id
int64
0
14.1k
problem_id
int64
1
1.31k
problem_title
stringclasses
441 values
difficulty
stringclasses
3 values
c_source
stringclasses
441 values
architecture
stringclasses
4 values
optimization
stringclasses
4 values
compiler
stringclasses
8 values
assembly
stringlengths
31
174k
100
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
aarch64
-O0
armv8-a clang 21.1.0
bs: sub sp, sp, #32 str x0, [sp, #24] str w1, [sp, #20] str w2, [sp, #16] str wzr, [sp, #12] ldr w8, [sp, #20] subs w8, w8, #1 str w8, [sp, #8] b .LBB0_1 .LBB0_1: ldr w8, [sp, #12] ldr w9, [sp, #8] subs w8, w8, w9 b.gt .LBB0_6 b .LBB0_2 .LBB0_2: ldr w8, [sp, #12] ldr w9, [sp, #8] ldr w10, [sp, #12] subs w9, w9, w10 mov w10, #2 sdiv w9, w9, w10 add w8, w8, w9 str w8, [sp, #4] ldr x8, [sp, #24] ldrsw x9, [sp, #4] ldr w8, [x8, x9, lsl #2] ldr w9, [sp, #16] subs w8, w8, w9 b.le .LBB0_4 b .LBB0_3 .LBB0_3: ldr w8, [sp, #4] subs w8, w8, #1 str w8, [sp, #8] b .LBB0_5 .LBB0_4: ldr w8, [sp, #4] add w8, w8, #1 str w8, [sp, #12] b .LBB0_5 .LBB0_5: b .LBB0_1 .LBB0_6: ldr w0, [sp, #8] add sp, sp, #32 ret bs2: sub sp, sp, #80 stp x29, x30, [sp, #64] add x29, sp, #64 stur x0, [x29, #-8] stur w1, [x29, #-12] stur x2, [x29, #-24] stur w3, [x29, #-28] str w4, [sp, #32] str w5, [sp, #28] ldur x0, [x29, #-8] ldur w1, [x29, #-12] ldur x8, [x29, #-24] ldr w2, [x8] bl bs str w0, [sp, #12] ldr w8, [sp, #12] ldr w9, [sp, #32] subs w8, w8, w9 b.lt .LBB1_7 b .LBB1_1 .LBB1_1: ldur x8, [x29, #-8] ldrsw x9, [sp, #32] ldr s0, [x8, x9, lsl #2] fmov w8, s0 scvtf d0, w8 str d0, [sp, #16] ldr w8, [sp, #28] cbz w8, .LBB1_6 b .LBB1_2 .LBB1_2: ldr w8, [sp, #12] ldr w9, [sp, #32] subs w8, w8, w9 b.le .LBB1_4 b .LBB1_3 .LBB1_3: ldur x8, [x29, #-8] ldr w9, [sp, #32] add w9, w9, #1 ldr s0, [x8, w9, sxtw #2] fmov w8, s0 scvtf d1, w8 ldr d0, [sp, #16] fadd d0, d0, d1 str d0, [sp, #16] b .LBB1_5 .LBB1_4: ldur x8, [x29, #-24] ldr s0, [x8] fmov w8, s0 scvtf d1, w8 ldr d0, [sp, #16] fadd d0, d0, d1 str d0, [sp, #16] b .LBB1_5 .LBB1_5: ldr d0, [sp, #16] fmov d1, #2.00000000 fdiv d0, d0, d1 str d0, [sp, #16] b .LBB1_6 .LBB1_6: b .LBB1_13 .LBB1_7: ldr w8, [sp, #12] ldur w9, [x29, #-12] subs w9, w9, #1 subs w8, w8, w9 b.ne .LBB1_11 b .LBB1_8 .LBB1_8: ldur x8, [x29, #-24] ldr w9, [sp, #32] ldr w10, [sp, #12] subs w9, w9, w10 subs w9, w9, #1 ldr s0, [x8, w9, sxtw #2] fmov w8, s0 scvtf d0, w8 str d0, [sp, #16] ldr w8, [sp, #28] cbz w8, .LBB1_10 b .LBB1_9 .LBB1_9: ldur x8, [x29, #-24] ldr w9, [sp, #32] ldr w10, [sp, #12] subs w9, w9, w10 ldr s0, [x8, w9, sxtw #2] fmov w8, s0 scvtf d1, w8 ldr d0, [sp, #16] fadd d0, d0, d1 str d0, [sp, #16] ldr d0, [sp, #16] fmov d1, #2.00000000 fdiv d0, d0, d1 str d0, [sp, #16] b .LBB1_10 .LBB1_10: b .LBB1_12 .LBB1_11: ldur x0, [x29, #-24] ldur w1, [x29, #-28] ldur x8, [x29, #-8] ldr w9, [sp, #12] add w9, w9, #1 add x2, x8, w9, sxtw #2 ldur w8, [x29, #-12] ldr w9, [sp, #12] subs w8, w8, w9 subs w3, w8, #1 ldr w8, [sp, #32] ldr w9, [sp, #12] subs w8, w8, w9 subs w4, w8, #1 ldr w5, [sp, #28] bl bs2 str d0, [sp, #16] b .LBB1_12 .LBB1_12: b .LBB1_13 .LBB1_13: ldr d0, [sp, #16] ldp x29, x30, [sp, #64] add sp, sp, #80 ret min: sub sp, sp, #16 str w0, [sp, #12] str w1, [sp, #8] ldr w8, [sp, #12] ldr w9, [sp, #8] subs w8, w8, w9 b.ge .LBB2_2 b .LBB2_1 .LBB2_1: ldr w8, [sp, #12] str w8, [sp, #4] b .LBB2_3 .LBB2_2: ldr w8, [sp, #8] str w8, [sp, #4] b .LBB2_3 .LBB2_3: ldr w0, [sp, #4] add sp, sp, #16 ret max: sub sp, sp, #16 str w0, [sp, #12] str w1, [sp, #8] ldr w8, [sp, #12] ldr w9, [sp, #8] subs w8, w8, w9 b.le .LBB3_2 b .LBB3_1 .LBB3_1: ldr w8, [sp, #12] str w8, [sp, #4] b .LBB3_3 .LBB3_2: ldr w8, [sp, #8] str w8, [sp, #4] b .LBB3_3 .LBB3_3: ldr w0, [sp, #4] add sp, sp, #16 ret findMedianSortedArrays: sub sp, sp, #80 stp x29, x30, [sp, #64] add x29, sp, #64 stur x0, [x29, #-16] stur w1, [x29, #-20] str x2, [sp, #32] str w3, [sp, #28] ldur w8, [x29, #-20] ldr w9, [sp, #28] add w8, w8, w9 subs w8, w8, #1 mov w10, #2 sdiv w8, w8, w10 str w8, [sp, #12] ldur w8, [x29, #-20] ldr w9, [sp, #28] add w8, w8, w9 sdiv w9, w8, w10 mul w9, w9, w10 subs w8, w8, w9 subs w8, w8, #0 cset w8, eq str w8, [sp, #8] ldr w8, [sp, #28] cbnz w8, .LBB4_4 b .LBB4_1 .LBB4_1: ldur x8, [x29, #-16] ldrsw x9, [sp, #12] ldr s0, [x8, x9, lsl #2] fmov w8, s0 scvtf d0, w8 str d0, [sp, #16] ldr w8, [sp, #8] cbz w8, .LBB4_3 b .LBB4_2 .LBB4_2: ldur x8, [x29, #-16] ldr w9, [sp, #12] add w9, w9, #1 ldr s0, [x8, w9, sxtw #2] fmov w8, s0 scvtf d1, w8 ldr d0, [sp, #16] fadd d0, d0, d1 str d0, [sp, #16] ldr d0, [sp, #16] fmov d1, #2.00000000 fdiv d0, d0, d1 str d0, [sp, #16] b .LBB4_3 .LBB4_3: ldr d0, [sp, #16] stur d0, [x29, #-8] b .LBB4_11 .LBB4_4: ldur w8, [x29, #-20] cbnz w8, .LBB4_8 b .LBB4_5 .LBB4_5: ldr x8, [sp, #32] ldrsw x9, [sp, #12] ldr s0, [x8, x9, lsl #2] fmov w8, s0 scvtf d0, w8 str d0, [sp, #16] ldr w8, [sp, #8] cbz w8, .LBB4_7 b .LBB4_6 .LBB4_6: ldr x8, [sp, #32] ldr w9, [sp, #12] add w9, w9, #1 ldr s0, [x8, w9, sxtw #2] fmov w8, s0 scvtf d1, w8 ldr d0, [sp, #16] fadd d0, d0, d1 str d0, [sp, #16] ldr d0, [sp, #16] fmov d1, #2.00000000 fdiv d0, d0, d1 str d0, [sp, #16] b .LBB4_7 .LBB4_7: ldr d0, [sp, #16] stur d0, [x29, #-8] b .LBB4_11 .LBB4_8: ldr x8, [sp, #32] ldr w8, [x8] ldur x9, [x29, #-16] ldr w9, [x9] subs w8, w8, w9 b.ge .LBB4_10 b .LBB4_9 .LBB4_9: ldr x0, [sp, #32] ldr w1, [sp, #28] ldur x2, [x29, #-16] ldur w3, [x29, #-20] ldr w4, [sp, #12] ldr w5, [sp, #8] bl bs2 stur d0, [x29, #-8] b .LBB4_11 .LBB4_10: ldur x0, [x29, #-16] ldur w1, [x29, #-20] ldr x2, [sp, #32] ldr w3, [sp, #28] ldr w4, [sp, #12] ldr w5, [sp, #8] bl bs2 stur d0, [x29, #-8] b .LBB4_11 .LBB4_11: ldur d0, [x29, #-8] ldp x29, x30, [sp, #64] add sp, sp, #80 ret
101
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
aarch64
-O1
armv8-a clang 21.1.0
bs: subs w8, w1, #1 b.lt .LBB0_3 mov w9, wzr .LBB0_2: sub w10, w8, w9 add w10, w9, w10, lsr #1 ldr w11, [x0, w10, uxtw #2] sub w12, w10, #1 cmp w11, w2 csel w8, w12, w8, gt csinc w9, w9, w10, gt cmp w9, w8 b.le .LBB0_2 .LBB0_3: mov w0, w8 ret bs2: subs w9, w1, #1 b.lt .LBB1_4 .LBB1_1: ldr w11, [x2] mov w10, wzr mov w8, w9 .LBB1_2: sub w12, w8, w10 add w12, w10, w12, lsr #1 ldr w13, [x0, w12, uxtw #2] sub w14, w12, #1 cmp w13, w11 csel w8, w14, w8, gt csinc w10, w10, w12, gt cmp w10, w8 b.le .LBB1_2 subs w10, w4, w8 b.gt .LBB1_5 b .LBB1_7 .LBB1_4: mov w8, w9 subs w10, w4, w8 b.le .LBB1_7 .LBB1_5: cmp w8, w9 b.eq .LBB1_9 add x9, x0, w8, sxtw #2 mvn w8, w8 mov x0, x2 add w4, w4, w8 add x2, x9, #4 add w9, w1, w8 mov w1, w3 mov w3, w9 subs w9, w1, #1 b.ge .LBB1_1 b .LBB1_4 .LBB1_7: add x9, x0, w4, sxtw #2 ldr w10, [x9], #4 scvtf d0, w10 cbz w5, .LBB1_11 cmp w4, w8 csel x8, x9, x2, lt b .LBB1_10 .LBB1_9: add x8, x2, w10, sxtw #2 ldur w9, [x8, #-4] scvtf d0, w9 cbz w5, .LBB1_11 .LBB1_10: ldr w8, [x8] scvtf d1, w8 fadd d0, d0, d1 fmov d1, #0.50000000 fmul d0, d0, d1 .LBB1_11: ret min: cmp w0, w1 csel w0, w0, w1, lt ret max: cmp w0, w1 csel w0, w0, w1, gt ret findMedianSortedArrays: add w8, w3, w1 sub w9, w8, #1 and w8, w8, #0x1 add w9, w9, w9, lsr #31 asr w4, w9, #1 cbz w3, .LBB4_4 cbz w1, .LBB4_5 ldr w9, [x2] ldr w10, [x0] eor w5, w8, #0x1 cmp w9, w10 b.ge .LBB4_9 mov x8, x0 mov w9, w1 mov x0, x2 mov w1, w3 mov x2, x8 mov w3, w9 b bs2 .LBB4_4: add x9, x0, w4, sxtw #2 b .LBB4_6 .LBB4_5: add x9, x2, w4, sxtw #2 .LBB4_6: ldr w10, [x9] scvtf d0, w10 cbnz w8, .LBB4_8 ldr w8, [x9, #4] scvtf d1, w8 fadd d0, d0, d1 fmov d1, #0.50000000 fmul d0, d0, d1 .LBB4_8: ret .LBB4_9: b bs2
102
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
aarch64
-O2
armv8-a clang 21.1.0
bs: subs w8, w1, #1 b.lt .LBB0_3 mov w9, wzr .LBB0_2: sub w10, w8, w9 add w10, w9, w10, lsr #1 ldr w11, [x0, w10, uxtw #2] sub w12, w10, #1 cmp w11, w2 csel w8, w12, w8, gt csinc w9, w9, w10, gt cmp w9, w8 b.le .LBB0_2 .LBB0_3: mov w0, w8 ret bs2: subs w8, w1, #1 b.lt .LBB1_4 .LBB1_1: ldr w11, [x2] mov w10, wzr mov w9, w8 .LBB1_2: sub w12, w9, w10 add w12, w10, w12, lsr #1 ldr w13, [x0, w12, uxtw #2] sub w14, w12, #1 cmp w13, w11 csel w9, w14, w9, gt csinc w10, w10, w12, gt cmp w10, w9 b.le .LBB1_2 cmp w9, w4 b.lt .LBB1_5 b .LBB1_7 .LBB1_4: mov w9, w8 cmp w9, w4 b.ge .LBB1_7 .LBB1_5: cmp w9, w8 b.eq .LBB1_9 add x8, x0, w9, sxtw #2 mvn w9, w9 mov x0, x2 add w4, w4, w9 add x2, x8, #4 add w8, w1, w9 mov w1, w3 mov w3, w8 subs w8, w1, #1 b.ge .LBB1_1 b .LBB1_4 .LBB1_7: add x8, x0, w4, sxtw #2 ldr w10, [x8], #4 scvtf d0, w10 cbz w5, .LBB1_11 cmp w9, w4 csel x8, x8, x2, gt b .LBB1_10 .LBB1_9: sub w8, w4, w8 add x8, x2, w8, sxtw #2 ldur w9, [x8, #-4] scvtf d0, w9 cbz w5, .LBB1_11 .LBB1_10: ldr w8, [x8] scvtf d1, w8 fadd d0, d0, d1 fmov d1, #0.50000000 fmul d0, d0, d1 .LBB1_11: ret min: cmp w0, w1 csel w0, w0, w1, lt ret max: cmp w0, w1 csel w0, w0, w1, gt ret findMedianSortedArrays: add w8, w3, w1 sub w9, w8, #1 add w9, w9, w9, lsr #31 asr w9, w9, #1 cbz w3, .LBB4_17 cbz w1, .LBB4_18 ldr w10, [x2] ldr w11, [x0] cmp w10, w11 b.ge .LBB4_10 subs w12, w3, #1 b.lt .LBB4_7 .LBB4_4: mov w13, wzr mov w10, w12 .LBB4_5: sub w14, w10, w13 add w14, w13, w14, lsr #1 ldr w15, [x2, w14, uxtw #2] sub w16, w14, #1 cmp w15, w11 csel w10, w16, w10, gt csinc w13, w13, w14, gt cmp w13, w10 b.le .LBB4_5 cmp w10, w9 b.lt .LBB4_8 b .LBB4_21 .LBB4_7: mov w10, w12 cmp w10, w9 b.ge .LBB4_21 .LBB4_8: cmp w10, w12 b.eq .LBB4_25 add x12, x2, w10, sxtw #2 mvn w10, w10 mov x2, x0 add w13, w3, w10 add w9, w9, w10 mov w3, w1 ldr w11, [x12, #4]! mov x0, x12 mov w1, w13 subs w12, w3, #1 b.ge .LBB4_4 b .LBB4_7 .LBB4_10: subs w12, w1, #1 b.lt .LBB4_14 mov w13, wzr mov w11, w12 .LBB4_12: sub w14, w11, w13 add w14, w13, w14, lsr #1 ldr w15, [x0, w14, uxtw #2] sub w16, w14, #1 cmp w15, w10 csel w11, w16, w11, gt csinc w13, w13, w14, gt cmp w13, w11 b.le .LBB4_12 cmp w11, w9 b.lt .LBB4_15 b .LBB4_23 .LBB4_14: mov w11, w12 cmp w11, w9 b.ge .LBB4_23 .LBB4_15: cmp w11, w12 b.eq .LBB4_26 add x12, x0, w11, sxtw #2 mvn w10, w11 mov x0, x2 add w11, w1, w10 add w9, w9, w10 mov w1, w3 ldr w10, [x12, #4]! mov x2, x12 mov w3, w11 b .LBB4_10 .LBB4_17: add x9, x0, w9, sxtw #2 b .LBB4_19 .LBB4_18: add x9, x2, w9, sxtw #2 .LBB4_19: ldr w10, [x9] scvtf d0, w10 tbnz w8, #0, .LBB4_30 ldr w8, [x9, #4] b .LBB4_29 .LBB4_21: add x11, x2, w9, sxtw #2 ldr w12, [x11] scvtf d0, w12 tbnz w8, #0, .LBB4_30 add x8, x11, #4 cmp w10, w9 csel x8, x8, x0, gt ldr w8, [x8] b .LBB4_29 .LBB4_23: add x10, x0, w9, sxtw #2 ldr w12, [x10] scvtf d0, w12 tbnz w8, #0, .LBB4_30 add x8, x10, #4 cmp w11, w9 csel x8, x8, x2, gt ldr w8, [x8] b .LBB4_29 .LBB4_25: sub w9, w9, w12 add x9, x0, w9, sxtw #2 b .LBB4_27 .LBB4_26: sub w9, w9, w12 add x9, x2, w9, sxtw #2 .LBB4_27: ldur w10, [x9, #-4] scvtf d0, w10 tbnz w8, #0, .LBB4_30 ldr w8, [x9] .LBB4_29: scvtf d1, w8 fadd d0, d0, d1 fmov d1, #0.50000000 fmul d0, d0, d1 .LBB4_30: ret
103
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
aarch64
-O3
armv8-a clang 21.1.0
bs: subs w8, w1, #1 b.lt .LBB0_3 mov w9, wzr .LBB0_2: sub w10, w8, w9 add w10, w9, w10, lsr #1 ldr w11, [x0, w10, uxtw #2] sub w12, w10, #1 cmp w11, w2 csel w8, w8, w12, le csinc w9, w9, w10, gt cmp w9, w8 b.le .LBB0_2 .LBB0_3: mov w0, w8 ret bs2: subs w8, w1, #1 b.lt .LBB1_4 .LBB1_1: ldr w11, [x2] mov w10, wzr mov w9, w8 .LBB1_2: sub w12, w9, w10 add w12, w10, w12, lsr #1 ldr w13, [x0, w12, uxtw #2] sub w14, w12, #1 cmp w13, w11 csel w9, w9, w14, le csinc w10, w10, w12, gt cmp w10, w9 b.le .LBB1_2 cmp w9, w4 b.lt .LBB1_5 b .LBB1_7 .LBB1_4: mov w9, w8 cmp w8, w4 b.ge .LBB1_7 .LBB1_5: cmp w9, w8 b.eq .LBB1_9 add x8, x0, w9, sxtw #2 mvn w9, w9 mov x0, x2 add w4, w4, w9 add x2, x8, #4 add w8, w1, w9 mov w1, w3 mov w3, w8 subs w8, w1, #1 b.ge .LBB1_1 b .LBB1_4 .LBB1_7: add x8, x0, w4, sxtw #2 ldr w10, [x8], #4 scvtf d0, w10 cbz w5, .LBB1_11 cmp w9, w4 csel x8, x8, x2, gt b .LBB1_10 .LBB1_9: sub w8, w4, w8 add x8, x2, w8, sxtw #2 ldur w9, [x8, #-4] scvtf d0, w9 cbz w5, .LBB1_11 .LBB1_10: ldr w8, [x8] scvtf d1, w8 fadd d0, d0, d1 fmov d1, #0.50000000 fmul d0, d0, d1 .LBB1_11: ret min: cmp w0, w1 csel w0, w0, w1, lt ret max: cmp w0, w1 csel w0, w0, w1, gt ret findMedianSortedArrays: add w8, w3, w1 sub w9, w8, #1 add w9, w9, w9, lsr #31 asr w9, w9, #1 cbz w3, .LBB4_17 cbz w1, .LBB4_19 ldr w10, [x2] ldr w11, [x0] cmp w10, w11 b.ge .LBB4_10 subs w12, w3, #1 b.lt .LBB4_7 .LBB4_4: mov w13, wzr mov w10, w12 .LBB4_5: sub w14, w10, w13 add w14, w13, w14, lsr #1 ldr w15, [x2, w14, uxtw #2] sub w16, w14, #1 cmp w15, w11 csel w10, w10, w16, le csinc w13, w13, w14, gt cmp w13, w10 b.le .LBB4_5 cmp w10, w9 b.lt .LBB4_8 b .LBB4_21 .LBB4_7: mov w10, w12 cmp w12, w9 b.ge .LBB4_21 .LBB4_8: cmp w10, w12 b.eq .LBB4_25 add x12, x2, w10, sxtw #2 mvn w10, w10 mov x2, x0 add w13, w3, w10 add w9, w9, w10 mov w3, w1 ldr w11, [x12, #4]! mov x0, x12 mov w1, w13 subs w12, w3, #1 b.ge .LBB4_4 b .LBB4_7 .LBB4_10: subs w12, w1, #1 b.lt .LBB4_14 mov w13, wzr mov w11, w12 .LBB4_12: sub w14, w11, w13 add w14, w13, w14, lsr #1 ldr w15, [x0, w14, uxtw #2] sub w16, w14, #1 cmp w15, w10 csel w11, w11, w16, le csinc w13, w13, w14, gt cmp w13, w11 b.le .LBB4_12 cmp w11, w9 b.lt .LBB4_15 b .LBB4_23 .LBB4_14: mov w11, w12 cmp w12, w9 b.ge .LBB4_23 .LBB4_15: cmp w11, w12 b.eq .LBB4_26 add x12, x0, w11, sxtw #2 mvn w10, w11 mov x0, x2 add w11, w1, w10 add w9, w9, w10 mov w1, w3 ldr w10, [x12, #4]! mov x2, x12 mov w3, w11 b .LBB4_10 .LBB4_17: add x9, x0, w9, sxtw #2 ldr w10, [x9] scvtf d0, w10 tbz w8, #0, .LBB4_20 .LBB4_18: ret .LBB4_19: add x9, x2, w9, sxtw #2 ldr w10, [x9] scvtf d0, w10 tbnz w8, #0, .LBB4_18 .LBB4_20: ldr w8, [x9, #4] scvtf d1, w8 fadd d0, d0, d1 fmov d1, #0.50000000 fmul d0, d0, d1 ret .LBB4_21: add x11, x2, w9, sxtw #2 ldr w12, [x11] scvtf d0, w12 tbnz w8, #0, .LBB4_18 add x8, x11, #4 cmp w10, w9 csel x8, x8, x0, gt ldr w8, [x8] scvtf d1, w8 fadd d0, d0, d1 fmov d1, #0.50000000 fmul d0, d0, d1 ret .LBB4_23: add x10, x0, w9, sxtw #2 ldr w12, [x10] scvtf d0, w12 tbnz w8, #0, .LBB4_18 add x8, x10, #4 cmp w11, w9 csel x8, x8, x2, gt ldr w8, [x8] scvtf d1, w8 fadd d0, d0, d1 fmov d1, #0.50000000 fmul d0, d0, d1 ret .LBB4_25: sub w9, w9, w12 add x9, x0, w9, sxtw #2 ldur w10, [x9, #-4] scvtf d0, w10 tbnz w8, #0, .LBB4_18 b .LBB4_27 .LBB4_26: sub w9, w9, w12 add x9, x2, w9, sxtw #2 ldur w10, [x9, #-4] scvtf d0, w10 tbnz w8, #0, .LBB4_18 .LBB4_27: ldr w8, [x9] scvtf d1, w8 fadd d0, d0, d1 fmov d1, #0.50000000 fmul d0, d0, d1 ret
104
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
mips64
-O0
mips64 clang 21.1.0
bs: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -48 sd $ra, 40($sp) sd $fp, 32($sp) move $fp, $sp move $1, $6 move $2, $5 sd $4, 24($fp) sw $2, 20($fp) sw $1, 16($fp) sw $zero, 12($fp) lw $1, 20($fp) addiu $1, $1, -1 sw $1, 8($fp) b .LBB0_1 nop .LBB0_1: lw $2, 12($fp) lw $1, 8($fp) slt $1, $1, $2 bnez $1, .LBB0_8 nop b .LBB0_3 nop .LBB0_3: lw $1, 12($fp) lw $2, 8($fp) subu $2, $2, $1 srl $3, $2, 31 addu $2, $2, $3 sra $2, $2, 1 addu $1, $1, $2 sw $1, 4($fp) ld $1, 24($fp) lw $2, 4($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $2, 0($1) lw $1, 16($fp) slt $1, $1, $2 beqz $1, .LBB0_6 nop b .LBB0_5 nop .LBB0_5: lw $1, 4($fp) addiu $1, $1, -1 sw $1, 8($fp) b .LBB0_7 nop .LBB0_6: lw $1, 4($fp) addiu $1, $1, 1 sw $1, 12($fp) b .LBB0_7 nop .LBB0_7: b .LBB0_1 nop .LBB0_8: lw $2, 8($fp) move $sp, $fp ld $fp, 32($sp) ld $ra, 40($sp) daddiu $sp, $sp, 48 jr $ra nop .LCPI1_0: .8byte 0x3fe0000000000000 bs2: .Lfunc_begin1 = .Ltmp8 daddiu $sp, $sp, -96 sd $ra, 88($sp) sd $fp, 80($sp) sd $gp, 72($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(bs2))) daddu $1, $1, $25 daddiu $gp, $1, %lo(%neg(%gp_rel(bs2))) sd $gp, 0($fp) sd $5, 8($fp) move $5, $4 ld $4, 8($fp) move $1, $9 move $2, $8 move $3, $7 sd $5, 64($fp) sw $4, 60($fp) sd $6, 48($fp) sw $3, 44($fp) sw $2, 40($fp) sw $1, 36($fp) ld $4, 64($fp) lw $5, 60($fp) ld $1, 48($fp) lw $6, 0($1) ld $25, %call16(bs)($gp) jalr $25 nop sw $2, 20($fp) lw $1, 20($fp) lw $2, 40($fp) slt $1, $1, $2 bnez $1, .LBB1_10 nop b .LBB1_2 nop .LBB1_2: ld $1, 64($fp) lw $2, 40($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) mtc1 $1, $f0 cvt.d.w $f0, $f0 sdc1 $f0, 24($fp) lw $1, 36($fp) beqz $1, .LBB1_9 nop b .LBB1_4 nop .LBB1_4: lw $2, 20($fp) lw $1, 40($fp) slt $1, $1, $2 beqz $1, .LBB1_7 nop b .LBB1_6 nop .LBB1_6: ld $2, 64($fp) lw $1, 40($fp) dsll $1, $1, 2 daddu $1, $1, $2 lw $1, 4($1) mtc1 $1, $f1 cvt.d.w $f1, $f1 ldc1 $f0, 24($fp) add.d $f0, $f0, $f1 sdc1 $f0, 24($fp) b .LBB1_8 nop .LBB1_7: ld $1, 48($fp) lw $1, 0($1) mtc1 $1, $f1 cvt.d.w $f1, $f1 ldc1 $f0, 24($fp) add.d $f0, $f0, $f1 sdc1 $f0, 24($fp) b .LBB1_8 nop .LBB1_8: ld $1, 0($fp) ldc1 $f0, 24($fp) ld $1, %got_page(.LCPI1_0)($1) ldc1 $f1, %got_ofst(.LCPI1_0)($1) mul.d $f0, $f0, $f1 sdc1 $f0, 24($fp) b .LBB1_9 nop .LBB1_9: b .LBB1_18 nop .LBB1_10: lw $1, 20($fp) lw $2, 60($fp) addiu $2, $2, -1 bne $1, $2, .LBB1_16 nop b .LBB1_12 nop .LBB1_12: ld $1, 48($fp) lw $3, 40($fp) lw $2, 20($fp) not $2, $2 addu $3, $2, $3 move $2, $3 dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) mtc1 $1, $f0 cvt.d.w $f0, $f0 sdc1 $f0, 24($fp) lw $1, 36($fp) beqz $1, .LBB1_15 nop b .LBB1_14 nop .LBB1_14: ld $1, 0($fp) ld $2, 48($fp) lw $3, 40($fp) lw $4, 20($fp) subu $4, $3, $4 move $3, $4 dsll $3, $3, 2 daddu $2, $2, $3 lw $2, 0($2) mtc1 $2, $f1 cvt.d.w $f1, $f1 ldc1 $f0, 24($fp) add.d $f0, $f0, $f1 sdc1 $f0, 24($fp) ldc1 $f0, 24($fp) ld $1, %got_page(.LCPI1_0)($1) ldc1 $f1, %got_ofst(.LCPI1_0)($1) mul.d $f0, $f0, $f1 sdc1 $f0, 24($fp) b .LBB1_15 nop .LBB1_15: b .LBB1_17 nop .LBB1_16: ld $gp, 0($fp) ld $4, 48($fp) lw $5, 44($fp) ld $3, 64($fp) lw $1, 20($fp) sll $2, $1, 0 dsll $2, $2, 2 daddu $2, $2, $3 daddiu $6, $2, 4 lw $3, 60($fp) lw $2, 40($fp) not $1, $1 lw $9, 36($fp) addu $3, $1, $3 move $7, $3 addu $1, $1, $2 move $8, $1 ld $25, %call16(bs2)($gp) jalr $25 nop sdc1 $f0, 24($fp) b .LBB1_17 nop .LBB1_17: b .LBB1_18 nop .LBB1_18: ldc1 $f0, 24($fp) move $sp, $fp ld $gp, 72($sp) ld $fp, 80($sp) ld $ra, 88($sp) daddiu $sp, $sp, 96 jr $ra nop min: .Lfunc_begin2 = .Ltmp28 daddiu $sp, $sp, -32 sd $ra, 24($sp) sd $fp, 16($sp) move $fp, $sp move $1, $5 move $2, $4 sw $2, 12($fp) sw $1, 8($fp) lw $1, 12($fp) lw $2, 8($fp) slt $1, $1, $2 beqz $1, .LBB2_3 nop b .LBB2_2 nop .LBB2_2: lw $1, 12($fp) sw $1, 4($fp) b .LBB2_4 nop .LBB2_3: lw $1, 8($fp) sw $1, 4($fp) b .LBB2_4 nop .LBB2_4: lw $1, 4($fp) sll $2, $1, 0 move $sp, $fp ld $fp, 16($sp) ld $ra, 24($sp) daddiu $sp, $sp, 32 jr $ra nop max: .Lfunc_begin3 = .Ltmp31 daddiu $sp, $sp, -32 sd $ra, 24($sp) sd $fp, 16($sp) move $fp, $sp move $1, $5 move $2, $4 sw $2, 12($fp) sw $1, 8($fp) lw $2, 12($fp) lw $1, 8($fp) slt $1, $1, $2 beqz $1, .LBB3_3 nop b .LBB3_2 nop .LBB3_2: lw $1, 12($fp) sw $1, 4($fp) b .LBB3_4 nop .LBB3_3: lw $1, 8($fp) sw $1, 4($fp) b .LBB3_4 nop .LBB3_4: lw $1, 4($fp) sll $2, $1, 0 move $sp, $fp ld $fp, 16($sp) ld $ra, 24($sp) daddiu $sp, $sp, 32 jr $ra nop .LCPI4_0: .8byte 0x3fe0000000000000 findMedianSortedArrays: .Lfunc_begin4 = .Ltmp34 daddiu $sp, $sp, -96 sd $ra, 88($sp) sd $fp, 80($sp) sd $gp, 72($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(findMedianSortedArrays))) daddu $1, $1, $25 daddiu $1, $1, %lo(%neg(%gp_rel(findMedianSortedArrays))) sd $1, 8($fp) move $1, $7 move $2, $5 sd $4, 56($fp) sw $2, 52($fp) sd $6, 40($fp) sw $1, 36($fp) lw $1, 52($fp) lw $2, 36($fp) addu $1, $1, $2 addiu $1, $1, -1 srl $2, $1, 31 addu $1, $1, $2 sra $1, $1, 1 sw $1, 20($fp) lw $1, 52($fp) lw $2, 36($fp) addu $1, $1, $2 srl $2, $1, 31 addu $2, $1, $2 addiu $3, $zero, -2 and $2, $2, $3 subu $1, $1, $2 sltiu $1, $1, 1 sw $1, 16($fp) lw $1, 36($fp) bnez $1, .LBB4_6 nop b .LBB4_2 nop .LBB4_2: ld $1, 56($fp) lw $2, 20($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) mtc1 $1, $f0 cvt.d.w $f0, $f0 sdc1 $f0, 24($fp) lw $1, 16($fp) beqz $1, .LBB4_5 nop b .LBB4_4 nop .LBB4_4: ld $1, 8($fp) ld $3, 56($fp) lw $2, 20($fp) dsll $2, $2, 2 daddu $2, $2, $3 lw $2, 4($2) mtc1 $2, $f1 cvt.d.w $f1, $f1 ldc1 $f0, 24($fp) add.d $f0, $f0, $f1 sdc1 $f0, 24($fp) ldc1 $f0, 24($fp) ld $1, %got_page(.LCPI4_0)($1) ldc1 $f1, %got_ofst(.LCPI4_0)($1) mul.d $f0, $f0, $f1 sdc1 $f0, 24($fp) b .LBB4_5 nop .LBB4_5: ldc1 $f0, 24($fp) sdc1 $f0, 64($fp) b .LBB4_16 nop .LBB4_6: lw $1, 52($fp) bnez $1, .LBB4_12 nop b .LBB4_8 nop .LBB4_8: ld $1, 40($fp) lw $2, 20($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) mtc1 $1, $f0 cvt.d.w $f0, $f0 sdc1 $f0, 24($fp) lw $1, 16($fp) beqz $1, .LBB4_11 nop b .LBB4_10 nop .LBB4_10: ld $1, 8($fp) ld $3, 40($fp) lw $2, 20($fp) dsll $2, $2, 2 daddu $2, $2, $3 lw $2, 4($2) mtc1 $2, $f1 cvt.d.w $f1, $f1 ldc1 $f0, 24($fp) add.d $f0, $f0, $f1 sdc1 $f0, 24($fp) ldc1 $f0, 24($fp) ld $1, %got_page(.LCPI4_0)($1) ldc1 $f1, %got_ofst(.LCPI4_0)($1) mul.d $f0, $f0, $f1 sdc1 $f0, 24($fp) b .LBB4_11 nop .LBB4_11: ldc1 $f0, 24($fp) sdc1 $f0, 64($fp) b .LBB4_16 nop .LBB4_12: ld $1, 40($fp) lw $1, 0($1) ld $2, 56($fp) lw $2, 0($2) slt $1, $1, $2 beqz $1, .LBB4_15 nop b .LBB4_14 nop .LBB4_14: ld $gp, 8($fp) ld $4, 40($fp) lw $5, 36($fp) ld $6, 56($fp) lw $7, 52($fp) lw $8, 20($fp) lw $9, 16($fp) ld $25, %call16(bs2)($gp) jalr $25 nop sdc1 $f0, 64($fp) b .LBB4_16 nop .LBB4_15: ld $gp, 8($fp) ld $4, 56($fp) lw $5, 52($fp) ld $6, 40($fp) lw $7, 36($fp) lw $8, 20($fp) lw $9, 16($fp) ld $25, %call16(bs2)($gp) jalr $25 nop sdc1 $f0, 64($fp) b .LBB4_16 nop .LBB4_16: ldc1 $f0, 64($fp) move $sp, $fp ld $gp, 72($sp) ld $fp, 80($sp) ld $ra, 88($sp) daddiu $sp, $sp, 96 jr $ra nop
105
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
mips64
-O1
mips64 clang 21.1.0
