File size: 20,726 Bytes
3255c6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
"""
Convert a single task folder with sequences into LIBERO-like demos with fields:
actions, gripper_states, joint_states, robot_states, ee_states,
agentview_images, eye_in_hand_images, agentview_depths, eye_in_hand_depths,
agentview_segs, eye_in_hand_segs, agentview_boxes, eye_in_hand_boxes,
rewards, dones
Expected layout (per task):
taskX/
success/
<seq_name>/
camera_base.mp4 # agentview RGB
camera_wrist.mp4 # eye-in-hand RGB
trajectory.pkl # dict-like (see below)
masks/
<seq_name>/
masks/
000000_id1.png, 000000_id2.png, 000001_id1.png, ...
We infer T (timesteps) from trajectory.pkl (preferred keys: robot_gripper_pose, timestamp).
We parse mask PNGs named "{frame:06d}_id{instance}.png" into a per-frame label map,
and compute per-frame boxes per instance id.
Trajectory .pkl keys (examples):
['robot_eef_pose', 'robot_eef_pose_vel', 'robot_joint', 'robot_joint_vel',
'robot_gripper_pose', 'timestamp', 'task_description']
Actions policy:
- If 'robot_joint_vel' exists: actions = robot_joint_vel (T, DoF)
- Else if 'robot_eef_pose_vel' exists: actions = robot_eef_pose_vel (T, 6/7)
- Else: finite-difference of 'robot_joint' (pad last row with zeros).
Depth and eye-in-hand segs:
- If no depth available, we create zero arrays with the correct length and frame shape.
- If only one set of masks exists (agentview), we mirror it to eye-in-hand segs for compatibility.
Boxes:
- Stored in metainfo JSON as lists of [x1,y1,x2,y2] per frame (pixel coords).
Requires: numpy, opencv-python, h5py, pillow (PIL)
"""
import argparse, json, os, pickle, re, sys
from dataclasses import dataclass
from pathlib import Path
from typing import List, Tuple, Dict, Sequence, Optional, Any
import imageio
import numpy as np
import h5py
import cv2
from PIL import Image
MASK_RE = re.compile(r'^(?P<frame>\d+)_id(?P<inst>\d+)\.(?:png|jpg|jpeg|bmp)$', re.IGNORECASE)
# ---------- helpers ----------
def _ensure_uint8_rgb(img: np.ndarray) -> np.ndarray:
arr = np.asarray(img)
if arr.ndim == 2: arr = np.stack([arr]*3, axis=-1)
if arr.shape[-1] == 4: arr = arr[..., :3]
if arr.dtype != np.uint8:
if np.issubdtype(arr.dtype, np.floating) and arr.max() <= 1.0:
arr = (arr * 255.0 + 0.5).astype(np.uint8)
else:
arr = np.clip(arr, 0, 255).astype(np.uint8)
return arr
def _label_to_color(label_map: np.ndarray,
color_map: Optional[Dict[int, Tuple[int,int,int]]] = None):
H, W = label_map.shape
colored = np.zeros((H, W, 3), dtype=np.uint8)
color_map = {} if color_map is None else dict(color_map)
for lid in np.unique(label_map):
if lid == 0: continue
if lid not in color_map:
rng = np.random.RandomState(lid * 9973 % (2**31-1))
color_map[lid] = tuple(int(x) for x in rng.randint(40, 220, size=3))
colored[label_map == lid] = color_map[lid]
return colored, color_map
def _overlay(rgb: np.ndarray, over_rgb: np.ndarray, alpha: float = 0.5) -> np.ndarray:
out = (1.0 - alpha) * rgb.astype(np.float32) + alpha * over_rgb.astype(np.float32)
return np.clip(out, 0, 255).astype(np.uint8)
def _draw_bboxes(rgb: np.ndarray,
bboxes: Sequence[Tuple[int, Sequence[int]]],
color_map: Optional[Dict[int, Tuple[int,int,int]]] = None) -> np.ndarray:
img = rgb.copy()
color_map = {} if color_map is None else color_map
defined_labels = {'id40': 'bottle 1',
'id20': 'bottle 2',
'id60': 'bowl 1',
'id100': 'robot',
'id80': 'bowl 1'}
for seg_id, box in bboxes:
x, y, x2, y2 = [int(v) for v in box]
if seg_id not in color_map:
rng = np.random.RandomState(seg_id * 9973 % (2**31-1))
color_map[seg_id] = tuple(int(x) for x in rng.randint(40, 220, size=3))
bgr = color_map[seg_id][::-1]
cv2.rectangle(img, (x, y), (x2, y2), bgr, 2)
label = defined_labels[f"id{seg_id}"]
(tw, th), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(img, (x, y - th - 4), (x + tw + 4, y), bgr, -1)
cv2.putText(img, label, (x + 2, y - 4),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1, cv2.LINE_AA)
return img
# ---------- main ----------
def save_annotation_video_imageio(
agentview_images: List[np.ndarray],
agentview_segs: List[np.ndarray],
agentview_bboxes: List[List[Tuple[int, Sequence[int]]]],
out_path: str,
fps: int = 20,
resize: Optional[Tuple[int,int]] = None,
seg_alpha: float = 0.5,
layout: str = "hstack"
) -> str:
"""Save annotated rollout video with raw | bbox | seg-overlay panels using imageio."""
