dbpedia_openai_1m / README.md
maknee's picture
Add YAML metadata to dataset card
8f0138a verified
---
license: mit
task_categories:
- feature-extraction
- sentence-similarity
language:
- en
tags:
- embeddings
- vector-search
- similarity-search
- diskann
- dbpedia
- openai
size_categories:
- 1M<n<10M
---
# DBpedia OpenAI 1M Dataset
A comprehensive vector database resource containing 1,000,000 DBpedia entity descriptions with pre-computed OpenAI text-embedding-ada-002 embeddings (1536-D). This dataset is optimized for large-scale similarity search, retrieval tasks, and distributed vector database deployments.
## Dataset Overview
- **Size**: 1,000,000 base vectors + 10,000 query vectors
- **Embedding Model**: OpenAI text-embedding-ada-002
- **Dimensions**: 1536
- **Source**: [KShivendu/dbpedia-entities-openai-1M](https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M)
- **Format**: Parquet, FBIN, DiskANN indices
- **License**: MIT
## Dataset Structure
Each record contains:
| Field | Type | Description |
|-------|------|-------------|
| **id** | int64 | Unique entity identifier |
| **text** | string | DBpedia entity description |
| **embedding** | float32[1536] | Pre-computed OpenAI embedding vector |
## Directory Structure
```
dbpedia_openai_1m/
β”œβ”€β”€ parquet/ # Raw embeddings in Parquet format
β”‚ β”œβ”€β”€ base.parquet # 1M base vectors (8.6 GB)
β”‚ └── queries.parquet # 10K query vectors (88 MB)
β”œβ”€β”€ fbin/ # Binary vector format for DiskANN
β”‚ β”œβ”€β”€ base.fbin # 1M base vectors (5.8 GB)
β”‚ └── queries.fbin # 10K query vectors (59 MB)
└── diskann/ # DiskANN indices and shards
β”œβ”€β”€ index_64_100_384_disk.index # Base index (R=64, L=100, PQ=384)
β”œβ”€β”€ shard_3/ # 3-shard configuration (27 files)
β”œβ”€β”€ shard_5/ # 5-shard configuration (45 files)
β”œβ”€β”€ shard_7/ # 7-shard configuration (63 files)
└── shard_10/ # 10-shard configuration (90 files)
```
## DiskANN Index Configuration
All indices are built with the following parameters:
- **Graph Degree (R)**: 64
- **Search List Size (L)**: 100
- **PQ Compression**: 384 bytes (0.25 ratio)
- **Distance Metric**: L2 (Euclidean)
- **Build RAM Budget**: 100 GB
- **Search RAM Budget**: 0.358 GB per query
### Shard Configurations
Each shard configuration includes:
- **Data shards**: `.fbin` files with partitioned vectors
- **Index files**: `_disk.index` DiskANN graph indices
- **PQ files**: `_pq_compressed.bin` and `_pq_pivots.bin` for compression
- **MinIO format**: `_512_none.indices` and `_base_none.vectors` for distributed deployment
| Configuration | Shards | Vectors/Shard | Use Case |
|---------------|--------|---------------|----------|
| shard_3 | 3 | ~333K | Small clusters |
| shard_5 | 5 | ~200K | Medium clusters |
| shard_7 | 7 | ~143K | Large clusters |
| shard_10 | 10 | ~100K | Distributed systems |
## Usage
### Load with Hugging Face Datasets
```python
from datasets import load_dataset
# Load the full dataset
dataset = load_dataset("maknee/dbpedia_openai_1m")
# Access embeddings and text
for item in dataset['train']:
text = item['text']
embedding = item['embedding'] # 1536-D vector
print(f"Text: {text[:100]}...")
print(f"Embedding shape: {len(embedding)}")
```
### Load Parquet Directly
```python
import pandas as pd
# Load base vectors
base_df = pd.read_parquet("hf://datasets/maknee/dbpedia_openai_1m/parquet/base.parquet")
print(f"Loaded {len(base_df)} vectors with {len(base_df['embedding'].iloc[0])} dimensions")
# Load queries
queries_df = pd.read_parquet("hf://datasets/maknee/dbpedia_openai_1m/parquet/queries.parquet")
print(f"Loaded {len(queries_df)} query vectors")
```
### Use with DiskANN
```python
from huggingface_hub import hf_hub_download
# Download base index
index_path = hf_hub_download(
repo_id="maknee/dbpedia_openai_1m",
filename="diskann/index_64_100_384_disk.index",
repo_type="dataset"
)
# Use with DiskANN library for similarity search
# See: https://github.com/microsoft/DiskANN
```
### Distributed Deployment
For distributed vector search systems:
1. **Download a shard configuration** (e.g., 5 shards):
```python
from huggingface_hub import snapshot_download
# Download all shard_5 files
local_dir = snapshot_download(
repo_id="maknee/dbpedia_openai_1m",
repo_type="dataset",
allow_patterns="diskann/shard_5/*"
)
```
2. **Deploy shards across nodes**: Each shard contains:
- Data: `base_base.shard{N}.fbin`
- Index: `base_64_100_384.shard{N}_disk.index`
- MinIO files: `*_512_none.indices` and `*_base_none.vectors`
3. **Query in parallel**: Distribute queries across all shard nodes and merge results.
## Use Cases
- **Semantic Search**: Find similar DBpedia entities by text similarity
- **Knowledge Base Retrieval**: Build QA systems over structured knowledge
- **Entity Linking**: Connect text mentions to DBpedia entities
- **Recommendation Systems**: Suggest related entities based on embeddings
- **Vector Database Benchmarking**: Test large-scale similarity search systems
- **Distributed Systems Research**: Study sharding and parallel search strategies
## Dataset Statistics
- **Total Vectors**: 1,000,000 base + 10,000 queries
- **Embedding Dimensions**: 1536
- **Total Dataset Size**: ~35 GB (all formats)
- **Average Text Length**: ~200 characters
- **Coverage**: Diverse DBpedia entity types (people, places, organizations, concepts)
## Citation
If you use this dataset, please cite:
```bibtex
@dataset{dbpedia_openai_1m,
author = {maknee},
title = {DBpedia OpenAI 1M: Pre-embedded DBpedia Entities},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/maknee/dbpedia_openai_1m}
}
```
Original DBpedia embeddings from:
```bibtex
@dataset{kshivendu_dbpedia,
author = {KShivendu},
title = {DBpedia Entities OpenAI 1M},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M}
}
```
## License
This dataset is released under the MIT License. The original embeddings are from OpenAI's text-embedding-ada-002 model.
## Acknowledgments
- **Original Dataset**: [KShivendu/dbpedia-entities-openai-1M](https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M)
- **Embedding Model**: OpenAI text-embedding-ada-002
- **Index Format**: Microsoft DiskANN
- **Source Knowledge Base**: DBpedia
## Related Datasets
- [maknee/wikipedia_qwen_4b](https://huggingface.co/datasets/maknee/wikipedia_qwen_4b) - Wikipedia with Qwen embeddings (2560-D)
- [maknee/wikipedia_qwen_8b](https://huggingface.co/datasets/maknee/wikipedia_qwen_8b) - Wikipedia with Qwen-8B embeddings
## Contact
For questions or issues, please open an issue on the [dataset repository](https://huggingface.co/datasets/maknee/dbpedia_openai_1m/discussions).