bs: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp blez $5, .LBB0_3 addiu $2, $5, -1 addiu $3, $zero, 0 .LBB0_2: subu $1, $2, $3 srl $1, $1, 1 addu $1, $1, $3 dsll $5, $1, 2 daddu $5, $4, $5 lw $5, 0($5) slt $5, $6, $5 addiu $7, $1, 1 movn $7, $3, $5 addiu $1, $1, -1 movn $2, $1, $5 slt $1, $2, $7 beqz $1, .LBB0_2 move $3, $7 .LBB0_3: sll $2, $2, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 .LCPI1_0: .8byte 0x3fe0000000000000 bs2: .Lfunc_begin1 = .Ltmp13 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(bs2))) daddu $1, $1, $25 daddiu $2, $1, %lo(%neg(%gp_rel(bs2))) .LBB1_1: addiu $10, $5, -1 blez $5, .LBB1_4 move $3, $10 lw $11, 0($6) addiu $12, $zero, 0 move $3, $10 .LBB1_3: subu $1, $3, $12 srl $1, $1, 1 addu $1, $1, $12 dsll $13, $1, 2 daddu $13, $4, $13 lw $13, 0($13) slt $13, $11, $13 addiu $14, $1, 1 movn $14, $12, $13 addiu $1, $1, -1 movn $3, $1, $13 slt $1, $3, $14 beqz $1, .LBB1_3 move $12, $14 .LBB1_4: slt $1, $3, $8 beqz $1, .LBB1_7 nop beq $3, $10, .LBB1_9 nop not $1, $3 addu $8, $8, $1 addu $1, $5, $1 sll $3, $3, 0 dsll $3, $3, 2 daddu $3, $4, $3 daddiu $3, $3, 4 move $4, $6 move $5, $7 move $6, $3 b .LBB1_1 move $7, $1 .LBB1_7: sll $1, $8, 0 dsll $1, $1, 2 daddu $4, $4, $1 lw $1, 0($4) mtc1 $1, $f0 beqz $9, .LBB1_11 cvt.d.w $f0, $f0 slt $1, $8, $3 daddiu $3, $4, 4 movn $6, $3, $1 lw $1, 0($6) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI1_0)($2) ldc1 $f1, %got_ofst(.LCPI1_0)($1) b .LBB1_11 mul.d $f0, $f0, $f1 .LBB1_9: subu $1, $8, $3 dsll $1, $1, 2 daddu $3, $6, $1 lw $1, -4($3) mtc1 $1, $f0 beqz $9, .LBB1_11 cvt.d.w $f0, $f0 lw $1, 0($3) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI1_0)($2) ldc1 $f1, %got_ofst(.LCPI1_0)($1) mul.d $f0, $f0, $f1 .LBB1_11: move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 min: .Lfunc_begin2 = .Ltmp48 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp slt $1, $4, $5 movn $5, $4, $1 sll $2, $5, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 max: .Lfunc_begin3 = .Ltmp52 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp slt $1, $5, $4 movn $5, $4, $1 sll $2, $5, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 .LCPI4_0: .8byte 0x3fe0000000000000 findMedianSortedArrays: .Lfunc_begin4 = .Ltmp56 daddiu $sp, $sp, -32 sd $ra, 24($sp) sd $fp, 16($sp) sd $gp, 8($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(findMedianSortedArrays))) daddu $1, $1, $25 daddiu $gp, $1, %lo(%neg(%gp_rel(findMedianSortedArrays))) addu $1, $7, $5 addiu $2, $1, -1 srl $3, $2, 31 addu $2, $2, $3 sra $2, $2, 1 beqz $7, .LBB4_4 andi $3, $1, 1 beqz $5, .LBB4_6 nop lw $1, 0($4) lw $8, 0($6) slt $1, $8, $1 beqz $1, .LBB4_8 xori $3, $3, 1 sll $1, $7, 0 sll $7, $5, 0 sll $8, $2, 0 sll $9, $3, 0 ld $25, %call16(bs2)($gp) move $2, $4 move $4, $6 move $5, $1 jalr $25 move $6, $2 b .LBB4_9 nop .LBB4_4: sll $1, $2, 0 dsll $1, $1, 2 daddu $2, $4, $1 lw $1, 0($2) mtc1 $1, $f0 bnez $3, .LBB4_9 cvt.d.w $f0, $f0 lw $1, 4($2) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI4_0)($gp) ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_9 mul.d $f0, $f0, $f1 .LBB4_6: sll $1, $2, 0 dsll $1, $1, 2 daddu $2, $6, $1 lw $1, 0($2) mtc1 $1, $f0 bnez $3, .LBB4_9 cvt.d.w $f0, $f0 lw $1, 4($2) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI4_0)($gp) ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_9 mul.d $f0, $f0, $f1 .LBB4_8: sll $5, $5, 0 sll $7, $7, 0 sll $8, $2, 0 ld $25, %call16(bs2)($gp) jalr $25 sll $9, $3, 0 .LBB4_9: move $sp, $fp ld $gp, 8($sp) ld $fp, 16($sp) ld $ra, 24($sp) jr $ra daddiu $sp, $sp, 32
106
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
mips64
-O2
mips64 clang 21.1.0
bs: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp blez $5, .LBB0_3 addiu $2, $5, -1 addiu $3, $zero, 0 .LBB0_2: subu $1, $2, $3 srl $1, $1, 1 addu $1, $1, $3 dsll $5, $1, 2 daddu $5, $4, $5 lw $5, 0($5) slt $5, $6, $5 addiu $7, $1, 1 movn $7, $3, $5 addiu $1, $1, -1 movn $2, $1, $5 slt $1, $2, $7 beqz $1, .LBB0_2 move $3, $7 .LBB0_3: sll $2, $2, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 .LCPI1_0: .8byte 0x3fe0000000000000 bs2: .Lfunc_begin1 = .Ltmp13 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(bs2))) daddu $1, $1, $25 daddiu $2, $1, %lo(%neg(%gp_rel(bs2))) .LBB1_1: addiu $10, $5, -1 blez $5, .LBB1_4 move $3, $10 lw $11, 0($6) addiu $12, $zero, 0 move $3, $10 .LBB1_3: subu $1, $3, $12 srl $1, $1, 1 addu $1, $1, $12 dsll $13, $1, 2 daddu $13, $4, $13 lw $13, 0($13) slt $13, $11, $13 addiu $14, $1, 1 movn $14, $12, $13 addiu $1, $1, -1 movn $3, $1, $13 slt $1, $3, $14 beqz $1, .LBB1_3 move $12, $14 .LBB1_4: slt $1, $3, $8 beqz $1, .LBB1_7 nop beq $3, $10, .LBB1_9 nop not $1, $3 addu $8, $8, $1 addu $1, $5, $1 sll $3, $3, 0 dsll $3, $3, 2 daddu $3, $4, $3 daddiu $3, $3, 4 move $4, $6 move $5, $7 move $6, $3 b .LBB1_1 move $7, $1 .LBB1_7: sll $1, $8, 0 dsll $1, $1, 2 daddu $4, $4, $1 lw $1, 0($4) mtc1 $1, $f0 beqz $9, .LBB1_11 cvt.d.w $f0, $f0 slt $1, $8, $3 daddiu $3, $4, 4 movn $6, $3, $1 lw $1, 0($6) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI1_0)($2) ldc1 $f1, %got_ofst(.LCPI1_0)($1) b .LBB1_11 mul.d $f0, $f0, $f1 .LBB1_9: subu $1, $8, $10 dsll $1, $1, 2 daddu $3, $6, $1 lw $1, -4($3) mtc1 $1, $f0 beqz $9, .LBB1_11 cvt.d.w $f0, $f0 lw $1, 0($3) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI1_0)($2) ldc1 $f1, %got_ofst(.LCPI1_0)($1) mul.d $f0, $f0, $f1 .LBB1_11: move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 min: .Lfunc_begin2 = .Ltmp48 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp slt $1, $4, $5 movn $5, $4, $1 sll $2, $5, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 max: .Lfunc_begin3 = .Ltmp52 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp slt $1, $5, $4 movn $5, $4, $1 sll $2, $5, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 .LCPI4_0: .8byte 0x3fe0000000000000 findMedianSortedArrays: .Lfunc_begin4 = .Ltmp56 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(findMedianSortedArrays))) daddu $1, $1, $25 daddiu $2, $1, %lo(%neg(%gp_rel(findMedianSortedArrays))) addu $1, $7, $5 addiu $3, $1, -1 srl $8, $3, 31 addu $3, $3, $8 sra $8, $3, 1 beqz $7, .LBB4_15 andi $3, $1, 1 beqz $5, .LBB4_17 nop lw $9, 0($4) lw $10, 0($6) slt $1, $10, $9 beqz $1, .LBB4_9 nop .LBB4_3: addiu $11, $7, -1 blez $7, .LBB4_6 move $10, $11 addiu $12, $zero, 0 move $10, $11 .LBB4_5: subu $1, $10, $12 srl $1, $1, 1 addu $1, $1, $12 dsll $13, $1, 2 daddu $13, $6, $13 lw $13, 0($13) slt $13, $9, $13 addiu $14, $1, 1 movn $14, $12, $13 addiu $1, $1, -1 movn $10, $1, $13 slt $1, $10, $14 beqz $1, .LBB4_5 move $12, $14 .LBB4_6: slt $1, $10, $8 beqz $1, .LBB4_19 nop beq $10, $11, .LBB4_23 nop not $1, $10 addu $8, $8, $1 addu $1, $7, $1 sll $7, $10, 0 dsll $7, $7, 2 daddu $6, $6, $7 lw $9, 4($6) daddiu $10, $6, 4 move $6, $4 move $7, $5 move $4, $10 b .LBB4_3 move $5, $1 .LBB4_9: addiu $11, $5, -1 blez $5, .LBB4_12 move $9, $11 addiu $12, $zero, 0 move $9, $11 .LBB4_11: subu $1, $9, $12 srl $1, $1, 1 addu $1, $1, $12 dsll $13, $1, 2 daddu $13, $4, $13 lw $13, 0($13) slt $13, $10, $13 addiu $14, $1, 1 movn $14, $12, $13 addiu $1, $1, -1 movn $9, $1, $13 slt $1, $9, $14 beqz $1, .LBB4_11 move $12, $14 .LBB4_12: slt $1, $9, $8 beqz $1, .LBB4_21 nop beq $9, $11, .LBB4_25 nop not $1, $9 addu $8, $8, $1 addu $1, $5, $1 sll $5, $9, 0 dsll $5, $5, 2 daddu $4, $4, $5 lw $10, 4($4) daddiu $9, $4, 4 move $4, $6 move $5, $7 move $6, $9 b .LBB4_9 move $7, $1 .LBB4_15: sll $1, $8, 0 dsll $1, $1, 2 daddu $4, $4, $1 lw $1, 0($4) mtc1 $1, $f0 bnez $3, .LBB4_27 cvt.d.w $f0, $f0 lw $1, 4($4) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI4_0)($2) ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_27 mul.d $f0, $f0, $f1 .LBB4_17: sll $1, $8, 0 dsll $1, $1, 2 daddu $4, $6, $1 lw $1, 0($4) mtc1 $1, $f0 bnez $3, .LBB4_27 cvt.d.w $f0, $f0 lw $1, 4($4) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI4_0)($2) ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_27 mul.d $f0, $f0, $f1 .LBB4_19: sll $1, $8, 0 dsll $1, $1, 2 daddu $5, $6, $1 lw $1, 0($5) mtc1 $1, $f0 bnez $3, .LBB4_27 cvt.d.w $f0, $f0 slt $1, $8, $10 daddiu $3, $5, 4 movn $4, $3, $1 lw $1, 0($4) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI4_0)($2) ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_27 mul.d $f0, $f0, $f1 .LBB4_21: sll $1, $8, 0 dsll $1, $1, 2 daddu $4, $4, $1 lw $1, 0($4) mtc1 $1, $f0 bnez $3, .LBB4_27 cvt.d.w $f0, $f0 slt $1, $8, $9 daddiu $3, $4, 4 movn $6, $3, $1 lw $1, 0($6) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI4_0)($2) ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_27 mul.d $f0, $f0, $f1 .LBB4_23: subu $1, $8, $11 dsll $1, $1, 2 daddu $4, $4, $1 lw $1, -4($4) mtc1 $1, $f0 bnez $3, .LBB4_27 cvt.d.w $f0, $f0 lw $1, 0($4) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI4_0)($2) ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_27 mul.d $f0, $f0, $f1 .LBB4_25: subu $1, $8, $11 dsll $1, $1, 2 daddu $4, $6, $1 lw $1, -4($4) mtc1 $1, $f0 bnez $3, .LBB4_27 cvt.d.w $f0, $f0 lw $1, 0($4) mtc1 $1, $f1 cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ld $1, %got_page(.LCPI4_0)($2) ldc1 $f1, %got_ofst(.LCPI4_0)($1) mul.d $f0, $f0, $f1 .LBB4_27: move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16
107
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
mips64
-O3
mips64 clang 21.1.0
bs: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp blez $5, .LBB0_3 addiu $2, $5, -1 addiu $3, $zero, 0 .LBB0_2: subu $1, $2, $3 srl $1, $1, 1 addu $1, $1, $3 dsll $5, $1, 2 addiu $7, $1, 1 addiu $1, $1, -1 daddu $5, $4, $5 lw $5, 0($5) slt $5, $6, $5 movn $7, $3, $5 movn $2, $1, $5 slt $1, $2, $7 beqz $1, .LBB0_2 move $3, $7 .LBB0_3: sll $2, $2, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 .LCPI1_0: .8byte 0x3fe0000000000000 bs2: .Lfunc_begin1 = .Ltmp13 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(bs2))) daddu $1, $1, $25 daddiu $2, $1, %lo(%neg(%gp_rel(bs2))) addiu $10, $5, -1 blez $5, .LBB1_3 move $3, $10 .LBB1_1: lw $11, 0($6) addiu $12, $zero, 0 move $3, $10 .LBB1_2: subu $1, $3, $12 srl $1, $1, 1 addu $1, $1, $12 dsll $13, $1, 2 addiu $14, $1, 1 addiu $1, $1, -1 daddu $13, $4, $13 lw $13, 0($13) slt $13, $11, $13 movn $14, $12, $13 movn $3, $1, $13 slt $1, $3, $14 beqz $1, .LBB1_2 move $12, $14 .LBB1_3: slt $1, $3, $8 beqz $1, .LBB1_7 nop beq $3, $10, .LBB1_9 nop not $1, $3 sll $3, $3, 0 dsll $3, $3, 2 addu $8, $8, $1 addu $1, $5, $1 move $5, $7 daddu $3, $4, $3 move $4, $6 move $7, $1 daddiu $3, $3, 4 move $6, $3 addiu $10, $5, -1 bgtz $5, .LBB1_1 move $3, $10 b .LBB1_3 nop .LBB1_7: sll $1, $8, 0 dsll $1, $1, 2 daddu $4, $4, $1 lw $1, 0($4) mtc1 $1, $f0 beqz $9, .LBB1_11 cvt.d.w $f0, $f0 slt $1, $8, $3 daddiu $3, $4, 4 movn $6, $3, $1 lw $1, 0($6) mtc1 $1, $f1 ld $1, %got_page(.LCPI1_0)($2) cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ldc1 $f1, %got_ofst(.LCPI1_0)($1) b .LBB1_11 mul.d $f0, $f0, $f1 .LBB1_9: subu $1, $8, $10 dsll $1, $1, 2 daddu $3, $6, $1 lw $1, -4($3) mtc1 $1, $f0 beqz $9, .LBB1_11 cvt.d.w $f0, $f0 lw $1, 0($3) mtc1 $1, $f1 ld $1, %got_page(.LCPI1_0)($2) cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ldc1 $f1, %got_ofst(.LCPI1_0)($1) mul.d $f0, $f0, $f1 .LBB1_11: move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 min: .Lfunc_begin2 = .Ltmp51 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp slt $1, $4, $5 movn $5, $4, $1 sll $2, $5, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 max: .Lfunc_begin3 = .Ltmp55 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp slt $1, $5, $4 movn $5, $4, $1 sll $2, $5, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16 .LCPI4_0: .8byte 0x3fe0000000000000 findMedianSortedArrays: .Lfunc_begin4 = .Ltmp59 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(findMedianSortedArrays))) daddu $1, $1, $25 daddiu $2, $1, %lo(%neg(%gp_rel(findMedianSortedArrays))) addu $1, $7, $5 addiu $3, $1, -1 srl $8, $3, 31 addu $3, $3, $8 sra $8, $3, 1 beqz $7, .LBB4_16 andi $3, $1, 1 beqz $5, .LBB4_18 nop lw $9, 0($4) lw $10, 0($6) slt $1, $10, $9 beqz $1, .LBB4_10 nop addiu $11, $7, -1 blez $7, .LBB4_6 move $10, $11 .LBB4_4: addiu $12, $zero, 0 move $10, $11 .LBB4_5: subu $1, $10, $12 srl $1, $1, 1 addu $1, $1, $12 dsll $13, $1, 2 addiu $14, $1, 1 addiu $1, $1, -1 daddu $13, $6, $13 lw $13, 0($13) slt $13, $9, $13 movn $14, $12, $13 movn $10, $1, $13 slt $1, $10, $14 beqz $1, .LBB4_5 move $12, $14 .LBB4_6: slt $1, $10, $8 beqz $1, .LBB4_20 nop beq $10, $11, .LBB4_24 nop not $1, $10 addu $8, $8, $1 addu $1, $7, $1 sll $7, $10, 0 dsll $7, $7, 2 daddu $6, $6, $7 move $7, $5 move $5, $1 lw $9, 4($6) daddiu $10, $6, 4 move $6, $4 move $4, $10 addiu $11, $7, -1 bgtz $7, .LBB4_4 move $10, $11 b .LBB4_6 nop .LBB4_10: addiu $11, $5, -1 blez $5, .LBB4_13 move $9, $11 addiu $12, $zero, 0 move $9, $11 .LBB4_12: subu $1, $9, $12 srl $1, $1, 1 addu $1, $1, $12 dsll $13, $1, 2 addiu $14, $1, 1 addiu $1, $1, -1 daddu $13, $4, $13 lw $13, 0($13) slt $13, $10, $13 movn $14, $12, $13 movn $9, $1, $13 slt $1, $9, $14 beqz $1, .LBB4_12 move $12, $14 .LBB4_13: slt $1, $9, $8 beqz $1, .LBB4_22 nop beq $9, $11, .LBB4_26 nop not $1, $9 addu $8, $8, $1 addu $1, $5, $1 sll $5, $9, 0 dsll $5, $5, 2 daddu $4, $4, $5 move $5, $7 move $7, $1 lw $10, 4($4) daddiu $9, $4, 4 move $4, $6 b .LBB4_10 move $6, $9 .LBB4_16: sll $1, $8, 0 dsll $1, $1, 2 daddu $4, $4, $1 lw $1, 0($4) mtc1 $1, $f0 bnez $3, .LBB4_28 cvt.d.w $f0, $f0 lw $1, 4($4) mtc1 $1, $f1 ld $1, %got_page(.LCPI4_0)($2) cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_28 mul.d $f0, $f0, $f1 .LBB4_18: sll $1, $8, 0 dsll $1, $1, 2 daddu $4, $6, $1 lw $1, 0($4) mtc1 $1, $f0 bnez $3, .LBB4_28 cvt.d.w $f0, $f0 lw $1, 4($4) mtc1 $1, $f1 ld $1, %got_page(.LCPI4_0)($2) cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_28 mul.d $f0, $f0, $f1 .LBB4_20: sll $1, $8, 0 dsll $1, $1, 2 daddu $5, $6, $1 lw $1, 0($5) mtc1 $1, $f0 bnez $3, .LBB4_28 cvt.d.w $f0, $f0 slt $1, $8, $10 daddiu $3, $5, 4 movn $4, $3, $1 lw $1, 0($4) mtc1 $1, $f1 ld $1, %got_page(.LCPI4_0)($2) cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_28 mul.d $f0, $f0, $f1 .LBB4_22: sll $1, $8, 0 dsll $1, $1, 2 daddu $4, $4, $1 lw $1, 0($4) mtc1 $1, $f0 bnez $3, .LBB4_28 cvt.d.w $f0, $f0 slt $1, $8, $9 daddiu $3, $4, 4 movn $6, $3, $1 lw $1, 0($6) mtc1 $1, $f1 ld $1, %got_page(.LCPI4_0)($2) cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_28 mul.d $f0, $f0, $f1 .LBB4_24: subu $1, $8, $11 dsll $1, $1, 2 daddu $4, $4, $1 lw $1, -4($4) mtc1 $1, $f0 bnez $3, .LBB4_28 cvt.d.w $f0, $f0 lw $1, 0($4) mtc1 $1, $f1 ld $1, %got_page(.LCPI4_0)($2) cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ldc1 $f1, %got_ofst(.LCPI4_0)($1) b .LBB4_28 mul.d $f0, $f0, $f1 .LBB4_26: subu $1, $8, $11 dsll $1, $1, 2 daddu $4, $6, $1 lw $1, -4($4) mtc1 $1, $f0 bnez $3, .LBB4_28 cvt.d.w $f0, $f0 lw $1, 0($4) mtc1 $1, $f1 ld $1, %got_page(.LCPI4_0)($2) cvt.d.w $f1, $f1 add.d $f0, $f0, $f1 ldc1 $f1, %got_ofst(.LCPI4_0)($1) mul.d $f0, $f0, $f1 .LBB4_28: move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16
108
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
mips64
-O0
mips64 gcc 15.2.0
bs: daddiu $sp,$sp,-48 sd $fp,40($sp) move $fp,$sp sd $4,16($fp) move $3,$5 move $2,$6 sll $3,$3,0 sw $3,24($fp) sll $2,$2,0 sw $2,28($fp) sw $0,0($fp) lw $2,24($fp) addiu $2,$2,-1 sw $2,4($fp) b .L2 nop .L4: lw $3,4($fp) lw $2,0($fp) subu $2,$3,$2 srl $3,$2,31 addu $2,$3,$2 sra $2,$2,1 lw $3,0($fp) addu $2,$3,$2 sw $2,8($fp) lw $2,8($fp) dsll $2,$2,2 ld $3,16($fp) daddu $2,$3,$2 lw $2,0($2) lw $3,28($fp) slt $2,$3,$2 beq $2,$0,.L3 nop lw $2,8($fp) addiu $2,$2,-1 sw $2,4($fp) b .L2 nop .L3: lw $2,8($fp) addiu $2,$2,1 sw $2,0($fp) .L2: lw $3,0($fp) lw $2,4($fp) slt $2,$2,$3 beq $2,$0,.L4 nop lw $2,4($fp) move $sp,$fp ld $fp,40($sp) daddiu $sp,$sp,48 jr $31 nop bs2: daddiu $sp,$sp,-80 sd $31,72($sp) sd $fp,64($sp) sd $28,56($sp) move $fp,$sp lui $28,%hi(%neg(%gp_rel(bs2))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(bs2))) sd $4,16($fp) sd $6,32($fp) move $4,$7 move $3,$8 move $2,$9 sll $5,$5,0 sw $5,24($fp) sll $4,$4,0 sw $4,28($fp) sll $3,$3,0 sw $3,40($fp) sll $2,$2,0 sw $2,44($fp) ld $2,32($fp) lw $3,0($2) lw $2,24($fp) move $6,$3 move $5,$2 ld $4,16($fp) ld $2,%got_disp(bs)($28) mtlo $2 mflo $25 jalr $25 nop sw $2,8($fp) lw $3,8($fp) lw $2,40($fp) slt $2,$3,$2 bne $2,$0,.L7 nop lw $2,40($fp) dsll $2,$2,2 ld $3,16($fp) daddu $2,$3,$2 lw $2,0($2) dmtc1 $2,$f0 nop cvt.d.w $f0,$f0 sdc1 $f0,0($fp) lw $2,44($fp) beq $2,$0,.L8 nop lw $3,8($fp) lw $2,40($fp) slt $2,$2,$3 beq $2,$0,.L9 nop lw $2,40($fp) daddiu $2,$2,1 dsll $2,$2,2 ld $3,16($fp) daddu $2,$3,$2 lw $2,0($2) dmtc1 $2,$f0 nop cvt.d.w $f0,$f0 ldc1 $f1,0($fp) add.d $f0,$f1,$f0 sdc1 $f0,0($fp) b .L10 nop .L9: ld $2,32($fp) lw $2,0($2) dmtc1 $2,$f0 nop cvt.d.w $f0,$f0 ldc1 $f1,0($fp) add.d $f0,$f1,$f0 sdc1 $f0,0($fp) .L10: ldc1 $f1,0($fp) ld $2,%got_page(.LC0)($28) ldc1 $f0,%got_ofst(.LC0)($2) div.d $f0,$f1,$f0 sdc1 $f0,0($fp) b .L8 nop .L7: lw $2,24($fp) addiu $2,$2,-1 move $3,$2 lw $2,8($fp) bne $2,$3,.L11 nop lw $3,40($fp) lw $2,8($fp) subu $2,$3,$2 dsll $2,$2,2 daddiu $2,$2,-4 ld $3,32($fp) daddu $2,$3,$2 lw $2,0($2) dmtc1 $2,$f0 nop cvt.d.w $f0,$f0 sdc1 $f0,0($fp) lw $2,44($fp) beq $2,$0,.L8 nop lw $3,40($fp) lw $2,8($fp) subu $2,$3,$2 dsll $2,$2,2 ld $3,32($fp) daddu $2,$3,$2 lw $2,0($2) dmtc1 $2,$f0 nop cvt.d.w $f0,$f0 ldc1 $f1,0($fp) add.d $f0,$f1,$f0 sdc1 $f0,0($fp) ldc1 $f1,0($fp) ld $2,%got_page(.LC0)($28) ldc1 $f0,%got_ofst(.LC0)($2) div.d $f0,$f1,$f0 sdc1 $f0,0($fp) b .L8 nop .L11: lw $2,8($fp) daddiu $2,$2,1 dsll $2,$2,2 ld $3,16($fp) daddu $4,$3,$2 lw $3,24($fp) lw $2,8($fp) subu $2,$3,$2 addiu $2,$2,-1 move $5,$2 lw $3,40($fp) lw $2,8($fp) subu $2,$3,$2 addiu $2,$2,-1 move $3,$2 lw $6,44($fp) lw $2,28($fp) move $9,$6 move $8,$3 move $7,$5 move $6,$4 move $5,$2 ld $4,32($fp) ld $2,%got_disp(bs2)($28) mtlo $2 mflo $25 jalr $25 nop sdc1 $f0,0($fp) .L8: ldc1 $f0,0($fp) move $sp,$fp ld $31,72($sp) ld $fp,64($sp) ld $28,56($sp) daddiu $sp,$sp,80 jr $31 nop min: daddiu $sp,$sp,-32 sd $fp,24($sp) move $fp,$sp move $3,$4 move $2,$5 sll $3,$3,0 sw $3,0($fp) sll $2,$2,0 sw $2,4($fp) lw $3,0($fp) lw $2,4($fp) slt $4,$3,$2 beq $4,$0,.L14 nop move $2,$3 .L14: move $sp,$fp ld $fp,24($sp) daddiu $sp,$sp,32 jr $31 nop max: daddiu $sp,$sp,-32 sd $fp,24($sp) move $fp,$sp move $3,$4 move $2,$5 sll $3,$3,0 sw $3,0($fp) sll $2,$2,0 sw $2,4($fp) lw $3,0($fp) lw $2,4($fp) slt $4,$2,$3 beq $4,$0,.L17 nop move $2,$3 .L17: move $sp,$fp ld $fp,24($sp) daddiu $sp,$sp,32 jr $31 nop findMedianSortedArrays: daddiu $sp,$sp,-80 sd $31,72($sp) sd $fp,64($sp) sd $28,56($sp) move $fp,$sp lui $28,%hi(%neg(%gp_rel(findMedianSortedArrays))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(findMedianSortedArrays))) sd $4,16($fp) move $3,$5 sd $6,32($fp) move $2,$7 sll $3,$3,0 sw $3,24($fp) sll $2,$2,0 sw $2,28($fp) lw $3,24($fp) lw $2,28($fp) addu $2,$3,$2 addiu $2,$2,-1 srl $3,$2,31 addu $2,$3,$2 sra $2,$2,1 sw $2,8($fp) lw $3,24($fp) lw $2,28($fp) addu $2,$3,$2 andi $2,$2,0x1 sll $2,$2,0 andi $2,$2,0x1 xori $2,$2,0x1 andi $2,$2,0x00ff sw $2,12($fp) lw $2,28($fp) bne $2,$0,.L20 nop lw $2,8($fp) dsll $2,$2,2 ld $3,16($fp) daddu $2,$3,$2 lw $2,0($2) dmtc1 $2,$f0 nop cvt.d.w $f0,$f0 sdc1 $f0,0($fp) lw $2,12($fp) beq $2,$0,.L21 nop lw $2,8($fp) daddiu $2,$2,1 dsll $2,$2,2 ld $3,16($fp) daddu $2,$3,$2 lw $2,0($2) dmtc1 $2,$f0 nop cvt.d.w $f0,$f0 ldc1 $f1,0($fp) add.d $f0,$f1,$f0 sdc1 $f0,0($fp) ldc1 $f1,0($fp) ld $2,%got_page(.LC0)($28) ldc1 $f0,%got_ofst(.LC0)($2) div.d $f0,$f1,$f0 sdc1 $f0,0($fp) .L21: ldc1 $f0,0($fp) b .L22 nop .L20: lw $2,24($fp) bne $2,$0,.L23 nop lw $2,8($fp) dsll $2,$2,2 ld $3,32($fp) daddu $2,$3,$2 lw $2,0($2) dmtc1 $2,$f0 nop cvt.d.w $f0,$f0 sdc1 $f0,0($fp) lw $2,12($fp) beq $2,$0,.L24 nop lw $2,8($fp) daddiu $2,$2,1 dsll $2,$2,2 ld $3,32($fp) daddu $2,$3,$2 lw $2,0($2) dmtc1 $2,$f0 nop cvt.d.w $f0,$f0 ldc1 $f1,0($fp) add.d $f0,$f1,$f0 sdc1 $f0,0($fp) ldc1 $f1,0($fp) ld $2,%got_page(.LC0)($28) ldc1 $f0,%got_ofst(.LC0)($2) div.d $f0,$f1,$f0 sdc1 $f0,0($fp) .L24: ldc1 $f0,0($fp) b .L22 nop .L23: ld $2,32($fp) lw $3,0($2) ld $2,16($fp) lw $2,0($2) slt $2,$3,$2 beq $2,$0,.L25 nop lw $5,12($fp) lw $4,8($fp) lw $3,24($fp) lw $2,28($fp) move $9,$5 move $8,$4 move $7,$3 ld $6,16($fp) move $5,$2 ld $4,32($fp) ld $2,%got_disp(bs2)($28) mtlo $2 mflo $25 jalr $25 nop b .L22 nop .L25: lw $5,12($fp) lw $4,8($fp) lw $3,28($fp) lw $2,24($fp) move $9,$5 move $8,$4 move $7,$3 ld $6,32($fp) move $5,$2 ld $4,16($fp) ld $2,%got_disp(bs2)($28) mtlo $2 mflo $25 jalr $25 nop .L22: move $sp,$fp ld $31,72($sp) ld $fp,64($sp) ld $28,56($sp) daddiu $sp,$sp,80 jr $31 nop .LC0: .word 1073741824 .word 0
109
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
mips64
-O1
mips64 gcc 15.2.0
bs: addiu $2,$5,-1 bltz $2,.L8 move $8,$0 b .L9 subu $5,$2,$8 .L3: .L4: slt $3,$2,$8 bne $3,$0,.L8 subu $5,$2,$8 .L9: srl $3,$5,31 addu $3,$3,$5 sra $3,$3,1 addu $3,$3,$8 dsll $7,$3,2 daddu $7,$4,$7 lw $7,0($7) slt $7,$6,$7 beql $7,$0,.L3 addiu $8,$3,1 b .L4 addiu $2,$3,-1 .L8: jr $31 nop bs2: daddiu $sp,$sp,-80 sd $31,72($sp) sd $28,64($sp) sd $22,56($sp) sd $21,48($sp) sd $20,40($sp) sd $19,32($sp) sd $18,24($sp) sd $17,16($sp) sd $16,8($sp) lui $28,%hi(%neg(%gp_rel(bs2))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(bs2))) move $17,$4 move $19,$5 move $20,$6 move $21,$7 move $16,$8 move $18,$9 lw $2,0($6) move $22,$2 ld $25,%got_disp(bs)($28) 1: jalr $25 move $6,$2 slt $3,$2,$16 bnel $3,$0,.L11 addiu $3,$19,-1 dsll $4,$16,2 daddu $3,$17,$4 lw $3,0($3) mtc1 $3,$f0 beq $18,$0,.L10 cvt.d.w $f0,$f0 slt $2,$16,$2 beq $2,$0,.L13 daddu $4,$17,$4 lw $2,4($4) mtc1 $2,$f1 nop cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 .L14: ld $2,%got_page(.LC0)($28) ldc1 $f1,%got_ofst(.LC0)($2) mul.d $f0,$f0,$f1 .L10: ld $31,72($sp) .L17: ld $28,64($sp) ld $22,56($sp) ld $21,48($sp) ld $20,40($sp) ld $19,32($sp) ld $18,24($sp) ld $17,16($sp) ld $16,8($sp) jr $31 daddiu $sp,$sp,80 .L13: dmtc1 $22,$f1 nop cvt.d.w $f1,$f1 b .L14 add.d $f0,$f1,$f0 .L11: bne $3,$2,.L15 subu $8,$16,$2 subu $2,$16,$2 daddiu $3,$2,-1 dsll $3,$3,2 daddu $3,$20,$3 lw $3,0($3) mtc1 $3,$f0 beq $18,$0,.L10 cvt.d.w $f0,$f0 dsll $2,$2,2 daddu $2,$20,$2 lw $2,0($2) mtc1 $2,$f1 nop cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ld $2,%got_page(.LC0)($28) ldc1 $f1,%got_ofst(.LC0)($2) b .L10 mul.d $f0,$f0,$f1 .L15: subu $7,$19,$2 daddiu $2,$2,1 dsll $6,$2,2 move $9,$18 addiu $8,$8,-1 addiu $7,$7,-1 daddu $6,$17,$6 move $5,$21 ld $25,%got_disp(bs2)($28) 1: jalr $25 move $4,$20 b .L17 ld $31,72($sp) min: move $2,$5 slt $5,$4,$5 bnel $5,$0,.L21 move $2,$4 .L21: jr $31 nop max: move $2,$5 slt $5,$5,$4 bnel $5,$0,.L25 move $2,$4 .L25: jr $31 nop findMedianSortedArrays: daddiu $sp,$sp,-16 sd $31,8($sp) sd $28,0($sp) lui $28,%hi(%neg(%gp_rel(findMedianSortedArrays))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(findMedianSortedArrays))) move $3,$6 addu $9,$5,$7 addiu $6,$9,-1 srl $8,$6,31 addu $8,$8,$6 sra $8,$8,1 beq $7,$0,.L32 andi $9,$9,0x1 beq $5,$0,.L33 move $2,$7 lw $6,0($3) lw $7,0($4) slt $6,$6,$7 bne $6,$0,.L34 xori $9,$9,0x1 move $7,$2 ld $25,%got_disp(bs2)($28) 1: jalr $25 move $6,$3 .L26: ld $31,8($sp) .L35: ld $28,0($sp) jr $31 daddiu $sp,$sp,16 .L32: dsll $8,$8,2 daddu $2,$4,$8 lw $2,0($2) mtc1 $2,$f0 bne $9,$0,.L26 cvt.d.w $f0,$f0 daddu $8,$4,$8 lw $2,4($8) mtc1 $2,$f1 nop cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ld $2,%got_page(.LC0)($28) ldc1 $f1,%got_ofst(.LC0)($2) b .L26 mul.d $f0,$f0,$f1 .L33: dsll $8,$8,2 daddu $2,$3,$8 lw $2,0($2) mtc1 $2,$f0 bne $9,$0,.L26 cvt.d.w $f0,$f0 daddu $3,$3,$8 lw $2,4($3) mtc1 $2,$f1 nop cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ld $2,%got_page(.LC0)($28) ldc1 $f1,%got_ofst(.LC0)($2) b .L26 mul.d $f0,$f0,$f1 .L34: move $7,$5 move $6,$4 move $5,$2 ld $25,%got_disp(bs2)($28) 1: jalr $25 move $4,$3 b .L35 ld $31,8($sp) .LC0: .word 1071644672 .word 0
