inf") return transition_matrix def get_start_transitions(self): """ In the BIO sequence, we cannot start the sequence with an I-XXX tag. This transition sequence is passed to viterbi_decode to specify this constraint. # Returns start_transitions : torch.Tensor The pairwise potentials between a START token and the first token of the sequence. """ all_labels = self.vocab.get_index_to_token_vocabulary("labels") num_labels = len(all_labels) start_transitions = torch.zeros(num_labels) for i, label in all_labels.items(): if label[0] == "I": start_transitions[i] = float("-inf") return start_transitions def write_to_conll_eval_file( prediction_file: TextIO, gold_file: TextIO, verb_index: Optional[int], sentence: List[str], prediction: List[str], gold_labels: List[str], ): """ .. deprecated:: 0.8.4 The ``write_to_conll_eval_file`` function was deprecated in favor of the identical ``write_bio_formatted_tags_to_file`` in version 0.8.4. Prints predicate argument predictions and gold labels for a single verbal predicate in a sentence to two provided file references. The CoNLL SRL format is described in [the shared task data README](https://www.lsi.upc.edu/~srlconll/conll05st-release/README). This function expects IOB2-formatted tags, where the B- tag is used in the beginning of every chunk (i.e. all chunks start with the B- tag). # Parameters prediction_file : TextIO, required. A file reference to print predictions to. gold_file : TextIO, required. A file reference to print gold labels to. verb_index : Optional[int], required. The index of the verbal predicate in the sentence which the gold labels are the arguments for, or None if the sentence contains no verbal predicate. sentence : List[str], required. The word tokens. prediction : List[str], required. The predicted BIO labels. gold_labels : List[str], required. The gold BIO labels. """ warnings.warn( "The 'write_to_conll_eval_file' function has been deprecated in favor of " "the identical 'write_bio_formatted_tags_to_file' function.", DeprecationWarning, ) write_bio_formatted_tags_to_file( prediction_file, gold_file, verb_index, sentence, prediction, gold_labels )
45.467049
112
0.667696
4a165ac7d5dda0ab76a427db33686688f165044d
2,957
py
Python
setup.py
True-Demon/smoke-zephyr
bf398416c0ece69ecf4a440d73f1a5c5670897cd
[ "BSD-3-Clause" ]
null
null
null
setup.py
True-Demon/smoke-zephyr
bf398416c0ece69ecf4a440d73f1a5c5670897cd
[ "BSD-3-Clause" ]
null
null
null
setup.py
True-Demon/smoke-zephyr
bf398416c0ece69ecf4a440d73f1a5c5670897cd
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # setup.py # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # import os import sys base_directory = os.path.dirname(__file__) try: from setuptools import setup, find_packages except ImportError: print('This project needs setuptools in order to build. Install it using your package') print('manager (usually python-setuptools) or via pip (pip install setuptools).') sys.exit(1) try: with open(os.path.join(base_directory, 'README.rst')) as file_h: long_description = file_h.read() except (IOError, OSError): sys.stderr.write('README.rst is unavailable, can not generate the long description\n') long_description = None DESCRIPTION = """\ This project provides a collection of miscellaneous Python utilities.\ """ setup( name='smoke-zephyr', version='2.0.1', author='Spencer McIntyre', author_email='zeroSteiner@gmail.com', maintainer='Spencer McIntyre', maintainer_email='zeroSteiner@gmail.com', description=DESCRIPTION, long_description=long_description, url='https://github.com/zeroSteiner/smoke-zephyr', license='BSD', packages=['smoke_zephyr'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: POSIX', 'Programming Language :: Python', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ] )
36.506173
88
0.747379
4a165c494bfcb45d5a67693b0d3f68a9db8e459a
6,467
py
Python
Plugins/UnrealEnginePython/Binaries/Win64/Lib/site-packages/tensorflow/python/estimator/gc.py
JustinACoder/H22-GR3-UnrealAI
361eb9ef1147f8a2991e5f98c4118cd823184adf
[ "MIT" ]
6
2022-02-04T18:12:24.000Z
2022-03-21T23:57:12.000Z
Lib/site-packages/tensorflow/python/estimator/gc.py
shfkdroal/Robot-Learning-in-Mixed-Adversarial-and-Collaborative-Settings
1fa4cd6a566c8745f455fc3d2273208f21f88ced
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/tensorflow/python/estimator/gc.py
shfkdroal/Robot-Learning-in-Mixed-Adversarial-and-Collaborative-Settings
1fa4cd6a566c8745f455fc3d2273208f21f88ced
[ "bzip2-1.0.6" ]
1
2022-02-08T03:53:23.000Z
2022-02-08T03:53:23.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""System for specifying garbage collection (GC) of path based data. This framework allows for GC of data specified by path names, for example files on disk. gc.Path objects each represent a single item stored at a path and may be a base directory, /tmp/exports/0/... /tmp/exports/1/... ... or a fully qualified file, /tmp/train-1.ckpt /tmp/train-2.ckpt ... A gc filter function takes and returns a list of gc.Path items. Filter functions are responsible for selecting Path items for preservation or deletion. Note that functions should always return a sorted list. For example, base_dir = "/tmp" # Create the directories. for e in xrange(10): os.mkdir("%s/%d" % (base_dir, e), 0o755) # Create a simple parser that pulls the export_version from the directory. path_regex = "^" + re.escape(base_dir) + "/(\\d+)$" def parser(path): match = re.match(path_regex, path.path) if not match: return None return path._replace(export_version=int(match.group(1))) path_list = gc._get_paths("/tmp", parser) # contains all ten Paths every_fifth = gc._mod_export_version(5) print(every_fifth(path_list)) # shows ["/tmp/0", "/tmp/5"] largest_three = gc.largest_export_versions(3) print(largest_three(all_paths)) # shows ["/tmp/7", "/tmp/8", "/tmp/9"] both = gc._union(every_fifth, largest_three) print(both(all_paths)) # shows ["/tmp/0", "/tmp/5", # "/tmp/7", "/tmp/8", "/tmp/9"] # Delete everything not in 'both'. to_delete = gc._negation(both) for p in to_delete(all_paths): gfile.DeleteRecursively(p.path) # deletes: "/tmp/1", "/tmp/2", # "/tmp/3", "/tmp/4", "/tmp/6", """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import heapq import math import os from tensorflow.python.platform import gfile from tensorflow.python.util import compat Path = collections.namedtuple('Path', 'path export_version') def _largest_export_versions(n): """Creates a filter that keeps the largest n export versions. Args: n: number of versions to keep. Returns: A filter function that keeps the n largest paths. """ def keep(paths): heap = [] for idx, path in enumerate(paths): if path.export_version is not None: heapq.heappush(heap, (path.export_version, idx)) keepers = [paths[i] for _, i in heapq.nlargest(n, heap)] return sorted(keepers) return keep def _one_of_every_n_export_versions(n): """Creates a filter that keeps one of every n export versions. Args: n: interval size. Returns: A filter function that keeps exactly one path from each interval [0, n], (n, 2n], (2n, 3n], etc... If more than one path exists in an interval the largest is kept. """ def keep(paths): """A filter function that keeps exactly one out of every n paths.""" keeper_map = {} # map from interval to largest path seen in that interval for p in paths: if p.export_version is None: # Skip missing export_versions. continue # Find the interval (with a special case to map export_version = 0 to # interval 0. interval = math.floor( (p.export_version - 1) / n) if p.export_version else 0 existing = keeper_map.get(interval, None) if (not existing) or (existing.export_version < p.export_version): keeper_map[interval] = p return sorted(keeper_map.values()) return keep def _mod_export_version(n): """Creates a filter that keeps every export that