assert len(agentview_images) == len(agentview_segs) == len(agentview_bboxes)
T = len(agentview_images)
if T == 0:
raise ValueError("No frames to render")
imgs = [_ensure_uint8_rgb(f) for f in agentview_images]
segs = [np.asarray(s, dtype=np.int32) for s in agentview_segs]
H, W = imgs[0].shape[:2]
if resize is not None:
W, H = resize
imgs = [cv2.resize(im, (W, H), interpolation=cv2.INTER_LINEAR) for im in imgs]
segs = [cv2.resize(s, (W, H), interpolation=cv2.INTER_NEAREST) for s in segs]
else:
imgs = [cv2.resize(im, (W, H), interpolation=cv2.INTER_LINEAR) if im.shape[:2] != (H, W) else im for im in imgs]
segs = [cv2.resize(s, (W, H), interpolation=cv2.INTER_NEAREST) if s.shape != (H, W) else s for s in segs]
color_map: Dict[int, Tuple[int,int,int]] = {}
def compose(t: int) -> np.ndarray:
raw = imgs[t]
box_img = _draw_bboxes(raw, agentview_bboxes[t], color_map=color_map)
seg_col, cm2 = _label_to_color(segs[t], color_map=color_map)
color_map.update(cm2)
seg_overlay = _overlay(raw, seg_col, alpha=seg_alpha)
if layout == "hstack":
return np.concatenate([raw, box_img, seg_overlay], axis=1)
else: # grid
top = np.concatenate([raw, box_img], axis=1)
bot = np.concatenate([seg_overlay, seg_col], axis=1)
return np.concatenate([top, bot], axis=0)
# --- Use imageio.get_writer ---
with imageio.get_writer(out_path, fps=fps, codec="libx264") as writer:
for t in range(T):
frame = compose(t)
writer.append_data(frame) # frame must be (H,W,3) uint8
return out_path
def natural_key(s: str):
return [int(t) if t.isdigit() else t.lower() for t in re.split(r"(\d+)", s)]
def process_gripper_pose(robot_gripper_pose):
raw = np.array(robot_gripper_pose) # shape (T,)
# binary states (open=1, closed=0)
state = raw.astype(np.int32)
# deltas using "previous" rule
delta = np.zeros_like(state[:-1])
prev = -1
for t in range(0, len(state)-1):
if state[t] != state[t+1]:
delta[t] = 1 if state[t] < state[t+1] else -1
prev = delta[t]
else:
delta[t] = prev # carry forward previous action
return delta
def process_video_rgb(path: Path) -> List[np.ndarray]:
if cv2 is None:
raise RuntimeError("OpenCV not available. Please install opencv-python.")