110
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
mips64
-O2
mips64 gcc 15.2.0
bs: addiu $2,$5,-1 bltz $2,.L11 move $8,$0 b .L10 subu $3,$2,$8 .L9: slt $3,$2,$8 bne $3,$0,.L11 subu $3,$2,$8 .L10: sra $3,$3,1 addu $3,$3,$8 dsll $7,$3,2 daddu $7,$4,$7 lw $7,0($7) slt $7,$6,$7 bnel $7,$0,.L9 addiu $2,$3,-1 addiu $8,$3,1 slt $3,$2,$8 beq $3,$0,.L10 subu $3,$2,$8 .L11: jr $31 nop bs2: lui $14,%hi(%neg(%gp_rel(bs2))) daddu $14,$14,$25 addiu $13,$5,-1 lw $12,0($6) daddiu $14,$14,%lo(%neg(%gp_rel(bs2))) bltz $13,.L13 move $11,$13 .L36: b .L16 move $10,$0 .L35: slt $2,$11,$10 bne $2,$0,.L38 slt $2,$11,$8 .L16: subu $2,$11,$10 .L39: sra $2,$2,1 addu $2,$2,$10 dsll $3,$2,2 daddu $3,$4,$3 lw $3,0($3) slt $3,$12,$3 bnel $3,$0,.L35 addiu $11,$2,-1 addiu $10,$2,1 slt $2,$11,$10 beql $2,$0,.L39 subu $2,$11,$10 slt $2,$11,$8 .L38: beql $2,$0,.L40 dsll $2,$8,2 beq $11,$13,.L24 subu $3,$8,$11 addiu $2,$11,1 dsll $2,$2,2 subu $11,$5,$11 daddu $2,$4,$2 move $5,$7 move $4,$6 addiu $13,$5,-1 move $6,$2 addiu $7,$11,-1 lw $12,0($6) addiu $8,$3,-1 bgez $13,.L36 move $11,$13 .L13: slt $2,$13,$8 bne $2,$0,.L24 dsll $2,$8,2 .L40: daddu $2,$4,$2 lwc1 $f0,0($2) beq $9,$0,.L41 cvt.d.w $f0,$f0 slt $11,$8,$11 beq $11,$0,.L19 nop lw $2,4($2) mtc1 $2,$f1 ld $2,%got_page(.LC0)($14) cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ldc1 $f1,%got_ofst(.LC0)($2) jr $31 mul.d $f0,$f0,$f1 .L41: jr $31 nop .L24: subu $11,$8,$11 addiu $2,$11,-1 dsll $2,$2,32 dsrl $2,$2,32 dsll $2,$2,2 daddu $2,$6,$2 lw $2,0($2) mtc1 $2,$f0 beq $9,$0,.L41 cvt.d.w $f0,$f0 dsll $11,$11,32 dsrl $11,$11,32 dsll $11,$11,2 daddu $6,$6,$11 lw $2,0($6) mtc1 $2,$f1 ld $2,%got_page(.LC0)($14) .L37: cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ldc1 $f1,%got_ofst(.LC0)($2) jr $31 mul.d $f0,$f0,$f1 .L19: dmtc1 $12,$f1 b .L37 ld $2,%got_page(.LC0)($14) min: slt $3,$4,$5 beq $3,$0,.L44 nop jr $31 move $2,$4 .L44: jr $31 move $2,$5 max: slt $3,$5,$4 beq $3,$0,.L48 nop jr $31 move $2,$4 .L48: jr $31 move $2,$5 findMedianSortedArrays: addu $9,$5,$7 addiu $8,$9,-1 srl $2,$8,31 lui $14,%hi(%neg(%gp_rel(findMedianSortedArrays))) addu $2,$2,$8 daddu $14,$14,$25 sra $8,$2,1 daddiu $14,$14,%lo(%neg(%gp_rel(findMedianSortedArrays))) sra $2,$2,1 beq $7,$0,.L57 andi $9,$9,0x1 beq $5,$0,.L58 move $12,$6 lw $2,0($6) lw $13,0($4) slt $2,$2,$13 bne $2,$0,.L59 xori $9,$9,0x1 ld $25,%got_disp(bs2)($14) 1: jr $25 nop .L58: dsll $2,$2,2 daddu $12,$6,$2 lwc1 $f0,0($12) bne $9,$0,.L61 cvt.d.w $f0,$f0 lw $2,4($12) mtc1 $2,$f1 ld $2,%got_page(.LC0)($14) cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ldc1 $f1,%got_ofst(.LC0)($2) jr $31 mul.d $f0,$f0,$f1 .L57: dsll $2,$2,2 daddu $11,$4,$2 lwc1 $f0,0($11) beq $9,$0,.L60 cvt.d.w $f0,$f0 .L61: jr $31 nop .L60: lw $2,4($11) mtc1 $2,$f1 ld $2,%got_page(.LC0)($14) cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ldc1 $f1,%got_ofst(.LC0)($2) jr $31 mul.d $f0,$f0,$f1 .L59: ld $25,%got_disp(bs2)($14) move $3,$7 move $6,$4 move $7,$5 move $4,$12 1: jr $25 move $5,$3 .LC0: .word 1071644672 .word 0
111
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
mips64
-O3
mips64 gcc 15.2.0
bs: addiu $2,$5,-1 bltz $2,.L11 move $8,$0 b .L10 subu $3,$2,$8 .L9: slt $3,$2,$8 bne $3,$0,.L11 subu $3,$2,$8 .L10: sra $3,$3,1 addu $3,$3,$8 dsll $7,$3,2 daddu $7,$4,$7 lw $7,0($7) slt $7,$6,$7 bnel $7,$0,.L9 addiu $2,$3,-1 addiu $8,$3,1 slt $3,$2,$8 beq $3,$0,.L10 subu $3,$2,$8 .L11: jr $31 nop bs2: lui $14,%hi(%neg(%gp_rel(bs2))) daddu $14,$14,$25 addiu $13,$5,-1 lw $12,0($6) daddiu $14,$14,%lo(%neg(%gp_rel(bs2))) bltz $13,.L13 move $11,$13 .L36: b .L16 move $10,$0 .L35: slt $2,$11,$10 bne $2,$0,.L38 slt $2,$11,$8 .L16: subu $2,$11,$10 .L39: sra $2,$2,1 addu $2,$2,$10 dsll $3,$2,2 daddu $3,$4,$3 lw $3,0($3) slt $3,$12,$3 bnel $3,$0,.L35 addiu $11,$2,-1 addiu $10,$2,1 slt $2,$11,$10 beql $2,$0,.L39 subu $2,$11,$10 slt $2,$11,$8 .L38: beql $2,$0,.L40 dsll $2,$8,2 beq $11,$13,.L24 subu $3,$8,$11 addiu $2,$11,1 dsll $2,$2,2 subu $11,$5,$11 daddu $2,$4,$2 move $5,$7 move $4,$6 addiu $13,$5,-1 move $6,$2 addiu $7,$11,-1 lw $12,0($6) addiu $8,$3,-1 bgez $13,.L36 move $11,$13 .L13: slt $2,$13,$8 bne $2,$0,.L24 dsll $2,$8,2 .L40: daddu $2,$4,$2 lwc1 $f0,0($2) beq $9,$0,.L41 cvt.d.w $f0,$f0 slt $11,$8,$11 beq $11,$0,.L19 nop lw $2,4($2) mtc1 $2,$f1 ld $2,%got_page(.LC0)($14) cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ldc1 $f1,%got_ofst(.LC0)($2) jr $31 mul.d $f0,$f0,$f1 .L41: jr $31 nop .L24: subu $11,$8,$11 addiu $2,$11,-1 dsll $2,$2,32 dsrl $2,$2,32 dsll $2,$2,2 daddu $2,$6,$2 lw $2,0($2) mtc1 $2,$f0 beq $9,$0,.L41 cvt.d.w $f0,$f0 dsll $11,$11,32 dsrl $11,$11,32 dsll $11,$11,2 daddu $6,$6,$11 lw $2,0($6) mtc1 $2,$f1 ld $2,%got_page(.LC0)($14) .L37: cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ldc1 $f1,%got_ofst(.LC0)($2) jr $31 mul.d $f0,$f0,$f1 .L19: dmtc1 $12,$f1 b .L37 ld $2,%got_page(.LC0)($14) min: slt $3,$4,$5 beq $3,$0,.L44 nop jr $31 move $2,$4 .L44: jr $31 move $2,$5 max: slt $3,$5,$4 beq $3,$0,.L48 nop jr $31 move $2,$4 .L48: jr $31 move $2,$5 findMedianSortedArrays: addu $9,$5,$7 addiu $8,$9,-1 srl $2,$8,31 lui $14,%hi(%neg(%gp_rel(findMedianSortedArrays))) addu $2,$2,$8 daddu $14,$14,$25 sra $8,$2,1 daddiu $14,$14,%lo(%neg(%gp_rel(findMedianSortedArrays))) sra $2,$2,1 beq $7,$0,.L57 andi $9,$9,0x1 beq $5,$0,.L58 move $12,$6 lw $2,0($6) lw $13,0($4) slt $2,$2,$13 bne $2,$0,.L59 xori $9,$9,0x1 ld $25,%got_disp(bs2)($14) 1: jr $25 nop .L58: dsll $2,$2,2 daddu $12,$6,$2 lwc1 $f0,0($12) bne $9,$0,.L61 cvt.d.w $f0,$f0 lw $2,4($12) mtc1 $2,$f1 ld $2,%got_page(.LC0)($14) cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ldc1 $f1,%got_ofst(.LC0)($2) jr $31 mul.d $f0,$f0,$f1 .L57: dsll $2,$2,2 daddu $11,$4,$2 lwc1 $f0,0($11) beq $9,$0,.L60 cvt.d.w $f0,$f0 .L61: jr $31 nop .L60: lw $2,4($11) mtc1 $2,$f1 ld $2,%got_page(.LC0)($14) cvt.d.w $f1,$f1 add.d $f0,$f1,$f0 ldc1 $f1,%got_ofst(.LC0)($2) jr $31 mul.d $f0,$f0,$f1 .L59: ld $25,%got_disp(bs2)($14) move $3,$7 move $6,$4 move $7,$5 move $4,$12 1: jr $25 move $5,$3 .LC0: .word 1071644672 .word 0
112
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
riscv64
-O0
RISC-V 64 clang 21.1.0
bs: addi sp, sp, -48 sd ra, 40(sp) sd s0, 32(sp) addi s0, sp, 48 sd a0, -24(s0) sw a1, -28(s0) sw a2, -32(s0) li a0, 0 sw a0, -36(s0) lw a0, -28(s0) addiw a0, a0, -1 sw a0, -40(s0) j .LBB0_1 .LBB0_1: lw a1, -36(s0) lw a0, -40(s0) blt a0, a1, .LBB0_6 j .LBB0_2 .LBB0_2: lw a0, -36(s0) lw a1, -40(s0) subw a1, a1, a0 srliw a2, a1, 31 addw a1, a1, a2 sraiw a1, a1, 1 addw a0, a0, a1 sw a0, -44(s0) ld a0, -24(s0) lw a1, -44(s0) slli a1, a1, 2 add a0, a0, a1 lw a1, 0(a0) lw a0, -32(s0) bge a0, a1, .LBB0_4 j .LBB0_3 .LBB0_3: lw a0, -44(s0) addiw a0, a0, -1 sw a0, -40(s0) j .LBB0_5 .LBB0_4: lw a0, -44(s0) addiw a0, a0, 1 sw a0, -36(s0) j .LBB0_5 .LBB0_5: j .LBB0_1 .LBB0_6: lw a0, -40(s0) ld ra, 40(sp) ld s0, 32(sp) addi sp, sp, 48 ret .LCPI1_0: .quad 0x3fe0000000000000 bs2: addi sp, sp, -80 sd ra, 72(sp) sd s0, 64(sp) addi s0, sp, 80 sd a0, -24(s0) sw a1, -28(s0) sd a2, -40(s0) sw a3, -44(s0) sw a4, -48(s0) sw a5, -52(s0) ld a0, -24(s0) lw a1, -28(s0) ld a2, -40(s0) lw a2, 0(a2) call bs sw a0, -68(s0) lw a0, -68(s0) lw a1, -48(s0) blt a0, a1, .LBB1_7 j .LBB1_1 .LBB1_1: ld a0, -24(s0) lw a1, -48(s0) slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) fcvt.d.w fa5, a0 fsd fa5, -64(s0) lw a0, -52(s0) beqz a0, .LBB1_6 j .LBB1_2 .LBB1_2: lw a1, -68(s0) lw a0, -48(s0) bge a0, a1, .LBB1_4 j .LBB1_3 .LBB1_3: ld a1, -24(s0) lw a0, -48(s0) slli a0, a0, 2 add a0, a0, a1 lw a0, 4(a0) fcvt.d.w fa4, a0 fld fa5, -64(s0) fadd.d fa5, fa5, fa4 fsd fa5, -64(s0) j .LBB1_5 .LBB1_4: ld a0, -40(s0) lw a0, 0(a0) fcvt.d.w fa4, a0 fld fa5, -64(s0) fadd.d fa5, fa5, fa4 fsd fa5, -64(s0) j .LBB1_5 .LBB1_5: fld fa5, -64(s0) .Lpcrel_hi0: auipc a0, %pcrel_hi(.LCPI1_0) addi a0, a0, %pcrel_lo(.Lpcrel_hi0) fld fa4, 0(a0) fmul.d fa5, fa5, fa4 fsd fa5, -64(s0) j .LBB1_6 .LBB1_6: j .LBB1_13 .LBB1_7: lw a0, -68(s0) lw a1, -28(s0) addiw a1, a1, -1 bne a0, a1, .LBB1_11 j .LBB1_8 .LBB1_8: ld a0, -40(s0) lw a2, -48(s0) lw a1, -68(s0) not a1, a1 addw a1, a1, a2 slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) fcvt.d.w fa5, a0 fsd fa5, -64(s0) lw a0, -52(s0) beqz a0, .LBB1_10 j .LBB1_9 .LBB1_9: ld a0, -40(s0) lw a1, -48(s0) lw a2, -68(s0) subw a1, a1, a2 slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) fcvt.d.w fa4, a0 fld fa5, -64(s0) fadd.d fa5, fa5, fa4 fsd fa5, -64(s0) fld fa5, -64(s0) .Lpcrel_hi1: auipc a0, %pcrel_hi(.LCPI1_0) addi a0, a0, %pcrel_lo(.Lpcrel_hi1) fld fa4, 0(a0) fmul.d fa5, fa5, fa4 fsd fa5, -64(s0) j .LBB1_10 .LBB1_10: j .LBB1_12 .LBB1_11: ld a0, -40(s0) lw a1, -44(s0) ld a3, -24(s0) lw a4, -68(s0) slli a2, a4, 2 add a2, a2, a3 addi a2, a2, 4 lw a3, -28(s0) not a4, a4 addw a3, a3, a4 lw a5, -48(s0) addw a4, a4, a5 lw a5, -52(s0) call bs2 fsd fa0, -64(s0) j .LBB1_12 .LBB1_12: j .LBB1_13 .LBB1_13: fld fa0, -64(s0) ld ra, 72(sp) ld s0, 64(sp) addi sp, sp, 80 ret min: addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) addi s0, sp, 32 sw a0, -20(s0) sw a1, -24(s0) lw a0, -20(s0) lw a1, -24(s0) bge a0, a1, .LBB2_2 j .LBB2_1 .LBB2_1: lw a0, -20(s0) sd a0, -32(s0) j .LBB2_3 .LBB2_2: lw a0, -24(s0) sd a0, -32(s0) j .LBB2_3 .LBB2_3: ld a0, -32(s0) sext.w a0, a0 ld ra, 24(sp) ld s0, 16(sp) addi sp, sp, 32 ret max: addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) addi s0, sp, 32 sw a0, -20(s0) sw a1, -24(s0) lw a1, -20(s0) lw a0, -24(s0) bge a0, a1, .LBB3_2 j .LBB3_1 .LBB3_1: lw a0, -20(s0) sd a0, -32(s0) j .LBB3_3 .LBB3_2: lw a0, -24(s0) sd a0, -32(s0) j .LBB3_3 .LBB3_3: ld a0, -32(s0) sext.w a0, a0 ld ra, 24(sp) ld s0, 16(sp) addi sp, sp, 32 ret .LCPI4_0: .quad 0x3fe0000000000000 findMedianSortedArrays: addi sp, sp, -80 sd ra, 72(sp) sd s0, 64(sp) addi s0, sp, 80 sd a0, -32(s0) sw a1, -36(s0) sd a2, -48(s0) sw a3, -52(s0) lw a0, -36(s0) lw a1, -52(s0) addw a0, a0, a1 addiw a0, a0, -1 srliw a1, a0, 31 addw a0, a0, a1 sraiw a0, a0, 1 sw a0, -68(s0) lw a0, -36(s0) lw a1, -52(s0) addw a0, a0, a1 srliw a1, a0, 31 addw a1, a1, a0 andi a1, a1, -2 subw a0, a0, a1 seqz a0, a0 sw a0, -72(s0) lw a0, -52(s0) bnez a0, .LBB4_4 j .LBB4_1 .LBB4_1: ld a0, -32(s0) lw a1, -68(s0) slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) fcvt.d.w fa5, a0 fsd fa5, -64(s0) lw a0, -72(s0) beqz a0, .LBB4_3 j .LBB4_2 .LBB4_2: ld a1, -32(s0) lw a0, -68(s0) slli a0, a0, 2 add a0, a0, a1 lw a0, 4(a0) fcvt.d.w fa4, a0 fld fa5, -64(s0) fadd.d fa5, fa5, fa4 fsd fa5, -64(s0) fld fa5, -64(s0) .Lpcrel_hi2: auipc a0, %pcrel_hi(.LCPI4_0) addi a0, a0, %pcrel_lo(.Lpcrel_hi2) fld fa4, 0(a0) fmul.d fa5, fa5, fa4 fsd fa5, -64(s0) j .LBB4_3 .LBB4_3: fld fa5, -64(s0) fsd fa5, -24(s0) j .LBB4_11 .LBB4_4: lw a0, -36(s0) bnez a0, .LBB4_8 j .LBB4_5 .LBB4_5: ld a0, -48(s0) lw a1, -68(s0) slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) fcvt.d.w fa5, a0 fsd fa5, -64(s0) lw a0, -72(s0) beqz a0, .LBB4_7 j .LBB4_6 .LBB4_6: ld a1, -48(s0) lw a0, -68(s0) slli a0, a0, 2 add a0, a0, a1 lw a0, 4(a0) fcvt.d.w fa4, a0 fld fa5, -64(s0) fadd.d fa5, fa5, fa4 fsd fa5, -64(s0) fld fa5, -64(s0) .Lpcrel_hi3: auipc a0, %pcrel_hi(.LCPI4_0) addi a0, a0, %pcrel_lo(.Lpcrel_hi3) fld fa4, 0(a0) fmul.d fa5, fa5, fa4 fsd fa5, -64(s0) j .LBB4_7 .LBB4_7: fld fa5, -64(s0) fsd fa5, -24(s0) j .LBB4_11 .LBB4_8: ld a0, -48(s0) lw a0, 0(a0) ld a1, -32(s0) lw a1, 0(a1) bge a0, a1, .LBB4_10 j .LBB4_9 .LBB4_9: ld a0, -48(s0) lw a1, -52(s0) ld a2, -32(s0) lw a3, -36(s0) lw a4, -68(s0) lw a5, -72(s0) call bs2 fsd fa0, -24(s0) j .LBB4_11 .LBB4_10: ld a0, -32(s0) lw a1, -36(s0) ld a2, -48(s0) lw a3, -52(s0) lw a4, -68(s0) lw a5, -72(s0) call bs2 fsd fa0, -24(s0) j .LBB4_11 .LBB4_11: fld fa0, -24(s0) ld ra, 72(sp) ld s0, 64(sp) addi sp, sp, 80 ret
113
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
riscv64
-O1
RISC-V 64 clang 21.1.0
bs: mv a3, a0 addiw a0, a1, -1 blez a1, .LBB0_7 li a1, 0 j .LBB0_3 .LBB0_2: blt a0, a1, .LBB0_7 .LBB0_3: subw a4, a0, a1 srliw a4, a4, 1 addw a5, a4, a1 slli a5, a5, 2 add a5, a5, a3 lw a5, 0(a5) add a4, a4, a1 blt a2, a5, .LBB0_5 blt a2, a5, .LBB0_2 j .LBB0_6 .LBB0_5: addiw a0, a4, -1 blt a2, a5, .LBB0_2 .LBB0_6: addiw a1, a4, 1 j .LBB0_2 .LBB0_7: ret .LCPI1_0: .quad 0x3fe0000000000000 bs2: .LBB1_1: addiw a7, a1, -1 mv a6, a7 blez a1, .LBB1_8 li t1, 0 lw t0, 0(a2) mv a6, a7 j .LBB1_4 .LBB1_3: blt a6, t1, .LBB1_8 .LBB1_4: subw t2, a6, t1 srliw t2, t2, 1 addw t3, t2, t1 slli t3, t3, 2 add t3, t3, a0 lw t3, 0(t3) add t2, t2, t1 blt t0, t3, .LBB1_6 blt t0, t3, .LBB1_3 j .LBB1_7 .LBB1_6: addiw a6, t2, -1 blt t0, t3, .LBB1_3 .LBB1_7: addiw t1, t2, 1 j .LBB1_3 .LBB1_8: bge a6, a4, .LBB1_11 beq a6, a7, .LBB1_15 slli a7, a6, 2 not a6, a6 add a7, a7, a0 mv a0, a2 addi a2, a7, 4 addw a7, a1, a6 addw a4, a4, a6 mv a1, a3 mv a3, a7 j .LBB1_1 .LBB1_11: slli a1, a4, 2 add a0, a0, a1 lw a1, 0(a0) fcvt.d.w fa0, a1 beqz a5, .LBB1_18 bge a4, a6, .LBB1_14 addi a2, a0, 4 .LBB1_14: lw a0, 0(a2) .Lpcrel_hi0: auipc a1, %pcrel_hi(.LCPI1_0) fld fa5, %pcrel_lo(.Lpcrel_hi0)(a1) j .LBB1_17 .LBB1_15: sub a0, a4, a6 slli a0, a0, 2 add a2, a2, a0 lw a0, -4(a2) fcvt.d.w fa0, a0 beqz a5, .LBB1_18 lw a0, 0(a2) .Lpcrel_hi1: auipc a1, %pcrel_hi(.LCPI1_0) fld fa5, %pcrel_lo(.Lpcrel_hi1)(a1) .LBB1_17: fcvt.d.w fa4, a0 fadd.d fa4, fa0, fa4 fmul.d fa0, fa4, fa5 .LBB1_18: ret min: blt a0, a1, .LBB2_2 mv a0, a1 .LBB2_2: ret max: blt a1, a0, .LBB3_2 mv a0, a1 .LBB3_2: ret .LCPI4_0: .quad 0x3fe0000000000000 findMedianSortedArrays: add a6, a3, a1 addi a4, a6, -1 srliw a5, a4, 31 add a4, a4, a5 sraiw a4, a4, 1 andi a5, a6, 1 beqz a3, .LBB4_5 beqz a1, .LBB4_7 lw a6, 0(a2) lw a7, 0(a0) xori a5, a5, 1 bge a6, a7, .LBB4_4 mv a6, a0 mv a0, a2 mv a7, a1 mv a1, a3 mv a2, a6 mv a3, a7 .LBB4_4: tail bs2 .LBB4_5: slli a4, a4, 2 add a0, a0, a4 lw a1, 0(a0) fcvt.d.w fa0, a1 bnez a5, .LBB4_10 lw a0, 4(a0) .Lpcrel_hi2: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi2)(a1) j .LBB4_9 .LBB4_7: slli a4, a4, 2 add a2, a2, a4 lw a0, 0(a2) fcvt.d.w fa0, a0 bnez a5, .LBB4_10 lw a0, 4(a2) .Lpcrel_hi3: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi3)(a1) .LBB4_9: fcvt.d.w fa4, a0 fadd.d fa4, fa0, fa4 fmul.d fa0, fa4, fa5 .LBB4_10: ret
114
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
riscv64
-O2
RISC-V 64 clang 21.1.0
bs: mv a3, a0 addiw a0, a1, -1 blez a1, .LBB0_7 li a1, 0 j .LBB0_3 .LBB0_2: blt a0, a1, .LBB0_7 .LBB0_3: subw a4, a0, a1 srliw a4, a4, 1 addw a5, a4, a1 slli a5, a5, 2 add a5, a5, a3 lw a5, 0(a5) add a4, a4, a1 blt a2, a5, .LBB0_5 blt a2, a5, .LBB0_2 j .LBB0_6 .LBB0_5: addiw a0, a4, -1 blt a2, a5, .LBB0_2 .LBB0_6: addiw a1, a4, 1 j .LBB0_2 .LBB0_7: ret .LCPI1_0: .quad 0x3fe0000000000000 bs2: .LBB1_1: addiw a7, a1, -1 mv a6, a7 blez a1, .LBB1_8 li t1, 0 lw t0, 0(a2) mv a6, a7 j .LBB1_4 .LBB1_3: blt a6, t1, .LBB1_8 .LBB1_4: subw t2, a6, t1 srliw t2, t2, 1 addw t3, t2, t1 slli t3, t3, 2 add t3, t3, a0 lw t3, 0(t3) add t2, t2, t1 blt t0, t3, .LBB1_6 blt t0, t3, .LBB1_3 j .LBB1_7 .LBB1_6: addiw a6, t2, -1 blt t0, t3, .LBB1_3 .LBB1_7: addiw t1, t2, 1 j .LBB1_3 .LBB1_8: bge a6, a4, .LBB1_11 beq a6, a7, .LBB1_15 slli a7, a6, 2 not a6, a6 add a7, a7, a0 mv a0, a2 addi a2, a7, 4 addw a7, a1, a6 addw a4, a4, a6 mv a1, a3 mv a3, a7 j .LBB1_1 .LBB1_11: slli a1, a4, 2 add a0, a0, a1 lw a1, 0(a0) fcvt.d.w fa0, a1 beqz a5, .LBB1_18 bge a4, a6, .LBB1_14 addi a2, a0, 4 .LBB1_14: lw a0, 0(a2) .Lpcrel_hi0: auipc a1, %pcrel_hi(.LCPI1_0) fld fa5, %pcrel_lo(.Lpcrel_hi0)(a1) j .LBB1_17 .LBB1_15: sub a0, a4, a7 slli a0, a0, 2 add a2, a2, a0 lw a0, -4(a2) fcvt.d.w fa0, a0 beqz a5, .LBB1_18 lw a0, 0(a2) .Lpcrel_hi1: auipc a1, %pcrel_hi(.LCPI1_0) fld fa5, %pcrel_lo(.Lpcrel_hi1)(a1) .LBB1_17: fcvt.d.w fa4, a0 fadd.d fa4, fa0, fa4 fmul.d fa0, fa4, fa5 .LBB1_18: ret min: blt a0, a1, .LBB2_2 mv a0, a1 .LBB2_2: ret max: blt a1, a0, .LBB3_2 mv a0, a1 .LBB3_2: ret .LCPI4_0: .quad 0x3fe0000000000000 findMedianSortedArrays: add a6, a3, a1 addi a5, a6, -1 srliw a4, a5, 31 add a4, a4, a5 sraiw a7, a4, 1 andi a6, a6, 1 beqz a3, .LBB4_23 beqz a1, .LBB4_25 lw t2, 0(a2) lw t1, 0(a0) bge t2, t1, .LBB4_13 .LBB4_3: addiw t0, a3, -1 mv t2, t0 blez a3, .LBB4_10 li a5, 0 mv t2, t0 j .LBB4_6 .LBB4_5: blt t2, a5, .LBB4_10 .LBB4_6: subw a4, t2, a5 srliw t3, a4, 1 addw a4, t3, a5 slli a4, a4, 2 add a4, a4, a2 lw a4, 0(a4) add t3, t3, a5 blt t1, a4, .LBB4_8 blt t1, a4, .LBB4_5 j .LBB4_9 .LBB4_8: addiw t2, t3, -1 blt t1, a4, .LBB4_5 .LBB4_9: addiw a5, t3, 1 j .LBB4_5 .LBB4_10: bge t2, a7, .LBB4_27 beq t2, t0, .LBB4_35 slli a4, t2, 2 add a4, a4, a2 mv a2, a0 addi a0, a4, 4 lw t1, 4(a4) not a4, t2 addw a5, a3, a4 addw a7, a7, a4 mv a3, a1 mv a1, a5 j .LBB4_3 .LBB4_13: addiw t0, a1, -1 mv t1, t0 blez a1, .LBB4_20 li a4, 0 mv t1, t0 j .LBB4_16 .LBB4_15: blt t1, a4, .LBB4_20 .LBB4_16: subw a5, t1, a4 srliw t3, a5, 1 addw a5, t3, a4 slli a5, a5, 2 add a5, a5, a0 lw a5, 0(a5) add t3, t3, a4 blt t2, a5, .LBB4_18 blt t2, a5, .LBB4_15 j .LBB4_19 .LBB4_18: addiw t1, t3, -1 blt t2, a5, .LBB4_15 .LBB4_19: addiw a4, t3, 1 j .LBB4_15 .LBB4_20: bge t1, a7, .LBB4_31 beq t1, t0, .LBB4_37 slli a4, t1, 2 add a4, a4, a0 mv a0, a2 addi a2, a4, 4 lw t2, 4(a4) not a4, t1 addw a5, a1, a4 addw a7, a7, a4 mv a1, a3 mv a3, a5 j .LBB4_13 .LBB4_23: slli a7, a7, 2 add a0, a0, a7 lw a1, 0(a0) fcvt.d.w fa0, a1 bnez a6, .LBB4_40 lw a0, 4(a0) .Lpcrel_hi2: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi2)(a1) j .LBB4_39 .LBB4_25: slli a7, a7, 2 add a2, a2, a7 lw a0, 0(a2) fcvt.d.w fa0, a0 bnez a6, .LBB4_40 lw a0, 4(a2) .Lpcrel_hi3: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi3)(a1) j .LBB4_39 .LBB4_27: slli a1, a7, 2 add a2, a2, a1 lw a1, 0(a2) fcvt.d.w fa0, a1 bnez a6, .LBB4_40 bge a7, t2, .LBB4_30 addi a0, a2, 4 .LBB4_30: lw a0, 0(a0) .Lpcrel_hi4: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi4)(a1) j .LBB4_39 .LBB4_31: slli a1, a7, 2 add a0, a0, a1 lw a1, 0(a0) fcvt.d.w fa0, a1 bnez a6, .LBB4_40 bge a7, t1, .LBB4_34 addi a2, a0, 4 .LBB4_34: lw a0, 0(a2) .Lpcrel_hi6: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi6)(a1) j .LBB4_39 .LBB4_35: sub a1, a7, t0 slli a1, a1, 2 add a0, a0, a1 lw a1, -4(a0) fcvt.d.w fa0, a1 bnez a6, .LBB4_40 lw a0, 0(a0) .Lpcrel_hi5: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi5)(a1) j .LBB4_39 .LBB4_37: sub a0, a7, t0 slli a0, a0, 2 add a2, a2, a0 lw a0, -4(a2) fcvt.d.w fa0, a0 bnez a6, .LBB4_40 lw a0, 0(a2) .Lpcrel_hi7: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi7)(a1) .LBB4_39: fcvt.d.w fa4, a0 fadd.d fa4, fa0, fa4 fmul.d fa0, fa4, fa5 .LBB4_40: ret
115
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
riscv64
-O3
RISC-V 64 clang 21.1.0
bs: mv a3, a0 addiw a0, a1, -1 blez a1, .LBB0_7 li a1, 0 j .LBB0_3 .LBB0_2: blt a0, a1, .LBB0_7 .LBB0_3: subw a4, a0, a1 srliw a4, a4, 1 addw a5, a4, a1 slli a5, a5, 2 add a5, a5, a3 lw a5, 0(a5) add a4, a4, a1 blt a2, a5, .LBB0_5 blt a2, a5, .LBB0_2 j .LBB0_6 .LBB0_5: addiw a0, a4, -1 blt a2, a5, .LBB0_2 .LBB0_6: addiw a1, a4, 1 j .LBB0_2 .LBB0_7: ret .LCPI1_0: .quad 0x3fe0000000000000 bs2: addiw a7, a1, -1 mv a6, a7 blez a1, .LBB1_7 .LBB1_1: li t1, 0 lw t0, 0(a2) mv a6, a7 j .LBB1_3 .LBB1_2: blt a6, t1, .LBB1_7 .LBB1_3: subw t2, a6, t1 srliw t2, t2, 1 addw t3, t2, t1 slli t3, t3, 2 add t3, t3, a0 lw t3, 0(t3) add t2, t2, t1 blt t0, t3, .LBB1_5 blt t0, t3, .LBB1_2 j .LBB1_6 .LBB1_5: addiw a6, t2, -1 blt t0, t3, .LBB1_2 .LBB1_6: addiw t1, t2, 1 j .LBB1_2 .LBB1_7: bge a6, a4, .LBB1_10 beq a6, a7, .LBB1_14 slli a7, a6, 2 not a6, a6 add a7, a7, a0 mv a0, a2 addi a2, a7, 4 addw a7, a1, a6 addw a4, a4, a6 mv a1, a3 mv a3, a7 addiw a7, a1, -1 mv a6, a7 bgtz a1, .LBB1_1 j .LBB1_7 .LBB1_10: slli a1, a4, 2 add a0, a0, a1 lw a1, 0(a0) fcvt.d.w fa0, a1 beqz a5, .LBB1_17 bge a4, a6, .LBB1_13 addi a2, a0, 4 .LBB1_13: lw a0, 0(a2) .Lpcrel_hi0: auipc a1, %pcrel_hi(.LCPI1_0) fld fa5, %pcrel_lo(.Lpcrel_hi0)(a1) j .LBB1_16 .LBB1_14: sub a0, a4, a7 slli a0, a0, 2 add a2, a2, a0 lw a0, -4(a2) fcvt.d.w fa0, a0 beqz a5, .LBB1_17 lw a0, 0(a2) .Lpcrel_hi1: auipc a1, %pcrel_hi(.LCPI1_0) fld fa5, %pcrel_lo(.Lpcrel_hi1)(a1) .LBB1_16: fcvt.d.w fa4, a0 fadd.d fa4, fa0, fa4 fmul.d fa0, fa4, fa5 .LBB1_17: ret min: blt a0, a1, .LBB2_2 mv a0, a1 .LBB2_2: ret max: blt a1, a0, .LBB3_2 mv a0, a1 .LBB3_2: ret .LCPI4_0: .quad 0x3fe0000000000000 findMedianSortedArrays: add a6, a3, a1 addi a5, a6, -1 srliw a4, a5, 31 add a4, a4, a5 sraiw a7, a4, 1 andi a6, a6, 1 beqz a3, .LBB4_23 beqz a1, .LBB4_25 lw t2, 0(a2) lw t1, 0(a0) bge t2, t1, .LBB4_13 addiw t0, a3, -1 mv t2, t0 blez a3, .LBB4_10 .LBB4_4: li a5, 0 mv t2, t0 j .LBB4_6 .LBB4_5: blt t2, a5, .LBB4_10 .LBB4_6: subw a4, t2, a5 srliw t3, a4, 1 addw a4, t3, a5 slli a4, a4, 2 add a4, a4, a2 lw a4, 0(a4) add t3, t3, a5 blt t1, a4, .LBB4_8 blt t1, a4, .LBB4_5 j .LBB4_9 .LBB4_8: addiw t2, t3, -1 blt t1, a4, .LBB4_5 .LBB4_9: addiw a5, t3, 1 j .LBB4_5 .LBB4_10: bge t2, a7, .LBB4_27 beq t2, t0, .LBB4_35 slli a4, t2, 2 add a4, a4, a2 mv a2, a0 addi a0, a4, 4 lw t1, 4(a4) not a4, t2 addw a5, a3, a4 addw a7, a7, a4 mv a3, a1 mv a1, a5 addiw t0, a3, -1 mv t2, t0 bgtz a3, .LBB4_4 j .LBB4_10 .LBB4_13: addiw t0, a1, -1 mv t1, t0 blez a1, .LBB4_20 li a4, 0 mv t1, t0 j .LBB4_16 .LBB4_15: blt t1, a4, .LBB4_20 .LBB4_16: subw a5, t1, a4 srliw t3, a5, 1 addw a5, t3, a4 slli a5, a5, 2 add a5, a5, a0 lw a5, 0(a5) add t3, t3, a4 blt t2, a5, .LBB4_18 blt t2, a5, .LBB4_15 j .LBB4_19 .LBB4_18: addiw t1, t3, -1 blt t2, a5, .LBB4_15 .LBB4_19: addiw a4, t3, 1 j .LBB4_15 .LBB4_20: bge t1, a7, .LBB4_31 beq t1, t0, .LBB4_37 slli a4, t1, 2 add a4, a4, a0 mv a0, a2 addi a2, a4, 4 lw t2, 4(a4) not a4, t1 addw a5, a1, a4 addw a7, a7, a4 mv a1, a3 mv a3, a5 j .LBB4_13 .LBB4_23: slli a7, a7, 2 add a0, a0, a7 lw a1, 0(a0) fcvt.d.w fa0, a1 bnez a6, .LBB4_40 lw a0, 4(a0) .Lpcrel_hi2: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi2)(a1) j .LBB4_39 .LBB4_25: slli a7, a7, 2 add a2, a2, a7 lw a0, 0(a2) fcvt.d.w fa0, a0 bnez a6, .LBB4_40 lw a0, 4(a2) .Lpcrel_hi3: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi3)(a1) j .LBB4_39 .LBB4_27: slli a1, a7, 2 add a2, a2, a1 lw a1, 0(a2) fcvt.d.w fa0, a1 bnez a6, .LBB4_40 bge a7, t2, .LBB4_30 addi a0, a2, 4 .LBB4_30: lw a0, 0(a0) .Lpcrel_hi4: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi4)(a1) j .LBB4_39 .LBB4_31: slli a1, a7, 2 add a0, a0, a1 lw a1, 0(a0) fcvt.d.w fa0, a1 bnez a6, .LBB4_40 bge a7, t1, .LBB4_34 addi a2, a0, 4 .LBB4_34: lw a0, 0(a2) .Lpcrel_hi6: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi6)(a1) j .LBB4_39 .LBB4_35: sub a1, a7, t0 slli a1, a1, 2 add a0, a0, a1 lw a1, -4(a0) fcvt.d.w fa0, a1 bnez a6, .LBB4_40 lw a0, 0(a0) .Lpcrel_hi5: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi5)(a1) j .LBB4_39 .LBB4_37: sub a0, a7, t0 slli a0, a0, 2 add a2, a2, a0 lw a0, -4(a2) fcvt.d.w fa0, a0 bnez a6, .LBB4_40 lw a0, 0(a2) .Lpcrel_hi7: auipc a1, %pcrel_hi(.LCPI4_0) fld fa5, %pcrel_lo(.Lpcrel_hi7)(a1) .LBB4_39: fcvt.d.w fa4, a0 fadd.d fa4, fa0, fa4 fmul.d fa0, fa4, fa5 .LBB4_40: ret