is a multiple of n. Args: n: step size. Returns: A filter function that keeps paths where export_version % n == 0. """ def keep(paths): keepers = [] for p in paths: if p.export_version % n == 0: keepers.append(p) return sorted(keepers) return keep def _union(lf, rf): """Creates a filter that keeps the union of two filters. Args: lf: first filter rf: second filter Returns: A filter function that keeps the n largest paths. """ def keep(paths): l = set(lf(paths)) r = set(rf(paths)) return sorted(list(l|r)) return keep def _negation(f): """Negate a filter. Args: f: filter function to invert Returns: A filter function that returns the negation of f. """ def keep(paths): l = set(paths) r = set(f(paths)) return sorted(list(l-r)) return keep def _get_paths(base_dir, parser): """Gets a list of Paths in a given directory. Args: base_dir: directory. parser: a function which gets the raw Path and can augment it with information such as the export_version, or ignore the path by returning None. An example parser may extract the export version from a path such as "/tmp/exports/100" an another may extract from a full file name such as "/tmp/checkpoint-99.out". Returns: A list of Paths contained in the base directory with the parsing function applied. By default the following fields are populated, - Path.path The parsing function is responsible for populating, - Path.export_version """ raw_paths = gfile.ListDirectory(base_dir) paths = [] for r in raw_paths: # ListDirectory() return paths with "/" at the last if base_dir was GCS URL r = compat.as_str_any(r) if r[-1] == '/': r = r[0:len(r)-1] p = parser(Path(os.path.join(compat.as_str_any(base_dir), r), None)) if p: paths.append(p) return sorted(paths)
30.504717
81
0.645431
4a165c533148fa693119dd2942c7bec0567bbce3
1,771
py
Python
bin.d/ssh-import-id.py
hlecuanda/zconf
3e07e5104d07b846294b797f082fb09727f005da
[ "BSD-2-Clause" ]
2
2019-02-26T08:06:55.000Z
2019-09-11T05:14:48.000Z
bin.d/ssh-import-id.py
hlecuanda/zconf
3e07e5104d07b846294b797f082fb09727f005da
[ "BSD-2-Clause" ]
1
2018-02-20T22:43:24.000Z
2018-02-20T22:43:24.000Z
bin.d/ssh-import-id.py
hlecuanda/zconf
3e07e5104d07b846294b797f082fb09727f005da
[ "BSD-2-Clause" ]
null
null
null
#! /usr/bin/python3 # # ssh-import-id - Authorize SSH public keys from trusted online identities # # Copyright (c) 2013 Casey Marshall <casey.marshall@gmail.com> # Copyright (c) 2013-16 Dustin Kirkland <dustin.kirkland@gmail.com> # # ssh-import-id is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3. # # ssh-import-id is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ssh-import-id. If not, see <http://www.gnu.org/licenses/>. import argparse import sys from ssh_import_id import * def main(): errors = [] try: os.umask(0o177) parser.options = parser.parse_args() keys = [] for userid in parser.options.userids: user_pieces = userid.split(':') if len(user_pieces) == 2: proto, username = user_pieces elif len(user_pieces) == 1: proto, username = DEFAULT_PROTO, userid else: die("Invalid user ID: [%s]" % (userid)) if parser.options.remove: k = remove_keys(proto, username) keys.extend(k) action = "Removed" else: k = import_keys(proto, username, parser.options.useragent) keys.extend(k) action = "Authorized" if len(k) == 0: errors.append(userid) logging.info("[%d] SSH keys [%s]" % (len(keys), action)) except (Exception,): e = sys.exc_info()[1] die("%s" % (str(e))) cleanup() if len(errors) > 0: die("No matching keys found for [%s]" % ','.join(errors)) os._exit(0) if __name__ == '__main__': main()
28.564516
74
0.687747
4a165caf113ee0eb9e2cc66382562da62f57888f
64,646
py
Python
cms/admin/pageadmin.py
leture/django-cms
a022f2cd9eb18a85765ef7c00444c9b63e53008e
[ "BSD-3-Clause" ]
null
null
null
cms/admin/pageadmin.py
leture/django-cms
a022f2cd9eb18a85765ef7c00444c9b63e53008e
[ "BSD-3-Clause" ]
null
null
null
cms/admin/pageadmin.py
leture/django-cms
a022f2cd9eb18a85765ef7c00444c9b63e53008e
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import copy from functools import wraps import json import sys from cms.utils.compat import DJANGO_1_7 import django from django.contrib.admin.helpers import AdminForm from django.conf import settings from django.conf.urls import url from django.contrib import admin, messages from django.contrib.admin.models import LogEntry, CHANGE from django.contrib.admin.options import IncorrectLookupParameters from django.contrib.admin.util import get_deleted_objects from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site, get_current_site from django.core.exceptions import PermissionDenied, ObjectDoesNotExist, ValidationError from django.db import router, transaction from django.db.models import Q from django.http import HttpResponseRedirect, HttpResponse, Http404, HttpResponseBadRequest, HttpResponseForbidden from django.shortcuts import render, get_object_or_404 from django.template.defaultfilters import escape from django.utils.encoding import force_text from django.utils.six.moves.urllib.parse import unquote from django.utils.translation import ugettext_lazy as _, get_language from django.utils.decorators import method_decorator from django.views.decorators.http import require_POST from cms.admin.change_list import CMSChangeList from cms.admin.dialog.views import get_copy_dialog from cms.admin.forms import (PageForm, AdvancedSettingsForm, PagePermissionForm, PublicationDatesForm) from cms.admin.permissionadmin import (PERMISSION_ADMIN_INLINES, PagePermissionInlineAdmin, ViewRestrictionInlineAdmin) from cms.admin.placeholderadmin import PlaceholderAdminMixin from cms.admin.views import revert_plugins from cms.constants import PAGE_TYPES_ID, PUBLISHER_STATE_PENDING from cms.models import Page, Title, CMSPlugin, PagePermission, GlobalPagePermission, StaticPlaceholder from cms.models.managers import PagePermissionsPermissionManager from cms.plugin_pool import plugin_pool from cms.toolbar_pool import toolbar_pool from cms.utils import helpers, permissions, get_language_from_request, admin as admin_utils, copy_plugins from cms.utils.i18n import get_language_list, get_language_tuple, get_language_object, force_language from cms.utils.admin import jsonify_request from cms.utils.compat.dj import is_installed from cms.utils.conf import get_cms_setting from cms.utils.helpers import find_placeholder_relation, current_site from cms.utils.permissions import has_global_page_permission, has_generic_permission from cms.utils.urlutils import add_url_parameters, admin_reverse require_POST = method_decorator(require_POST) if is_installed('reversion'): from reversion.admin import VersionAdmin as ModelAdmin from reversion import create_revision else: # pragma: no cover from django.contrib.admin import ModelAdmin class ReversionContext(object): def __enter__(self): yield def __exit__(self, exc_type, exc_val, exc_tb): pass def __call__(self, func): """Allows this revision context to be used as a decorator.""" @wraps(func) def do_revision_context(*args, **kwargs): self.__enter__() exception = False try: try: return func(*args, **kwargs) except: exception = True if not self.__exit__(*sys.exc_info()): raise finally: if not exception: self.__exit__(None, None, None) return do_revision_context def create_revision(): return ReversionContext() PUBLISH_COMMENT = "Publish" INITIAL_COMMENT = "Initial version." class PageAdmin(PlaceholderAdminMixin, ModelAdmin): form = PageForm search_fields = ('=id', 'title_set__slug', 'title_set__title', 'reverse_id') revision_form_template = "admin/cms/page/history/revision_header.html" recover_form_template = "admin/cms/page/history/recover_header.html" add_general_fields = ['title', 'slug', 'language', 'template'] change_list_template = "admin/cms/page/tree/base.html" list_filter = ['in_navigation', 'template', 'changed_by', 'soft_root'] title_frontend_editable_fields = ['title', 'menu_title', 'page_title'] inlines = PERMISSION_ADMIN_INLINES def get_urls(self): """Get the admin urls """ info = "%s_%s" % (self.model._meta.app_label, self.model._meta.model_name) pat = lambda regex, fn: url(regex, self.admin_site.admin_view(fn), name='%s_%s' % (info, fn.