text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
|---|---|---|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
**kwargs,
):
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
prompt_embeds_tuple = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
**kwargs,
)
# concatenate for backwards comp
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
return prompt_embeds
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
self._lora_scale = lora_scale
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
if clip_skip is None:
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
prompt_embeds = prompt_embeds[0]
else:
prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
if self.text_encoder is not None:
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, negative_prompt_embeds
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs with prepare_extra_step_kwargs->prepare_prior_extra_step_kwargs, scheduler->prior_scheduler
def prepare_prior_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the prior_scheduler step, since not all prior_schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other prior_schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.prior_scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# check if the prior_scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.prior_scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
callback_steps,
noise_level,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
if prompt is not None and prompt_embeds is not None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two."
)
if prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
"Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined."
)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
if prompt is not None and negative_prompt is not None:
if type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps:
raise ValueError(
f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive."
)
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
def noise_image_embeddings(
self,
image_embeds: torch.Tensor,
noise_level: int,
noise: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
):
"""
Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher
`noise_level` increases the variance in the final un-noised images.
The noise is applied in two ways:
1. A noise schedule is applied directly to the embeddings.
2. A vector of sinusoidal time embeddings are appended to the output.
In both cases, the amount of noise is controlled by the same `noise_level`.
The embeddings are normalized before the noise is applied and un-normalized after the noise is applied.
"""
if noise is None:
noise = randn_tensor(
image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype
)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device)
self.image_normalizer.to(image_embeds.device)
image_embeds = self.image_normalizer.scale(image_embeds)
image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise)
image_embeds = self.image_normalizer.unscale(image_embeds)
noise_level = get_timestep_embedding(
timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0
)
# `get_timestep_embeddings` does not contain any weights and will always return f32 tensors,
# but we might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
noise_level = noise_level.to(image_embeds.dtype)
image_embeds = torch.cat((image_embeds, noise_level), 1)
return image_embeds
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
# regular denoising process args
prompt: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 20,
guidance_scale: float = 10.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
noise_level: int = 0,
# prior args
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
prior_num_inference_steps: int = 25,
prior_guidance_scale: float = 4.0,
prior_latents: Optional[torch.Tensor] = None,
clip_skip: Optional[int] = None,
):
"""
The call function to the pipeline for generation.
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 20):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 10.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
noise_level (`int`, *optional*, defaults to `0`):
The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in
the final un-noised images. See [`StableUnCLIPPipeline.noise_image_embeddings`] for more details.
prior_num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps in the prior denoising process. More denoising steps usually lead to a
higher quality image at the expense of slower inference.
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
prior_latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
embedding generation in the prior denoising process. Can be used to tweak the same generation with
different prompts. If not provided, a latents tensor is generated by sampling using the supplied random
`generator`.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
[`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning
a tuple, the first element is a list with the generated images.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt=prompt,
height=height,
width=width,
callback_steps=callback_steps,
noise_level=noise_level,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
batch_size = batch_size * num_images_per_prompt
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
prior_do_classifier_free_guidance = prior_guidance_scale > 1.0
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# 3. Encode input prompt
prior_prompt_embeds, prior_text_encoder_hidden_states, prior_text_mask = self._encode_prior_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=prior_do_classifier_free_guidance,
)
# 4. Prepare prior timesteps
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
prior_timesteps_tensor = self.prior_scheduler.timesteps
# 5. Prepare prior latent variables
embedding_dim = self.prior.config.embedding_dim
prior_latents = self.prepare_latents(
(batch_size, embedding_dim),
prior_prompt_embeds.dtype,
device,
generator,
prior_latents,
self.prior_scheduler,
)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
prior_extra_step_kwargs = self.prepare_prior_extra_step_kwargs(generator, eta)
# 7. Prior denoising loop
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([prior_latents] * 2) if prior_do_classifier_free_guidance else prior_latents
latent_model_input = self.prior_scheduler.scale_model_input(latent_model_input, t)
predicted_image_embedding = self.prior(
latent_model_input,
timestep=t,
proj_embedding=prior_prompt_embeds,
encoder_hidden_states=prior_text_encoder_hidden_states,
attention_mask=prior_text_mask,
).predicted_image_embedding
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
if prior_do_classifier_free_guidance:
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
predicted_image_embedding_text - predicted_image_embedding_uncond
)
prior_latents = self.prior_scheduler.step(
predicted_image_embedding,
timestep=t,
sample=prior_latents,
**prior_extra_step_kwargs,
return_dict=False,
)[0]
if callback is not None and i % callback_steps == 0:
callback(i, t, prior_latents)
prior_latents = self.prior.post_process_latents(prior_latents)
image_embeds = prior_latents
# done prior
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# 8. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# 9. Prepare image embeddings
image_embeds = self.noise_image_embeddings(
image_embeds=image_embeds,
noise_level=noise_level,
generator=generator,
)
if do_classifier_free_guidance:
negative_prompt_embeds = torch.zeros_like(image_embeds)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeds = torch.cat([negative_prompt_embeds, image_embeds])
# 10. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# 11. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
latents = self.prepare_latents(
shape=shape,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
latents=latents,
scheduler=self.scheduler,
)
# 12. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 13. Denoising loop
for i, t in enumerate(self.progress_bar(timesteps)):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
class_labels=image_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if XLA_AVAILABLE:
xm.mark_step()
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
else:
image = latents
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
| 289
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
|
class StableDiffusionPipelineOutput(BaseOutput):
"""
Output class for Stable Diffusion pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
nsfw_content_detected (`List[bool]`)
List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
`None` if safety checking could not be performed.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
nsfw_content_detected: Optional[List[bool]]
| 290
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_output.py
|
class FlaxStableDiffusionPipelineOutput(BaseOutput):
"""
Output class for Flax-based Stable Diffusion pipelines.