116
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
riscv64
-O0
RISC-V 64 gcc 15.2.0
bs: addi sp,sp,-48 sd ra,40(sp) sd s0,32(sp) addi s0,sp,48 sd a0,-40(s0) mv a5,a1 mv a4,a2 sw a5,-44(s0) mv a5,a4 sw a5,-48(s0) sw zero,-20(s0) lw a5,-44(s0) addiw a5,a5,-1 sw a5,-24(s0) j .L2 .L4: lw a5,-24(s0) mv a4,a5 lw a5,-20(s0) subw a5,a4,a5 sext.w a5,a5 srliw a4,a5,31 addw a5,a4,a5 sraiw a5,a5,1 sext.w a5,a5 lw a4,-20(s0) addw a5,a4,a5 sw a5,-28(s0) lw a5,-28(s0) slli a5,a5,2 ld a4,-40(s0) add a5,a4,a5 lw a5,0(a5) lw a4,-48(s0) sext.w a4,a4 bge a4,a5,.L3 lw a5,-28(s0) addiw a5,a5,-1 sw a5,-24(s0) j .L2 .L3: lw a5,-28(s0) addiw a5,a5,1 sw a5,-20(s0) .L2: lw a5,-20(s0) mv a4,a5 lw a5,-24(s0) sext.w a4,a4 sext.w a5,a5 ble a4,a5,.L4 lw a5,-24(s0) mv a0,a5 ld ra,40(sp) ld s0,32(sp) addi sp,sp,48 jr ra bs2: addi sp,sp,-64 sd ra,56(sp) sd s0,48(sp) addi s0,sp,64 sd a0,-40(s0) sd a2,-56(s0) mv a2,a3 mv a3,a4 mv a4,a5 mv a5,a1 sw a5,-44(s0) mv a5,a2 sw a5,-48(s0) mv a5,a3 sw a5,-60(s0) mv a5,a4 sw a5,-64(s0) ld a5,-56(s0) lw a4,0(a5) lw a5,-44(s0) mv a2,a4 mv a1,a5 ld a0,-40(s0) call bs mv a5,a0 sw a5,-28(s0) lw a5,-28(s0) mv a4,a5 lw a5,-60(s0) sext.w a4,a4 sext.w a5,a5 blt a4,a5,.L7 lw a5,-60(s0) slli a5,a5,2 ld a4,-40(s0) add a5,a4,a5 lw a5,0(a5) fcvt.d.w fa5,a5 fsd fa5,-24(s0) lw a5,-64(s0) sext.w a5,a5 beq a5,zero,.L8 lw a5,-28(s0) mv a4,a5 lw a5,-60(s0) sext.w a4,a4 sext.w a5,a5 ble a4,a5,.L9 lw a5,-60(s0) addi a5,a5,1 slli a5,a5,2 ld a4,-40(s0) add a5,a4,a5 lw a5,0(a5) fcvt.d.w fa5,a5 fld fa4,-24(s0) fadd.d fa5,fa4,fa5 fsd fa5,-24(s0) j .L10 .L9: ld a5,-56(s0) lw a5,0(a5) fcvt.d.w fa5,a5 fld fa4,-24(s0) fadd.d fa5,fa4,fa5 fsd fa5,-24(s0) .L10: fld fa4,-24(s0) lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fdiv.d fa5,fa4,fa5 fsd fa5,-24(s0) j .L8 .L7: lw a5,-44(s0) addiw a5,a5,-1 sext.w a5,a5 lw a4,-28(s0) sext.w a4,a4 bne a4,a5,.L11 lw a5,-60(s0) mv a4,a5 lw a5,-28(s0) subw a5,a4,a5 sext.w a5,a5 slli a5,a5,2 addi a5,a5,-4 ld a4,-56(s0) add a5,a4,a5 lw a5,0(a5) fcvt.d.w fa5,a5 fsd fa5,-24(s0) lw a5,-64(s0) sext.w a5,a5 beq a5,zero,.L8 lw a5,-60(s0) mv a4,a5 lw a5,-28(s0) subw a5,a4,a5 sext.w a5,a5 slli a5,a5,2 ld a4,-56(s0) add a5,a4,a5 lw a5,0(a5) fcvt.d.w fa5,a5 fld fa4,-24(s0) fadd.d fa5,fa4,fa5 fsd fa5,-24(s0) fld fa4,-24(s0) lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fdiv.d fa5,fa4,fa5 fsd fa5,-24(s0) j .L8 .L11: lw a5,-28(s0) addi a5,a5,1 slli a5,a5,2 ld a4,-40(s0) add a2,a4,a5 lw a5,-44(s0) mv a4,a5 lw a5,-28(s0) subw a5,a4,a5 sext.w a5,a5 addiw a5,a5,-1 sext.w a3,a5 lw a5,-60(s0) mv a4,a5 lw a5,-28(s0) subw a5,a4,a5 sext.w a5,a5 addiw a5,a5,-1 sext.w a4,a5 lw a5,-64(s0) lw a1,-48(s0) ld a0,-56(s0) call bs2 fsd fa0,-24(s0) .L8: fld fa5,-24(s0) fmv.d fa0,fa5 ld ra,56(sp) ld s0,48(sp) addi sp,sp,64 jr ra min: addi sp,sp,-32 sd ra,24(sp) sd s0,16(sp) addi s0,sp,32 mv a5,a0 mv a4,a1 sw a5,-20(s0) mv a5,a4 sw a5,-24(s0) lw a5,-20(s0) mv a2,a5 lw a5,-24(s0) mv a3,a5 sext.w a4,a3 sext.w a5,a2 ble a4,a5,.L14 mv a3,a2 .L14: sext.w a5,a3 mv a0,a5 ld ra,24(sp) ld s0,16(sp) addi sp,sp,32 jr ra max: addi sp,sp,-32 sd ra,24(sp) sd s0,16(sp) addi s0,sp,32 mv a5,a0 mv a4,a1 sw a5,-20(s0) mv a5,a4 sw a5,-24(s0) lw a5,-20(s0) mv a2,a5 lw a5,-24(s0) mv a3,a5 sext.w a4,a3 sext.w a5,a2 bge a4,a5,.L17 mv a3,a2 .L17: sext.w a5,a3 mv a0,a5 ld ra,24(sp) ld s0,16(sp) addi sp,sp,32 jr ra findMedianSortedArrays: addi sp,sp,-64 sd ra,56(sp) sd s0,48(sp) addi s0,sp,64 sd a0,-40(s0) mv a5,a1 sd a2,-56(s0) mv a4,a3 sw a5,-44(s0) mv a5,a4 sw a5,-48(s0) lw a5,-44(s0) mv a4,a5 lw a5,-48(s0) addw a5,a4,a5 sext.w a5,a5 addiw a5,a5,-1 sext.w a5,a5 srliw a4,a5,31 addw a5,a4,a5 sraiw a5,a5,1 sw a5,-28(s0) lw a5,-44(s0) mv a4,a5 lw a5,-48(s0) addw a5,a4,a5 sext.w a5,a5 andi a5,a5,1 sext.w a5,a5 andi a5,a5,1 xori a5,a5,1 andi a5,a5,0xff sw a5,-32(s0) lw a5,-48(s0) sext.w a5,a5 bne a5,zero,.L20 lw a5,-28(s0) slli a5,a5,2 ld a4,-40(s0) add a5,a4,a5 lw a5,0(a5) fcvt.d.w fa5,a5 fsd fa5,-24(s0) lw a5,-32(s0) sext.w a5,a5 beq a5,zero,.L21 lw a5,-28(s0) addi a5,a5,1 slli a5,a5,2 ld a4,-40(s0) add a5,a4,a5 lw a5,0(a5) fcvt.d.w fa5,a5 fld fa4,-24(s0) fadd.d fa5,fa4,fa5 fsd fa5,-24(s0) fld fa4,-24(s0) lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fdiv.d fa5,fa4,fa5 fsd fa5,-24(s0) .L21: fld fa5,-24(s0) j .L22 .L20: lw a5,-44(s0) sext.w a5,a5 bne a5,zero,.L23 lw a5,-28(s0) slli a5,a5,2 ld a4,-56(s0) add a5,a4,a5 lw a5,0(a5) fcvt.d.w fa5,a5 fsd fa5,-24(s0) lw a5,-32(s0) sext.w a5,a5 beq a5,zero,.L24 lw a5,-28(s0) addi a5,a5,1 slli a5,a5,2 ld a4,-56(s0) add a5,a4,a5 lw a5,0(a5) fcvt.d.w fa5,a5 fld fa4,-24(s0) fadd.d fa5,fa4,fa5 fsd fa5,-24(s0) fld fa4,-24(s0) lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fdiv.d fa5,fa4,fa5 fsd fa5,-24(s0) .L24: fld fa5,-24(s0) j .L22 .L23: ld a5,-56(s0) lw a4,0(a5) ld a5,-40(s0) lw a5,0(a5) bge a4,a5,.L25 lw a5,-32(s0) lw a4,-28(s0) lw a3,-44(s0) lw a1,-48(s0) ld a2,-40(s0) ld a0,-56(s0) call bs2 fmv.d fa5,fa0 j .L22 .L25: lw a5,-32(s0) lw a4,-28(s0) lw a3,-48(s0) lw a1,-44(s0) ld a2,-56(s0) ld a0,-40(s0) call bs2 fmv.d fa5,fa0 .L22: fmv.d fa0,fa5 ld ra,56(sp) ld s0,48(sp) addi sp,sp,64 jr ra .LC0: .word 0 .word 1073741824
117
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
riscv64
-O1
RISC-V 64 gcc 15.2.0
bs: mv a6,a0 addiw a0,a1,-1 blt a0,zero,.L2 li a3,0 j .L5 .L3: addiw a3,a5,1 .L4: blt a0,a3,.L2 .L5: subw a4,a0,a3 srliw a5,a4,31 addw a5,a5,a4 sraiw a5,a5,1 addw a5,a5,a3 slli a4,a5,2 add a4,a6,a4 lw a4,0(a4) ble a4,a2,.L3 addiw a0,a5,-1 j .L4 .L2: ret bs2: addi sp,sp,-64 sd ra,56(sp) sd s0,48(sp) sd s1,40(sp) sd s2,32(sp) sd s3,24(sp) sd s4,16(sp) sd s5,8(sp) sd s6,0(sp) mv s1,a0 mv s3,a1 mv s4,a2 mv s5,a3 mv s0,a4 mv s2,a5 lw a4,0(a2) mv s6,a4 mv a2,a4 call bs blt a0,s0,.L8 slli a5,s0,2 add a4,s1,a5 lw a4,0(a4) fcvt.d.w fa0,a4 beq s2,zero,.L7 ble a0,s0,.L10 add a5,s1,a5 lw a5,4(a5) fcvt.d.w fa5,a5 fadd.d fa0,fa5,fa0 .L11: lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fmul.d fa0,fa0,fa5 .L7: ld ra,56(sp) ld s0,48(sp) ld s1,40(sp) ld s2,32(sp) ld s3,24(sp) ld s4,16(sp) ld s5,8(sp) ld s6,0(sp) addi sp,sp,64 jr ra .L10: fcvt.d.w fa5,s6 fadd.d fa0,fa5,fa0 j .L11 .L8: addiw a5,s3,-1 bne a5,a0,.L12 subw a0,s0,a0 slli a5,a0,2 addi a5,a5,-4 add a5,s4,a5 lw a5,0(a5) fcvt.d.w fa0,a5 beq s2,zero,.L7 slli a0,a0,2 add a2,s4,a0 lw a5,0(a2) fcvt.d.w fa5,a5 fadd.d fa0,fa5,fa0 lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fmul.d fa0,fa0,fa5 j .L7 .L12: subw a4,s0,a0 subw a3,s3,a0 slli a2,a0,2 addi a2,a2,4 mv a5,s2 addiw a4,a4,-1 addiw a3,a3,-1 add a2,s1,a2 mv a1,s5 mv a0,s4 call bs2 j .L7 min: mv a5,a1 ble a1,a0,.L15 mv a5,a0 .L15: sext.w a0,a5 ret max: mv a5,a1 bge a1,a0,.L17 mv a5,a0 .L17: sext.w a0,a5 ret findMedianSortedArrays: mv a6,a3 addw a5,a1,a3 addiw a3,a5,-1 srliw a4,a3,31 addw a4,a4,a3 sraiw a4,a4,1 andi a5,a5,1 beq a6,zero,.L26 mv a7,a2 beq a1,zero,.L27 addi sp,sp,-16 sd ra,8(sp) xori a5,a5,1 lw a2,0(a2) lw a3,0(a0) blt a2,a3,.L28 mv a3,a6 mv a2,a7 call bs2 .L18: ld ra,8(sp) addi sp,sp,16 jr ra .L26: slli a4,a4,2 add a3,a0,a4 lw a3,0(a3) fcvt.d.w fa0,a3 bne a5,zero,.L24 add a0,a0,a4 lw a5,4(a0) fcvt.d.w fa5,a5 fadd.d fa0,fa5,fa0 lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fmul.d fa0,fa0,fa5 ret .L27: slli a4,a4,2 add a3,a2,a4 lw a3,0(a3) fcvt.d.w fa0,a3 bne a5,zero,.L24 add a7,a2,a4 lw a5,4(a7) fcvt.d.w fa5,a5 fadd.d fa0,fa5,fa0 lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fmul.d fa0,fa0,fa5 ret .L28: mv a3,a1 mv a2,a0 mv a1,a6 mv a0,a7 call bs2 j .L18 .L24: ret .LC0: .word 0 .word 1071644672
118
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
riscv64
-O2
RISC-V 64 gcc 15.2.0
bs: addiw a1,a1,-1 blt a1,zero,.L2 li a3,0 .L5: subw a5,a1,a3 sraiw a5,a5,1 addw a5,a5,a3 slli a4,a5,2 add a4,a0,a4 lw a4,0(a4) ble a4,a2,.L3 addiw a1,a5,-1 ble a3,a1,.L5 .L2: mv a0,a1 ret .L3: addiw a3,a5,1 ble a3,a1,.L5 j .L2 bs2: addiw t5,a1,-1 lw t4,0(a2) mv t3,t5 blt t5,zero,.L9 .L28: li t1,0 .L12: subw a6,t3,t1 sraiw a6,a6,1 addw a6,a6,t1 slli a7,a6,2 add a7,a0,a7 lw a7,0(a7) ble a7,t4,.L10 addiw t3,a6,-1 ble t1,t3,.L12 .L29: ble a4,t3,.L19 subw a6,a4,t3 beq t5,t3,.L20 addiw a4,t3,1 slli a4,a4,2 subw t3,a1,t3 add a4,a0,a4 mv a1,a3 mv a0,a2 addiw t5,a1,-1 mv a2,a4 addiw a3,t3,-1 lw t4,0(a2) addiw a4,a6,-1 mv t3,t5 bge t5,zero,.L28 .L9: bgt a4,t5,.L20 .L19: slli a3,a4,2 add a3,a0,a3 lw a2,0(a3) fcvt.d.w fa0,a2 beq a5,zero,.L8 bge a4,t3,.L15 lw a5,4(a3) fcvt.d.w fa5,a5 fadd.d fa0,fa5,fa0 .L16: lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fmul.d fa0,fa0,fa5 ret .L10: addiw t1,a6,1 ble t1,t3,.L12 j .L29 .L20: subw a4,a4,t5 slli a3,a4,2 add a3,a2,a3 lw a3,-4(a3) fcvt.d.w fa0,a3 bne a5,zero,.L30 .L8: ret .L30: slli a4,a4,2 add a2,a2,a4 lw a5,0(a2) lui a4,%hi(.LC0) fld fa5,%lo(.LC0)(a4) fcvt.d.w fa4,a5 fadd.d fa0,fa4,fa0 fmul.d fa0,fa0,fa5 ret .L15: fcvt.d.w fa5,t4 fadd.d fa0,fa5,fa0 j .L16 min: mv a5,a1 ble a1,a0,.L32 mv a5,a0 .L32: sext.w a0,a5 ret max: mv a5,a1 bge a1,a0,.L34 mv a5,a0 .L34: sext.w a0,a5 ret findMedianSortedArrays: addw a5,a1,a3 addiw a7,a5,-1 srliw a4,a7,31 addw a4,a4,a7 mv a6,a3 andi a5,a5,1 sraiw a4,a4,1 mv t3,a2 beq a3,zero,.L41 beq a1,zero,.L42 lw t5,0(a2) lw t4,0(a0) xori a5,a5,1 blt t5,t4,.L43 tail bs2 .L42: slli a4,a4,2 add t3,a2,a4 lw a4,0(t3) fcvt.d.w fa0,a4 bne a5,zero,.L35 lw a5,4(t3) lui a4,%hi(.LC0) fld fa5,%lo(.LC0)(a4) fcvt.d.w fa4,a5 fadd.d fa0,fa4,fa0 fmul.d fa0,fa0,fa5 ret .L41: slli a4,a4,2 add a7,a0,a4 lw a4,0(a7) fcvt.d.w fa0,a4 beq a5,zero,.L44 .L35: ret .L44: lw a5,4(a7) lui a4,%hi(.LC0) fld fa5,%lo(.LC0)(a4) fcvt.d.w fa4,a5 fadd.d fa0,fa4,fa0 fmul.d fa0,fa0,fa5 ret .L43: mv a3,a1 mv a2,a0 mv a1,a6 mv a0,t3 tail bs2 .LC0: .word 0 .word 1071644672
119
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
riscv64
-O3
RISC-V 64 gcc 15.2.0
bs: addiw a1,a1,-1 blt a1,zero,.L2 li a3,0 .L5: subw a5,a1,a3 sraiw a5,a5,1 addw a5,a5,a3 slli a4,a5,2 add a4,a0,a4 lw a4,0(a4) ble a4,a2,.L3 addiw a1,a5,-1 ble a3,a1,.L5 .L2: mv a0,a1 ret .L3: addiw a3,a5,1 ble a3,a1,.L5 j .L2 bs2: addiw t5,a1,-1 lw t4,0(a2) mv t3,t5 blt t5,zero,.L9 .L28: li t1,0 .L12: subw a6,t3,t1 sraiw a6,a6,1 addw a6,a6,t1 slli a7,a6,2 add a7,a0,a7 lw a7,0(a7) ble a7,t4,.L10 addiw t3,a6,-1 bge t3,t1,.L12 .L29: ble a4,t3,.L19 subw a6,a4,t3 beq t5,t3,.L20 addiw a4,t3,1 slli a4,a4,2 subw t3,a1,t3 add a4,a0,a4 mv a1,a3 mv a0,a2 addiw t5,a1,-1 mv a2,a4 addiw a3,t3,-1 lw t4,0(a2) addiw a4,a6,-1 mv t3,t5 bge t5,zero,.L28 .L9: blt t5,a4,.L20 .L19: slli a3,a4,2 add a3,a0,a3 lw a2,0(a3) fcvt.d.w fa0,a2 beq a5,zero,.L8 bge a4,t3,.L15 lw a5,4(a3) fcvt.d.w fa5,a5 fadd.d fa0,fa5,fa0 .L16: lui a5,%hi(.LC0) fld fa5,%lo(.LC0)(a5) fmul.d fa0,fa0,fa5 ret .L10: addiw t1,a6,1 bge t3,t1,.L12 j .L29 .L20: subw a4,a4,t5 slli a3,a4,2 add a3,a2,a3 lw a3,-4(a3) fcvt.d.w fa0,a3 bne a5,zero,.L30 .L8: ret .L30: slli a4,a4,2 add a2,a2,a4 lw a5,0(a2) lui a4,%hi(.LC0) fld fa5,%lo(.LC0)(a4) fcvt.d.w fa4,a5 fadd.d fa0,fa4,fa0 fmul.d fa0,fa0,fa5 ret .L15: fcvt.d.w fa5,t4 fadd.d fa0,fa5,fa0 j .L16 min: mv a5,a1 ble a1,a0,.L32 mv a5,a0 .L32: sext.w a0,a5 ret max: mv a5,a1 bge a1,a0,.L34 mv a5,a0 .L34: sext.w a0,a5 ret findMedianSortedArrays: addw a5,a1,a3 addiw a7,a5,-1 srliw a4,a7,31 addw a4,a4,a7 mv a6,a3 andi a5,a5,1 sraiw a4,a4,1 mv t3,a2 beq a3,zero,.L41 beq a1,zero,.L42 lw t5,0(a2) lw t4,0(a0) xori a5,a5,1 blt t5,t4,.L43 tail bs2 .L42: slli a4,a4,2 add t3,a2,a4 lw a4,0(t3) fcvt.d.w fa0,a4 bne a5,zero,.L35 lw a5,4(t3) lui a4,%hi(.LC0) fld fa5,%lo(.LC0)(a4) fcvt.d.w fa4,a5 fadd.d fa0,fa4,fa0 fmul.d fa0,fa0,fa5 ret .L41: slli a4,a4,2 add a7,a0,a4 lw a4,0(a7) fcvt.d.w fa0,a4 beq a5,zero,.L44 .L35: ret .L44: lw a5,4(a7) lui a4,%hi(.LC0) fld fa5,%lo(.LC0)(a4) fcvt.d.w fa4,a5 fadd.d fa0,fa4,fa0 fmul.d fa0,fa0,fa5 ret .L43: mv a3,a1 mv a2,a0 mv a1,a6 mv a0,t3 tail bs2 .LC0: .word 0 .word 1071644672
120
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
x86-64
-O0
x86-64 clang 21.1.0
bs: push rbp mov rbp, rsp mov qword ptr [rbp - 8], rdi mov dword ptr [rbp - 12], esi mov dword ptr [rbp - 16], edx mov dword ptr [rbp - 20], 0 mov eax, dword ptr [rbp - 12] sub eax, 1 mov dword ptr [rbp - 24], eax .LBB0_1: mov eax, dword ptr [rbp - 20] cmp eax, dword ptr [rbp - 24] jg .LBB0_6 mov eax, dword ptr [rbp - 20] mov dword ptr [rbp - 32], eax mov eax, dword ptr [rbp - 24] sub eax, dword ptr [rbp - 20] mov ecx, 2 cdq idiv ecx mov ecx, eax mov eax, dword ptr [rbp - 32] add eax, ecx mov dword ptr [rbp - 28], eax mov rax, qword ptr [rbp - 8] movsxd rcx, dword ptr [rbp - 28] mov eax, dword ptr [rax + 4*rcx] cmp eax, dword ptr [rbp - 16] jle .LBB0_4 mov eax, dword ptr [rbp - 28] sub eax, 1 mov dword ptr [rbp - 24], eax jmp .LBB0_5 .LBB0_4: mov eax, dword ptr [rbp - 28] add eax, 1 mov dword ptr [rbp - 20], eax .LBB0_5: jmp .LBB0_1 .LBB0_6: mov eax, dword ptr [rbp - 24] pop rbp ret .LCPI1_0: .quad 0x4000000000000000 bs2: push rbp mov rbp, rsp sub rsp, 64 mov qword ptr [rbp - 8], rdi mov dword ptr [rbp - 12], esi mov qword ptr [rbp - 24], rdx mov dword ptr [rbp - 28], ecx mov dword ptr [rbp - 32], r8d mov dword ptr [rbp - 36], r9d mov rdi, qword ptr [rbp - 8] mov esi, dword ptr [rbp - 12] mov rax, qword ptr [rbp - 24] mov edx, dword ptr [rax] call bs mov dword ptr [rbp - 52], eax mov eax, dword ptr [rbp - 52] cmp eax, dword ptr [rbp - 32] jl .LBB1_7 mov rax, qword ptr [rbp - 8] movsxd rcx, dword ptr [rbp - 32] cvtsi2sd xmm0, dword ptr [rax + 4*rcx] movsd qword ptr [rbp - 48], xmm0 cmp dword ptr [rbp - 36], 0 je .LBB1_6 mov eax, dword ptr [rbp - 52] cmp eax, dword ptr [rbp - 32] jle .LBB1_4 mov rax, qword ptr [rbp - 8] mov ecx, dword ptr [rbp - 32] add ecx, 1 movsxd rcx, ecx cvtsi2sd xmm0, dword ptr [rax + 4*rcx] addsd xmm0, qword ptr [rbp - 48] movsd qword ptr [rbp - 48], xmm0 jmp .LBB1_5 .LBB1_4: mov rax, qword ptr [rbp - 24] cvtsi2sd xmm0, dword ptr [rax] addsd xmm0, qword ptr [rbp - 48] movsd qword ptr [rbp - 48], xmm0 .LBB1_5: movsd xmm0, qword ptr [rbp - 48] movsd xmm1, qword ptr [rip + .LCPI1_0] divsd xmm0, xmm1 movsd qword ptr [rbp - 48], xmm0 .LBB1_6: jmp .LBB1_13 .LBB1_7: mov eax, dword ptr [rbp - 52] mov ecx, dword ptr [rbp - 12] sub ecx, 1 cmp eax, ecx jne .LBB1_11 mov rax, qword ptr [rbp - 24] mov ecx, dword ptr [rbp - 32] sub ecx, dword ptr [rbp - 52] sub ecx, 1 movsxd rcx, ecx cvtsi2sd xmm0, dword ptr [rax + 4*rcx] movsd qword ptr [rbp - 48], xmm0 cmp dword ptr [rbp - 36], 0 je .LBB1_10 mov rax, qword ptr [rbp - 24] mov ecx, dword ptr [rbp - 32] sub ecx, dword ptr [rbp - 52] movsxd rcx, ecx cvtsi2sd xmm0, dword ptr [rax + 4*rcx] addsd xmm0, qword ptr [rbp - 48] movsd qword ptr [rbp - 48], xmm0 movsd xmm0, qword ptr [rbp - 48] movsd xmm1, qword ptr [rip + .LCPI1_0] divsd xmm0, xmm1 movsd qword ptr [rbp - 48], xmm0 .LBB1_10: jmp .LBB1_12 .LBB1_11: mov rdi, qword ptr [rbp - 24] mov esi, dword ptr [rbp - 28] mov rdx, qword ptr [rbp - 8] mov eax, dword ptr [rbp - 52] add eax, 1 cdqe shl rax, 2 add rdx, rax mov ecx, dword ptr [rbp - 12] sub ecx, dword ptr [rbp - 52] sub ecx, 1 mov r8d, dword ptr [rbp - 32] sub r8d, dword ptr [rbp - 52] sub r8d, 1 mov r9d, dword ptr [rbp - 36] call bs2 movsd qword ptr [rbp - 48], xmm0 .LBB1_12: jmp .LBB1_13 .LBB1_13: movsd xmm0, qword ptr [rbp - 48] add rsp, 64 pop rbp ret min: push rbp mov rbp, rsp mov dword ptr [rbp - 4], edi mov dword ptr [rbp - 8], esi mov eax, dword ptr [rbp - 4] cmp eax, dword ptr [rbp - 8] jge .LBB2_2 mov eax, dword ptr [rbp - 4] mov dword ptr [rbp - 12], eax jmp .LBB2_3 .LBB2_2: mov eax, dword ptr [rbp - 8] mov dword ptr [rbp - 12], eax .LBB2_3: mov eax, dword ptr [rbp - 12] pop rbp ret max: push rbp mov rbp, rsp mov dword ptr [rbp - 4], edi mov dword ptr [rbp - 8], esi mov eax, dword ptr [rbp - 4] cmp eax, dword ptr [rbp - 8] jle .LBB3_2 mov eax, dword ptr [rbp - 4] mov dword ptr [rbp - 12], eax jmp .LBB3_3 .LBB3_2: mov eax, dword ptr [rbp - 8] mov dword ptr [rbp - 12], eax .LBB3_3: mov eax, dword ptr [rbp - 12] pop rbp ret .LCPI4_0: .quad 0x4000000000000000 findMedianSortedArrays: push rbp mov rbp, rsp sub rsp, 64 mov qword ptr [rbp - 16], rdi mov dword ptr [rbp - 20], esi mov qword ptr [rbp - 32], rdx mov dword ptr [rbp - 36], ecx mov eax, dword ptr [rbp - 20] add eax, dword ptr [rbp - 36] sub eax, 1 mov ecx, 2 cdq idiv ecx mov dword ptr [rbp - 52], eax mov eax, dword ptr [rbp - 20] add eax, dword ptr [rbp - 36] mov ecx, 2 cdq idiv ecx mov eax, 1 xor ecx, ecx cmp edx, 0 cmovne eax, ecx mov dword ptr [rbp - 56], eax cmp dword ptr [rbp - 36], 0 jne .LBB4_4 mov rax, qword ptr [rbp - 16] movsxd rcx, dword ptr [rbp - 52] cvtsi2sd xmm0, dword ptr [rax + 4*rcx] movsd qword ptr [rbp - 48], xmm0 cmp dword ptr [rbp - 56], 0 je .LBB4_3 mov rax, qword ptr [rbp - 16] mov ecx, dword ptr [rbp - 52] add ecx, 1 movsxd rcx, ecx cvtsi2sd xmm0, dword ptr [rax + 4*rcx] addsd xmm0, qword ptr [rbp - 48] movsd qword ptr [rbp - 48], xmm0 movsd xmm0, qword ptr [rbp - 48] movsd xmm1, qword ptr [rip + .LCPI4_0] divsd xmm0, xmm1 movsd qword ptr [rbp - 48], xmm0 .LBB4_3: movsd xmm0, qword ptr [rbp - 48] movsd qword ptr [rbp - 8], xmm0 jmp .LBB4_11 .LBB4_4: cmp dword ptr [rbp - 20], 0 jne .LBB4_8 mov rax, qword ptr [rbp - 32] movsxd rcx, dword ptr [rbp - 52] cvtsi2sd xmm0, dword ptr [rax + 4*rcx] movsd qword ptr [rbp - 48], xmm0 cmp dword ptr [rbp - 56], 0 je .LBB4_7 mov rax, qword ptr [rbp - 32] mov ecx, dword ptr [rbp - 52] add ecx, 1 movsxd rcx, ecx cvtsi2sd xmm0, dword ptr [rax + 4*rcx] addsd xmm0, qword ptr [rbp - 48] movsd qword ptr [rbp - 48], xmm0 movsd xmm0, qword ptr [rbp - 48] movsd xmm1, qword ptr [rip + .LCPI4_0] divsd xmm0, xmm1 movsd qword ptr [rbp - 48], xmm0 .LBB4_7: movsd xmm0, qword ptr [rbp - 48] movsd qword ptr [rbp - 8], xmm0 jmp .LBB4_11 .LBB4_8: mov rax, qword ptr [rbp - 32] mov eax, dword ptr [rax] mov rcx, qword ptr [rbp - 16] cmp eax, dword ptr [rcx] jge .LBB4_10 mov rdi, qword ptr [rbp - 32] mov esi, dword ptr [rbp - 36] mov rdx, qword ptr [rbp - 16] mov ecx, dword ptr [rbp - 20] mov r8d, dword ptr [rbp - 52] mov r9d, dword ptr [rbp - 56] call bs2 movsd qword ptr [rbp - 8], xmm0 jmp .LBB4_11 .LBB4_10: mov rdi, qword ptr [rbp - 16] mov esi, dword ptr [rbp - 20] mov rdx, qword ptr [rbp - 32] mov ecx, dword ptr [rbp - 36] mov r8d, dword ptr [rbp - 52] mov r9d, dword ptr [rbp - 56] call bs2 movsd qword ptr [rbp - 8], xmm0 .LBB4_11: movsd xmm0, qword ptr [rbp - 8] add rsp, 64 pop rbp ret
121
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
x86-64
-O1
x86-64 clang 21.1.0
bs: lea eax, [rsi - 1] test esi, esi jle .LBB0_6 xor ecx, ecx jmp .LBB0_2 .LBB0_4: add ecx, esi inc ecx cmp ecx, eax jg .LBB0_6 .LBB0_2: mov esi, eax sub esi, ecx shr esi lea r8d, [rsi + rcx] cmp dword ptr [rdi + 4*r8], edx jle .LBB0_4 lea eax, [rsi + rcx] dec eax cmp ecx, eax jle .LBB0_2 .LBB0_6: ret .LCPI1_0: .quad 0x3fe0000000000000 bs2: push r15 push r14 push rbx .LBB1_1: lea r10d, [rsi - 1] mov eax, r10d test esi, esi jle .LBB1_7 mov r11d, dword ptr [rdx] xor ebx, ebx mov eax, r10d jmp .LBB1_3 .LBB1_5: add ebx, r14d inc ebx cmp ebx, eax jg .LBB1_7 .LBB1_3: mov r14d, eax sub r14d, ebx shr r14d lea r15d, [r14 + rbx] cmp dword ptr [rdi + 4*r15], r11d jle .LBB1_5 lea eax, [r14 + rbx] dec eax cmp ebx, eax jle .LBB1_3 .LBB1_7: mov r11d, r8d sub r11d, eax jle .LBB1_8 cmp eax, r10d je .LBB1_11 movsxd r10, eax lea r10, [rdi + 4*r10] add r10, 4 not eax mov r11d, esi add r11d, eax add r8d, eax mov rdi, rdx mov esi, ecx mov rdx, r10 mov ecx, r11d jmp .LBB1_1 .LBB1_8: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rcx] test r9d, r9d je .LBB1_14 lea rcx, [rdi + 4*rcx] add rcx, 4 cmp r8d, eax cmovl rdx, rcx cvtsi2sd xmm1, dword ptr [rdx] jmp .LBB1_13 .LBB1_11: movsxd rax, r11d cvtsi2sd xmm0, dword ptr [rdx + 4*rax - 4] test r9d, r9d je .LBB1_14 cvtsi2sd xmm1, dword ptr [rdx + 4*rax] .LBB1_13: addsd xmm0, xmm1 mulsd xmm0, qword ptr [rip + .LCPI1_0] .LBB1_14: pop rbx pop r14 pop r15 ret min: mov eax, esi cmp edi, esi cmovl eax, edi ret max: mov eax, esi cmp edi, esi cmovg eax, edi ret .LCPI4_0: .quad 0x3fe0000000000000 findMedianSortedArrays: mov eax, esi lea r9d, [rcx + rax] lea esi, [rcx + rax] dec esi shr esi, 31 lea r8d, [rsi + r9] dec r8d sar r8d and r9d, 1 test ecx, ecx je .LBB4_1 test eax, eax je .LBB4_6 xor r9d, 1 mov esi, dword ptr [rdx] cmp esi, dword ptr [rdi] jge .LBB4_9 mov r10, rdi mov rdi, rdx mov esi, ecx mov rdx, r10 mov ecx, eax jmp bs2 .LBB4_1: movsxd rax, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rax] test r9d, r9d jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdi + 4*rax + 4] jmp .LBB4_3 .LBB4_6: movsxd rax, r8d cvtsi2sd xmm0, dword ptr [rdx + 4*rax] test r9d, r9d jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdx + 4*rax + 4] .LBB4_3: addsd xmm0, xmm1 mulsd xmm0, qword ptr [rip + .LCPI4_0] .LBB4_4: ret .LBB4_9: mov esi, eax jmp bs2
122
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
x86-64
-O2
x86-64 clang 21.1.0