cap = cv2.VideoCapture(str(path))
if not cap.isOpened():
raise RuntimeError(f"Cannot open video: {path}")
frames = []
while True:
ok, frame = cap.read()
if not ok:
break
# Resize to 256x256 and convert BGR->RGB
frame = cv2.resize(frame, (256, 256), interpolation=cv2.INTER_LINEAR)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
return frames
def parse_masks_dir(H, W, masks_dir: Path) -> Dict[int, Dict[int, np.ndarray]]:
"""
Return nested dict: frame_idx -> {inst_id -> binary mask (H,W,1)}
"""
out: Dict[int, Dict[int, np.ndarray]] = {}
for f in sorted(masks_dir.iterdir(), key=lambda x: natural_key(x.name)):
if not f.is_file(): continue
m = MASK_RE.match(f.name)
if not m: continue
frame = int(m.group("frame"))
inst = int(m.group("inst"))
arr = np.array(Image.open(f).convert("L").resize((W, H))) # (H,W) grayscale
bin_mask = (arr > 0).astype(np.uint8)[..., None] # (H,W,1)
out.setdefault(frame, {})[inst] = bin_mask
return out
def labelmap_and_boxes(H, W, per_inst: Dict[int, np.ndarray]) -> Tuple[np.ndarray, List[List[int]]]:
"""
From {inst_id -> (H,W,1) mask}, build label map (H,W) with labels 30..K*30,
and compute boxes as [x1,y1,x2,y2] for each instance (label>0), in order of inst_id.
Returns (labelmap, boxes)
"""
if not per_inst:
return np.zeros((H,W,1), dtype=np.int32), []
# Determine shape
labelmap = np.zeros((H,W,1), dtype=np.int32)
boxes: List[List[int]] = []
# Sort instances for stable order
for idx, inst_id in enumerate(sorted(per_inst.keys())):
m = per_inst[inst_id][..., 0].astype(bool)
label = (idx + 1)*20 # 0 reserved as background
labelmap[m] = label
# Bounding box
ys, xs = np.where(m)
if len(xs) == 0 or len(ys) == 0:
pass
else:
x1, x2 = int(xs.min()), int(xs.max())
y1, y2 = int(ys.min()), int(ys.max())
boxes.append([label, [x1, y1, x2, y2]])
return labelmap, boxes
def detect_noops_with_gripper_window(
actions: np.ndarray,
gripper_col: int = -1,
tol: float = 1e-6,
window: int = 6,
):
"""
Return a boolean vector is_noop[T] where True marks a no-op step.
A step is no-op if (a) all non-gripper dims are ~0 (|x|<tol), and
(b) it's not within `window` frames after a gripper open/close change.
Parameters
----------
actions : (T, D) array
Action vectors over time.
gripper_col : int
Index of the gripper signal column (default: last col).
tol : float
Tolerance to treat movement dims as zero.
window : int
Number of frames after a gripper state change to mark as active (non-noop).
Returns
-------
is_noop : (T,) bool array
True where the step is considered a no-op.
active_gripper_window : (T,) bool array
True where we are within the post-change window (non-noop region).
"""
a = np.asarray(actions)
assert a.ndim == 2 and a.shape[0] > 0, "actions must be (T, D)"
T, D = a.shape
# 1) movement no-op: all non-gripper dims are near zero
if gripper_col < 0:
g_idx = D + gripper_col
else:
g_idx = gripper_col
assert 0 <= g_idx < D
if D > 1:
move = np.concatenate([a[:, :g_idx], a[:, g_idx+1:]], axis=1)
movement_noop = np.all(np.abs(move) < tol, axis=1)
else:
movement_noop = np.ones(T, dtype=bool) # only gripper present
# 2) gripper activity window: detect state changes and mark window frames
g = a[:, g_idx]