Args:
images (`np.ndarray`):
Denoised images of array shape of `(batch_size, height, width, num_channels)`.
nsfw_content_detected (`List[bool]`):
List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content
or `None` if safety checking could not be performed.
"""
images: np.ndarray
nsfw_content_detected: List[bool]
| 291
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_output.py
|
class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin):
r"""
Pipeline for text-guided depth-based image-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
"""
model_cpu_offload_seq = "text_encoder->unet->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "depth_mask"]
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
depth_estimator: DPTForDepthEstimation,
feature_extractor: DPTImageProcessor,
):
super().__init__()
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
is_unet_version_less_0_9_0 = (
unet is not None
and hasattr(unet.config, "_diffusers_version")
and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0")
)
is_unet_sample_size_less_64 = (
unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
)
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
depth_estimator=depth_estimator,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
**kwargs,
):
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
prompt_embeds_tuple = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
**kwargs,
)
# concatenate for backwards comp
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
return prompt_embeds
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
self._lora_scale = lora_scale
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
if clip_skip is None:
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
prompt_embeds = prompt_embeds[0]
else:
prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
if self.text_encoder is not None:
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, negative_prompt_embeds
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
def check_inputs(
self,
prompt,
strength,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if image.shape[1] == 4:
init_latents = image
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
else:
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
elif isinstance(generator, list):
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
init_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
init_latents = self.vae.config.scaling_factor * init_latents
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
def prepare_depth_map(self, image, depth_map, batch_size, do_classifier_free_guidance, dtype, device):
if isinstance(image, PIL.Image.Image):
image = [image]
else:
image = list(image)
if isinstance(image[0], PIL.Image.Image):
width, height = image[0].size
elif isinstance(image[0], np.ndarray):
width, height = image[0].shape[:-1]
else:
height, width = image[0].shape[-2:]
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
if depth_map is None:
pixel_values = self.feature_extractor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device=device, dtype=dtype)
# The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16.
# So we use `torch.autocast` here for half precision inference.
if torch.backends.mps.is_available():
autocast_ctx = contextlib.nullcontext()
logger.warning(
"The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16, but autocast is not yet supported on MPS."
)
else:
autocast_ctx = torch.autocast(device.type, dtype=dtype)
with autocast_ctx:
depth_map = self.depth_estimator(pixel_values).predicted_depth
else:
depth_map = depth_map.to(device=device, dtype=dtype)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(height // self.vae_scale_factor, width // self.vae_scale_factor),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_map = depth_map.to(dtype)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if depth_map.shape[0] < batch_size:
repeat_by = batch_size // depth_map.shape[0]
depth_map = depth_map.repeat(repeat_by, 1, 1, 1)
depth_map = torch.cat([depth_map] * 2) if do_classifier_free_guidance else depth_map
return depth_map
@property
def guidance_scale(self):
return self._guidance_scale
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
depth_map: Optional[torch.Tensor] = None,
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
):
r"""
The call function to the pipeline for generation.
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image` or tensor representing an image batch to be used as the starting point. Can accept image
latents as `image` only if `depth_map` is not `None`.
depth_map (`torch.Tensor`, *optional*):
Depth prediction to be used as additional conditioning for the image generation process. If not
defined, it automatically predicts the depth with `self.depth_estimator`.
strength (`float`, *optional*, defaults to 0.8):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter is modulated by `strength`.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
prompt_embeds (`torch.Tensor`, *optional*):
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
```py
>>> import torch
>>> import requests
>>> from PIL import Image
>>> from diffusers import StableDiffusionDepth2ImgPipeline
>>> pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
... "stabilityai/stable-diffusion-2-depth",
... torch_dtype=torch.float16,
... )
>>> pipe.to("cuda")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> init_image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "two tigers"
>>> n_prompt = "bad, deformed, ugly, bad anotomy"
>>> image = pipe(prompt=prompt, image=init_image, negative_prompt=n_prompt, strength=0.7).images[0]
```
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images.
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# 1. Check inputs
self.check_inputs(
prompt,
strength,
callback_steps,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
if image is None:
raise ValueError("`image` input cannot be undefined.")
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# 3. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# 4. Prepare depth mask
depth_mask = self.prepare_depth_map(
image,
depth_map,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
prompt_embeds.dtype,
device,
)
# 5. Preprocess image
image = self.image_processor.preprocess(image)
# 6. Set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 7. Prepare latent variables
latents = self.prepare_latents(
image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_model_input = torch.cat([latent_model_input, depth_mask], dim=1)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=self.cross_attention_kwargs,
return_dict=False,
)[0]
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
depth_mask = callback_outputs.pop("depth_mask", depth_mask)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if XLA_AVAILABLE:
xm.mark_step()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
else:
image = latents
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
image = self.image_processor.postprocess(image, output_type=output_type)
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
| 292
|
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.