bs: lea eax, [rsi - 1] test esi, esi jle .LBB0_6 xor ecx, ecx jmp .LBB0_2 .LBB0_4: add ecx, esi inc ecx cmp ecx, eax jg .LBB0_6 .LBB0_2: mov esi, eax sub esi, ecx shr esi lea r8d, [rsi + rcx] cmp dword ptr [rdi + 4*r8], edx jle .LBB0_4 lea eax, [rsi + rcx] dec eax cmp ecx, eax jle .LBB0_2 .LBB0_6: ret .LCPI1_0: .quad 0x3fe0000000000000 bs2: push r15 push r14 push rbx .LBB1_1: lea r10d, [rsi - 1] mov eax, r10d test esi, esi jle .LBB1_7 mov r11d, dword ptr [rdx] xor ebx, ebx mov eax, r10d jmp .LBB1_3 .LBB1_5: add ebx, r14d inc ebx cmp ebx, eax jg .LBB1_7 .LBB1_3: mov r14d, eax sub r14d, ebx shr r14d lea r15d, [r14 + rbx] cmp dword ptr [rdi + 4*r15], r11d jle .LBB1_5 lea eax, [r14 + rbx] dec eax cmp ebx, eax jle .LBB1_3 .LBB1_7: cmp eax, r8d jge .LBB1_8 cmp eax, r10d je .LBB1_11 movsxd r10, eax lea r10, [rdi + 4*r10] add r10, 4 not eax mov r11d, esi add r11d, eax add r8d, eax mov rdi, rdx mov esi, ecx mov rdx, r10 mov ecx, r11d jmp .LBB1_1 .LBB1_8: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rcx] test r9d, r9d je .LBB1_14 lea rcx, [rdi + 4*rcx] add rcx, 4 cmp eax, r8d cmovg rdx, rcx cvtsi2sd xmm1, dword ptr [rdx] jmp .LBB1_13 .LBB1_11: sub r8d, r10d movsxd rax, r8d cvtsi2sd xmm0, dword ptr [rdx + 4*rax - 4] test r9d, r9d je .LBB1_14 cvtsi2sd xmm1, dword ptr [rdx + 4*rax] .LBB1_13: addsd xmm0, xmm1 mulsd xmm0, qword ptr [rip + .LCPI1_0] .LBB1_14: pop rbx pop r14 pop r15 ret min: mov eax, esi cmp edi, esi cmovl eax, edi ret max: mov eax, esi cmp edi, esi cmovg eax, edi ret .LCPI4_0: .quad 0x3fe0000000000000 findMedianSortedArrays: push r15 push r14 push rbx lea eax, [rcx + rsi] lea r8d, [rcx + rsi] dec r8d shr r8d, 31 add r8d, eax dec r8d sar r8d test ecx, ecx je .LBB4_1 test esi, esi je .LBB4_6 mov r9d, dword ptr [rdx] mov r10d, dword ptr [rdi] cmp r9d, r10d jge .LBB4_23 .LBB4_9: lea r11d, [rcx - 1] mov r9d, r11d test ecx, ecx jle .LBB4_15 xor ebx, ebx mov r9d, r11d jmp .LBB4_11 .LBB4_13: add ebx, r14d inc ebx cmp ebx, r9d jg .LBB4_15 .LBB4_11: mov r14d, r9d sub r14d, ebx shr r14d lea r15d, [r14 + rbx] cmp dword ptr [rdx + 4*r15], r10d jle .LBB4_13 lea r9d, [r14 + rbx] dec r9d cmp ebx, r9d jle .LBB4_11 .LBB4_15: cmp r9d, r8d jge .LBB4_16 cmp r9d, r11d je .LBB4_19 movsxd r10, r9d lea r11, [rdx + 4*r10] add r11, 4 not r9d mov ebx, ecx add ebx, r9d add r8d, r9d mov r10d, dword ptr [rdx + 4*r10 + 4] mov rdx, rdi mov ecx, esi mov rdi, r11 mov esi, ebx jmp .LBB4_9 .LBB4_23: lea r11d, [rsi - 1] mov r10d, r11d test esi, esi jle .LBB4_29 xor ebx, ebx mov r10d, r11d jmp .LBB4_25 .LBB4_27: add ebx, r14d inc ebx cmp ebx, r10d jg .LBB4_29 .LBB4_25: mov r14d, r10d sub r14d, ebx shr r14d lea r15d, [r14 + rbx] cmp dword ptr [rdi + 4*r15], r9d jle .LBB4_27 lea r10d, [r14 + rbx] dec r10d cmp ebx, r10d jle .LBB4_25 .LBB4_29: cmp r10d, r8d jge .LBB4_30 cmp r10d, r11d je .LBB4_33 movsxd r9, r10d lea r11, [rdi + 4*r9] add r11, 4 not r10d mov ebx, esi add ebx, r10d add r8d, r10d mov r9d, dword ptr [rdi + 4*r9 + 4] mov rdi, rdx mov esi, ecx mov rdx, r11 mov ecx, ebx jmp .LBB4_23 .LBB4_1: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rcx] test al, 1 jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdi + 4*rcx + 4] jmp .LBB4_3 .LBB4_6: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdx + 4*rcx] test al, 1 jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdx + 4*rcx + 4] jmp .LBB4_3 .LBB4_16: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdx + 4*rcx] test al, 1 jne .LBB4_4 lea rax, [rdx + 4*rcx] add rax, 4 cmp r9d, r8d cmovg rdi, rax cvtsi2sd xmm1, dword ptr [rdi] jmp .LBB4_3 .LBB4_30: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rcx] test al, 1 jne .LBB4_4 lea rax, [rdi + 4*rcx] add rax, 4 cmp r10d, r8d cmovg rdx, rax cvtsi2sd xmm1, dword ptr [rdx] jmp .LBB4_3 .LBB4_19: sub r8d, r11d movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rcx - 4] test al, 1 jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdi + 4*rcx] jmp .LBB4_3 .LBB4_33: sub r8d, r11d movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdx + 4*rcx - 4] test al, 1 jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdx + 4*rcx] .LBB4_3: addsd xmm0, xmm1 mulsd xmm0, qword ptr [rip + .LCPI4_0] .LBB4_4: pop rbx pop r14 pop r15 ret
123
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
x86-64
-O3
x86-64 clang 21.1.0
bs: lea eax, [rsi - 1] test esi, esi jle .LBB0_6 xor ecx, ecx jmp .LBB0_2 .LBB0_4: add ecx, esi inc ecx cmp ecx, eax jg .LBB0_6 .LBB0_2: mov esi, eax sub esi, ecx shr esi lea r8d, [rsi + rcx] cmp dword ptr [rdi + 4*r8], edx jle .LBB0_4 lea eax, [rsi + rcx] dec eax cmp ecx, eax jle .LBB0_2 .LBB0_6: ret .LCPI1_0: .quad 0x3fe0000000000000 bs2: push r15 push r14 push rbx lea r10d, [rsi - 1] mov eax, r10d test esi, esi jle .LBB1_7 .LBB1_2: mov r11d, dword ptr [rdx] xor ebx, ebx mov eax, r10d jmp .LBB1_3 .LBB1_5: add ebx, r14d inc ebx cmp ebx, eax jg .LBB1_7 .LBB1_3: mov r14d, eax sub r14d, ebx shr r14d lea r15d, [r14 + rbx] cmp dword ptr [rdi + 4*r15], r11d jle .LBB1_5 lea eax, [r14 + rbx] dec eax cmp ebx, eax jle .LBB1_3 .LBB1_7: cmp eax, r8d jge .LBB1_8 cmp eax, r10d je .LBB1_11 movsxd r10, eax lea r10, [rdi + 4*r10] add r10, 4 not eax mov r11d, esi add r11d, eax add r8d, eax mov rdi, rdx mov esi, ecx mov rdx, r10 mov ecx, r11d lea r10d, [rsi - 1] mov eax, r10d test esi, esi jg .LBB1_2 jmp .LBB1_7 .LBB1_8: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rcx] test r9d, r9d je .LBB1_14 lea rcx, [rdi + 4*rcx] add rcx, 4 cmp eax, r8d cmovg rdx, rcx cvtsi2sd xmm1, dword ptr [rdx] jmp .LBB1_13 .LBB1_11: sub r8d, r10d movsxd rax, r8d cvtsi2sd xmm0, dword ptr [rdx + 4*rax - 4] test r9d, r9d je .LBB1_14 cvtsi2sd xmm1, dword ptr [rdx + 4*rax] .LBB1_13: addsd xmm0, xmm1 mulsd xmm0, qword ptr [rip + .LCPI1_0] .LBB1_14: pop rbx pop r14 pop r15 ret min: mov eax, esi cmp edi, esi cmovl eax, edi ret max: mov eax, esi cmp edi, esi cmovg eax, edi ret .LCPI4_0: .quad 0x3fe0000000000000 findMedianSortedArrays: push r15 push r14 push rbx lea eax, [rcx + rsi] lea r8d, [rcx + rsi] dec r8d shr r8d, 31 add r8d, eax dec r8d sar r8d test ecx, ecx je .LBB4_1 test esi, esi je .LBB4_6 mov r9d, dword ptr [rdx] mov r10d, dword ptr [rdi] cmp r9d, r10d jge .LBB4_23 lea r11d, [rcx - 1] mov r9d, r11d test ecx, ecx jle .LBB4_15 .LBB4_10: xor ebx, ebx mov r9d, r11d jmp .LBB4_11 .LBB4_13: add ebx, r14d inc ebx cmp ebx, r9d jg .LBB4_15 .LBB4_11: mov r14d, r9d sub r14d, ebx shr r14d lea r15d, [r14 + rbx] cmp dword ptr [rdx + 4*r15], r10d jle .LBB4_13 lea r9d, [r14 + rbx] dec r9d cmp ebx, r9d jle .LBB4_11 .LBB4_15: cmp r9d, r8d jge .LBB4_16 cmp r9d, r11d je .LBB4_19 movsxd r10, r9d lea r11, [rdx + 4*r10] add r11, 4 not r9d mov ebx, ecx add ebx, r9d add r8d, r9d mov r10d, dword ptr [rdx + 4*r10 + 4] mov rdx, rdi mov ecx, esi mov rdi, r11 mov esi, ebx lea r11d, [rcx - 1] mov r9d, r11d test ecx, ecx jg .LBB4_10 jmp .LBB4_15 .LBB4_23: lea r11d, [rsi - 1] mov r10d, r11d test esi, esi jle .LBB4_29 xor ebx, ebx mov r10d, r11d jmp .LBB4_25 .LBB4_27: add ebx, r14d inc ebx cmp ebx, r10d jg .LBB4_29 .LBB4_25: mov r14d, r10d sub r14d, ebx shr r14d lea r15d, [r14 + rbx] cmp dword ptr [rdi + 4*r15], r9d jle .LBB4_27 lea r10d, [r14 + rbx] dec r10d cmp ebx, r10d jle .LBB4_25 .LBB4_29: cmp r10d, r8d jge .LBB4_30 cmp r10d, r11d je .LBB4_33 movsxd r9, r10d lea r11, [rdi + 4*r9] add r11, 4 not r10d mov ebx, esi add ebx, r10d add r8d, r10d mov r9d, dword ptr [rdi + 4*r9 + 4] mov rdi, rdx mov esi, ecx mov rdx, r11 mov ecx, ebx jmp .LBB4_23 .LBB4_1: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rcx] test al, 1 jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdi + 4*rcx + 4] jmp .LBB4_3 .LBB4_6: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdx + 4*rcx] test al, 1 jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdx + 4*rcx + 4] jmp .LBB4_3 .LBB4_16: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdx + 4*rcx] test al, 1 jne .LBB4_4 lea rax, [rdx + 4*rcx] add rax, 4 cmp r9d, r8d cmovg rdi, rax cvtsi2sd xmm1, dword ptr [rdi] jmp .LBB4_3 .LBB4_30: movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rcx] test al, 1 jne .LBB4_4 lea rax, [rdi + 4*rcx] add rax, 4 cmp r10d, r8d cmovg rdx, rax cvtsi2sd xmm1, dword ptr [rdx] jmp .LBB4_3 .LBB4_19: sub r8d, r11d movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdi + 4*rcx - 4] test al, 1 jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdi + 4*rcx] jmp .LBB4_3 .LBB4_33: sub r8d, r11d movsxd rcx, r8d cvtsi2sd xmm0, dword ptr [rdx + 4*rcx - 4] test al, 1 jne .LBB4_4 cvtsi2sd xmm1, dword ptr [rdx + 4*rcx] .LBB4_3: addsd xmm0, xmm1 mulsd xmm0, qword ptr [rip + .LCPI4_0] .LBB4_4: pop rbx pop r14 pop r15 ret
124
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
x86-64
-O0
x86-64 gcc 15.2
bs: push rbp mov rbp, rsp mov QWORD PTR [rbp-24], rdi mov DWORD PTR [rbp-28], esi mov DWORD PTR [rbp-32], edx mov DWORD PTR [rbp-4], 0 mov eax, DWORD PTR [rbp-28] sub eax, 1 mov DWORD PTR [rbp-8], eax jmp .L2 .L4: mov eax, DWORD PTR [rbp-8] sub eax, DWORD PTR [rbp-4] mov edx, eax shr edx, 31 add eax, edx sar eax mov edx, eax mov eax, DWORD PTR [rbp-4] add eax, edx mov DWORD PTR [rbp-12], eax mov eax, DWORD PTR [rbp-12] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-24] add rax, rdx mov eax, DWORD PTR [rax] cmp DWORD PTR [rbp-32], eax jge .L3 mov eax, DWORD PTR [rbp-12] sub eax, 1 mov DWORD PTR [rbp-8], eax jmp .L2 .L3: mov eax, DWORD PTR [rbp-12] add eax, 1 mov DWORD PTR [rbp-4], eax .L2: mov eax, DWORD PTR [rbp-4] cmp eax, DWORD PTR [rbp-8] jle .L4 mov eax, DWORD PTR [rbp-8] pop rbp ret bs2: push rbp mov rbp, rsp sub rsp, 48 mov QWORD PTR [rbp-24], rdi mov DWORD PTR [rbp-28], esi mov QWORD PTR [rbp-40], rdx mov DWORD PTR [rbp-32], ecx mov DWORD PTR [rbp-44], r8d mov DWORD PTR [rbp-48], r9d mov rax, QWORD PTR [rbp-40] mov edx, DWORD PTR [rax] mov ecx, DWORD PTR [rbp-28] mov rax, QWORD PTR [rbp-24] mov esi, ecx mov rdi, rax call bs mov DWORD PTR [rbp-12], eax mov eax, DWORD PTR [rbp-12] cmp eax, DWORD PTR [rbp-44] jl .L7 mov eax, DWORD PTR [rbp-44] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-24] add rax, rdx mov eax, DWORD PTR [rax] pxor xmm0, xmm0 cvtsi2sd xmm0, eax movsd QWORD PTR [rbp-8], xmm0 cmp DWORD PTR [rbp-48], 0 je .L8 mov eax, DWORD PTR [rbp-12] cmp eax, DWORD PTR [rbp-44] jle .L9 mov eax, DWORD PTR [rbp-44] cdqe add rax, 1 lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-24] add rax, rdx mov eax, DWORD PTR [rax] pxor xmm0, xmm0 cvtsi2sd xmm0, eax movsd xmm1, QWORD PTR [rbp-8] addsd xmm0, xmm1 movsd QWORD PTR [rbp-8], xmm0 jmp .L10 .L9: mov rax, QWORD PTR [rbp-40] mov eax, DWORD PTR [rax] pxor xmm0, xmm0 cvtsi2sd xmm0, eax movsd xmm1, QWORD PTR [rbp-8] addsd xmm0, xmm1 movsd QWORD PTR [rbp-8], xmm0 .L10: movsd xmm0, QWORD PTR [rbp-8] movsd xmm1, QWORD PTR .LC0[rip] divsd xmm0, xmm1 movsd QWORD PTR [rbp-8], xmm0 jmp .L8 .L7: mov eax, DWORD PTR [rbp-28] sub eax, 1 cmp DWORD PTR [rbp-12], eax jne .L11 mov eax, DWORD PTR [rbp-44] sub eax, DWORD PTR [rbp-12] cdqe sal rax, 2 lea rdx, [rax-4] mov rax, QWORD PTR [rbp-40] add rax, rdx mov eax, DWORD PTR [rax] pxor xmm0, xmm0 cvtsi2sd xmm0, eax movsd QWORD PTR [rbp-8], xmm0 cmp DWORD PTR [rbp-48], 0 je .L8 mov eax, DWORD PTR [rbp-44] sub eax, DWORD PTR [rbp-12] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-40] add rax, rdx mov eax, DWORD PTR [rax] pxor xmm0, xmm0 cvtsi2sd xmm0, eax movsd xmm1, QWORD PTR [rbp-8] addsd xmm0, xmm1 movsd QWORD PTR [rbp-8], xmm0 movsd xmm0, QWORD PTR [rbp-8] movsd xmm1, QWORD PTR .LC0[rip] divsd xmm0, xmm1 movsd QWORD PTR [rbp-8], xmm0 jmp .L8 .L11: mov eax, DWORD PTR [rbp-44] sub eax, DWORD PTR [rbp-12] lea r8d, [rax-1] mov eax, DWORD PTR [rbp-28] sub eax, DWORD PTR [rbp-12] lea ecx, [rax-1] mov eax, DWORD PTR [rbp-12] cdqe add rax, 1 lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-24] add rdx, rax mov edi, DWORD PTR [rbp-48] mov esi, DWORD PTR [rbp-32] mov rax, QWORD PTR [rbp-40] mov r9d, edi mov rdi, rax call bs2 movq rax, xmm0 mov QWORD PTR [rbp-8], rax .L8: movsd xmm0, QWORD PTR [rbp-8] leave ret min: push rbp mov rbp, rsp mov DWORD PTR [rbp-4], edi mov DWORD PTR [rbp-8], esi mov edx, DWORD PTR [rbp-8] mov eax, DWORD PTR [rbp-4] cmp edx, eax cmovle eax, edx pop rbp ret max: push rbp mov rbp, rsp mov DWORD PTR [rbp-4], edi mov DWORD PTR [rbp-8], esi mov edx, DWORD PTR [rbp-8] mov eax, DWORD PTR [rbp-4] cmp edx, eax cmovge eax, edx pop rbp ret findMedianSortedArrays: push rbp mov rbp, rsp sub rsp, 48 mov QWORD PTR [rbp-24], rdi mov DWORD PTR [rbp-28], esi mov QWORD PTR [rbp-40], rdx mov DWORD PTR [rbp-32], ecx mov edx, DWORD PTR [rbp-28] mov eax, DWORD PTR [rbp-32] add eax, edx sub eax, 1 mov edx, eax shr edx, 31 add eax, edx sar eax mov DWORD PTR [rbp-12], eax mov edx, DWORD PTR [rbp-28] mov eax, DWORD PTR [rbp-32] add eax, edx and eax, 1 and eax, 1 xor eax, 1 movzx eax, al mov DWORD PTR [rbp-16], eax cmp DWORD PTR [rbp-32], 0 jne .L18 mov eax, DWORD PTR [rbp-12] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-24] add rax, rdx mov eax, DWORD PTR [rax] pxor xmm0, xmm0 cvtsi2sd xmm0, eax movsd QWORD PTR [rbp-8], xmm0 cmp DWORD PTR [rbp-16], 0 je .L19 mov eax, DWORD PTR [rbp-12] cdqe add rax, 1 lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-24] add rax, rdx mov eax, DWORD PTR [rax] pxor xmm0, xmm0 cvtsi2sd xmm0, eax movsd xmm1, QWORD PTR [rbp-8] addsd xmm0, xmm1 movsd QWORD PTR [rbp-8], xmm0 movsd xmm0, QWORD PTR [rbp-8] movsd xmm1, QWORD PTR .LC0[rip] divsd xmm0, xmm1 movsd QWORD PTR [rbp-8], xmm0 .L19: mov rax, QWORD PTR [rbp-8] jmp .L20 .L18: cmp DWORD PTR [rbp-28], 0 jne .L21 mov eax, DWORD PTR [rbp-12] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-40] add rax, rdx mov eax, DWORD PTR [rax] pxor xmm0, xmm0 cvtsi2sd xmm0, eax movsd QWORD PTR [rbp-8], xmm0 cmp DWORD PTR [rbp-16], 0 je .L22 mov eax, DWORD PTR [rbp-12] cdqe add rax, 1 lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-40] add rax, rdx mov eax, DWORD PTR [rax] pxor xmm0, xmm0 cvtsi2sd xmm0, eax movsd xmm1, QWORD PTR [rbp-8] addsd xmm0, xmm1 movsd QWORD PTR [rbp-8], xmm0 movsd xmm0, QWORD PTR [rbp-8] movsd xmm1, QWORD PTR .LC0[rip] divsd xmm0, xmm1 movsd QWORD PTR [rbp-8], xmm0 .L22: mov rax, QWORD PTR [rbp-8] jmp .L20 .L21: mov rax, QWORD PTR [rbp-40] mov edx, DWORD PTR [rax] mov rax, QWORD PTR [rbp-24] mov eax, DWORD PTR [rax] cmp edx, eax jge .L23 mov r8d, DWORD PTR [rbp-16] mov edi, DWORD PTR [rbp-12] mov ecx, DWORD PTR [rbp-28] mov rdx, QWORD PTR [rbp-24] mov esi, DWORD PTR [rbp-32] mov rax, QWORD PTR [rbp-40] mov r9d, r8d mov r8d, edi mov rdi, rax call bs2 movq rax, xmm0 jmp .L20 .L23: mov r8d, DWORD PTR [rbp-16] mov edi, DWORD PTR [rbp-12] mov ecx, DWORD PTR [rbp-32] mov rdx, QWORD PTR [rbp-40] mov esi, DWORD PTR [rbp-28] mov rax, QWORD PTR [rbp-24] mov r9d, r8d mov r8d, edi mov rdi, rax call bs2 movq rax, xmm0 .L20: movq xmm0, rax leave ret .LC0: .long 0 .long 1073741824
125
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
x86-64
-O1
x86-64 gcc 15.2
bs: mov eax, esi sub eax, 1 js .L1 mov r8d, 0 jmp .L5 .L3: lea r8d, [rcx+1] .L4: cmp eax, r8d jl .L1 .L5: mov esi, eax sub esi, r8d mov ecx, esi shr ecx, 31 add ecx, esi sar ecx add ecx, r8d movsx rsi, ecx cmp DWORD PTR [rdi+rsi*4], edx jle .L3 lea eax, [rcx-1] jmp .L4 .L1: ret bs2: push r15 push r14 push r13 push r12 push rbp push rbx sub rsp, 24 mov r12, rdi mov ebp, esi mov r13, rdx mov DWORD PTR [rsp+12], ecx mov ebx, r8d mov r15d, r9d mov r14d, DWORD PTR [rdx] mov edx, r14d call bs cmp eax, ebx jl .L8 movsx rdx, ebx lea rcx, [0+rdx*4] pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [r12+rdx*4] test r15d, r15d je .L7 cmp eax, ebx jle .L10 pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [r12+4+rcx] addsd xmm0, xmm1 .L11: mulsd xmm0, QWORD PTR .LC0[rip] .L7: add rsp, 24 pop rbx pop rbp pop r12 pop r13 pop r14 pop r15 ret .L10: pxor xmm1, xmm1 cvtsi2sd xmm1, r14d addsd xmm0, xmm1 jmp .L11 .L8: lea edx, [rbp-1] cmp edx, eax jne .L12 sub ebx, eax movsx rbx, ebx pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [r13-4+rbx*4] test r15d, r15d je .L7 pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [r13+0+rbx*4] addsd xmm0, xmm1 mulsd xmm0, QWORD PTR .LC0[rip] jmp .L7 .L12: sub ebx, eax sub ebp, eax lea ecx, [rbp-1] cdqe lea rdx, [r12+4+rax*4] mov r9d, r15d lea r8d, [rbx-1] mov esi, DWORD PTR [rsp+12] mov rdi, r13 call bs2 jmp .L7 min: cmp esi, edi mov eax, edi cmovle eax, esi ret max: cmp esi, edi mov eax, edi cmovge eax, esi ret findMedianSortedArrays: mov r10d, esi mov rax, rdx lea r9d, [rsi+rcx] lea edx, [r9-1] mov r8d, edx shr r8d, 31 add r8d, edx sar r8d and r9d, 1 test ecx, ecx je .L24 mov esi, ecx test r10d, r10d je .L25 sub rsp, 8 xor r9d, 1 mov ecx, DWORD PTR [rdi] cmp DWORD PTR [rax], ecx jl .L26 mov ecx, esi mov rdx, rax mov esi, r10d call bs2 .L16: add rsp, 8 ret .L24: movsx r8, r8d lea rax, [0+r8*4] pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [rdi+r8*4] test r9d, r9d jne .L22 pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [rdi+4+rax] addsd xmm0, xmm1 mulsd xmm0, QWORD PTR .LC0[rip] ret .L25: movsx r8, r8d lea rdx, [0+r8*4] pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [rax+r8*4] test r9d, r9d jne .L22 pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [rax+4+rdx] addsd xmm0, xmm1 mulsd xmm0, QWORD PTR .LC0[rip] ret .L26: mov ecx, r10d mov rdx, rdi mov rdi, rax call bs2 jmp .L16 .L22: ret .LC0: .long 0 .long 1071644672
126
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
x86-64
-O2
x86-64 gcc 15.2
bs: mov eax, esi mov r8d, edx sub eax, 1 js .L1 xor ecx, ecx jmp .L5 .L8: lea eax, [rdx-1] cmp ecx, eax jg .L1 .L5: mov edx, eax sub edx, ecx sar edx add edx, ecx movsx rsi, edx cmp r8d, DWORD PTR [rdi+rsi*4] jl .L8 lea ecx, [rdx+1] cmp ecx, eax jle .L5 .L1: ret bs2: mov r11d, esi push r12 mov r10, rdi push rbp mov r12d, r11d mov ebp, ecx push rbx mov rbx, rdx mov edi, DWORD PTR [rbx] sub r12d, 1 js .L10 .L33: mov ecx, r12d xor edx, edx jmp .L13 .L31: lea ecx, [rax-1] cmp edx, ecx jg .L30 .L13: mov eax, ecx sub eax, edx sar eax add eax, edx movsx rsi, eax cmp edi, DWORD PTR [r10+rsi*4] jl .L31 lea edx, [rax+1] cmp edx, ecx jle .L13 .L30: cmp r8d, ecx jle .L32 mov eax, r8d sub eax, ecx cmp r12d, ecx je .L21 mov edx, r11d lea r8d, [rax-1] mov r11d, ebp sub edx, ecx add ecx, 1 mov r12d, r11d movsx rcx, ecx lea ebp, [rdx-1] lea rax, [r10+rcx*4] mov r10, rbx mov rbx, rax mov edi, DWORD PTR [rbx] sub r12d, 1 jns .L33 .L10: cmp r8d, r12d jg .L21 .L20: movsx rax, r8d pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [r10+rax*4] test r9d, r9d je .L9 cmp r8d, r12d jl .L34 pxor xmm1, xmm1 cvtsi2sd xmm1, edi addsd xmm0, xmm1 .L17: mulsd xmm0, QWORD PTR .LC0[rip] .L9: pop rbx pop rbp pop r12 ret .L21: sub r8d, r12d pxor xmm0, xmm0 movsx rax, r8d cvtsi2sd xmm0, DWORD PTR [rbx-4+rax*4] test r9d, r9d je .L9 pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [rbx+rax*4] pop rbx addsd xmm0, xmm1 mulsd xmm0, QWORD PTR .LC0[rip] pop rbp pop r12 ret .L34: pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [r10+4+rax*4] addsd xmm0, xmm1 jmp .L17 .L32: mov r12d, ecx jmp .L20 min: cmp esi, edi mov eax, edi cmovle eax, esi ret max: cmp esi, edi mov eax, edi cmovge eax, esi ret findMedianSortedArrays: mov r10d, esi mov rax, rdx mov esi, ecx lea r9d, [r10+rcx] lea r8d, [r9-1] shr r8d, 31 lea r8d, [r8-1+r9] and r9d, 1 sar r8d test ecx, ecx je .L42 test r10d, r10d je .L43 mov ecx, DWORD PTR [rdi] xor r9d, 1 cmp DWORD PTR [rdx], ecx jl .L44 mov ecx, esi mov esi, r10d jmp bs2 .L43: movsx r8, r8d pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [rdx+r8*4] test r9d, r9d jne .L37 pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [rdx+4+r8*4] addsd xmm0, xmm1 mulsd xmm0, QWORD PTR .LC0[rip] ret .L42: movsx r8, r8d pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [rdi+r8*4] test r9d, r9d je .L45 .L37: ret .L45: pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [rdi+4+r8*4] addsd xmm0, xmm1 mulsd xmm0, QWORD PTR .LC0[rip] ret .L44: mov rdx, rdi mov ecx, r10d mov rdi, rax jmp bs2 .LC0: .long 0 .long 1071644672
127
4
Median of Two Sorted Arrays
Hard
/* 4. Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 */ int bs(int *n, int sz, int k) { int i, j, m; i = 0; j = sz - 1; while (i <= j) { m = i + (j - i) / 2; if (n[m] > k) { j = m - 1; } else { i = m + 1; } } return j; // this is the lastest one which is not greater than k } double bs2(int *n1, int sz1, int *n2, int sz2, int m, int m1) { double d; int i; i = bs(n1, sz1, n2[0]); // search in first array if (i >= m) { // median is in the first array d = n1[m]; if (m1) { if (i > m) { d += n1[m + 1]; } else { d += n2[0]; } d /= 2; } } else if (i == sz1 - 1) { // median is in the second array d = n2[m - i - 1]; if (m1) { d += n2[m - i]; d /= 2; } } else { // reverse arrays and search again d = bs2(n2, sz2, &n1[i + 1], sz1 - i - 1, m - i - 1, m1); } return d; } int min(int a, int b) { return a < b ? a : b; } int max(int a, int b) { return a > b ? a : b; } double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { double d; #if 0 // sliding & binary search int i1_left = 0, i1_right = nums1Size; int i1, i2; if (nums1Size > nums2Size) { // make nums1 as a short array return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size); } // O(log(min(m, n))) while (i1_left <= i1_right) { i1 = i1_left + (i1_right - i1_left) / 2; i2 = (nums1Size + nums2Size + 1) / 2 - i1; if (i1 > 0 && nums1[i1 - 1] > nums2[i2]) { i1_right = i1 - 1; } else if (i1 < nums1Size && nums1[i1] < nums2[i2 - 1]) { i1_left = i1 + 1; } else { // found it! if (i1 == 0) d = nums2[i2 - 1]; else if (i2 == 0) d = nums1[i1 - 1]; else if (nums1[i1 - 1] > nums2[i2 - 1]) d = nums1[i1 - 1]; else d = nums2[i2 - 1]; if (((nums1Size + nums2Size) % 2) == 0) { if (i2 == nums2Size) { d = (d + nums1[i1]) / 2; } else if (i1 == nums1Size) { d = (d + nums2[i2]) / 2; } else if (nums1[i1] < nums2[i2]) { d = (d + nums1[i1]) / 2; } else { d = (d + nums2[i2]) / 2; } } break; } } #else // binary search 40+ms int p1, p2; p1 = (nums1Size + nums2Size - 1) / 2; p2 = ((nums1Size + nums2Size) % 2) ? 0 : 1; if (nums2Size == 0) { d = nums1[p1]; if (p2) { d += nums1[p1 + 1]; d /= 2; } return d; } if (nums1Size == 0) { d = nums2[p1]; if (p2) { d += nums2[p1 + 1]; d /= 2; } return d; } if (nums2[0] < nums1[0]) return bs2(nums2, nums2Size, nums1, nums1Size, p1, p2); return bs2(nums1, nums1Size, nums2, nums2Size, p1, p2); #endif return d; } /* Difficulty:Hard Total Accepted:182.7K Total Submissions:839.6K Companies Google Zenefits Microsoft Apple Yahoo Dropbox Adobe Related Topics Binary Search Array Divide and Conquer */
x86-64
-O3
x86-64 gcc 15.2