# Convert to binary state: open=1, closed=0 (by sign/threshold)
# Works for {-1,0,1} or continuous values (e.g., widths).
state = (g > 0).astype(np.int8)
# Change points where state flips
changes = np.flatnonzero(np.diff(state, prepend=state[0]) != 0)
active_gripper_window = np.zeros(T, dtype=bool)
for t0 in changes:
t1 = min(t0 + window, T)
active_gripper_window[t0:t1] = True
# Final no-op = movement_noop and NOT in gripper activity window
is_noop = movement_noop & (~active_gripper_window)
return is_noop, active_gripper_window
def process_sequence(seq_name: str, task_dir: Path, out_dir: Path, sequence_rename: Path):
s_dir = task_dir / "success" / seq_name
m_dir = task_dir / "masks" / seq_name / "masks"
# --- Load trajectory ---
pkl_path = s_dir / "trajectory.pkl"
with open(pkl_path, "rb") as f:
traj = pickle.load(f)
task_description = traj['task_description'].lower().replace('.', '')
T = len(traj['robot_eef_pose']) - 1
delta_eef = traj['robot_eef_pose'][1:,:] - traj['robot_eef_pose'][:-1,:]
delta_gripper = process_gripper_pose(traj['robot_gripper_pose'])
delta_gripper = delta_gripper.reshape(T, 1)
actions = np.concatenate([delta_eef, delta_gripper], axis=1)
# --- Read videos as RGB ---
base_vid = s_dir / "camera_base.mp4"
agentview_images = process_video_rgb(base_vid)
agentview_images = agentview_images[:T]
H, W, _ = agentview_images[0].shape
# --- Parse masks into label maps + boxes ---
per_frame = parse_masks_dir(H, W, m_dir)
agentview_segs = []
agentview_bboxes = []
for t, inst_dict in per_frame.items():
if t >= T: continue
labelmap, boxes = labelmap_and_boxes(H, W, inst_dict)
if labelmap.size == 0: # in case masks are missing
continue
if (labelmap.shape[0] != H) or (labelmap.shape[1] != W):
# Resize nearest to match video shape
labelmap = np.array(Image.fromarray(labelmap.astype(np.int32)).resize((W, H), resample=Image.NEAREST))
agentview_segs.append(labelmap)
agentview_bboxes.append(boxes)
# save_annotation_video_imageio(
# agentview_images, agentview_segs, agentview_bboxes,
# out_path="annotations.mp4", fps=20, resize=(256,256)
# )
# 1/0
# print(len(agentview_images))
# print(len(agentview_segs))
# print(len(agentview_bboxes))
# print(len(actions))
# print(actions);
# is_noop, active_win = detect_noops_with_gripper_window(actions, gripper_col=-1, tol=1e-5, window=6)
data = {
"episode_key": sequence_rename,
"agentview_images": agentview_images,
"agentview_segs": agentview_segs,
"agentview_boxes": agentview_bboxes,
"actions": actions,
"task_description": task_description,
}
return data
def write_episode(
out_dir: str,
task_name: str,
episode: Dict[str, Any],
):
"""
{
"episode_key": "20250711-13h_52m_58s",
"agentview_images": [...], # list[(H,W,3) uint8]
"agentview_segs": [...], # list[(H,W) int]
"agentview_boxes": [...], # list[list[(id, [x,y,w,h])]]
"actions": np.ndarray or None, # (T,D)
"task_description": "string", # optional
},
"""
episode_key = episode["episode_key"]
h5_filename = f"{task_name}_{episode_key}.hdf5"
meta_filename = f"{task_name}_{episode_key}_metainfo.json"
h5_path = os.path.join(out_dir, h5_filename)
meta_path = os.path.join(out_dir, meta_filename)
# Load or start metainfo (single JSON for all episodes)
if os.path.exists(meta_path):
with open(meta_path, "r") as f:
metainfo = json.load(f)
else:
metainfo = {task_name: {}}
with h5py.File(h5_path, "a") as f: # append if file already exists
root = f.require_group("data")
ep = episode
episode_key = ep["episode_key"]
agentview_images = ep["agentview_images"]
agentview_segs = ep["agentview_segs"]
agentview_boxes = ep["agentview_boxes"]
actions = ep.get("actions", None)
task_description = ep.get("task_description", "")
# --- lengths & alignment ---
lens = [len(agentview_images), len(agentview_segs), len(agentview_boxes)]
if actions is not None: lens.append(len(actions))
T = min(l for l in lens if l > 0)
assert T > 0, f"[{episode_key}] nothing to write"
agentview_images = agentview_images[:T]
agentview_segs = agentview_segs[:T]
agentview_boxes = agentview_boxes[:T]
if actions is None:
actions = np.zeros((T, 1), dtype=np.float32)