__name__)) url_patterns = [ pat(r'^([0-9]+)/advanced-settings/$', self.advanced), pat(r'^([0-9]+)/dates/$', self.dates), pat(r'^([0-9]+)/permission-settings/$', self.permissions), pat(r'^([0-9]+)/delete-translation/$', self.delete_translation), pat(r'^([0-9]+)/move-page/$', self.move_page), pat(r'^([0-9]+)/copy-page/$', self.copy_page), pat(r'^([0-9]+)/copy-language/$', self.copy_language), pat(r'^([0-9]+)/dialog/copy/$', get_copy_dialog), # copy dialog pat(r'^([0-9]+)/change-navigation/$', self.change_innavigation), pat(r'^([0-9]+)/permissions/$', self.get_permissions), pat(r'^([0-9]+)/undo/$', self.undo), pat(r'^([0-9]+)/redo/$', self.redo), pat(r'^([0-9]+)/change_template/$', self.change_template), pat(r'^([0-9]+)/([a-z\-]+)/descendants/$', self.descendants), # menu html for page descendants pat(r'^([0-9]+)/([a-z\-]+)/edit-field/$', self.edit_title_fields), pat(r'^([0-9]+)/([a-z\-]+)/publish/$', self.publish_page), pat(r'^([0-9]+)/([a-z\-]+)/unpublish/$', self.unpublish), pat(r'^([0-9]+)/([a-z\-]+)/revert/$', self.revert_page), pat(r'^([0-9]+)/([a-z\-]+)/preview/$', self.preview_page), pat(r'^add-page-type/$', self.add_page_type), pat(r'^published-pages/$', self.get_published_pagelist), url(r'^resolve/$', self.resolve, name="cms_page_resolve"), ] if plugin_pool.get_all_plugins(): url_patterns += plugin_pool.get_patterns() url_patterns += super(PageAdmin, self).get_urls() return url_patterns def get_revision_instances(self, request, object): """Returns all the instances to be used in the object's revision.""" if isinstance(object, Title): object = object.page if isinstance(object, Page) and not object.publisher_is_draft: object = object.publisher_public placeholder_relation = find_placeholder_relation(object) data = [object] filters = {'placeholder__%s' % placeholder_relation: object} for plugin in CMSPlugin.objects.filter(**filters): data.append(plugin) plugin_instance, admin = plugin.get_plugin_instance() if plugin_instance: data.append(plugin_instance) if isinstance(object, Page): titles = object.title_set.all() for title in titles: title.publisher_public = None data.append(title) return data def save_model(self, request, obj, form, change): """ Move the page in the tree if necessary and save every placeholder Content object. """ target = request.GET.get('target', None) position = request.GET.get('position', None) if 'recover' in request.path_info: pk = obj.pk if obj.parent_id: try: parent = Page.objects.get(pk=obj.parent_id) except Page.DoesNotExist: parent = None else: parent = None obj.pk = None obj.path = None obj.numchild = 0 obj.depth = 0 if parent: saved_obj = parent.add_child(instance=obj) else: saved_obj = obj.add_root(instance=obj) tmp_pk = saved_obj.pk saved_obj.pk = pk Page.objects.get(pk=tmp_pk).delete() saved_obj.save(no_signals=True) else: if 'history' in request.path_info: old_obj = self.model.objects.get(pk=obj.pk) obj.depth = old_obj.depth obj.parent_id = old_obj.parent_id obj.path = old_obj.path obj.numchild = old_obj.numchild new = False if not obj.pk: new = True obj.save() if 'recover' in request.path_info or 'history' in request.path_info: revert_plugins(request, obj.version.pk, obj) if target is not None and position is not None: try: target = self.model.objects.get(pk=target) except self.model.DoesNotExist: pass else: if position == 'last-child' or position == 'first-child': obj.parent_id = target.pk else: obj.parent_id = target.parent_id obj.save() obj = obj.move(target, pos=position) page_type_id = form.cleaned_data.get('page_type') copy_target_id = request.GET.get('copy_target') if copy_target_id or page_type_id: if page_type_id: copy_target_id = page_type_id copy_target = self.model.objects.get(pk=copy_target_id) if not copy_target.has_view_permission(request): raise PermissionDenied() obj = self.model.objects.get(pk=obj.pk) #mptt reload copy_target._copy_attributes(obj, clean=True) obj.save() for lang in copy_target.languages.split(','): copy_target._copy_contents(obj, lang) if not 'permission' in request.path_info: language = form.cleaned_data['language'] Title.objects.set_or_create( request, obj, form, language, ) # is it home? publish it right away if new and Page.objects.filter(site_id=obj.site_id).count() == 1: obj.publish(language) def get_fieldsets(self, request, obj=None): form = self.get_form(request, obj, fields=None) if getattr(form, 'fieldsets', None) is None: fields = list(form.base_fields) + list(self.get_readonly_fields(request, obj)) return [(None, {'fields': fields})] else: return form.fieldsets def get_inline_classes(self, request, obj=None, **kwargs): if obj and 'permission' in request.path_info: return PERMISSION_ADMIN_INLINES return [] def get_form_class(self, request, obj=None, **kwargs): if 'advanced' in request.path_info: return AdvancedSettingsForm elif 'permission' in request.path_info: return PagePermissionForm elif 'dates' in request.path_info: return PublicationDatesForm return self.form def get_form(self, request, obj=None, **kwargs): """ Get PageForm for the Page model and modify its fields depending on the request. """ language = get_language_from_request(request, obj) form_cls = self.get_form_class(request, obj) form = super(PageAdmin, self).get_form(request, obj, form=form_cls, **kwargs) # get_form method operates by overriding initial fields value which # may persist across invocation. Code below deepcopies fields definition # to avoid leaks for field in form.base_fields.keys(): form.base_fields[field] = copy.deepcopy(form.base_fields[field]) if 'language' in form.base_fields: form.base_fields['language'].initial = language if 'page_type' in form.base_fields: if 'copy_target' in request.GET or 'add_page_type' in request.GET or obj: del form.base_fields['page_type'] elif not Title.objects.filter(page__parent__reverse_id=PAGE_TYPES_ID, language=language).exists(): del form.base_fields['page_type'] if 'add_page_type' in request.GET: del form.base_fields['menu_title'] del form.base_fields['meta_description'] del form.base_fields['page_title'] self.inlines = self.get_inline_classes(request, obj, **kwargs) if obj: if 'history' in request.path_info or 'recover' in request.path_info: version_id = request.path_info.split('/')[-2] else: version_id = None title_obj = obj.get_title_obj(language=language, fallback=False, version_id=version_id, force_reload=True) if 'site' in form.base_fields and form.base_fields['site'].initial is None: form.base_fields['site'].initial = obj.site for name in ('slug', 'title', 'meta_description', 'menu_title', 'page_title', 'redirect'): if name in form.base_fields: form.base_fields[name].initial = getattr(title_obj, name) if 'overwrite_url' in form.base_fields: if title_obj.has_url_overwrite: form.base_fields['overwrite_url'].initial = title_obj.path else: form.base_fields['overwrite_url'].initial = '' else: for name in ('slug', 'title'): form.base_fields[name].initial = u'' if 'target' in request.GET or 'copy_target' in request.GET: target = request.GET.get('copy_target') or request.GET.get('target') if 'position' in request.GET: position = request.GET['position'] if position == 'last-child' or position == 'first-child': form.base_fields['parent'].initial = request.GET.get('target', None) else: sibling = self.model.objects.get(pk=target) form.base_fields['parent'].initial = sibling.parent_id else: form.base_fields['parent'].initial = request.GET.get('target', None) form.base_fields['site'].initial = request.session.get('cms_admin_site', None) return form def advanced(self, request, object_id): page = get_object_or_404(self.model, pk=object_id) if not page.has_advanced_settings_permission(request): raise PermissionDenied("No permission for editing advanced settings") return self.change_view(request, object_id, extra_context={'advanced_settings': True, 'title': _("Advanced Settings")}) def dates(self, request, object_id): return self.change_view(request, object_id, extra_context={'publishing_dates': True, 'title': _("Publishing dates")}) def permissions(self, request, object_id): page = get_object_or_404(self.model, pk=object_id) if not page.has_change_permissions_permission(request): raise PermissionDenied("No permission for editing advanced settings") return self.change_view(request, object_id, extra_context={'show_permissions': True, 'title': _("Change Permissions")}) def get_inline_instances(self, request, obj=None): inlines = super(PageAdmin, self).get_inline_instances(request, obj) if get_cms_setting('PERMISSION') and obj: filtered_inlines = [] for inline in inlines: if (isinstance(inline, PagePermissionInlineAdmin) and not isinstance(inline, ViewRestrictionInlineAdmin)): if "recover" in request.path or "history" in request.path: # do not display permissions in recover mode continue if not obj.has_change_permissions_permission(request): continue filtered_inlines.append(inline) inlines = filtered_inlines return inlines def get_unihandecode_context(self, language): if language[:2] in get_cms_setting('UNIHANDECODE_DECODERS'): uhd_lang = language[:2] else: uhd_lang = get_cms_setting('UNIHANDECODE_DEFAULT_DECODER') uhd_host = get_cms_setting('UNIHANDECODE_HOST') uhd_version = get_cms_setting('UNIHANDECODE_VERSION') if uhd_lang and uhd_host and uhd_version: uhd_urls = [ '%sunihandecode-%s.core.min.js' % (uhd_host, uhd_version), '%sunihandecode-%s.%s.min.js' % (uhd_host, uhd_version, uhd_lang), ] else: uhd_urls = [] return {'unihandecode_lang': uhd_lang, 'unihandecode_urls': uhd_urls} def add_view(self, request, form_url='', extra_context=None): extra_context = extra_context or {} language = get_language_from_request(request) extra_context.update({ 'language': language, }) if not request.GET.get('add_page_type') is None: extra_context.update({ 'add_page_type': True, 'title': _("Add Page Type"), }) elif 'copy_target' in request.GET: extra_context.update({ 'title': _("Add Page Copy"), }) else: extra_context = self.update_language_tab_context(request, context=extra_context) extra_context.update(self.get_unihandecode_context(language)) return super(PageAdmin, self).add_view(request, form_url, extra_context=extra_context) def change_view(self, request, object_id, form_url='', extra_context=None): """ The 'change' admin view for the Page model. """ if extra_context is None: extra_context = {'basic_info': True} try: obj = self.model.objects.get(pk=object_id) except self.model.DoesNotExist: # Don't raise Http404 just yet, because we haven't checked # permissions yet. We don't want an unauthenticated user to be able # to determine whether a given object exists. obj = None else: #activate(user_lang_set) context = { 'page': obj, 'CMS_PERMISSION': get_cms_setting('PERMISSION'), 'ADMIN_MEDIA_URL': settings.STATIC_URL, 'can_change': obj.has_change_permission(request), 'can_change_permissions': obj.has_change_permissions_permission(request), 'current_site_id': settings.SITE_ID, } context.update(extra_context or {}) extra_context = self.update_language_tab_context(request, obj, context) tab_language = get_language_from_request(request) extra_context.update(self.get_unihandecode_context(tab_language)) response = super(PageAdmin, self).change_view( request, object_id, form_url=form_url, extra_context=extra_context) if tab_language and response.status_code == 302 and response._headers['location'][1] == request.path_info: location = response._headers['location'] response._headers['location'] = (location[0], "%s?language=%s" % (location[1], tab_language)) return response def render_change_form(self, request, context, add=False, change=False, form_url='', obj=None): # add context variables filled_languages = [] if obj: filled_languages = [t[0] for t in obj.title_set.filter(title__isnull=False).values_list('language')] allowed_languages = [lang[0] for lang in self._get_site_languages(obj)] context.update({ 'filled_languages': [lang for lang in filled_languages if lang in allowed_languages], }) return super(PageAdmin, self).render_change_form(request, context, add, change, form_url, obj) def _get_site_languages(self, obj=None): site_id = None if obj: site_id = obj.site_id else: site_id = Site.objects.get_current().pk return get_language_tuple(site_id) def update_language_tab_context(self, request, obj=None, context=None): if not context: context = {} language = get_language_from_request(request, obj) languages = self._get_site_languages(obj) context.update({ 'language': language, 'language_tabs': languages, # Dates are not language dependent, thus we hide the language # selection bar: the language is forced through the form class 'show_language_tabs': len(list(languages)) > 1 and not context.get('publishing_dates', False), }) return context def response_change(self, request, obj): """Called always when page gets changed, call save on page, there may be some new stuff, which should be published after all other objects on page are collected. """ # save the object again, so all the related changes to page model # can be published if required obj.save() return super(PageAdmin, self).response_change(request, obj) def has_add_permission(self, request): """ Return true if the current user has permission to add a new page. """ if get_cms_setting('PERMISSION'): return permissions.has_page_add_permission(request) return super(PageAdmin, self).has_add_permission(request) def has_change_permission(self, request, obj=None): """ Return true if the current user has permission on the page. Return the string 'All' if the user has all rights. """ if get_cms_setting('PERMISSION'): if obj: return obj.has_change_permission(request) else: return permissions.has_page_change_permission(request) return super(PageAdmin, self).has_change_permission(request, obj) def has_delete_permission(self, request, obj=None): """ Returns True if the given request has permission to change the given Django model instance. If CMS_PERMISSION are in use also takes look to object permissions. """ if get_cms_setting('PERMISSION') and obj is not None: return obj.has_delete_permission(request) return super(PageAdmin, self).has_delete_permission(request, obj) def has_recover_permission(self, request): """ Returns True if the use has the right to recover pages """ if not is_installed('reversion'): return False user = request.user if user.is_superuser: return True try: if has_global_page_permission(request, can_recover_page=True): return True except: pass return False def has_add_plugin_permission(self, request, placeholder, plugin_type): if not permissions.has_plugin_permission(request.user, plugin_type, "add"): return False page = placeholder.page if page and not page.has_change_permission(request): return False if page and not page.publisher_is_draft: return False return True def has_copy_plugin_permission(self, request, source_placeholder, target_placeholder, plugins): source_page = source_placeholder.page if source_page and not source_page.has_change_permission(request): return False target_page = target_placeholder.page if target_page and not target_page.has_change_permission(request): return False if target_page and not target_page.publisher_is_draft: return False for plugin in plugins: if not permissions.has_plugin_permission(request.user, plugin.plugin_type, "add"): return