bs: mov eax, esi mov r8d, edx sub eax, 1 js .L1 xor ecx, ecx jmp .L5 .L8: lea eax, [rdx-1] cmp ecx, eax jg .L1 .L5: mov edx, eax sub edx, ecx sar edx add edx, ecx movsx rsi, edx cmp r8d, DWORD PTR [rdi+rsi*4] jl .L8 lea ecx, [rdx+1] cmp ecx, eax jle .L5 .L1: ret bs2: mov r11d, esi push r12 mov r10, rdi push rbp mov r12d, r11d mov ebp, ecx push rbx mov rbx, rdx mov edi, DWORD PTR [rbx] sub r12d, 1 js .L10 .L33: mov ecx, r12d xor edx, edx jmp .L13 .L31: lea ecx, [rax-1] cmp ecx, edx jl .L30 .L13: mov eax, ecx sub eax, edx sar eax add eax, edx movsx rsi, eax cmp edi, DWORD PTR [r10+rsi*4] jl .L31 lea edx, [rax+1] cmp ecx, edx jge .L13 .L30: cmp r8d, ecx jle .L32 mov eax, r8d sub eax, ecx cmp r12d, ecx je .L21 mov edx, r11d lea r8d, [rax-1] mov r11d, ebp sub edx, ecx add ecx, 1 mov r12d, r11d movsx rcx, ecx lea ebp, [rdx-1] lea rax, [r10+rcx*4] mov r10, rbx mov rbx, rax mov edi, DWORD PTR [rbx] sub r12d, 1 jns .L33 .L10: cmp r12d, r8d jl .L21 .L20: movsx rax, r8d pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [r10+rax*4] test r9d, r9d je .L9 cmp r8d, r12d jl .L34 pxor xmm1, xmm1 cvtsi2sd xmm1, edi addsd xmm0, xmm1 .L17: mulsd xmm0, QWORD PTR .LC0[rip] .L9: pop rbx pop rbp pop r12 ret .L21: sub r8d, r12d pxor xmm0, xmm0 movsx rax, r8d cvtsi2sd xmm0, DWORD PTR [rbx-4+rax*4] test r9d, r9d je .L9 pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [rbx+rax*4] pop rbx addsd xmm0, xmm1 mulsd xmm0, QWORD PTR .LC0[rip] pop rbp pop r12 ret .L34: pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [r10+4+rax*4] addsd xmm0, xmm1 jmp .L17 .L32: mov r12d, ecx jmp .L20 min: cmp esi, edi mov eax, edi cmovle eax, esi ret max: cmp esi, edi mov eax, edi cmovge eax, esi ret findMedianSortedArrays: mov r10d, esi mov rax, rdx mov esi, ecx lea r9d, [r10+rcx] lea r8d, [r9-1] shr r8d, 31 lea r8d, [r8-1+r9] and r9d, 1 sar r8d test ecx, ecx je .L42 test r10d, r10d je .L43 mov ecx, DWORD PTR [rdi] xor r9d, 1 cmp DWORD PTR [rdx], ecx jl .L44 mov ecx, esi mov esi, r10d jmp bs2 .L43: movsx r8, r8d pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [rdx+r8*4] test r9d, r9d jne .L37 pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [rdx+4+r8*4] addsd xmm0, xmm1 mulsd xmm0, QWORD PTR .LC0[rip] ret .L42: movsx r8, r8d pxor xmm0, xmm0 cvtsi2sd xmm0, DWORD PTR [rdi+r8*4] test r9d, r9d je .L45 .L37: ret .L45: pxor xmm1, xmm1 cvtsi2sd xmm1, DWORD PTR [rdi+4+r8*4] addsd xmm0, xmm1 mulsd xmm0, QWORD PTR .LC0[rip] ret .L44: mov rdx, rdi mov ecx, r10d mov rdi, rax jmp bs2 .LC0: .long 0 .long 1071644672
128
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
aarch64
-O0
ARM64 gcc 15.2.0
longestPalindrome: stp x29, x30, [sp, -64]! mov x29, sp str x0, [sp, 24] str wzr, [sp, 48] str wzr, [sp, 44] ldr x0, [sp, 24] cmp x0, 0 beq .L2 ldr x0, [sp, 24] ldrb w0, [x0] cmp w0, 0 bne .L3 .L2: ldr x0, [sp, 24] b .L4 .L3: ldr x0, [sp, 24] bl strlen str w0, [sp, 40] str wzr, [sp, 60] str wzr, [sp, 56] str wzr, [sp, 52] b .L5 .L8: ldr w0, [sp, 56] add w0, w0, 1 str w0, [sp, 56] .L6: ldr w0, [sp, 56] add w0, w0, 1 ldr w1, [sp, 40] cmp w1, w0 ble .L7 ldrsw x0, [sp, 56] ldr x1, [sp, 24] add x0, x1, x0 ldrb w1, [x0] ldrsw x0, [sp, 56] add x0, x0, 1 ldr x2, [sp, 24] add x0, x2, x0 ldrb w0, [x0] cmp w1, w0 beq .L8 .L7: ldr w0, [sp, 56] add w0, w0, 1 str w0, [sp, 52] b .L9 .L11: ldr w0, [sp, 60] sub w0, w0, #1 str w0, [sp, 60] ldr w0, [sp, 56] add w0, w0, 1 str w0, [sp, 56] .L9: ldr w0, [sp, 60] cmp w0, 0 ble .L10 ldr w0, [sp, 56] add w0, w0, 1 ldr w1, [sp, 40] cmp w1, w0 ble .L10 ldrsw x0, [sp, 60] sub x0, x0, #1 ldr x1, [sp, 24] add x0, x1, x0 ldrb w1, [x0] ldrsw x0, [sp, 56] add x0, x0, 1 ldr x2, [sp, 24] add x0, x2, x0 ldrb w0, [x0] cmp w1, w0 beq .L11 .L10: ldr w1, [sp, 56] ldr w0, [sp, 60] sub w0, w1, w0 add w0, w0, 1 str w0, [sp, 36] ldr w1, [sp, 44] ldr w0, [sp, 36] cmp w1, w0 bge .L12 ldr w0, [sp, 36] str w0, [sp, 44] ldr w0, [sp, 60] str w0, [sp, 48] .L12: ldr w0, [sp, 52] str w0, [sp, 60] ldr w0, [sp, 52] str w0, [sp, 56] .L5: ldr w1, [sp, 40] ldr w0, [sp, 52] sub w0, w1, w0 lsl w0, w0, 1 ldr w1, [sp, 44] cmp w1, w0 blt .L6 ldrsw x0, [sp, 48] ldr x1, [sp, 24] add x0, x1, x0 str x0, [sp, 24] ldrsw x0, [sp, 44] ldr x1, [sp, 24] add x0, x1, x0 strb wzr, [x0] ldr x0, [sp, 24] .L4: ldp x29, x30, [sp], 64 ret
129
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
aarch64
-O1
ARM64 gcc 15.2.0
longestPalindrome: stp x29, x30, [sp, -32]! mov x29, sp str x19, [sp, 16] mov x19, x0 cbz x0, .L1 ldrb w1, [x0] cbz w1, .L1 bl strlen mov w7, w0 cmp w0, 0 ble .L13 lsl x13, x19, 1 mov w11, 0 mov w12, 0 mov w5, 0 b .L10 .L14: mov w9, w4 .L6: sub w9, w9, w5 add w9, w9, 1 cmp w9, w11 csel w0, w9, w11, gt csel w12, w5, w12, gt mov w11, w0 sub w0, w7, w1 cmp w11, w0, lsl 1 bge .L3 mov w5, w1 .L10: sxtw x10, w5 add x3, x19, x10 mov x2, x3 mov w1, w5 .L5: mov w4, w1 add w1, w1, 1 cmp w1, w7 bge .L4 ldrb w0, [x2] ldrb w6, [x2, 1]! cmp w6, w0 beq .L5 .L4: cmp w5, 0 ble .L14 add x10, x13, x10 mov w2, w4 add x10, x10, 1 sxtw x6, w4 .L7: mov w9, w2 add w2, w2, 1 cmp w2, w7 bge .L6 sub x4, x10, x3 ldrb w8, [x3, -1] ldrb w0, [x4, x6] cmp w8, w0 bne .L6 sub x3, x3, #1 subs w5, w5, #1 bne .L7 mov w9, w2 b .L6 .L13: mov w11, 0 mov w12, 0 .L3: add x0, x19, w12, sxtw strb wzr, [x0, w11, sxtw] .L1: ldr x19, [sp, 16] ldp x29, x30, [sp], 32 ret
130
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
aarch64
-O2
ARM64 gcc 15.2.0
longestPalindrome: cbz x0, .L11 ldrb w1, [x0] mov x11, x0 cbz w1, .L21 stp x29, x30, [sp, -32]! mov x29, sp stp x0, x0, [sp, 16] bl strlen cmp w0, 0 ldr x11, [sp, 16] mov x12, x11 ble .L3 lsl x13, x11, 1 mov w10, 0 mov w11, 0 mov w5, 0 .L10: sxtw x8, w5 mov w1, w5 add x3, x12, x8 mov x4, x3 b .L5 .L25: ldrb w6, [x4] ldrb w7, [x4, 1]! cmp w7, w6 bne .L4 .L5: mov w2, w1 add w1, w1, 1 cmp w1, w0 blt .L25 .L4: cmp w5, 0 ble .L15 add x8, x13, x8 sxtw x9, w2 add x8, x8, 1 b .L7 .L26: sub x4, x8, x3 ldrb w7, [x3, -1] ldrb w4, [x4, x9] cmp w7, w4 bne .L6 sub x3, x3, #1 subs w5, w5, #1 beq .L15 .L7: mov w6, w2 add w2, w2, 1 cmp w2, w0 blt .L26 .L6: sub w6, w6, w5 sub w2, w0, w1 add w6, w6, 1 cmp w6, w10 csel w10, w6, w10, gt csel w11, w5, w11, gt cmp w10, w2, lsl 1 bge .L27 mov w5, w1 b .L10 .L27: add x11, x12, w11, sxtw add x12, x11, w10, sxtw .L3: strb wzr, [x12] mov x0, x11 ldp x29, x30, [sp], 32 ret .L15: mov w6, w2 b .L6 .L11: mov x11, 0 .L21: mov x0, x11 ret
131
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
aarch64
-O3
ARM64 gcc 15.2.0
longestPalindrome: cbz x0, .L26 ldrb w1, [x0] mov x11, x0 cbz w1, .L39 stp x29, x30, [sp, -32]! mov x29, sp stp x0, x0, [sp, 16] bl strlen cmp w0, 0 ldr x11, [sp, 16] mov x8, x11 ble .L3 adrp x1, .LC0 dup v27.4s, w0 movi v19.4s, 0xd lsl x12, x11, 1 ldr q7, [x1, #:lo12:.LC0] adrp x1, .LC1 movi v20.4s, 0x1 mov w10, 0 ldr q16, [x1, #:lo12:.LC1] adrp x1, .LC2 movi v21.4s, 0x5 mov w11, 0 movi v22.4s, 0x9 mov w3, 0 ldr q18, [x1, #:lo12:.LC2] mvni v23.4s, 0xf movi v17.4s, 0x10 .L25: sxtw x13, w3 mov w2, w3 add x9, x8, x13 mov x1, x9 b .L5 .L43: ldrb w4, [x1] ldrb w5, [x1, 1]! cmp w5, w4 bne .L4 .L5: mov w6, w2 add w2, w2, 1 cmp w2, w0 blt .L43 .L4: cmp w3, 0 ble .L29 cmp w3, 15 ble .L7 add w5, w6, 1 sub x7, x13, #16 add x7, x8, x7 add x5, x8, w5, sxtw orr x1, x5, x7 tst x1, 15 bne .L7 dup v26.4s, w3 dup v30.4s, w6 and x9, x3, 4294967280 mov x1, 0 add v26.4s, v26.4s, v7.4s add v30.4s, v30.4s, v16.4s b .L9 .L45: ldr q29, [x7, x4] ldr q31, [x5, x1] add x1, x1, 16 tbl v29.16b, {v29.16b}, v18.16b cmeq v31.16b, v31.16b, v29.16b not v31.16b, v31.16b umaxp v31.4s, v31.4s, v31.4s fmov x4, d31 cbnz x4, .L20 add v30.4s, v30.4s, v17.4s cmp x9, x1 beq .L44 add v26.4s, v26.4s, v23.4s .L9: add v25.4s, v30.4s, v19.4s neg x4, x1 add v29.4s, v30.4s, v22.4s add v31.4s, v30.4s, v20.4s add v28.4s, v30.4s, v21.4s cmge v24.4s, v25.4s, v27.4s cmge v29.4s, v29.4s, v27.4s cmge v31.4s, v31.4s, v27.4s cmge v28.4s, v28.4s, v27.4s orr v29.16b, v29.16b, v24.16b orr v31.16b, v31.16b, v28.16b orr v31.16b, v31.16b, v29.16b umaxp v31.4s, v31.4s, v31.4s fmov x13, d31 cbz x13, .L45 .L20: fmov w1, s30 fmov w3, s26 .L23: sxtw x4, w3 sxtw x13, w1 add x9, x12, x4 add x4, x8, x4 add x9, x9, 1 b .L14 .L12: ldrb w7, [x4, -1] sub x4, x4, #1 ldrb w6, [x6, x13] cmp w7, w6 bne .L6 subs w3, w3, #1 beq .L15 .L14: mov w5, w1 add w1, w1, 1 sub x6, x9, x4 cmp w0, w1 bgt .L12 .L6: sub w5, w5, w3 sub w1, w0, w2 add w5, w5, 1 cmp w5, w10 csel w10, w5, w10, gt csel w11, w3, w11, gt cmp w10, w1, lsl 1 bge .L46 mov w3, w2 b .L25 .L46: add x11, x8, w11, sxtw add x8, x11, w10, sxtw .L3: strb wzr, [x8] mov x0, x11 ldp x29, x30, [sp], 32 ret .L11: mvni v31.4s, 0xc umov w1, v25.s[3] add v31.4s, v26.4s, v31.4s umov w3, v31.s[3] .L15: mov w5, w1 b .L6 .L44: and w4, w3, -16 cmp w3, w4 beq .L11 add w1, w6, w4 sub w3, w3, w4 b .L23 .L7: add x1, x12, x13 sxtw x13, w6 add x1, x1, 1 b .L18 .L47: ldrb w7, [x9, -1] sub x9, x9, #1 ldrb w4, [x4, x13] cmp w7, w4 bne .L6 subs w3, w3, #1 beq .L29 .L18: mov w5, w6 add w6, w6, 1 sub x4, x1, x9 cmp w6, w0 blt .L47 b .L6 .L29: mov w5, w6 b .L6 .L26: mov x11, 0 .L39: mov x0, x11 ret .LC0: .word 0 .word -1 .word -2 .word -3 .LC1: .word 0 .word 1 .word 2 .word 3 .LC2: .byte 15 .byte 14 .byte 13 .byte 12 .byte 11 .byte 10 .byte 9 .byte 8 .byte 7 .byte 6 .byte 5 .byte 4 .byte 3 .byte 2 .byte 1 .byte 0
132
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
aarch64
-O0
armv8-a clang 21.1.0
longestPalindrome: sub sp, sp, #80 stp x29, x30, [sp, #64] add x29, sp, #64 stur x0, [x29, #-16] str wzr, [sp, #24] str wzr, [sp, #20] ldur x8, [x29, #-16] cbz x8, .LBB0_2 b .LBB0_1 .LBB0_1: ldur x8, [x29, #-16] ldrb w8, [x8] cbnz w8, .LBB0_3 b .LBB0_2 .LBB0_2: ldur x8, [x29, #-16] stur x8, [x29, #-8] b .LBB0_21 .LBB0_3: ldur x0, [x29, #-16] bl strlen mov w8, w0 stur w8, [x29, #-20] stur wzr, [x29, #-24] stur wzr, [x29, #-28] str wzr, [sp, #32] b .LBB0_4 .LBB0_4: ldr w8, [sp, #20] ldur w9, [x29, #-20] ldr w10, [sp, #32] subs w9, w9, w10 subs w8, w8, w9, lsl #1 b.ge .LBB0_20 b .LBB0_5 .LBB0_5: b .LBB0_6 .LBB0_6: ldur w8, [x29, #-28] add w9, w8, #1 ldur w10, [x29, #-20] mov w8, #0 subs w9, w9, w10 str w8, [sp, #16] b.ge .LBB0_8 b .LBB0_7 .LBB0_7: ldur x8, [x29, #-16] ldursw x9, [x29, #-28] ldrb w8, [x8, x9] ldur x9, [x29, #-16] ldur w10, [x29, #-28] add w10, w10, #1 ldrb w9, [x9, w10, sxtw] subs w8, w8, w9 cset w8, eq str w8, [sp, #16] b .LBB0_8 .LBB0_8: ldr w8, [sp, #16] tbz w8, #0, .LBB0_10 b .LBB0_9 .LBB0_9: ldur w8, [x29, #-28] add w8, w8, #1 stur w8, [x29, #-28] b .LBB0_6 .LBB0_10: ldur w8, [x29, #-28] add w8, w8, #1 str w8, [sp, #32] b .LBB0_11 .LBB0_11: ldur w9, [x29, #-24] mov w8, #0 subs w9, w9, #0 str w8, [sp, #12] b.le .LBB0_14 b .LBB0_12 .LBB0_12: ldur w8, [x29, #-28] add w9, w8, #1 ldur w10, [x29, #-20] mov w8, #0 subs w9, w9, w10 str w8, [sp, #12] b.ge .LBB0_14 b .LBB0_13 .LBB0_13: ldur x8, [x29, #-16] ldur w9, [x29, #-24] subs w9, w9, #1 ldrb w8, [x8, w9, sxtw] ldur x9, [x29, #-16] ldur w10, [x29, #-28] add w10, w10, #1 ldrb w9, [x9, w10, sxtw] subs w8, w8, w9 cset w8, eq str w8, [sp, #12] b .LBB0_14 .LBB0_14: ldr w8, [sp, #12] tbz w8, #0, .LBB0_16 b .LBB0_15 .LBB0_15: ldur w8, [x29, #-24] subs w8, w8, #1 stur w8, [x29, #-24] ldur w8, [x29, #-28] add w8, w8, #1 stur w8, [x29, #-28] b .LBB0_11 .LBB0_16: ldur w8, [x29, #-28] ldur w9, [x29, #-24] subs w8, w8, w9 add w8, w8, #1 str w8, [sp, #28] ldr w8, [sp, #20] ldr w9, [sp, #28] subs w8, w8, w9 b.ge .LBB0_18 b .LBB0_17 .LBB0_17: ldr w8, [sp, #28] str w8, [sp, #20] ldur w8, [x29, #-24] str w8, [sp, #24] b .LBB0_18 .LBB0_18: b .LBB0_19 .LBB0_19: ldr w8, [sp, #32] stur w8, [x29, #-24] ldr w8, [sp, #32] stur w8, [x29, #-28] b .LBB0_4 .LBB0_20: ldur x8, [x29, #-16] ldrsw x9, [sp, #24] add x8, x8, x9 stur x8, [x29, #-16] ldur x8, [x29, #-16] ldrsw x9, [sp, #20] add x8, x8, x9 strb wzr, [x8] ldur x8, [x29, #-16] stur x8, [x29, #-8] b .LBB0_21 .LBB0_21: ldur x0, [x29, #-8] ldp x29, x30, [sp, #64] add sp, sp, #80 ret
133
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
aarch64
-O1
armv8-a clang 21.1.0
longestPalindrome: cbz x0, .LBB0_20 ldrb w8, [x0] cbz w8, .LBB0_20 stp x29, x30, [sp, #-32]! str x19, [sp, #16] mov x29, sp mov x19, x0 bl strlen mov x8, x0 cmp w8, #1 b.lt .LBB0_18 mov w9, wzr mov w10, wzr mov w14, wzr mov x0, x19 sub x11, x19, #1 and x12, x8, #0x7fffffff add x13, x19, #1 b .LBB0_6 .LBB0_4: mov w17, w16 .LBB0_5: sub w16, w17, w15 add w17, w16, #1 cmp w9, w16 csel w10, w10, w15, gt cmp w9, w17 sub w15, w8, w14 csinc w9, w9, w16, gt cmp w9, w15, lsl #1 b.ge .LBB0_17 .LBB0_6: mov w15, w14 add w14, w14, #1 cmp w14, w8 sxtw x14, w15 csinc w17, w8, w15, le sub w16, w17, #1 add x18, x13, x14 add x1, x14, #1 mov w14, w15 .LBB0_7: cmp x1, x12 b.ge .LBB0_10 ldurb w2, [x18, #-1] ldrb w3, [x18], #1 add w14, w14, #1 add x1, x1, #1 cmp w2, w3 b.eq .LBB0_7 sub w16, w14, #1 cmp w15, #1 b.ge .LBB0_11 b .LBB0_4 .LBB0_10: mov w14, w17 cmp w15, #1 b.lt .LBB0_4 .LBB0_11: add w17, w16, #1 sxtw x1, w16 cmp w17, w8 add w17, w16, w15 csinc w18, w8, w16, le add x1, x1, #1 sub w18, w18, #1 .LBB0_12: cmp x1, x12 b.ge .LBB0_16 ldrb w2, [x11, w15, uxtw] ldrb w3, [x0, x1] cmp w2, w3 b.ne .LBB0_4 subs w15, w15, #1 add w16, w16, #1 add x1, x1, #1 b.gt .LBB0_12 mov w15, wzr b .LBB0_5 .LBB0_16: mov w17, w18 b .LBB0_5 .LBB0_17: sxtw x8, w10 b .LBB0_19 .LBB0_18: mov x8, xzr mov x9, xzr mov x0, x19 .LBB0_19: add x0, x0, x8 strb wzr, [x0, x9] ldr x19, [sp, #16] ldp x29, x30, [sp], #32 .LBB0_20: ret
134
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
aarch64
-O2
armv8-a clang 21.1.0
longestPalindrome: cbz x0, .LBB0_20 ldrb w8, [x0] cbz w8, .LBB0_20 stp x29, x30, [sp, #-32]! str x19, [sp, #16] mov x29, sp mov x19, x0 bl strlen mov x8, x0 cmp w8, #1 b.lt .LBB0_18 mov w9, wzr mov w10, wzr mov w14, wzr mov x0, x19 sub x11, x19, #1 and x12, x8, #0x7fffffff add x13, x19, #1 b .LBB0_6 .LBB0_4: mov w17, w16 .LBB0_5: sub w16, w17, w15 add w17, w16, #1 cmp w9, w16 csel w10, w10, w15, gt cmp w9, w17 sub w15, w8, w14 csinc w9, w9, w16, gt cmp w9, w15, lsl #1 b.ge .LBB0_17 .LBB0_6: mov w15, w14 add w14, w14, #1 cmp w14, w8 sxtw x14, w15 csinc w17, w8, w15, le sub w16, w17, #1 add x18, x13, x14 add x1, x14, #1 mov w14, w15 .LBB0_7: cmp x1, x12 b.ge .LBB0_10 ldurb w2, [x18, #-1] ldrb w3, [x18], #1 add w14, w14, #1 add x1, x1, #1 cmp w2, w3 b.eq .LBB0_7 sub w16, w14, #1 cmp w15, #1 b.ge .LBB0_11 b .LBB0_4 .LBB0_10: mov w14, w17 cmp w15, #1 b.lt .LBB0_4 .LBB0_11: add w17, w16, #1 sxtw x1, w16 cmp w17, w8 add w17, w16, w15 csinc w18, w8, w16, le add x1, x1, #1 sub w18, w18, #1 .LBB0_12: cmp x1, x12 b.ge .LBB0_16 ldrb w2, [x11, w15, uxtw] ldrb w3, [x0, x1] cmp w2, w3 b.ne .LBB0_4 subs w15, w15, #1 add w16, w16, #1 add x1, x1, #1 b.gt .LBB0_12 mov w15, wzr b .LBB0_5 .LBB0_16: mov w17, w18 b .LBB0_5 .LBB0_17: sxtw x8, w10 b .LBB0_19 .LBB0_18: mov x8, xzr mov x9, xzr mov x0, x19 .LBB0_19: add x0, x0, x8 strb wzr, [x0, x9] ldr x19, [sp, #16] ldp x29, x30, [sp], #32 .LBB0_20: ret
135
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
aarch64
-O3
armv8-a clang 21.1.0
longestPalindrome: cbz x0, .LBB0_20 ldrb w8, [x0] cbz w8, .LBB0_20 stp x29, x30, [sp, #-32]! str x19, [sp, #16] mov x29, sp mov x19, x0 bl strlen mov x8, x0 cmp w8, #1 b.lt .LBB0_18 mov w9, wzr mov w10, wzr mov w14, wzr mov x0, x19 sub x11, x19, #1 and x12, x8, #0x7fffffff add x13, x19, #1 b .LBB0_6 .LBB0_4: mov w17, w16 .LBB0_5: sub w16, w17, w15 add w17, w16, #1 cmp w9, w16 csel w10, w10, w15, gt cmp w9, w17 sub w15, w8, w14 csinc w9, w9, w16, gt cmp w9, w15, lsl #1 b.ge .LBB0_17 .LBB0_6: mov w15, w14 add w14, w14, #1 cmp w14, w8 sxtw x14, w15 csinc w17, w8, w15, le sub w16, w17, #1 add x18, x13, x14 add x1, x14, #1 mov w14, w15 .LBB0_7: cmp x1, x12 b.ge .LBB0_10 ldurb w2, [x18, #-1] ldrb w3, [x18], #1 add w14, w14, #1 add x1, x1, #1 cmp w2, w3 b.eq .LBB0_7 sub w16, w14, #1 cmp w15, #1 b.ge .LBB0_11 b .LBB0_4 .LBB0_10: mov w14, w17 cmp w15, #1 b.lt .LBB0_4 .LBB0_11: add w17, w16, #1 sxtw x1, w16 cmp w17, w8 add w17, w16, w15 csinc w18, w8, w16, le add x1, x1, #1 sub w18, w18, #1 .LBB0_12: cmp x1, x12 b.ge .LBB0_16 ldrb w2, [x11, w15, uxtw] ldrb w3, [x0, x1] cmp w2, w3 b.ne .LBB0_4 subs w15, w15, #1 add w16, w16, #1 add x1, x1, #1 b.gt .LBB0_12 mov w15, wzr b .LBB0_5 .LBB0_16: mov w17, w18 b .LBB0_5 .LBB0_17: sxtw x8, w10 b .LBB0_19 .LBB0_18: mov x8, xzr mov x9, xzr mov x0, x19 .LBB0_19: add x0, x0, x8 strb wzr, [x0, x9] ldr x19, [sp, #16] ldp x29, x30, [sp], #32 .LBB0_20: ret
136
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
mips64
-O0
mips64 clang 21.1.0
longestPalindrome: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -96 sd $ra, 88($sp) sd $fp, 80($sp) sd $gp, 72($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(longestPalindrome))) daddu $1, $1, $25 daddiu $1, $1, %lo(%neg(%gp_rel(longestPalindrome))) sd $1, 16($fp) sd $4, 56($fp) sw $zero, 32($fp) sw $zero, 28($fp) ld $1, 56($fp) beqz $1, .LBB0_4 nop b .LBB0_2 nop .LBB0_2: ld $1, 56($fp) lbu $1, 0($1) bnez $1, .LBB0_5 nop b .LBB0_4 nop .LBB0_4: ld $1, 56($fp) sd $1, 64($fp) b .LBB0_30 nop .LBB0_5: ld $gp, 16($fp) ld $4, 56($fp) ld $25, %call16(strlen)($gp) jalr $25 nop sw $2, 52($fp) sw $zero, 48($fp) sw $zero, 44($fp) sw $zero, 40($fp) b .LBB0_6 nop .LBB0_6: lw $1, 28($fp) lw $2, 52($fp) lw $3, 40($fp) subu $2, $2, $3 sll $2, $2, 1 slt $1, $1, $2 beqz $1, .LBB0_29 nop b .LBB0_8 nop .LBB0_8: b .LBB0_9 nop .LBB0_9: lw $1, 44($fp) addiu $1, $1, 1 lw $3, 52($fp) addiu $2, $zero, 0 slt $1, $1, $3 sw $2, 12($fp) beqz $1, .LBB0_12 nop b .LBB0_11 nop .LBB0_11: ld $2, 56($fp) lw $3, 44($fp) sll $1, $3, 0 daddu $1, $2, $1 lb $1, 0($1) addiu $4, $3, 1 move $3, $4 daddu $2, $2, $3 lb $2, 0($2) xor $1, $1, $2 sltiu $1, $1, 1 sw $1, 12($fp) b .LBB0_12 nop .LBB0_12: lw $1, 12($fp) andi $1, $1, 1 beqz $1, .LBB0_15 nop b .LBB0_14 nop .LBB0_14: lw $1, 44($fp) addiu $1, $1, 1 sw $1, 44($fp) b .LBB0_9 nop .LBB0_15: lw $1, 44($fp) addiu $1, $1, 1 sw $1, 40($fp) b .LBB0_16 nop .LBB0_16: lw $1, 48($fp) addiu $2, $zero, 0 sw $2, 8($fp) blez $1, .LBB0_21 nop b .LBB0_18 nop .LBB0_18: lw $1, 44($fp) addiu $1, $1, 1 lw $3, 52($fp) addiu $2, $zero, 0 slt $1, $1, $3 sw $2, 8($fp) beqz $1, .LBB0_21 nop b .LBB0_20 nop .LBB0_20: ld $2, 56($fp) lw $1, 48($fp) addiu $3, $1, -1 move $1, $3 daddu $1, $2, $1 lb $1, 0($1) lw $3, 44($fp) addiu $4, $3, 1 move $3, $4 daddu $2, $2, $3 lb $2, 0($2) xor $1, $1, $2 sltiu $1, $1, 1 sw $1, 8($fp) b .LBB0_21 nop .LBB0_21: lw $1, 8($fp) andi $1, $1, 1 beqz $1, .LBB0_24 nop b .LBB0_23 nop .LBB0_23: lw $1, 48($fp) addiu $1, $1, -1 sw $1, 48($fp) lw $1, 44($fp) addiu $1, $1, 1 sw $1, 44($fp) b .LBB0_16 nop .LBB0_24: lw $1, 44($fp) lw $2, 48($fp) subu $1, $1, $2 addiu $1, $1, 1 sw $1, 36($fp) lw $1, 28($fp) lw $2, 36($fp) slt $1, $1, $2 beqz $1, .LBB0_27 nop b .LBB0_26 nop .LBB0_26: lw $1, 36($fp) sw $1, 28($fp) lw $1, 48($fp) sw $1, 32($fp) b .LBB0_27 nop .LBB0_27: b .LBB0_28 nop .LBB0_28: lw $1, 40($fp) sw $1, 48($fp) lw $1, 40($fp) sw $1, 44($fp) b .LBB0_6 nop .LBB0_29: ld $1, 56($fp) lw $2, 32($fp) daddu $1, $1, $2 sd $1, 56($fp) ld $1, 56($fp) lw $2, 28($fp) daddu $1, $1, $2 addiu $2, $zero, 0 sb $zero, 0($1) ld $1, 56($fp) sd $1, 64($fp) b .LBB0_30 nop .LBB0_30: ld $2, 64($fp) move $sp, $fp ld $gp, 72($sp) ld $fp, 80($sp) ld $ra, 88($sp) daddiu $sp, $sp, 96 jr $ra nop
137
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
mips64
-O1
mips64 clang 21.1.0
longestPalindrome: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -32 sd $ra, 24($sp) sd $fp, 16($sp) sd $gp, 8($sp) sd $16, 0($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(longestPalindrome))) daddu $2, $1, $25 beqz $4, .LBB0_22 move $16, $4 lbu $1, 0($16) beqz $1, .LBB0_22 nop daddiu $gp, $2, %lo(%neg(%gp_rel(longestPalindrome))) ld $25, %call16(strlen)($gp) jalr $25 move $4, $16 sll $3, $2, 0 blez $3, .LBB0_20 nop daddiu $4, $16, 1 dext $2, $2, 0, 31 daddiu $5, $16, -1 addiu $10, $zero, 0 addiu $12, $zero, 0 b .LBB0_6 addiu $6, $zero, 0 .LBB0_4: move $12, $9 move $11, $10 .LBB0_5: subu $1, $11, $12 addiu $10, $1, 1 slt $9, $10, $8 movn $10, $8, $9 subu $9, $3, $6 sll $9, $9, 1 slt $9, $10, $9 slt $1, $1, $8 beqz $9, .LBB0_19 movn $12, $7, $1 .LBB0_6: move $9, $6 move $7, $12 move $8, $10 sll $1, $6, 0 daddu $12, $4, $1 addiu $10, $6, 1 slt $13, $3, $10 move $11, $3 movn $11, $10, $13 addiu $10, $11, -1 daddiu $13, $1, 1 .LBB0_7: slt $1, $13, $2 beqz $1, .LBB0_11 nop daddiu $13, $13, 1 daddiu $1, $12, 1 addiu $6, $6, 1 lbu $14, 0($12) lbu $15, -1($12) beq $15, $14, .LBB0_7 move $12, $1 bgtz $9, .LBB0_12 addiu $10, $6, -1 b .LBB0_4 nop .LBB0_11: blez $9, .LBB0_4 move $6, $11 .LBB0_12: addu $11, $10, $9 addiu $1, $10, 1 slt $12, $3, $1 move $13, $3 movn $13, $1, $12 addiu $13, $13, -1 sll $1, $10, 0 daddiu $12, $1, 1 .LBB0_13: slt $1, $12, $2 beqz $1, .LBB0_17 nop daddu $1, $16, $12 lbu $1, 0($1) sll $14, $9, 0 daddu $14, $5, $14 lbu $14, 0($14) bne $14, $1, .LBB0_18 nop daddiu $12, $12, 1 addiu $10, $10, 1 addiu $1, $9, -1 slti $14, $9, 2 beqz $14, .LBB0_13 move $9, $1 b .LBB0_5 addiu $12, $zero, 0 .LBB0_17: move $12, $9 b .LBB0_5 move $11, $13 .LBB0_18: move $12, $9 b .LBB0_5 move $11, $10 .LBB0_19: sll $3, $10, 0 b .LBB0_21 sll $2, $12, 0 .LBB0_20: daddiu $2, $zero, 0 daddiu $3, $zero, 0 .LBB0_21: daddu $16, $16, $2 daddu $1, $16, $3 sb $zero, 0($1) .LBB0_22: move $2, $16 move $sp, $fp ld $16, 0($sp) ld $gp, 8($sp) ld $fp, 16($sp) ld $ra, 24($sp) jr $ra daddiu $sp, $sp, 32
138
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
mips64
-O2
mips64 clang 21.1.0