else:
actions = np.asarray(actions)[:T]
# --- stack visuals ---
agentview_rgb = np.stack(agentview_images, axis=0) # (T,H,W,3)
agentview_seg = np.stack([np.asarray(s, dtype=np.int32) for s in agentview_segs], axis=0) # (T,H,W)
_, H, W, _ = agentview_seg.shape
# --- placeholders for missing streams/states ---
eye_in_hand_rgb = np.zeros_like(agentview_rgb, dtype=np.uint8)
agentview_depth = np.zeros((T, H, W), dtype=np.float32)
eye_in_hand_depth = np.zeros((T, H, W), dtype=np.float32)
eye_in_hand_seg = np.zeros((T, H, W), dtype=np.int32)
gripper_states = np.zeros((T, 1), dtype=np.float32)
joint_states = np.zeros((T, 0), dtype=np.float32)
ee_states = np.zeros((T, 6), dtype=np.float32) # [pos(3), ori(3)]
robot_states = np.zeros((T, 0), dtype=np.float32)
dones = np.zeros(T, dtype=np.uint8); dones[-1] = 1
rewards = np.zeros(T, dtype=np.uint8); rewards[-1] = 1
# --- create / overwrite episode group ---
if episode_key in root:
del root[episode_key] # clean if re-writing
ep_grp = root.create_group(episode_key)
obs_grp = ep_grp.create_group("obs")
# states
obs_grp.create_dataset("gripper_states", data=gripper_states)
obs_grp.create_dataset("joint_states", data=joint_states)
obs_grp.create_dataset("ee_states", data=ee_states)
obs_grp.create_dataset("ee_pos", data=ee_states[:, :3])
obs_grp.create_dataset("ee_ori", data=ee_states[:, 3:])
# visuals
obs_grp.create_dataset("agentview_rgb", data=agentview_rgb)
obs_grp.create_dataset("eye_in_hand_rgb", data=eye_in_hand_rgb)
obs_grp.create_dataset("agentview_depth", data=agentview_depth)
obs_grp.create_dataset("eye_in_hand_depth", data=eye_in_hand_depth)
obs_grp.create_dataset("agentview_seg", data=agentview_seg)
obs_grp.create_dataset("eye_in_hand_seg", data=eye_in_hand_seg)
# top-level (episode)
ep_grp.create_dataset("actions", data=actions)
ep_grp.create_dataset("robot_states", data=robot_states)
ep_grp.create_dataset("rewards", data=rewards)
ep_grp.create_dataset("dones", data=dones)
# --- update metainfo JSON for this episode ---
if task_name not in metainfo:
metainfo[task_name] = {}
if episode_key not in metainfo[task_name]:
metainfo[task_name][episode_key] = {}
metainfo[task_name][episode_key].update({
"success": True,
"initial_state": robot_states[0].tolist() if len(robot_states) else [],
"task_nouns": [], # fill if you want
"task_description": task_description,
"exo_boxes": agentview_boxes, # per-frame boxes you provided
"ego_boxes": [[] for _ in range(T)], # none available
})
# write/merge metainfo once at the end
with open(meta_path, "w") as f:
json.dump(metainfo, f, indent=2)
return {"hdf5": h5_path, "metainfo": meta_path}
def main():
p = argparse.ArgumentParser(description="Convert sequences to LIBERO-like demos.")
p.add_argument("--task_dir", type=str, help="Path to task folder (contains success/ and masks/).")
p.add_argument("--out_root", type=str, required=True, help="Target directory where <task_name>/<task_name>_<seq>.hdf5 is written.")
args = p.parse_args()
task_dir = Path(args.task_dir).expanduser().resolve()
task_name = task_dir.name
out_root = Path(args.out_root).expanduser().resolve()
out_root.mkdir(parents=True, exist_ok=True)
success_dir = task_dir / "success"
masks_dir = task_dir / "masks"
if not success_dir.is_dir() or not masks_dir.is_dir():
print("[ERROR] task_dir must contain 'success/' and 'masks/'")
sys.exit(1)
success_seqs = {d.name for d in success_dir.iterdir() if d.is_dir()}
mask_seqs = {d.name for d in masks_dir.iterdir() if d.is_dir()}
seqs = sorted(list(success_seqs & mask_seqs), key=natural_key)
results = []
from tqdm import tqdm
for i, name in tqdm(enumerate(seqs)):
info = process_sequence(name, task_dir, out_root, sequence_rename=f'demo_{i+1}')
write_episode(
out_dir=args.out_root,
task_name=info['task_description'],
episode=info,
)
# # Write a small manifest JSON
# manifest = {"task": task_name, "outputs": results}
# (out_root / f"{task_name}_manifest.json").write_text(json.dumps(manifest, indent=2))
# print(f"[DONE] Manifest saved to {out_root / (task_name + '_manifest.json')}")
if __name__ == "__main__":
main()
|