sebliu's picture
Update README.md
d7492c3 verified
---
language:
- id
tags:
- audio
- speech
- automatic-speech-recognition
- speech-recognition
task_categories:
- automatic-speech-recognition
pretty_name: Poseidon Indonesian Speech Dataset
size_categories:
- 1K<n<10K
dataset_info:
features:
- name: audio
dtype: audio
- name: file_id
dtype: string
- name: speaker_id
dtype: string
- name: language_code
dtype: string
- name: GT_transcript_english
dtype: string
- name: GT_transcript_native
dtype: string
- name: spoken_transcript_native
dtype: string
- name: spoken_transcript_english
dtype: string
- name: wer_score
dtype: float64
- name: cer_score
dtype: float64
- name: semantic_score
dtype: float64
- name: poseidon_score
dtype: float64
- name: duration
dtype: float64
- name: sampling_rate
dtype: int64
splits:
- name: train
num_bytes: 111012806059
num_examples: 186536
download_size: 111012806059
dataset_size: 111012806059
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Poseidon Indonesian Speech Dataset
## Dataset Description
This dataset contains 186,536 Indonesian audio recordings from the Poseidon audio campaign.
### Dataset Statistics
- **Total Samples:** 186,536
- **Total Duration:** 1856 hours
- **Average WER:** 0.3714
- **Average CER:** 0.2510
- **Average Semantic Score:** 0.9594
- **Average Poseidon Score:** 0.8016
### Decision Rules
- **Poseidon score** (`poseidon_score`) **> 0.689** (*higher the better*)
### Language Distribution
- **id: 186,536 samples**
## Dataset Structure
### Data Fields
- `audio`: Audio file metadata and bytes
- `file_id`: Unique identifier for the audio file
- `speaker_id`: Unique identifier for the speaker
- `language_code`: ISO language code
- `GT_transcript_native`: Ground truth transcript in Indonesian
- `GT_transcript_english`: Ground truth transcript in English
- `spoken_transcript_native`: ASR-generated transcript in Indonesian
- `spoken_transcript_english`: ASR-generated transcript translated to English
- `wer_score`: Word Error Rate score
- `cer_score`: Character Error Rate score
- `semantic_score`: Semantic similarity score
- `poseidon_score`: Overall quality score
- `duration`: Audio duration in seconds
- `sampling_rate`: Audio sampling rate in Hz
### Data Splits
The dataset is delivered as a single `train` split (100% of the data).
## Usage
```python
from datasets import load_dataset
# Load the entire dataset
dataset = load_dataset("psdn-ai/psdn-voice-iiindonesian")
# Load specific split
train_data = load_dataset("psdn-ai/psdn-voice-iiindonesian", split="train")
# Access audio and metadata
sample = dataset["train"][0]
audio_array = sample["audio"]["array"]
sampling_rate = sample["audio"]["sampling_rate"]
transcript = sample["GT_transcript"]
duration = sample["duration"]
```
## Quality Metrics
This dataset bundles multiple quality indicators:
- **WER (Word Error Rate):** Measures word-level transcription accuracy
- **CER (Character Error Rate):** Measures character-level transcription accuracy
- **Semantic Score:** Measures semantic similarity between spoken and reference transcripts
- **Poseidon Score:** Composite quality score derived from the above metrics
## Filtering Examples
```python
from datasets import load_dataset
dataset = load_dataset("psdn-ai/psdn-voice-iiindonesian", split="train")
# Filter clips with low spam probability
human_sounding = dataset.filter(lambda x: x["poseidon_score"] > 0.689)
```
## Citation
```bibtex
@dataset{poseidon_indonesian_speech_dataset_2025,
title={Poseidon Indonesian Speech Dataset},
author={Poseidon-AI},
year={2025},
publisher={Poseidon-AI},
howpublished={\url{https://huggingface.co/datasets/psdn-ai/psdn-voice-iiindonesian}}
}
```
## Contact
For questions or issues, please contact Poseidon team.