longestPalindrome: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -32 sd $ra, 24($sp) sd $fp, 16($sp) sd $gp, 8($sp) sd $16, 0($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(longestPalindrome))) beqz $4, .LBB0_19 daddu $2, $1, $25 lbu $1, 0($4) beqz $1, .LBB0_23 move $16, $4 daddiu $gp, $2, %lo(%neg(%gp_rel(longestPalindrome))) ld $25, %call16(strlen)($gp) jalr $25 move $4, $16 sll $3, $2, 0 blez $3, .LBB0_21 nop daddiu $4, $16, 1 dext $2, $2, 0, 31 daddiu $5, $16, -1 addiu $10, $zero, 0 addiu $12, $zero, 0 b .LBB0_6 addiu $6, $zero, 0 .LBB0_4: move $12, $9 move $11, $10 .LBB0_5: subu $1, $11, $12 addiu $10, $1, 1 slt $9, $10, $8 movn $10, $8, $9 subu $9, $3, $6 sll $9, $9, 1 slt $9, $10, $9 slt $1, $1, $8 beqz $9, .LBB0_20 movn $12, $7, $1 .LBB0_6: move $9, $6 move $7, $12 move $8, $10 sll $1, $6, 0 daddu $12, $4, $1 addiu $10, $6, 1 slt $13, $3, $10 move $11, $3 movn $11, $10, $13 addiu $10, $11, -1 daddiu $13, $1, 1 .LBB0_7: slt $1, $13, $2 beqz $1, .LBB0_11 nop daddiu $13, $13, 1 daddiu $1, $12, 1 addiu $6, $6, 1 lbu $14, 0($12) lbu $15, -1($12) beq $15, $14, .LBB0_7 move $12, $1 bgtz $9, .LBB0_12 addiu $10, $6, -1 b .LBB0_4 nop .LBB0_11: blez $9, .LBB0_4 move $6, $11 .LBB0_12: addu $11, $10, $9 addiu $1, $10, 1 slt $12, $3, $1 move $13, $3 movn $13, $1, $12 addiu $13, $13, -1 sll $1, $10, 0 daddiu $12, $1, 1 .LBB0_13: slt $1, $12, $2 beqz $1, .LBB0_17 nop daddu $1, $16, $12 lbu $1, 0($1) sll $14, $9, 0 daddu $14, $5, $14 lbu $14, 0($14) bne $14, $1, .LBB0_18 nop daddiu $12, $12, 1 addiu $10, $10, 1 addiu $1, $9, -1 slti $14, $9, 2 beqz $14, .LBB0_13 move $9, $1 b .LBB0_5 addiu $12, $zero, 0 .LBB0_17: move $12, $9 b .LBB0_5 move $11, $13 .LBB0_18: move $12, $9 b .LBB0_5 move $11, $10 .LBB0_19: b .LBB0_23 daddiu $16, $zero, 0 .LBB0_20: sll $3, $10, 0 b .LBB0_22 sll $2, $12, 0 .LBB0_21: daddiu $2, $zero, 0 daddiu $3, $zero, 0 .LBB0_22: daddu $16, $16, $2 daddu $1, $16, $3 sb $zero, 0($1) .LBB0_23: move $2, $16 move $sp, $fp ld $16, 0($sp) ld $gp, 8($sp) ld $fp, 16($sp) ld $ra, 24($sp) jr $ra daddiu $sp, $sp, 32
139
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
mips64
-O3
mips64 clang 21.1.0
longestPalindrome: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -32 sd $ra, 24($sp) sd $fp, 16($sp) sd $gp, 8($sp) sd $16, 0($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(longestPalindrome))) beqz $4, .LBB0_19 daddu $2, $1, $25 lbu $1, 0($4) beqz $1, .LBB0_23 move $16, $4 daddiu $gp, $2, %lo(%neg(%gp_rel(longestPalindrome))) ld $25, %call16(strlen)($gp) jalr $25 move $4, $16 sll $3, $2, 0 blez $3, .LBB0_21 nop daddiu $4, $16, 1 dext $2, $2, 0, 31 daddiu $5, $16, -1 addiu $10, $zero, 0 addiu $12, $zero, 0 b .LBB0_6 addiu $6, $zero, 0 .LBB0_4: move $12, $9 move $11, $10 .LBB0_5: subu $1, $11, $12 addiu $10, $1, 1 slt $1, $1, $8 slt $9, $10, $8 movn $10, $8, $9 subu $9, $3, $6 sll $9, $9, 1 slt $9, $10, $9 beqz $9, .LBB0_20 movn $12, $7, $1 .LBB0_6: move $8, $10 addiu $10, $6, 1 move $11, $3 sll $1, $6, 0 move $7, $12 move $9, $6 slt $13, $3, $10 daddu $12, $4, $1 movn $11, $10, $13 daddiu $13, $1, 1 addiu $10, $11, -1 .LBB0_7: slt $1, $13, $2 beqz $1, .LBB0_11 nop daddiu $1, $12, 1 lbu $14, 0($12) lbu $15, -1($12) daddiu $13, $13, 1 addiu $6, $6, 1 beq $15, $14, .LBB0_7 move $12, $1 bgtz $9, .LBB0_12 addiu $10, $6, -1 b .LBB0_4 nop .LBB0_11: blez $9, .LBB0_4 move $6, $11 .LBB0_12: addiu $1, $10, 1 move $13, $3 addu $11, $10, $9 slt $12, $3, $1 movn $13, $1, $12 sll $1, $10, 0 addiu $13, $13, -1 daddiu $12, $1, 1 .LBB0_13: slt $1, $12, $2 beqz $1, .LBB0_17 nop sll $14, $9, 0 daddu $1, $16, $12 daddu $14, $5, $14 lbu $1, 0($1) lbu $14, 0($14) bne $14, $1, .LBB0_18 nop addiu $1, $9, -1 slti $14, $9, 2 daddiu $12, $12, 1 addiu $10, $10, 1 beqz $14, .LBB0_13 move $9, $1 b .LBB0_5 addiu $12, $zero, 0 .LBB0_17: move $12, $9 b .LBB0_5 move $11, $13 .LBB0_18: move $12, $9 b .LBB0_5 move $11, $10 .LBB0_19: b .LBB0_23 daddiu $16, $zero, 0 .LBB0_20: sll $3, $10, 0 b .LBB0_22 sll $2, $12, 0 .LBB0_21: daddiu $2, $zero, 0 daddiu $3, $zero, 0 .LBB0_22: daddu $16, $16, $2 daddu $1, $16, $3 sb $zero, 0($1) .LBB0_23: move $2, $16 move $sp, $fp ld $16, 0($sp) ld $gp, 8($sp) ld $fp, 16($sp) ld $ra, 24($sp) jr $ra daddiu $sp, $sp, 32
140
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
mips64
-O0
mips64 gcc 15.2.0
longestPalindrome: daddiu $sp,$sp,-80 sd $31,72($sp) sd $fp,64($sp) sd $28,56($sp) move $fp,$sp lui $28,%hi(%neg(%gp_rel(longestPalindrome))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(longestPalindrome))) sd $4,32($fp) sw $0,12($fp) sw $0,16($fp) ld $2,32($fp) beq $2,$0,.L2 nop ld $2,32($fp) lb $2,0($2) bne $2,$0,.L3 nop .L2: ld $2,32($fp) b .L4 nop .L3: ld $4,32($fp) ld $2,%call16(strlen)($28) mtlo $2 mflo $25 jalr $25 nop sw $2,20($fp) sw $0,0($fp) sw $0,4($fp) sw $0,8($fp) b .L5 nop .L8: lw $2,4($fp) addiu $2,$2,1 sw $2,4($fp) .L6: lw $2,4($fp) addiu $2,$2,1 lw $3,20($fp) slt $2,$2,$3 beq $2,$0,.L7 nop lw $2,4($fp) ld $3,32($fp) daddu $2,$3,$2 lb $2,0($2) lw $3,4($fp) daddiu $3,$3,1 ld $4,32($fp) daddu $3,$4,$3 lb $3,0($3) beq $2,$3,.L8 nop .L7: lw $2,4($fp) addiu $2,$2,1 sw $2,8($fp) b .L9 nop .L11: lw $2,0($fp) addiu $2,$2,-1 sw $2,0($fp) lw $2,4($fp) addiu $2,$2,1 sw $2,4($fp) .L9: lw $2,0($fp) blez $2,.L10 nop lw $2,4($fp) addiu $2,$2,1 lw $3,20($fp) slt $2,$2,$3 beq $2,$0,.L10 nop lw $2,0($fp) daddiu $2,$2,-1 ld $3,32($fp) daddu $2,$3,$2 lb $2,0($2) lw $3,4($fp) daddiu $3,$3,1 ld $4,32($fp) daddu $3,$4,$3 lb $3,0($3) beq $2,$3,.L11 nop .L10: lw $3,4($fp) lw $2,0($fp) subu $2,$3,$2 addiu $2,$2,1 sw $2,24($fp) lw $3,16($fp) lw $2,24($fp) slt $2,$3,$2 beq $2,$0,.L12 nop lw $2,24($fp) sw $2,16($fp) lw $2,0($fp) sw $2,12($fp) .L12: lw $2,8($fp) sw $2,0($fp) lw $2,8($fp) sw $2,4($fp) .L5: lw $3,20($fp) lw $2,8($fp) subu $2,$3,$2 sll $2,$2,1 lw $3,16($fp) slt $2,$3,$2 bne $2,$0,.L6 nop lw $2,12($fp) ld $3,32($fp) daddu $2,$3,$2 sd $2,32($fp) lw $2,16($fp) ld $3,32($fp) daddu $2,$3,$2 sb $0,0($2) ld $2,32($fp) .L4: move $sp,$fp ld $31,72($sp) ld $fp,64($sp) ld $28,56($sp) daddiu $sp,$sp,80 jr $31 nop
141
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
mips64
-O1
mips64 gcc 15.2.0
longestPalindrome: daddiu $sp,$sp,-32 sd $31,24($sp) sd $28,16($sp) sd $16,8($sp) lui $28,%hi(%neg(%gp_rel(longestPalindrome))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(longestPalindrome))) beq $4,$0,.L11 move $16,$4 lb $2,0($4) beq $2,$0,.L12 ld $25,%call16(strlen)($28) 1: jalr $25 nop sll $2,$2,0 blez $2,.L13 move $9,$2 move $11,$0 move $13,$0 move $7,$0 daddiu $14,$16,-1 b .L10 daddiu $12,$16,1 .L14: move $10,$3 .L6: subu $10,$10,$7 .L22: addiu $10,$10,1 slt $2,$11,$10 beq $2,$0,.L20 subu $2,$9,$5 move $11,$10 move $13,$7 .L20: sll $2,$2,1 slt $2,$11,$2 beq $2,$0,.L3 move $7,$5 .L10: move $8,$7 daddu $6,$7,$16 move $5,$7 move $3,$5 .L21: addiu $5,$5,1 slt $2,$5,$9 beq $2,$0,.L4 nop lb $2,0($6) daddiu $6,$6,1 lb $4,0($6) beql $4,$2,.L21 move $3,$5 .L4: blez $7,.L14 daddu $6,$14,$8 daddu $8,$12,$3 .L7: move $10,$3 addiu $3,$3,1 slt $2,$3,$9 beql $2,$0,.L22 subu $10,$10,$7 lb $4,0($6) lb $2,0($8) bne $4,$2,.L6 daddiu $6,$6,-1 addiu $7,$7,-1 bne $7,$0,.L7 daddiu $8,$8,1 b .L6 move $10,$3 .L13: move $11,$0 move $13,$0 .L3: daddu $2,$16,$13 daddu $11,$2,$11 sb $0,0($11) .L1: ld $31,24($sp) ld $28,16($sp) ld $16,8($sp) jr $31 daddiu $sp,$sp,32 .L11: b .L1 move $2,$4 .L12: b .L1 move $2,$4
142
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
mips64
-O2
mips64 gcc 15.2.0
longestPalindrome: beq $4,$0,.L11 nop daddiu $sp,$sp,-32 sd $28,16($sp) sd $16,8($sp) sd $31,24($sp) lb $2,0($4) lui $28,%hi(%neg(%gp_rel(longestPalindrome))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(longestPalindrome))) beq $2,$0,.L12 move $16,$4 ld $25,%call16(strlen)($28) 1: jalr $25 nop sll $2,$2,0 blez $2,.L13 move $4,$0 move $12,$0 move $7,$0 daddiu $14,$16,-1 daddiu $13,$16,1 .L10: daddu $6,$7,$16 b .L5 move $3,$7 .L24: daddiu $6,$6,1 lb $9,0($6) bne $9,$8,.L4 nop .L5: move $5,$3 addiu $3,$3,1 slt $8,$3,$2 bnel $8,$0,.L24 lb $8,0($6) .L4: blez $7,.L14 daddu $8,$14,$7 b .L7 daddu $6,$13,$5 .L25: lb $10,0($6) daddiu $8,$8,-1 bne $11,$10,.L6 daddiu $6,$6,1 addiu $7,$7,-1 beql $7,$0,.L6 addiu $9,$9,1 .L7: move $9,$5 addiu $5,$5,1 slt $10,$5,$2 bnel $10,$0,.L25 lb $11,0($8) .L6: subu $9,$9,$7 addiu $5,$9,1 slt $5,$4,$5 beq $5,$0,.L27 subu $5,$2,$3 addiu $4,$9,1 move $12,$7 .L27: sll $5,$5,1 slt $5,$4,$5 beql $5,$0,.L26 daddu $2,$16,$12 b .L10 move $7,$3 .L26: daddu $16,$2,$4 .L3: sb $0,0($16) ld $31,24($sp) ld $28,16($sp) ld $16,8($sp) jr $31 daddiu $sp,$sp,32 .L12: ld $31,24($sp) ld $28,16($sp) ld $16,8($sp) move $2,$4 jr $31 daddiu $sp,$sp,32 .L13: b .L3 move $2,$16 .L11: jr $31 move $2,$0 .L14: b .L6 move $9,$5
143
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
mips64
-O3
mips64 gcc 15.2.0
longestPalindrome: beq $4,$0,.L11 nop daddiu $sp,$sp,-32 sd $28,16($sp) sd $16,8($sp) sd $31,24($sp) lb $2,0($4) lui $28,%hi(%neg(%gp_rel(longestPalindrome))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(longestPalindrome))) beq $2,$0,.L12 move $16,$4 ld $25,%call16(strlen)($28) 1: jalr $25 nop sll $2,$2,0 blez $2,.L13 move $4,$0 move $12,$0 move $7,$0 daddiu $14,$16,-1 daddiu $13,$16,1 .L10: daddu $6,$16,$7 b .L5 move $3,$7 .L24: daddiu $6,$6,1 lb $9,0($6) bne $9,$8,.L4 nop .L5: move $5,$3 addiu $3,$3,1 slt $8,$3,$2 bnel $8,$0,.L24 lb $8,0($6) .L4: blez $7,.L14 daddu $8,$14,$7 b .L7 daddu $6,$13,$5 .L25: lb $10,0($6) daddiu $8,$8,-1 bne $11,$10,.L6 daddiu $6,$6,1 addiu $7,$7,-1 beql $7,$0,.L6 addiu $9,$9,1 .L7: move $9,$5 addiu $5,$5,1 slt $10,$5,$2 bnel $10,$0,.L25 lb $11,0($8) .L6: subu $9,$9,$7 addiu $5,$9,1 slt $5,$4,$5 beq $5,$0,.L27 subu $5,$2,$3 addiu $4,$9,1 move $12,$7 .L27: sll $5,$5,1 slt $5,$4,$5 beql $5,$0,.L26 daddu $2,$16,$12 b .L10 move $7,$3 .L26: daddu $16,$2,$4 .L3: sb $0,0($16) ld $31,24($sp) ld $28,16($sp) ld $16,8($sp) jr $31 daddiu $sp,$sp,32 .L12: ld $31,24($sp) ld $28,16($sp) ld $16,8($sp) move $2,$4 jr $31 daddiu $sp,$sp,32 .L13: b .L3 move $2,$16 .L11: jr $31 move $2,$0 .L14: b .L6 move $9,$5
144
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
riscv64
-O0
RISC-V 64 clang 21.1.0
longestPalindrome: addi sp, sp, -80 sd ra, 72(sp) sd s0, 64(sp) addi s0, sp, 80 sd a0, -32(s0) li a0, 0 sw a0, -56(s0) sw a0, -60(s0) ld a0, -32(s0) beqz a0, .LBB0_2 j .LBB0_1 .LBB0_1: ld a0, -32(s0) lbu a0, 0(a0) bnez a0, .LBB0_3 j .LBB0_2 .LBB0_2: ld a0, -32(s0) sd a0, -24(s0) j .LBB0_21 .LBB0_3: ld a0, -32(s0) call strlen sw a0, -36(s0) li a0, 0 sw a0, -40(s0) sw a0, -44(s0) sw a0, -48(s0) j .LBB0_4 .LBB0_4: lw a0, -60(s0) lw a1, -36(s0) lw a2, -48(s0) subw a1, a1, a2 slliw a1, a1, 1 bge a0, a1, .LBB0_20 j .LBB0_5 .LBB0_5: j .LBB0_6 .LBB0_6: lw a0, -44(s0) addiw a0, a0, 1 lw a1, -36(s0) li a2, 0 sd a2, -72(s0) bge a0, a1, .LBB0_8 j .LBB0_7 .LBB0_7: ld a1, -32(s0) lw a2, -44(s0) add a0, a1, a2 lbu a0, 0(a0) addiw a2, a2, 1 add a1, a1, a2 lbu a1, 0(a1) xor a0, a0, a1 seqz a0, a0 sd a0, -72(s0) j .LBB0_8 .LBB0_8: ld a0, -72(s0) andi a0, a0, 1 beqz a0, .LBB0_10 j .LBB0_9 .LBB0_9: lw a0, -44(s0) addiw a0, a0, 1 sw a0, -44(s0) j .LBB0_6 .LBB0_10: lw a0, -44(s0) addiw a0, a0, 1 sw a0, -48(s0) j .LBB0_11 .LBB0_11: lw a1, -40(s0) li a0, 0 mv a2, a0 sd a2, -80(s0) bge a0, a1, .LBB0_14 j .LBB0_12 .LBB0_12: lw a0, -44(s0) addiw a0, a0, 1 lw a1, -36(s0) li a2, 0 sd a2, -80(s0) bge a0, a1, .LBB0_14 j .LBB0_13 .LBB0_13: ld a1, -32(s0) lw a0, -40(s0) addiw a0, a0, -1 add a0, a0, a1 lbu a0, 0(a0) lw a2, -44(s0) addiw a2, a2, 1 add a1, a1, a2 lbu a1, 0(a1) xor a0, a0, a1 seqz a0, a0 sd a0, -80(s0) j .LBB0_14 .LBB0_14: ld a0, -80(s0) andi a0, a0, 1 beqz a0, .LBB0_16 j .LBB0_15 .LBB0_15: lw a0, -40(s0) addiw a0, a0, -1 sw a0, -40(s0) lw a0, -44(s0) addiw a0, a0, 1 sw a0, -44(s0) j .LBB0_11 .LBB0_16: lw a0, -44(s0) lw a1, -40(s0) subw a0, a0, a1 addiw a0, a0, 1 sw a0, -52(s0) lw a0, -60(s0) lw a1, -52(s0) bge a0, a1, .LBB0_18 j .LBB0_17 .LBB0_17: lw a0, -52(s0) sw a0, -60(s0) lw a0, -40(s0) sw a0, -56(s0) j .LBB0_18 .LBB0_18: j .LBB0_19 .LBB0_19: lw a0, -48(s0) sw a0, -40(s0) lw a0, -48(s0) sw a0, -44(s0) j .LBB0_4 .LBB0_20: ld a0, -32(s0) lw a1, -56(s0) add a0, a0, a1 sd a0, -32(s0) ld a0, -32(s0) lw a1, -60(s0) add a1, a1, a0 li a0, 0 sb a0, 0(a1) ld a0, -32(s0) sd a0, -24(s0) j .LBB0_21 .LBB0_21: ld a0, -24(s0) ld ra, 72(sp) ld s0, 64(sp) addi sp, sp, 80 ret
145
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
riscv64
-O1
RISC-V 64 clang 21.1.0
longestPalindrome: beqz a0, .LBB0_27 lbu a1, 0(a0) beqz a1, .LBB0_27 addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) sd s1, 8(sp) mv s1, a0 call strlen sext.w t1, a0 blez t1, .LBB0_25 mv t0, a0 li t2, 0 li a6, 0 li s0, 0 slli a1, a0, 33 mv a0, s1 addi a7, s1, 1 srli t6, a1, 33 li t3, 1 j .LBB0_5 .LBB0_4: subw a2, t0, a1 slliw a2, a2, 1 mv s0, a1 bge t2, a2, .LBB0_26 .LBB0_5: addiw t4, s0, 1 blt t1, t4, .LBB0_7 mv t4, t1 .LBB0_7: addiw a5, t4, -1 add a4, a7, s0 addi a3, s0, 1 mv a1, s0 .LBB0_8: bge a3, t6, .LBB0_11 lbu s1, -1(a4) lbu a2, 0(a4) addiw a1, a1, 1 addi a4, a4, 1 addi a3, a3, 1 beq s1, a2, .LBB0_8 addiw a5, a1, -1 bgtz s0, .LBB0_12 j .LBB0_21 .LBB0_11: mv a1, t4 blez s0, .LBB0_21 .LBB0_12: addiw t4, a5, 1 blt t1, t4, .LBB0_14 mv t4, t1 .LBB0_14: add t5, a5, s0 addi t4, t4, -1 addi a2, a5, 1 .LBB0_15: mv a4, s0 bge a2, t6, .LBB0_19 add a3, a0, a4 add s0, a0, a2 lbu a3, -1(a3) lbu s0, 0(s0) bne a3, s0, .LBB0_20 addiw s0, a4, -1 addi a5, a5, 1 addi a2, a2, 1 blt t3, a4, .LBB0_15 li s0, 0 subw a2, t5, s0 bge a2, t2, .LBB0_22 j .LBB0_23 .LBB0_19: mv s0, a4 mv t5, t4 subw a2, t5, s0 blt a2, t2, .LBB0_23 j .LBB0_22 .LBB0_20: mv s0, a4 .LBB0_21: mv t5, a5 subw a2, t5, s0 blt a2, t2, .LBB0_23 .LBB0_22: mv a6, s0 .LBB0_23: addiw a2, a2, 1 blt a2, t2, .LBB0_4 mv t2, a2 j .LBB0_4 .LBB0_25: li a6, 0 li t2, 0 mv a0, s1 .LBB0_26: add a0, a0, a6 add t2, t2, a0 sb zero, 0(t2) ld ra, 24(sp) ld s0, 16(sp) ld s1, 8(sp) addi sp, sp, 32 .LBB0_27: ret
146
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
riscv64
-O2
RISC-V 64 clang 21.1.0
longestPalindrome: beqz a0, .LBB0_27 lbu a1, 0(a0) beqz a1, .LBB0_27 addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) sd s1, 8(sp) mv s1, a0 call strlen sext.w t1, a0 blez t1, .LBB0_25 mv t0, a0 li t3, 0 li a6, 0 li s0, 0 slli a1, a0, 33 mv a0, s1 addi a7, s1, 1 srli t6, a1, 33 li t2, 1 j .LBB0_5 .LBB0_4: subw a2, t0, a1 slliw a2, a2, 1 mv s0, a1 bge t3, a2, .LBB0_26 .LBB0_5: addiw t4, s0, 1 blt t1, t4, .LBB0_7 mv t4, t1 .LBB0_7: addiw a2, t4, -1 add a4, a7, s0 addi a3, s0, 1 mv a1, s0 .LBB0_8: bge a3, t6, .LBB0_11 lbu s1, -1(a4) lbu a5, 0(a4) addiw a1, a1, 1 addi a4, a4, 1 addi a3, a3, 1 beq s1, a5, .LBB0_8 addiw a2, a1, -1 bgtz s0, .LBB0_12 j .LBB0_21 .LBB0_11: mv a1, t4 blez s0, .LBB0_21 .LBB0_12: addiw t4, a2, 1 blt t1, t4, .LBB0_14 mv t4, t1 .LBB0_14: add t5, a2, s0 addi t4, t4, -1 addi a5, a2, 1 .LBB0_15: mv a4, s0 bge a5, t6, .LBB0_19 add a3, a0, a4 add s0, a0, a5 lbu a3, -1(a3) lbu s0, 0(s0) bne a3, s0, .LBB0_20 addiw s0, a4, -1 addi a2, a2, 1 addi a5, a5, 1 blt t2, a4, .LBB0_15 li s0, 0 sext.w a2, t5 bge a2, t3, .LBB0_22 j .LBB0_23 .LBB0_19: mv s0, a4 subw a2, t4, a4 blt a2, t3, .LBB0_23 j .LBB0_22 .LBB0_20: mv s0, a4 .LBB0_21: subw a2, a2, s0 blt a2, t3, .LBB0_23 .LBB0_22: mv a6, s0 .LBB0_23: addiw a2, a2, 1 blt a2, t3, .LBB0_4 mv t3, a2 j .LBB0_4 .LBB0_25: li a6, 0 li t3, 0 mv a0, s1 .LBB0_26: add a0, a0, a6 add t3, t3, a0 sb zero, 0(t3) ld ra, 24(sp) ld s0, 16(sp) ld s1, 8(sp) addi sp, sp, 32 .LBB0_27: ret
147
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
riscv64
-O3
RISC-V 64 clang 21.1.0
longestPalindrome: beqz a0, .LBB0_27 lbu a1, 0(a0) beqz a1, .LBB0_27 addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) sd s1, 8(sp) mv s1, a0 call strlen sext.w t1, a0 blez t1, .LBB0_25 mv t0, a0 li t3, 0 li a6, 0 li s0, 0 slli a1, a0, 33 mv a0, s1 addi a7, s1, 1 srli t6, a1, 33 li t2, 1 j .LBB0_5 .LBB0_4: subw a2, t0, a1 slliw a2, a2, 1 mv s0, a1 bge t3, a2, .LBB0_26 .LBB0_5: addiw t4, s0, 1 blt t1, t4, .LBB0_7 mv t4, t1 .LBB0_7: addiw a2, t4, -1 add a4, a7, s0 addi a3, s0, 1 mv a1, s0 .LBB0_8: bge a3, t6, .LBB0_12 lbu s1, -1(a4) lbu a5, 0(a4) addiw a1, a1, 1 addi a4, a4, 1 addi a3, a3, 1 beq s1, a5, .LBB0_8 addiw a2, a1, -1 bgtz s0, .LBB0_13 .LBB0_11: subw a2, a2, s0 bge a2, t3, .LBB0_21 j .LBB0_22 .LBB0_12: mv a1, t4 blez s0, .LBB0_11 .LBB0_13: addiw t4, a2, 1 blt t1, t4, .LBB0_15 mv t4, t1 .LBB0_15: add t5, a2, s0 addi t4, t4, -1 addi a5, a2, 1 .LBB0_16: mv a4, s0 bge a5, t6, .LBB0_20 add a3, a0, a4 add s0, a0, a5 lbu a3, -1(a3) lbu s0, 0(s0) bne a3, s0, .LBB0_24 addiw s0, a4, -1 addi a2, a2, 1 addi a5, a5, 1 blt t2, a4, .LBB0_16 li s0, 0 sext.w a2, t5 bge a2, t3, .LBB0_21 j .LBB0_22 .LBB0_20: mv s0, a4 subw a2, t4, a4 blt a2, t3, .LBB0_22 .LBB0_21: mv a6, s0 .LBB0_22: addiw a2, a2, 1 blt a2, t3, .LBB0_4 mv t3, a2 j .LBB0_4 .LBB0_24: mv s0, a4 subw a2, a2, a4 bge a2, t3, .LBB0_21 j .LBB0_22 .LBB0_25: li a6, 0 li t3, 0 mv a0, s1 .LBB0_26: add a0, a0, a6 add t3, t3, a0 sb zero, 0(t3) ld ra, 24(sp) ld s0, 16(sp) ld s1, 8(sp) addi sp, sp, 32 .LBB0_27: ret
148
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
riscv64
-O0
RISC-V 64 gcc 15.2.0
longestPalindrome: addi sp,sp,-64 sd ra,56(sp) sd s0,48(sp) addi s0,sp,64 sd a0,-56(s0) sw zero,-32(s0) sw zero,-36(s0) ld a5,-56(s0) beq a5,zero,.L2 ld a5,-56(s0) lbu a5,0(a5) bne a5,zero,.L3 .L2: ld a5,-56(s0) j .L4 .L3: ld a0,-56(s0) call strlen mv a5,a0 sw a5,-40(s0) sw zero,-20(s0) sw zero,-24(s0) sw zero,-28(s0) j .L5 .L8: lw a5,-24(s0) addiw a5,a5,1 sw a5,-24(s0) .L6: lw a5,-24(s0) addiw a5,a5,1 sext.w a5,a5 lw a4,-40(s0) sext.w a4,a4 ble a4,a5,.L7 lw a5,-24(s0) ld a4,-56(s0) add a5,a4,a5 lbu a3,0(a5) lw a5,-24(s0) addi a5,a5,1 ld a4,-56(s0) add a5,a4,a5 lbu a5,0(a5) mv a4,a3 beq a4,a5,.L8 .L7: lw a5,-24(s0) addiw a5,a5,1 sw a5,-28(s0) j .L9 .L11: lw a5,-20(s0) addiw a5,a5,-1 sw a5,-20(s0) lw a5,-24(s0) addiw a5,a5,1 sw a5,-24(s0) .L9: lw a5,-20(s0) sext.w a5,a5 ble a5,zero,.L10 lw a5,-24(s0) addiw a5,a5,1 sext.w a5,a5 lw a4,-40(s0) sext.w a4,a4 ble a4,a5,.L10 lw a5,-20(s0) addi a5,a5,-1 ld a4,-56(s0) add a5,a4,a5 lbu a3,0(a5) lw a5,-24(s0) addi a5,a5,1 ld a4,-56(s0) add a5,a4,a5 lbu a5,0(a5) mv a4,a3 beq a4,a5,.L11 .L10: lw a5,-24(s0) mv a4,a5 lw a5,-20(s0) subw a5,a4,a5 sext.w a5,a5 addiw a5,a5,1 sw a5,-44(s0) lw a5,-36(s0) mv a4,a5 lw a5,-44(s0) sext.w a4,a4 sext.w a5,a5 bge a4,a5,.L12 lw a5,-44(s0) sw a5,-36(s0) lw a5,-20(s0) sw a5,-32(s0) .L12: lw a5,-28(s0) sw a5,-20(s0) lw a5,-28(s0) sw a5,-24(s0) .L5: lw a5,-40(s0) mv a4,a5 lw a5,-28(s0) subw a5,a4,a5 sext.w a5,a5 slliw a5,a5,1 sext.w a5,a5 lw a4,-36(s0) sext.w a4,a4 blt a4,a5,.L6 lw a5,-32(s0) ld a4,-56(s0) add a5,a4,a5 sd a5,-56(s0) lw a5,-36(s0) ld a4,-56(s0) add a5,a4,a5 sb zero,0(a5) ld a5,-56(s0) .L4: mv a0,a5 ld ra,56(sp) ld s0,48(sp) addi sp,sp,64 jr ra
149
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
riscv64
-O1
RISC-V 64 gcc 15.2.0
longestPalindrome: addi sp,sp,-16 sd ra,8(sp) sd s0,0(sp) mv s0,a0 beq a0,zero,.L1 lbu a5,0(a0) beq a5,zero,.L1 call strlen sext.w a7,a0 ble a7,zero,.L13 li t4,0 li t5,0 li a2,0 addi t0,s0,-1 addi t6,s0,1 j .L10 .L14: mv t3,a5 .L6: subw t3,t3,a2 addiw t3,t3,1 ble t3,t4,.L9 mv t4,t3 mv t5,a2 .L9: subw a5,a7,a6 slliw a5,a5,1 ble a5,t4,.L3 mv a2,a6 .L10: mv a1,a2 add a3,a2,s0 mv a4,a2 .L5: mv a5,a4 addiw a6,a4,1 mv a4,a6 bge a6,a7,.L4 lbu a0,0(a3) addi a3,a3,1 lbu t1,0(a3) beq t1,a0,.L5 .L4: ble a2,zero,.L14 add a4,t0,a1 add a3,t6,a5 .L7: mv t3,a5 addiw a1,a5,1 mv a5,a1 bge a1,a7,.L6 lbu t1,0(a4) lbu a0,0(a3) bne t1,a0,.L6 addiw a2,a2,-1 addi a4,a4,-1 addi a3,a3,1 bne a2,zero,.L7 mv t3,a1 j .L6 .L13: li t4,0 li t5,0 .L3: add a0,s0,t5 add t4,a0,t4 sb zero,0(t4) .L1: ld ra,8(sp) ld s0,0(sp) addi sp,sp,16 jr ra
150
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
riscv64
-O2
RISC-V 64 gcc 15.2.0
longestPalindrome: beq a0,zero,.L11 lbu a5,0(a0) mv t5,a0 beq a5,zero,.L21 addi sp,sp,-32 sd ra,24(sp) sd a0,0(sp) sd a0,8(sp) call strlen ld t5,0(sp) sext.w a7,a0 mv t4,t5 ble a7,zero,.L3 li a0,0 li t5,0 li a2,0 addi t0,t4,-1 addi t6,t4,1 .L10: add a3,a2,t4 mv a5,a2 j .L5 .L25: lbu a1,0(a3) addi a3,a3,1 lbu a6,0(a3) bne a6,a1,.L4 .L5: mv a4,a5 addiw a5,a5,1 blt a5,a7,.L25 .L4: ble a2,zero,.L15 add a1,t0,a2 add a3,t6,a4 j .L7 .L26: lbu t3,0(a1) lbu t1,0(a3) addi a1,a1,-1 addi a3,a3,1 bne t3,t1,.L6 addiw a2,a2,-1 beq a2,zero,.L15 .L7: mv a6,a4 addiw a4,a4,1 blt a4,a7,.L26 .L6: subw a6,a6,a2 addiw a6,a6,1 ble a6,a0,.L9 mv a0,a6 mv t5,a2 .L9: subw a4,a7,a5 slliw a4,a4,1 ble a4,a0,.L27 mv a2,a5 j .L10 .L27: add t5,t4,t5 add t4,t5,a0 .L3: sb zero,0(t4) ld ra,24(sp) mv a0,t5 addi sp,sp,32 jr ra .L15: mv a6,a4 j .L6 .L11: li t5,0 .L21: mv a0,t5 ret
151
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
riscv64
-O3
RISC-V 64 gcc 15.2.0
longestPalindrome: beq a0,zero,.L11 lbu a5,0(a0) mv t5,a0 beq a5,zero,.L21 addi sp,sp,-32 sd ra,24(sp) sd a0,0(sp) sd a0,8(sp) call strlen ld t5,0(sp) sext.w a7,a0 mv t4,t5 ble a7,zero,.L3 li a0,0 li t5,0 li a2,0 addi t0,t4,-1 addi t6,t4,1 .L10: add a3,t4,a2 mv a5,a2 j .L5 .L25: lbu a1,0(a3) addi a3,a3,1 lbu a6,0(a3) bne a6,a1,.L4 .L5: mv a4,a5 addiw a5,a5,1 blt a5,a7,.L25 .L4: ble a2,zero,.L15 add a1,t0,a2 add a3,t6,a4 j .L7 .L26: lbu t3,0(a1) lbu t1,0(a3) addi a1,a1,-1 addi a3,a3,1 bne t3,t1,.L6 addiw a2,a2,-1 beq a2,zero,.L15 .L7: mv a6,a4 addiw a4,a4,1 blt a4,a7,.L26 .L6: subw a6,a6,a2 addiw a6,a6,1 ble a6,a0,.L9 mv a0,a6 mv t5,a2 .L9: subw a4,a7,a5 slliw a4,a4,1 ble a4,a0,.L27 mv a2,a5 j .L10 .L27: add t5,t4,t5 add t4,t5,a0 .L3: sb zero,0(t4) ld ra,24(sp) mv a0,t5 addi sp,sp,32 jr ra .L15: mv a6,a4 j .L6 .L11: li t5,0 .L21: mv a0,t5 ret
152
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
x86-64
-O0
x86-64 clang 21.1.0
longestPalindrome: push rbp mov rbp, rsp sub rsp, 48 mov qword ptr [rbp - 16], rdi mov dword ptr [rbp - 40], 0 mov dword ptr [rbp - 44], 0 cmp qword ptr [rbp - 16], 0 je .LBB0_2 mov rax, qword ptr [rbp - 16] cmp byte ptr [rax], 0 jne .LBB0_3 .LBB0_2: mov rax, qword ptr [rbp - 16] mov qword ptr [rbp - 8], rax jmp .LBB0_21 .LBB0_3: mov rdi, qword ptr [rbp - 16] call strlen@PLT mov dword ptr [rbp - 20], eax mov dword ptr [rbp - 24], 0 mov dword ptr [rbp - 28], 0 mov dword ptr [rbp - 32], 0 .LBB0_4: mov eax, dword ptr [rbp - 44] mov ecx, dword ptr [rbp - 20] sub ecx, dword ptr [rbp - 32] shl ecx cmp eax, ecx jge .LBB0_20 jmp .LBB0_6 .LBB0_6: mov ecx, dword ptr [rbp - 28] add ecx, 1 xor eax, eax cmp ecx, dword ptr [rbp - 20] mov byte ptr [rbp - 45], al jge .LBB0_8 mov rax, qword ptr [rbp - 16] movsxd rcx, dword ptr [rbp - 28] movsx eax, byte ptr [rax + rcx] mov rcx, qword ptr [rbp - 16] mov edx, dword ptr [rbp - 28] add edx, 1 movsxd rdx, edx movsx ecx, byte ptr [rcx + rdx] cmp eax, ecx sete al mov byte ptr [rbp - 45], al .LBB0_8: mov al, byte ptr [rbp - 45] test al, 1 jne .LBB0_9 jmp .LBB0_10 .LBB0_9: mov eax, dword ptr [rbp - 28] add eax, 1 mov dword ptr [rbp - 28], eax jmp .LBB0_6 .LBB0_10: mov eax, dword ptr [rbp - 28] add eax, 1 mov dword ptr [rbp - 32], eax .LBB0_11: xor eax, eax cmp dword ptr [rbp - 24], 0 mov byte ptr [rbp - 46], al jle .LBB0_14 mov ecx, dword ptr [rbp - 28] add ecx, 1 xor eax, eax cmp ecx, dword ptr [rbp - 20] mov byte ptr [rbp - 46], al jge .LBB0_14 mov rax, qword ptr [rbp - 16] mov ecx, dword ptr [rbp - 24] sub ecx, 1 movsxd rcx, ecx movsx eax, byte ptr [rax + rcx] mov rcx, qword ptr [rbp - 16] mov edx, dword ptr [rbp - 28] add edx, 1 movsxd rdx, edx movsx ecx, byte ptr [rcx + rdx] cmp eax, ecx sete al mov byte ptr [rbp - 46], al .LBB0_14: mov al, byte ptr [rbp - 46] test al, 1 jne .LBB0_15 jmp .LBB0_16 .LBB0_15: mov eax, dword ptr [rbp - 24] add eax, -1 mov dword ptr [rbp - 24], eax mov eax, dword ptr [rbp - 28] add eax, 1 mov dword ptr [rbp - 28], eax jmp .LBB0_11 .LBB0_16: mov eax, dword ptr [rbp - 28] sub eax, dword ptr [rbp - 24] add eax, 1 mov dword ptr [rbp - 36], eax mov eax, dword ptr [rbp - 44] cmp eax, dword ptr [rbp - 36] jge .LBB0_18 mov eax, dword ptr [rbp - 36] mov dword ptr [rbp - 44], eax mov eax, dword ptr [rbp - 24] mov dword ptr [rbp - 40], eax .LBB0_18: jmp .LBB0_19 .LBB0_19: mov eax, dword ptr [rbp - 32] mov dword ptr [rbp - 24], eax mov eax, dword ptr [rbp - 32] mov dword ptr [rbp - 28], eax jmp .LBB0_4 .LBB0_20: mov rax, qword ptr [rbp - 16] movsxd rcx, dword ptr [rbp - 40] add rax, rcx mov qword ptr [rbp - 16], rax mov rax, qword ptr [rbp - 16] movsxd rcx, dword ptr [rbp - 44] mov byte ptr [rax + rcx], 0 mov rax, qword ptr [rbp - 16] mov qword ptr [rbp - 8], rax .LBB0_21: mov rax, qword ptr [rbp - 8] add rsp, 48 pop rbp ret