False return True def has_change_plugin_permission(self, request, plugin): page = plugin.placeholder.page if plugin.placeholder else None if page and not page.has_change_permission(request): return False if page and not page.publisher_is_draft: return False if not permissions.has_plugin_permission(request.user, plugin.plugin_type, "change"): return False return True def has_move_plugin_permission(self, request, plugin, target_placeholder): if not permissions.has_plugin_permission(request.user, plugin.plugin_type, "change"): return False page = plugin.placeholder.page if page and not page.has_change_permission(request): return False if page and not page.publisher_is_draft: return False return True def has_delete_plugin_permission(self, request, plugin): if not permissions.has_plugin_permission(request.user, plugin.plugin_type, "delete"): return False page = plugin.placeholder.page if page: if not page.publisher_is_draft: return False if not page.has_change_permission(request): return False return True def has_clear_placeholder_permission(self, request, placeholder): page = placeholder.page if placeholder else None if page: if not page.publisher_is_draft: return False if not page.has_change_permission(request): return False return True def post_add_plugin(self, request, placeholder, plugin): if is_installed('reversion') and placeholder.page: plugin_name = force_text(plugin_pool.get_plugin(plugin.plugin_type).name) message = _(u"%(plugin_name)s plugin added to %(placeholder)s") % { 'plugin_name': plugin_name, 'placeholder': placeholder} self.cleanup_history(placeholder.page) helpers.make_revision_with_plugins(placeholder.page, request.user, message) def post_copy_plugins(self, request, source_placeholder, target_placeholder, plugins): page = target_placeholder.page if page and is_installed('reversion'): message = _(u"Copied plugins to %(placeholder)s") % {'placeholder': target_placeholder} self.cleanup_history(page) helpers.make_revision_with_plugins(page, request.user, message) def post_edit_plugin(self, request, plugin): page = plugin.placeholder.page if page: # if reversion is installed, save version of the page plugins if is_installed('reversion') and page: plugin_name = force_text(plugin_pool.get_plugin(plugin.plugin_type).name) message = _( u"%(plugin_name)s plugin edited at position %(position)s in %(placeholder)s") % { 'plugin_name': plugin_name, 'position': plugin.position, 'placeholder': plugin.placeholder.slot } self.cleanup_history(page) helpers.make_revision_with_plugins(page, request.user, message) def post_move_plugin(self, request, source_placeholder, target_placeholder, plugin): page = target_placeholder.page if page and is_installed('reversion'): self.cleanup_history(page) helpers.make_revision_with_plugins(page, request.user, _(u"Plugins were moved")) def post_delete_plugin(self, request, plugin): plugin_name = force_text(plugin_pool.get_plugin(plugin.plugin_type).name) page = plugin.placeholder.page if page: page.save() comment = _("%(plugin_name)s plugin at position %(position)s in %(placeholder)s was deleted.") % { 'plugin_name': plugin_name, 'position': plugin.position, 'placeholder': plugin.placeholder, } if is_installed('reversion'): self.cleanup_history(page) helpers.make_revision_with_plugins(page, request.user, comment) def post_clear_placeholder(self, request, placeholder): page = placeholder.page if page: page.save() comment = _('All plugins in the placeholder "%(name)s" were deleted.') % { 'name': force_text(placeholder) } if is_installed('reversion'): self.cleanup_history(page) helpers.make_revision_with_plugins(page, request.user, comment) def get_placeholder_template(self, request, placeholder): page = placeholder.page if page: return page.get_template() def changelist_view(self, request, extra_context=None): "The 'change list' admin view for this model." from django.contrib.admin.views.main import ERROR_FLAG opts = self.model._meta app_label = opts.app_label if not self.has_change_permission(request, None): return HttpResponseForbidden(force_text(_("You do not have permission to change pages."))) try: cl = CMSChangeList(request, self.model, self.list_display, self.list_display_links, self.list_filter, self.date_hierarchy, self.search_fields, self.list_select_related, self.list_per_page, self.list_max_show_all, self.list_editable, self) except IncorrectLookupParameters: # Wacky lookup parameters were given, so redirect to the main # changelist page, without parameters, and pass an 'invalid=1' # parameter via the query string. If wacky parameters were given and # the 'invalid=1' parameter was already in the query string, something # is screwed up with the database, so display an error page. if ERROR_FLAG in request.GET.keys(): return render(request, 'admin/invalid_setup.html', {'title': _('Database error')}) return HttpResponseRedirect(request.path_info + '?' + ERROR_FLAG + '=1') cl.set_items(request) site_id = request.GET.get('site__exact', None) if site_id is None: site_id = current_site(request).pk site_id = int(site_id) # languages languages = get_language_list(site_id) # parse the cookie that saves which page trees have # been opened already and extracts the page ID djangocms_nodes_open = request.COOKIES.get('djangocms_nodes_open', '') raw_nodes = unquote(djangocms_nodes_open).split(',') try: open_menu_trees = [int(c.split('page_', 1)[1]) for c in raw_nodes] except IndexError: open_menu_trees = [] # Language may be present in the GET dictionary but empty language = request.GET.get('language', get_language()) if not language: language = get_language() context = { 'title': cl.title, 'is_popup': cl.is_popup, 'cl': cl, 'opts': opts, 'has_add_permission': self.has_add_permission(request), 'root_path': admin_reverse('index'), 'app_label': app_label, 'preview_language': language, 'CMS_MEDIA_URL': get_cms_setting('MEDIA_URL'), 'CMS_PERMISSION': get_cms_setting('PERMISSION'), 'DEBUG': settings.DEBUG, 'site_languages': languages, 'open_menu_trees': open_menu_trees, } if is_installed('reversion'): context['has_recover_permission'] = self.has_recover_permission(request) context['has_change_permission'] = self.has_change_permission(request) context.update(extra_context or {}) return render(request, self.change_list_template or [ 'admin/%s/%s/change_list.html' % (app_label, opts.object_name.lower()), 'admin/%s/change_list.html' % app_label, 'admin/change_list.html' ], context) def recoverlist_view(self, request, extra_context=None): if not self.has_recover_permission(request): raise PermissionDenied return super(PageAdmin, self).recoverlist_view(request, extra_context) def recover_view(self, request, version_id, extra_context=None): if not self.has_recover_permission(request): raise PermissionDenied extra_context = self.update_language_tab_context(request, None, extra_context) return super(PageAdmin, self).recover_view(request, version_id, extra_context) def revision_view(self, request, object_id, version_id, extra_context=None): if not self.has_change_permission(request, Page.objects.get(pk=object_id)): raise PermissionDenied extra_context = self.update_language_tab_context(request, None, extra_context) response = super(PageAdmin, self).revision_view(request, object_id, version_id, extra_context) return response def history_view(self, request, object_id, extra_context=None): if not self.has_change_permission(request, Page.objects.get(pk=object_id)): raise PermissionDenied extra_context = self.update_language_tab_context(request, None, extra_context) return super(PageAdmin, self).history_view(request, object_id, extra_context) def render_revision_form(self, request, obj, version, context, revert=False, recover=False): # reset parent to null if parent is not found if version.field_dict['parent']: try: Page.objects.get(pk=version.field_dict['parent']) except: if revert and obj.parent_id != int(version.field_dict['parent']): version.field_dict['parent'] = obj.parent_id if recover: obj.parent = None obj.parent_id = None version.field_dict['parent'] = None obj.version = version return super(PageAdmin, self).render_revision_form(request, obj, version, context, revert, recover) @require_POST def undo(self, request, object_id): if not is_installed('reversion'): return HttpResponseBadRequest('django reversion not installed') page = get_object_or_404(self.model, pk=object_id) if not page.publisher_is_draft: page = page.publisher_draft if not page.has_change_permission(request): return HttpResponseForbidden(force_text(_("You do not have permission to change this page"))) try: reverted, clean = page.undo() if not clean: messages.error(request, _("Page reverted but slug stays the same because of url collisions.")) except IndexError as e: return HttpResponseBadRequest(e.message) return HttpResponse("ok") @require_POST def redo(self, request, object_id): if not is_installed('reversion'): return HttpResponseBadRequest('django reversion not installed') page = get_object_or_404(self.model, pk=object_id) if not page.publisher_is_draft: page = page.publisher_draft if not page.has_change_permission(request): return HttpResponseForbidden(force_text(_("You do not have permission to change this page"))) try: reverted, clean = page.redo() if not clean: messages.error(request, _("Page reverted but slug stays the same because of url collisions.")) except IndexError as e: return HttpResponseBadRequest(e.message) return HttpResponse("ok") @require_POST @create_revision() def change_template(self, request, object_id): page = get_object_or_404(self.model, pk=object_id) if not page.has_change_permission(request): return HttpResponseForbidden(force_text(_("You do not have permission to change the template"))) to_template = request.POST.get("template", None) if to_template not in dict(get_cms_setting('TEMPLATES')): return HttpResponseBadRequest(force_text(_("Template not valid"))) page.template = to_template page.save() if is_installed('reversion'): message = _("Template changed to %s") % dict(get_cms_setting('TEMPLATES'))[to_template] self.cleanup_history(page) helpers.make_revision_with_plugins(page, request.user, message) return HttpResponse(force_text(_("The template was successfully changed"))) @require_POST @transaction.atomic def move_page(self, request, page_id, extra_context=None): """ Move the page to the requested target, at the given position """ target = request.POST.get('target', None) position = request.POST.get('position', None) if target is None or position is None: return HttpResponseRedirect('../../') try: page = self.model.objects.get(pk=page_id) target = self.model.objects.get(pk=target) except self.model.DoesNotExist: return jsonify_request(HttpResponseBadRequest("error")) # does he haves permissions to do this...? if not page.has_move_page_permission(request) or \ not target.has_add_permission(request): return jsonify_request( HttpResponseForbidden(force_text(_("Error! You don't have permissions to move this page. Please reload the page")))) # move page page.move_page(target, position) if is_installed('reversion'): self.cleanup_history(page) helpers.make_revision_with_plugins(page, request.user, _("Page moved")) return jsonify_request(HttpResponse(admin_utils.render_admin_menu_item(request, page).content)) def get_permissions(self, request, page_id): page = get_object_or_404(self.model, id=page_id) can_change_list = Page.permissions.get_change_id_list(request.user, page.site_id) global_page_permissions = GlobalPagePermission.objects.filter(sites__in=[page.site_id]) page_permissions = PagePermission.objects.for_page(page) all_permissions = list(global_page_permissions) + list(page_permissions) # does he can change global permissions ? has_global = permissions.has_global_change_permissions_permission(request) permission_set = [] for permission in all_permissions: if isinstance(permission, GlobalPagePermission): if has_global: permission_set.append([(True, True), permission]) else: permission_set.append([(True, False), permission]) else: if can_change_list == PagePermissionsPermissionManager.GRANT_ALL: can_change = True else: can_change = permission.page_id in can_change_list permission_set.append([(False, can_change), permission]) context = { 'page': page, 'permission_set': permission_set, } return render(request, 'admin/cms/page/permissions.html', context) @require_POST @transaction.atomic def copy_language(self, request, page_id): with create_revision(): source_language = request.POST.get('source_language') target_language = request.POST.get('target_language') page = Page.objects.get(pk=page_id) placeholders = page.get_placeholders() if not target_language or not target_language in get_language_list(): return HttpResponseBadRequest(force_text(_("Language must be set to a supported language!"))) for placeholder in placeholders: plugins = list( placeholder.cmsplugin_set.filter(language=source_language).order_by('path')) if not self.has_copy_plugin_permission(request, placeholder, placeholder, plugins): return HttpResponseForbidden(force_text(_('You do not have permission to copy these plugins.'))) copy_plugins.copy_plugins_to(plugins, placeholder, target_language) if page and is_installed('reversion'): message = _(u"Copied plugins from %(source_language)s to %(target_language)s") % { 'source_language': source_language, 'target_language': target_language} self.cleanup_history(page) helpers.make_revision_with_plugins(page, request.user, message) return HttpResponse("ok") @require_POST @transaction.atomic def copy_page(self, request, page_id, extra_context=None): """ Copy the page and all its plugins and descendants to the requested target, at the given position """ context = {} page = Page.objects.get(pk=page_id) target = request.POST.get('target', None) position = request.POST.get('position', None) site = request.POST.get('site', None) if target is not None and position is not None and site is not None: try: target = self.model.objects.get(pk=target) # does he have permissions to copy this page under target? assert target.has_add_permission(request) site = Site.objects.get(pk=site) except (ObjectDoesNotExist, AssertionError): return HttpResponse("error") #context.update({'error': _('Page could not been moved.')}) else: try: kwargs = { 'copy_permissions': request.REQUEST.get('copy_permissions', False), } page.copy_page(target, site, position, **kwargs) return jsonify_request(HttpResponse("ok")) except ValidationError: exc = sys.exc_info()[1] return jsonify_request(HttpResponseBadRequest(exc.messages)) context.update(extra_context or {}) return HttpResponseRedirect('../../') @require_POST @transaction.atomic @create_revision() def publish_page(self, request, page_id, language): try: page = Page.objects.get(id=page_id, publisher_is_draft=True) except Page.DoesNotExist: page = None # ensure user has permissions to publish this page all_published = True if page: if not page.has_publish_permission(request): return HttpResponseForbidden(force_text(_("You do not have permission to publish this page"))) published = page.publish(language) if not published: all_published = False statics = request.GET.get('statics', '') if not statics and not page: return Http404("No page or stack found for publishing.") if statics: static_ids = statics .split(',') for pk in static_ids: static_placeholder = StaticPlaceholder.objects.get(pk=pk) published = static_placeholder.publish(request, language) if not published: all_published = False if page: if all_published: if page.get_publisher_state(language) == PUBLISHER_STATE_PENDING: messages.warning(request, _("Page not published! A parent page is not published yet.")) else: messages.info(request, _('The content was successfully published.')) LogEntry.objects.log_action( user_id=request.user.id, content_type_id=ContentType.objects.get_for_model(Page).pk, object_id=page_id, object_repr=page.get_title(language), action_flag=CHANGE, ) else: if page.get_publisher_state(language) == PUBLISHER_STATE_PENDING: messages.warning(request, _("Page not published! A parent page is not published yet.")) else: messages.warning(request, _("There was a problem publishing your content")) if is_installed('reversion') and page: self.cleanup_history(page, publish=True) helpers.make_revision_with_plugins(page, request.user, PUBLISH_COMMENT) # create a new publish reversion if 'node' in request.REQUEST: # if request comes from tree.. return admin_utils.render_admin_menu_item(request, page) if 'redirect' in request.GET: return HttpResponseRedirect(request.GET['redirect']) referrer = request.META.get('HTTP_REFERER', '') path = admin_reverse("cms_page_changelist") if request.GET.get('redirect_language'): path = "%s?language=%s&page_id=%s" % (path, request.GET.get('redirect_language'), request.GET.get('redirect_page_id')) if admin_reverse('index') not in referrer: if all_published: if page: if page.get_publisher_state(language) == PUBLISHER_STATE_PENDING: path = page.get_absolute_url(language, fallback=True) else: public_page = Page.objects.get(publisher_public=page.pk) path = '%s?%s' % (public_page.get_absolute_url(language, fallback=True), get_cms_setting('CMS_TOOLBAR_URL__EDIT_OFF')) else: path = '%s?%s' % (referrer, get_cms_setting('CMS_TOOLBAR_URL__EDIT_OFF')) else: path = '/?%s' % get_cms_setting('CMS_TOOLBAR_URL__EDIT_OFF') return HttpResponseRedirect(path) def cleanup_history(self, page, publish=False): if is_installed('reversion') and page: # delete revisions that are not publish revisions from reversion.models import Version content_type = ContentType.objects.get_for_model(Page) # reversion 1.8+ removes type field, revision filtering must be based on comments versions_qs = Version.objects.filter(content_type=content_type, object_id_int=page.pk) history_limit = get_cms_setting("MAX_PAGE_HISTORY_REVERSIONS") deleted = [] for version in versions_qs.exclude(revision__comment__in=(INITIAL_COMMENT, PUBLISH_COMMENT)).order_by( '-revision__pk')[history_limit - 1:]: if not version.revision_id in deleted: revision = version.revision revision.delete() deleted.append(revision.pk) # delete all publish revisions that are more then MAX_PAGE_PUBLISH_REVERSIONS publish_limit = get_cms_setting("MAX_PAGE_PUBLISH_REVERSIONS") if publish_limit and publish: deleted = [] for version in versions_qs.filter(revision__comment__exact=PUBLISH_COMMENT).order_by( '-revision__pk')[publish_limit - 1:]: if not version.revision_id in deleted: revision = version.revision revision.delete() deleted.append(revision.pk) @require_POST @transaction.atomic def unpublish(self, request, page_id, language): """ Publish or unpublish a language of a page """ site = Site.objects.get_current() page = get_object_or_404(self.model, pk=page_id) if not page.has_publish_permission(request): return HttpResponseForbidden(force_text(_("You do not have permission to unpublish this page"))) if not page.publisher_public_id: return HttpResponseForbidden(force_text(_("This page was never published"))) try: page.unpublish(language) message = _('The %(language)s page "%(page)s" was successfully unpublished') % { 'language': get_language_object(language, site)['name'], 'page': page} messages.info(request, message) LogEntry.objects.log_action( user_id=request.user.id, content_type_id=ContentType.objects.get_for_model(Page).pk, object_id=page_id, object_repr=page.get_title(), action_flag=CHANGE, change_message=message, ) except RuntimeError: exc = sys.exc_info()[1] messages.error(request, exc.message) except ValidationError: exc = sys.exc_info()[1] messages.error(request, exc.message) path = admin_reverse("cms_page_changelist") if request.GET.get('redirect_language'): path = "%s?language=%s&page_id=%s" % (path, request.GET.get('redirect_language'), request.GET.get('redirect_page_id')) return HttpResponseRedirect(path) @require_POST @transaction.atomic def revert_page(self, request, page_id, language): page = get_object_or_404(self.model, id=page_id) # ensure user has permissions to publish this page if not page.has_change_permission(request): return HttpResponseForbidden(force_text(_("You do not have permission to change this page"))) page.revert(language) messages.info(request, _('The page "%s" was successfully reverted.') % page) if 'node' in request.REQUEST: # if request comes from tree.. return admin_utils.render_admin_menu_item(request, page) referer = request.META.get('HTTP_REFERER', '') path = '../../' if admin_reverse('index') not in referer: path = '%s?%s' % (referer.split('?')[0], get_cms_setting('CMS_TOOLBAR_URL__EDIT_OFF')) return HttpResponseRedirect(path) @create_revision() def delete_translation(self, request, object_id, extra_context=None): if 'language' in request.GET: language = request.GET['language'] else: language = get_language_from_request(request) opts = Page._meta titleopts = Title._meta app_label = titleopts.app_label pluginopts = CMSPlugin._meta try: obj = self.get_queryset(request).get(pk=unquote(object_id)) except self.model.DoesNotExist: # Don't raise Http404 just yet, because we haven't checked # permissions yet. We don't want an unauthenticated user to be able # to determine whether a given object exists. obj = None if not self.has_delete_permission(request, obj): return HttpResponseForbidden(force_text(_("You do not have permission to change this page"))) if obj is None: raise Http404( _('%(name)s object with primary key %(key)r does not exist.') % { 'name': force_text(opts.verbose_name), 'key': escape(object_id) }) if not len(list(obj.get_languages())) > 1: raise Http404(_('There only exists one translation for this page')) titleobj = get_object_or_404(Title, page__id=object_id, language=language) saved_plugins = CMSPlugin.objects.filter(placeholder__page__id=object_id, language=language) using = router.db_for_read(self.model) kwargs = { 'admin_site': self.admin_site, 'user': request.user, 'using': using } if DJANGO_1_7: deleted_objects, perms_needed = get_deleted_objects( [titleobj], titleopts, **kwargs )[:2] to_delete_plugins, perms_needed_plugins = get_deleted_objects( saved_plugins, pluginopts, **kwargs )[:2] else: deleted_objects, __, perms_needed = get_deleted_objects( [titleobj], titleopts, **kwargs )[:3] to_delete_plugins, __, perms_needed_plugins = get_deleted_objects( saved_plugins, pluginopts, **kwargs )[:3] deleted_objects.append(to_delete_plugins) perms_needed = set(list(perms_needed) + list(perms_needed_plugins)) if request.method == 'POST': if perms_needed: raise PermissionDenied message = _('Title and plugins with language %(language)s was deleted') % { 'language': force_text(get_language_object(language)['name']) } self.log_change(request, titleobj, message) messages.info(request, message) titleobj.delete() for p in saved_plugins: p.delete() public = obj.publisher_public if public: public.save() if is_installed('reversion'): self.cleanup_history(obj) helpers.make_revision_with_plugins(obj, request.user, message) if not self.has_change_permission(request, None): return HttpResponseRedirect("../../../../") return HttpResponseRedirect("../../") context = { "title": _("Are you sure?"), "object_name": force_text(titleopts.verbose_name), "object": titleobj, "deleted_objects": deleted_objects, "perms_lacking": perms_needed, "opts": opts, "root_path": admin_reverse('index'), "app_label": app_label, } context.update(extra_context or {}) request.current_app = self.admin_site.name return render(request, self.delete_confirmation_template or [ "admin/%s/%s/delete_confirmation.html" % (app_label, titleopts.object_name.lower()), "admin/%s/delete_confirmation.html" % app_label, "admin/delete_confirmation.html" ], context) def preview_page(self, request, object_id, language): """Redirecting preview function based on draft_id """ page = get_object_or_404(self.model, id=object_id) attrs = "?%s" % get_cms_setting('CMS_TOOLBAR_URL__EDIT_ON') attrs += "&language=" + language with force_language(language): url = page.get_absolute_url(language) + attrs site = get_current_site(request) if not site == page.site: url = "http%s://%s%s" % ('s' if request.is_secure() else '', page.site.domain, url) return HttpResponseRedirect(url) @require_POST def change_innavigation(self, request, page_id): """ Switch the in_navigation of a page """ page = get_object_or_404(self.model, pk=page_id) if page.has_change_permission(request): page.toggle_in_navigation() language = request.GET.get('language') or get_language_from_request(request) return admin_utils.render_admin_menu_item(request, page, language=language) return HttpResponseForbidden(force_text(_("You do not have permission to change this page's in_navigation status"))) def descendants(self, request, page_id, language): """ Get html for descendants of given page Used for lazy loading pages in cms.changelist.js Permission checks is done in admin_utils.get_admin_menu_item_context which is called by admin_utils.render_admin_menu_item. """ page = get_object_or_404(self.model, pk=page_id) return admin_utils.render_admin_menu_item(request, page, template="admin/cms/page/tree/lazy_menu.html", language=language) def add_page_type(self, request): site = Site.objects.get_current() language = request.GET.get('language') or get_language() target = request.GET.get('copy_target') type_root, created = self.model.objects.get_or_create(reverse_id=PAGE_TYPES_ID, publisher_is_draft=True, site=site, defaults={'in_navigation': False}) type_title, created = Title.objects.get_or_create(page=type_root, language=language, slug=PAGE_TYPES_ID, defaults={'title': _('Page Types')}) url = add_url_parameters(admin_reverse('cms_page_add'), target=type_root.pk, position='first-child', add_page_type=1, copy_target=target, language=language) return HttpResponseRedirect(url) def resolve(self, request): if not request.user.is_staff: return HttpResponse('/', content_type='text/plain') obj = False url = False if request.session.get('cms_log_latest', False): log = LogEntry.objects.get(pk=request.session['cms_log_latest']) try: obj = log.get_edited_object() except (ObjectDoesNotExist, ValueError): obj = None del request.session['cms_log_latest'] if obj and obj.__class__ in toolbar_pool.get_watch_models() and hasattr(obj, 'get_absolute_url'): # This is a test if the object url can be retrieved # In case it can't, object it's not taken into account try: force_text(obj.get_absolute_url()) except: obj = None else: obj = None if not obj: pk = request.REQUEST.get('pk') full_model = request.REQUEST.get('model') if pk and full_model: app_label, model = full_model.split('.') if pk and app_label: ctype = ContentType.objects.get(app_label=app_label, model=model) try: obj = ctype.get_object_for_this_type(pk=pk) except ctype.model_class().DoesNotExist: obj = None try: force_text(obj.get_absolute_url()) except: obj = None if obj: if not request.toolbar or not request.toolbar.edit_mode: if isinstance(obj, Page): if obj.get_public_object(): url = obj.get_public_object().get_absolute_url() else: url = '%s?%s' % ( obj.get_draft_object().get_absolute_url(), get_cms_setting('CMS_TOOLBAR_URL__EDIT_ON') ) else: url = obj.get_absolute_url() else: url = obj.get_absolute_url() if url: return HttpResponse(force_text(url), content_type='text/plain') return HttpResponse('', content_type='text/plain') def lookup_allowed(self, key, *args, **kwargs): if key == 'site__exact': return True return super(PageAdmin, self).lookup_allowed(key, *args, **kwargs) def edit_title_fields(self, request, page_id, language): title = Title.objects.get(page_id=page_id, language=language) saved_successfully = False raw_fields = request.GET.get("edit_fields", 'title') edit_fields = [field for field in raw_fields.split(",") if field in self.title_frontend_editable_fields] cancel_clicked = request.POST.get("_cancel", False) opts = Title._meta if not edit_fields: # Defaults to title edit_fields = ('title',) if not has_generic_permission(title.page.pk, request.user, "change", title.page.site.pk): return HttpResponseForbidden(force_text(_("You do not have permission to edit this page"))) class PageTitleForm(django.forms.ModelForm): """ Dynamic form showing only the fields to be edited """ class Meta: model = Title fields = edit_fields if not cancel_clicked and request.method == 'POST': form = PageTitleForm(instance=title, data=request.POST) if form.is_valid(): form.save() saved_successfully = True else: form = PageTitleForm(instance=title) admin_form = AdminForm(form, fieldsets=[(None, {'fields': edit_fields})], prepopulated_fields={}, model_admin=self) media = self.media + admin_form.media context = { 'CMS_MEDIA_URL': get_cms_setting('MEDIA_URL'), 'title': 'Title', 'plugin': title.page, 'plugin_id': title.page.id, 'adminform': admin_form, 'add': False, 'is_popup': True, 'media': media, 'opts': opts, 'change': True, 'save_as': False, 'has_add_permission': False, 'window_close_timeout': 10, } if cancel_clicked: # cancel button was clicked context.update({ 'cancel': True, }) return render(request, 'admin/cms/page/plugin/confirm_form.html', context) if not cancel_clicked and request.method == 'POST' and saved_successfully: return render(request, 'admin/cms/page/plugin/confirm_form.html', context) return render(request, 'admin/cms/page/plugin/change_form.html', context) def get_published_pagelist(self, *args, **kwargs): """ This view is used by the PageSmartLinkWidget as the user type to feed the autocomplete drop-down. """ request = args[0] if request.is_ajax(): query_term = request.GET.get('q','').strip('/') language_code = request.GET.get('language_code', settings.LANGUAGE_CODE) matching_published_pages = self.model.objects.published().public().filter( Q(title_set__title__icontains=query_term, title_set__language=language_code) | Q(title_set__path__icontains=query_term, title_set__language=language_code) | Q(title_set__menu_title__icontains=query_term, title_set__language=language_code) | Q(title_set__page_title__icontains=query_term, title_set__language=language_code) ).distinct() results = [] for page in matching_published_pages: results.append( { 'path': page.get_path(language=language_code), 'title': page.get_title(language=language_code), 'redirect_url': page.get_absolute_url(language=language_code) } ) return HttpResponse(json.dumps(results), content_type='application/json') else: return HttpResponseForbidden() def add_plugin(self, *args, **kwargs): with create_revision(): return super(PageAdmin, self).add_plugin(*args, **kwargs) def copy_plugins(self, *args, **kwargs): with create_revision(): return super(PageAdmin, self).copy_plugins(*args, **kwargs) def edit_plugin(self, *args, **kwargs): with create_revision(): return super(PageAdmin, self).edit_plugin(*args, **kwargs) def move_plugin(self, *args, **kwargs): with create_revision(): return super(PageAdmin, self).move_plugin(*args, **kwargs) def delete_plugin(self, *args, **kwargs): with create_revision(): return super(PageAdmin, self).delete_plugin(*args, **kwargs) def clear_placeholder(self, *args, **kwargs): with create_revision(): return super(PageAdmin, self).clear_placeholder(*args, **kwargs) admin.site.register(Page, PageAdmin)
44.706777
142
0.615135