153
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
x86-64
-O1
x86-64 clang 21.1.0
longestPalindrome: push rbp push r14 push rbx mov rbx, rdi test rdi, rdi je .LBB0_21 cmp byte ptr [rbx], 0 je .LBB0_21 mov rdi, rbx call strlen@PLT xor r9d, r9d test eax, eax jle .LBB0_19 mov ecx, eax and ecx, 2147483647 xor edx, edx xor esi, esi jmp .LBB0_6 .LBB0_4: mov r10d, r9d .LBB0_5: sub r10d, edi cmp r8d, r10d cmovle edx, edi lea r9d, [r10 + 1] cmp r8d, r9d cmovg r9d, r8d mov edi, eax sub edi, esi add edi, edi cmp r9d, edi jge .LBB0_18 .LBB0_6: mov edi, esi movsxd r11, esi lea r10d, [r11 + 1] cmp r10d, eax cmovle r10d, eax mov r8d, r9d lea r9d, [r10 - 1] inc r11 .LBB0_7: cmp r11, rcx jge .LBB0_10 movzx ebp, byte ptr [rbx + r11 - 1] inc esi cmp bpl, byte ptr [rbx + r11] lea r11, [r11 + 1] je .LBB0_7 lea r9d, [rsi - 1] test edi, edi jg .LBB0_11 jmp .LBB0_4 .LBB0_10: mov esi, r10d test edi, edi jle .LBB0_4 .LBB0_11: movsxd r11, r9d lea r10d, [r11 + rdi] lea ebp, [r11 + 1] cmp ebp, eax cmovle ebp, eax dec ebp inc r11 .LBB0_12: cmp r11, rcx jge .LBB0_16 mov r14d, edi movzx r14d, byte ptr [rbx + r14 - 1] cmp r14b, byte ptr [rbx + r11] jne .LBB0_4 inc r9d inc r11 cmp edi, 1 lea edi, [rdi - 1] jg .LBB0_12 xor edi, edi jmp .LBB0_5 .LBB0_16: mov r10d, ebp jmp .LBB0_5 .LBB0_18: mov eax, r9d movsxd r9, edx jmp .LBB0_20 .LBB0_19: xor eax, eax .LBB0_20: add rbx, r9 mov byte ptr [rax + rbx], 0 .LBB0_21: mov rax, rbx pop rbx pop r14 pop rbp ret
154
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
x86-64
-O2
x86-64 clang 21.1.0
longestPalindrome: push rbp push r14 push rbx test rdi, rdi je .LBB0_18 mov rbx, rdi cmp byte ptr [rdi], 0 je .LBB0_22 mov rdi, rbx call strlen@PLT xor r9d, r9d test eax, eax jle .LBB0_20 mov ecx, eax and ecx, 2147483647 xor edx, edx xor esi, esi jmp .LBB0_6 .LBB0_4: mov r10d, r9d .LBB0_5: sub r10d, edi cmp r8d, r10d cmovle edx, edi lea r9d, [r10 + 1] cmp r8d, r9d cmovg r9d, r8d mov edi, eax sub edi, esi add edi, edi cmp r9d, edi jge .LBB0_19 .LBB0_6: mov edi, esi movsxd r11, esi lea r10d, [r11 + 1] cmp r10d, eax cmovle r10d, eax mov r8d, r9d lea r9d, [r10 - 1] inc r11 .LBB0_7: cmp r11, rcx jge .LBB0_10 movzx ebp, byte ptr [rbx + r11 - 1] inc esi cmp bpl, byte ptr [rbx + r11] lea r11, [r11 + 1] je .LBB0_7 lea r9d, [rsi - 1] test edi, edi jg .LBB0_11 jmp .LBB0_4 .LBB0_10: mov esi, r10d test edi, edi jle .LBB0_4 .LBB0_11: movsxd r11, r9d lea r10d, [r11 + rdi] lea ebp, [r11 + 1] cmp ebp, eax cmovle ebp, eax dec ebp inc r11 .LBB0_12: cmp r11, rcx jge .LBB0_16 mov r14d, edi movzx r14d, byte ptr [rbx + r14 - 1] cmp r14b, byte ptr [rbx + r11] jne .LBB0_4 inc r9d inc r11 cmp edi, 1 lea edi, [rdi - 1] jg .LBB0_12 xor edi, edi jmp .LBB0_5 .LBB0_16: mov r10d, ebp jmp .LBB0_5 .LBB0_18: xor ebx, ebx jmp .LBB0_22 .LBB0_19: mov eax, r9d movsxd r9, edx jmp .LBB0_21 .LBB0_20: xor eax, eax .LBB0_21: add rbx, r9 mov byte ptr [rax + rbx], 0 .LBB0_22: mov rax, rbx pop rbx pop r14 pop rbp ret
155
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
x86-64
-O3
x86-64 clang 21.1.0
longestPalindrome: push rbp push r14 push rbx test rdi, rdi je .LBB0_18 mov rbx, rdi cmp byte ptr [rdi], 0 je .LBB0_22 mov rdi, rbx call strlen@PLT xor r9d, r9d test eax, eax jle .LBB0_20 mov ecx, eax and ecx, 2147483647 xor edx, edx xor esi, esi jmp .LBB0_6 .LBB0_4: mov r10d, r9d .LBB0_5: sub r10d, edi cmp r8d, r10d cmovle edx, edi lea r9d, [r10 + 1] cmp r8d, r9d cmovg r9d, r8d mov edi, eax sub edi, esi add edi, edi cmp r9d, edi jge .LBB0_19 .LBB0_6: mov edi, esi movsxd r11, esi lea r10d, [r11 + 1] cmp r10d, eax cmovle r10d, eax mov r8d, r9d lea r9d, [r10 - 1] inc r11 .LBB0_7: cmp r11, rcx jge .LBB0_10 movzx ebp, byte ptr [rbx + r11 - 1] inc esi cmp bpl, byte ptr [rbx + r11] lea r11, [r11 + 1] je .LBB0_7 lea r9d, [rsi - 1] test edi, edi jg .LBB0_11 jmp .LBB0_4 .LBB0_10: mov esi, r10d test edi, edi jle .LBB0_4 .LBB0_11: movsxd r11, r9d lea r10d, [r11 + rdi] lea ebp, [r11 + 1] cmp ebp, eax cmovle ebp, eax dec ebp inc r11 .LBB0_12: cmp r11, rcx jge .LBB0_16 mov r14d, edi movzx r14d, byte ptr [rbx + r14 - 1] cmp r14b, byte ptr [rbx + r11] jne .LBB0_4 inc r9d inc r11 cmp edi, 1 lea edi, [rdi - 1] jg .LBB0_12 xor edi, edi jmp .LBB0_5 .LBB0_16: mov r10d, ebp jmp .LBB0_5 .LBB0_18: xor ebx, ebx jmp .LBB0_22 .LBB0_19: mov eax, r9d movsxd r9, edx jmp .LBB0_21 .LBB0_20: xor eax, eax .LBB0_21: add rbx, r9 mov byte ptr [rax + rbx], 0 .LBB0_22: mov rax, rbx pop rbx pop r14 pop rbp ret
156
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
x86-64
-O0
x86-64 gcc 15.2
longestPalindrome: push rbp mov rbp, rsp sub rsp, 48 mov QWORD PTR [rbp-40], rdi mov DWORD PTR [rbp-16], 0 mov DWORD PTR [rbp-20], 0 cmp QWORD PTR [rbp-40], 0 je .L2 mov rax, QWORD PTR [rbp-40] movzx eax, BYTE PTR [rax] test al, al jne .L3 .L2: mov rax, QWORD PTR [rbp-40] jmp .L4 .L3: mov rax, QWORD PTR [rbp-40] mov rdi, rax call strlen mov DWORD PTR [rbp-24], eax mov DWORD PTR [rbp-4], 0 mov DWORD PTR [rbp-8], 0 mov DWORD PTR [rbp-12], 0 jmp .L5 .L8: add DWORD PTR [rbp-8], 1 .L6: mov eax, DWORD PTR [rbp-8] add eax, 1 cmp DWORD PTR [rbp-24], eax jle .L7 mov eax, DWORD PTR [rbp-8] movsx rdx, eax mov rax, QWORD PTR [rbp-40] add rax, rdx movzx edx, BYTE PTR [rax] mov eax, DWORD PTR [rbp-8] cdqe lea rcx, [rax+1] mov rax, QWORD PTR [rbp-40] add rax, rcx movzx eax, BYTE PTR [rax] cmp dl, al je .L8 .L7: mov eax, DWORD PTR [rbp-8] add eax, 1 mov DWORD PTR [rbp-12], eax jmp .L9 .L11: sub DWORD PTR [rbp-4], 1 add DWORD PTR [rbp-8], 1 .L9: cmp DWORD PTR [rbp-4], 0 jle .L10 mov eax, DWORD PTR [rbp-8] add eax, 1 cmp DWORD PTR [rbp-24], eax jle .L10 mov eax, DWORD PTR [rbp-4] cdqe lea rdx, [rax-1] mov rax, QWORD PTR [rbp-40] add rax, rdx movzx edx, BYTE PTR [rax] mov eax, DWORD PTR [rbp-8] cdqe lea rcx, [rax+1] mov rax, QWORD PTR [rbp-40] add rax, rcx movzx eax, BYTE PTR [rax] cmp dl, al je .L11 .L10: mov eax, DWORD PTR [rbp-8] sub eax, DWORD PTR [rbp-4] add eax, 1 mov DWORD PTR [rbp-28], eax mov eax, DWORD PTR [rbp-20] cmp eax, DWORD PTR [rbp-28] jge .L12 mov eax, DWORD PTR [rbp-28] mov DWORD PTR [rbp-20], eax mov eax, DWORD PTR [rbp-4] mov DWORD PTR [rbp-16], eax .L12: mov eax, DWORD PTR [rbp-12] mov DWORD PTR [rbp-4], eax mov eax, DWORD PTR [rbp-12] mov DWORD PTR [rbp-8], eax .L5: mov eax, DWORD PTR [rbp-24] sub eax, DWORD PTR [rbp-12] add eax, eax cmp DWORD PTR [rbp-20], eax jl .L6 mov eax, DWORD PTR [rbp-16] cdqe add QWORD PTR [rbp-40], rax mov eax, DWORD PTR [rbp-20] movsx rdx, eax mov rax, QWORD PTR [rbp-40] add rax, rdx mov BYTE PTR [rax], 0 mov rax, QWORD PTR [rbp-40] .L4: leave ret
157
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
x86-64
-O1
x86-64 gcc 15.2
longestPalindrome: push r14 push r12 push rbp push rbx sub rsp, 8 mov rbx, rdi test rdi, rdi je .L11 mov rax, rdi cmp BYTE PTR [rdi], 0 je .L1 call strlen mov r8d, eax test eax, eax jle .L13 mov r10d, 0 mov r11d, 0 mov esi, 0 lea r12, [rbx-1] lea rbp, [rbx+1] jmp .L10 .L14: mov r9d, eax .L6: sub r9d, esi add r9d, 1 cmp r9d, r10d cmovg r10d, r9d cmovg r11d, esi mov eax, r8d sub eax, edx add eax, eax cmp eax, r10d jle .L3 mov esi, edx .L10: movsx rdi, esi lea rcx, [rdi+rbx] mov edx, esi .L5: mov eax, edx add edx, 1 cmp edx, r8d jge .L4 movzx r9d, BYTE PTR [rcx] add rcx, 1 cmp r9b, BYTE PTR [rcx] je .L5 .L4: test esi, esi jle .L14 lea rcx, [r12+rdi] movsx rdi, eax add rdi, rbp .L7: mov r9d, eax add eax, 1 cmp eax, r8d jge .L6 movzx r14d, BYTE PTR [rdi] cmp BYTE PTR [rcx], r14b jne .L6 sub rcx, 1 add rdi, 1 sub esi, 1 jne .L7 mov r9d, eax jmp .L6 .L13: mov r10d, 0 mov r11d, 0 .L3: movsx rax, r11d add rax, rbx movsx r10, r10d mov BYTE PTR [rax+r10], 0 .L1: add rsp, 8 pop rbx pop rbp pop r12 pop r14 ret .L11: mov rax, rdi jmp .L1
158
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
x86-64
-O2
x86-64 gcc 15.2
longestPalindrome: push r14 push r12 push rbp push rbx sub rsp, 8 test rdi, rdi je .L11 mov rbx, rdi mov rbp, rdi cmp BYTE PTR [rdi], 0 je .L1 call strlen mov r9, rax test eax, eax jle .L3 xor r10d, r10d xor r11d, r11d lea r12, [rbx-1] xor esi, esi lea rbp, [rbx+1] .L10: movsx rdi, esi mov eax, esi lea rcx, [rdi+rbx] jmp .L5 .L21: movzx r8d, BYTE PTR [rcx] add rcx, 1 cmp r8b, BYTE PTR [rcx] jne .L4 .L5: mov edx, eax add eax, 1 cmp eax, r9d jl .L21 .L4: test esi, esi jle .L15 lea rcx, [r12+rdi] movsx rdi, edx add rdi, rbp jmp .L7 .L22: movzx r14d, BYTE PTR [rdi] cmp BYTE PTR [rcx], r14b jne .L6 sub rcx, 1 add rdi, 1 sub esi, 1 je .L15 .L7: mov r8d, edx lea edx, [rdx+1] cmp edx, r9d jl .L22 .L6: sub r8d, esi mov edx, r9d add r8d, 1 cmp r8d, r10d cmovg r10d, r8d cmovg r11d, esi sub edx, eax add edx, edx cmp edx, r10d jle .L23 mov esi, eax jmp .L10 .L23: movsx r11, r11d movsx r10, r10d lea rbp, [rbx+r11] lea rbx, [rbp+0+r10] .L3: mov BYTE PTR [rbx], 0 .L1: add rsp, 8 mov rax, rbp pop rbx pop rbp pop r12 pop r14 ret .L15: mov r8d, edx jmp .L6 .L11: add rsp, 8 xor ebp, ebp pop rbx mov rax, rbp pop rbp pop r12 pop r14 ret
159
5
Longest Palindromic Substring
Medium
/* 5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Output: "bb" */ char* longestPalindrome(char* s) { int sz; int i, j, k, l; int where = 0, len = 0; if (!s || !*s) return s; sz = strlen(s); for (i = 0, j = 0, k = 0; len < (sz - k) * 2; i = k, j = k) { while (j + 1 < sz && s[j] == s[j + 1]) { j ++; // skip all repeating characters } k = j + 1; // where to start next try while (i > 0 && j + 1 < sz && s[i - 1] == s[j + 1]) { i --; // expand dual direction j ++; } l = j - i + 1; // what we have fond so far if (len < l) { len = l; where = i; } } s = s + where; s[len] = 0; return s; } /* Difficulty:Medium Total Accepted:222.3K Total Submissions:883.5K Companies Amazon Microsoft Bloomberg Related Topics String Similar Questions Shortest Palindrome Palindrome Permutation Palindrome Pairs Longest Palindromic Subsequence Palindromic Substrings */
x86-64
-O3
x86-64 gcc 15.2
longestPalindrome: push r14 push r12 push rbp push rbx sub rsp, 8 test rdi, rdi je .L11 mov rbx, rdi mov rbp, rdi cmp BYTE PTR [rdi], 0 je .L1 call strlen mov r9, rax test eax, eax jle .L3 xor r10d, r10d xor r11d, r11d lea r12, [rbx-1] xor esi, esi lea rbp, [rbx+1] .L10: movsx rdi, esi mov eax, esi lea rcx, [rbx+rdi] jmp .L5 .L21: movzx r8d, BYTE PTR [rcx] add rcx, 1 cmp r8b, BYTE PTR [rcx] jne .L4 .L5: mov edx, eax add eax, 1 cmp eax, r9d jl .L21 .L4: test esi, esi jle .L15 lea rcx, [r12+rdi] movsx rdi, edx add rdi, rbp jmp .L7 .L22: movzx r14d, BYTE PTR [rdi] cmp BYTE PTR [rcx], r14b jne .L6 sub rcx, 1 add rdi, 1 sub esi, 1 je .L15 .L7: mov r8d, edx lea edx, [rdx+1] cmp edx, r9d jl .L22 .L6: sub r8d, esi mov edx, r9d add r8d, 1 cmp r8d, r10d cmovg r10d, r8d cmovg r11d, esi sub edx, eax add edx, edx cmp edx, r10d jle .L23 mov esi, eax jmp .L10 .L23: movsx r11, r11d movsx r10, r10d lea rbp, [rbx+r11] lea rbx, [rbp+0+r10] .L3: mov BYTE PTR [rbx], 0 .L1: add rsp, 8 mov rax, rbp pop rbx pop rbp pop r12 pop r14 ret .L15: mov r8d, edx jmp .L6 .L11: add rsp, 8 xor ebp, ebp pop rbx mov rax, rbp pop rbp pop r12 pop r14 ret
160
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
aarch64
-O0
ARM64 gcc 15.2.0
convert: stp x29, x30, [sp, -80]! mov x29, sp str x0, [sp, 24] str w1, [sp, 20] str wzr, [sp, 68] ldr x0, [sp, 24] cmp x0, 0 beq .L2 ldr x0, [sp, 24] ldrb w0, [x0] cmp w0, 0 beq .L2 ldr w0, [sp, 20] cmp w0, 1 bne .L3 .L2: ldr x0, [sp, 24] b .L4 .L3: ldr x0, [sp, 24] bl strlen str w0, [sp, 60] ldr w0, [sp, 60] add w0, w0, 1 sxtw x0, w0 bl malloc str x0, [sp, 48] ldr w0, [sp, 20] sub w0, w0, #1 lsl w0, w0, 1 str w0, [sp, 44] str wzr, [sp, 76] b .L5 .L11: ldr w0, [sp, 76] str w0, [sp, 72] mov w0, 1 str w0, [sp, 64] b .L6 .L10: ldrsw x0, [sp, 72] ldr x1, [sp, 24] add x1, x1, x0 ldr w0, [sp, 68] add w2, w0, 1 str w2, [sp, 68] sxtw x0, w0 ldr x2, [sp, 48] add x0, x2, x0 ldrb w1, [x1] strb w1, [x0] ldr w0, [sp, 76] cmp w0, 0 beq .L7 ldr w0, [sp, 20] sub w0, w0, #1 ldr w1, [sp, 76] cmp w1, w0 bne .L8 .L7: ldr w1, [sp, 72] ldr w0, [sp, 44] add w0, w1, w0 str w0, [sp, 72] b .L6 .L8: ldr w0, [sp, 64] cmp w0, 0 beq .L9 ldr w0, [sp, 76] lsl w0, w0, 1 ldr w1, [sp, 44] sub w0, w1, w0 ldr w1, [sp, 72] add w0, w1, w0 str w0, [sp, 72] str wzr, [sp, 64] b .L6 .L9: ldr w0, [sp, 76] lsl w0, w0, 1 ldr w1, [sp, 72] add w0, w1, w0 str w0, [sp, 72] mov w0, 1 str w0, [sp, 64] .L6: ldr w1, [sp, 72] ldr w0, [sp, 60] cmp w1, w0 blt .L10 ldr w0, [sp, 76] add w0, w0, 1 str w0, [sp, 76] .L5: ldr w1, [sp, 76] ldr w0, [sp, 20] cmp w1, w0 blt .L11 ldrsw x0, [sp, 68] ldr x1, [sp, 48] add x0, x1, x0 strb wzr, [x0] ldr x0, [sp, 48] .L4: ldp x29, x30, [sp], 80 ret
161
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
aarch64
-O1
ARM64 gcc 15.2.0
convert: stp x29, x30, [sp, -48]! mov x29, sp stp x19, x20, [sp, 16] mov x19, x0 cbz x0, .L2 str x21, [sp, 32] mov w21, w1 ldrb w0, [x0] cmp w0, 0 ccmp w1, 1, 4, ne bne .L15 ldr x21, [sp, 32] .L2: mov x0, x19 ldp x19, x20, [sp, 16] ldp x29, x30, [sp], 48 ret .L15: mov x0, x19 bl strlen mov w20, w0 add w0, w0, 1 sxtw x0, w0 bl malloc cmp w21, 0 ble .L11 sub w12, w21, #1 lsl w7, w12, 1 mov w8, w7 mov w2, 0 mov w6, 0 mov w9, 1 mov w13, 0 b .L4 .L5: cbz w5, .L7 add w1, w1, w10 mov w5, w13 .L6: add x3, x2, 1 cmp w20, w1 ble .L16 mov x2, x3 .L8: ldrb w3, [x19, w1, sxtw] strb w3, [x0, x2] cbz w4, .L5 add w1, w1, w7 b .L6 .L7: add w1, w1, w11 mov w5, w9 b .L6 .L16: add w2, w2, 1 .L10: add w6, w6, 1 sub w8, w8, #2 cmn w8, #2 beq .L3 .L4: cmp w20, w6 ble .L10 cmp w6, 0 ccmp w12, w6, 4, ne lsl w11, w6, 1 mov w10, w8 sxtw x2, w2 mov w1, w6 mov w5, w9 cset w4, eq b .L8 .L11: mov w2, 0 .L3: strb wzr, [x0, w2, sxtw] mov x19, x0 ldr x21, [sp, 32] b .L2
162
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
aarch64
-O2
ARM64 gcc 15.2.0
convert: mov x5, x0 cbz x0, .L23 ldrb w2, [x0] cmp w2, 0 ccmp w1, 1, 4, ne bne .L27 .L23: mov x0, x5 ret .L27: stp x29, x30, [sp, -48]! mov x29, sp str w1, [sp, 36] str x0, [sp, 40] bl strlen mov x6, x0 add w0, w0, 1 str x6, [sp, 24] sxtw x0, w0 bl malloc mov x4, x0 ldr w1, [sp, 36] ldr x6, [sp, 24] cmp w1, 0 ldr x5, [sp, 40] ble .L4 sub w9, w1, #1 mov w4, 0 mov w7, 0 lsl w10, w9, 1 .L12: cmp w6, w7 ble .L8 sxtw x2, w4 ldrb w3, [x5, w7, sxtw] cmp w7, 0 add w4, w4, 1 ccmp w9, w7, 4, ne lsl w11, w7, 1 strb w3, [x0, x2] mov w3, w7 beq .L5 b .L20 .L10: add x2, x2, 1 ldrb w8, [x5, w3, sxtw] add w3, w3, w11 add w4, w2, 1 strb w8, [x0, x2] cmp w6, w3 ble .L8 add x2, x2, 1 ldrb w8, [x5, w3, sxtw] add w4, w2, 1 strb w8, [x0, x2] .L20: add w3, w3, w10 cmp w6, w3 bgt .L10 .L8: add w7, w7, 1 sub w10, w10, #2 cmp w1, w7 bne .L12 .L28: add x4, x0, w4, sxtw .L4: strb wzr, [x4] ldp x29, x30, [sp], 48 ret .L7: add x2, x2, 1 ldrb w8, [x5, w3, sxtw] add w4, w2, 1 strb w8, [x0, x2] .L5: add w3, w3, w9, lsl 1 cmp w6, w3 bgt .L7 add w7, w7, 1 sub w10, w10, #2 cmp w1, w7 bne .L12 b .L28
163
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
aarch64
-O3
ARM64 gcc 15.2.0
convert: mov x3, x0 cbz x0, .L23 ldrb w2, [x0] cmp w2, 0 ccmp w1, 1, 4, ne bne .L27 .L23: mov x0, x3 ret .L27: stp x29, x30, [sp, -48]! mov x29, sp str w1, [sp, 36] str x0, [sp, 40] bl strlen mov x5, x0 add w0, w0, 1 str x5, [sp, 24] sxtw x0, w0 bl malloc mov x4, x0 ldr w1, [sp, 36] ldr x5, [sp, 24] cmp w1, 0 ldr x3, [sp, 40] ble .L4 cmp w5, 0 ble .L15 sub w13, w1, #1 cmp w1, w5 csel w10, w1, w5, le mov x6, 0 lsl w9, w13, 1 mov w4, 0 sxtw x7, w9 .L9: cmp x6, 0 ccmp w6, w13, 4, ne beq .L13 sxtw x1, w4 ldrb w8, [x3, x6] add w4, w4, 1 mov w2, w6 lsl w12, w6, 1 strb w8, [x0, x1] b .L7 .L29: ldrb w8, [x3, w8, sxtw] add w4, w1, 1 strb w8, [x0, x11] cmp w5, w2 ble .L28 ldrb w8, [x3, w2, sxtw] strb w8, [x0, x1] .L7: add w8, w9, w2 add x11, x1, 1 add w2, w12, w8 add x1, x1, 2 cmp w5, w8 bgt .L29 add x6, x6, 1 sub w9, w9, #2 cmp w10, w6 bgt .L9 .L11: add x4, x0, w4, sxtw .L4: strb wzr, [x4] ldp x29, x30, [sp], 48 ret .L13: sxtw x2, w4 mov x1, x6 .L8: ldrb w4, [x3, x1] add x1, x1, x7 strb w4, [x0, x2] mov x4, x2 add x2, x2, 1 cmp w5, w1 bgt .L8 add x6, x6, 1 add w4, w4, 1 sub w9, w9, #2 cmp w10, w6 bgt .L9 b .L11 .L28: add x6, x6, 1 add w4, w11, 1 sub w9, w9, #2 cmp w10, w6 bgt .L9 b .L11 .L15: mov w4, 0 b .L11
164
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
aarch64
-O0
armv8-a clang 21.1.0
convert: sub sp, sp, #80 stp x29, x30, [sp, #64] add x29, sp, #64 stur x0, [x29, #-16] stur w1, [x29, #-20] str wzr, [sp, #28] ldur x8, [x29, #-16] cbz x8, .LBB0_3 b .LBB0_1 .LBB0_1: ldur x8, [x29, #-16] ldrb w8, [x8] cbz w8, .LBB0_3 b .LBB0_2 .LBB0_2: ldur w8, [x29, #-20] subs w8, w8, #1 b.ne .LBB0_4 b .LBB0_3 .LBB0_3: ldur x8, [x29, #-16] stur x8, [x29, #-8] b .LBB0_19 .LBB0_4: ldur x0, [x29, #-16] bl strlen mov w8, w0 stur w8, [x29, #-24] ldur w8, [x29, #-24] add w9, w8, #1 mov w8, w9 sxtw x8, w8 lsr x0, x8, #0 bl malloc str x0, [sp, #16] ldur w8, [x29, #-20] subs w8, w8, #1 lsl w8, w8, #1 str w8, [sp, #12] stur wzr, [x29, #-28] b .LBB0_5 .LBB0_5: ldur w8, [x29, #-28] ldur w9, [x29, #-20] subs w8, w8, w9 b.ge .LBB0_18 b .LBB0_6 .LBB0_6: ldur w8, [x29, #-28] str w8, [sp, #32] mov w8, #1 str w8, [sp, #8] b .LBB0_7 .LBB0_7: ldr w8, [sp, #32] ldur w9, [x29, #-24] subs w8, w8, w9 b.ge .LBB0_16 b .LBB0_8 .LBB0_8: ldur x8, [x29, #-16] ldrsw x9, [sp, #32] add x8, x8, x9 ldrb w8, [x8] ldr x9, [sp, #16] ldrsw x10, [sp, #28] mov w11, w10 add w11, w11, #1 str w11, [sp, #28] add x9, x9, x10 strb w8, [x9] ldur w8, [x29, #-28] cbz w8, .LBB0_10 b .LBB0_9 .LBB0_9: ldur w8, [x29, #-28] ldur w9, [x29, #-20] subs w9, w9, #1 subs w8, w8, w9 b.ne .LBB0_11 b .LBB0_10 .LBB0_10: ldr w9, [sp, #12] ldr w8, [sp, #32] add w8, w8, w9 str w8, [sp, #32] b .LBB0_15 .LBB0_11: ldr w8, [sp, #8] cbz w8, .LBB0_13 b .LBB0_12 .LBB0_12: ldr w8, [sp, #12] ldur w9, [x29, #-28] subs w9, w8, w9, lsl #1 ldr w8, [sp, #32] add w8, w8, w9 str w8, [sp, #32] str wzr, [sp, #8] b .LBB0_14 .LBB0_13: ldur w9, [x29, #-28] ldr w8, [sp, #32] add w8, w8, w9, lsl #1 str w8, [sp, #32] mov w8, #1 str w8, [sp, #8] b .LBB0_14 .LBB0_14: b .LBB0_15 .LBB0_15: b .LBB0_7 .LBB0_16: b .LBB0_17 .LBB0_17: ldur w8, [x29, #-28] add w8, w8, #1 stur w8, [x29, #-28] b .LBB0_5 .LBB0_18: ldr x8, [sp, #16] ldrsw x9, [sp, #28] add x8, x8, x9 strb wzr, [x8] ldr x8, [sp, #16] stur x8, [x29, #-8] b .LBB0_19 .LBB0_19: ldur x0, [x29, #-8] ldp x29, x30, [sp, #64] add sp, sp, #80 ret
165
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
aarch64
-O1
armv8-a clang 21.1.0
convert: cbz x0, .LBB0_12 cmp w1, #1 b.eq .LBB0_12 ldrb w8, [x0] cbz w8, .LBB0_12 stp x29, x30, [sp, #-48]! str x21, [sp, #16] stp x20, x19, [sp, #32] mov x29, sp mov x20, x0 mov w21, w1 bl strlen mov x19, x0 add w8, w19, #1 sxtw x0, w8 bl malloc subs w9, w21, #1 b.lt .LBB0_10 mov w8, w21 mov w11, wzr mov w10, wzr mov x12, x20 b .LBB0_6 .LBB0_5: add w11, w11, #1 cmp w11, w8 b.eq .LBB0_9 .LBB0_6: cmp w11, w19 b.ge .LBB0_5 cmp w11, #0 add x13, x0, w10, sxtw sub w15, w9, w11 ccmp w9, w11, #4, ne mov w16, #1 mov w17, w11 cset w14, ne .LBB0_8: cmp w16, #0 ldrb w1, [x12, w17, sxtw] eor w16, w16, w14 csel w18, w11, w15, eq cmp w14, #0 add w10, w10, #1 csel w18, w18, w9, ne strb w1, [x13], #1 add w17, w17, w18, lsl #1 cmp w17, w19 b.lt .LBB0_8 b .LBB0_5 .LBB0_9: sxtw x8, w10 b .LBB0_11 .LBB0_10: mov x8, xzr .LBB0_11: strb wzr, [x0, x8] ldp x20, x19, [sp, #32] ldr x21, [sp, #16] ldp x29, x30, [sp], #48 .LBB0_12: ret
166
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
aarch64
-O2
armv8-a clang 21.1.0
convert: cbz x0, .LBB0_12 cmp w1, #1 b.eq .LBB0_12 ldrb w8, [x0] cbz w8, .LBB0_12 stp x29, x30, [sp, #-48]! str x21, [sp, #16] stp x20, x19, [sp, #32] mov x29, sp mov x20, x0 mov w21, w1 bl strlen mov x19, x0 add w8, w19, #1 sxtw x0, w8 bl malloc subs w9, w21, #1 b.lt .LBB0_10 mov w8, w21 mov w11, wzr mov w10, wzr mov x12, x20 b .LBB0_6 .LBB0_5: add w11, w11, #1 cmp w11, w8 b.eq .LBB0_9 .LBB0_6: cmp w11, w19 b.ge .LBB0_5 cmp w11, #0 add x13, x0, w10, sxtw sub w15, w9, w11 ccmp w9, w11, #4, ne mov w16, #1 mov w17, w11 cset w14, ne .LBB0_8: cmp w16, #0 ldrb w1, [x12, w17, sxtw] eor w16, w16, w14 csel w18, w11, w15, eq cmp w14, #0 add w10, w10, #1 csel w18, w18, w9, ne strb w1, [x13], #1 add w17, w17, w18, lsl #1 cmp w17, w19 b.lt .LBB0_8 b .LBB0_5 .LBB0_9: sxtw x8, w10 b .LBB0_11 .LBB0_10: mov x8, xzr .LBB0_11: strb wzr, [x0, x8] ldp x20, x19, [sp, #32] ldr x21, [sp, #16] ldp x29, x30, [sp], #48 .LBB0_12: ret
167
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
aarch64
-O3
armv8-a clang 21.1.0
convert: cbz x0, .LBB0_15 cmp w1, #1 b.eq .LBB0_15 ldrb w8, [x0] cbz w8, .LBB0_15 stp x29, x30, [sp, #-48]! str x21, [sp, #16] stp x20, x19, [sp, #32] mov x29, sp mov x20, x0 mov w21, w1 bl strlen mov x19, x0 add w8, w19, #1 sxtw x0, w8 bl malloc subs w8, w21, #1 b.lt .LBB0_13 lsl w11, w8, #1 sxtw x12, w19 mov x10, xzr mov w9, wzr mov w13, w21 mov x14, x20 sxtw x11, w11 b .LBB0_6 .LBB0_5: add x10, x10, #1 cmp x10, x13 b.eq .LBB0_12 .LBB0_6: cmp w10, w19 b.ge .LBB0_5 cmp w10, #0 sxtw x17, w9 ccmp w8, w10, #4, ne cset w15, ne b.eq .LBB0_10 sub w16, w8, w10 add x17, x0, x17 mov w18, #1 mov w1, w10 .LBB0_9: cmp w18, #0 ldrb w3, [x14, w1, sxtw] eor w18, w18, w15 csel w2, w10, w16, eq add w9, w9, #1 add w1, w1, w2, lsl #1 strb w3, [x17], #1 cmp w1, w19 b.lt .LBB0_9 b .LBB0_5 .LBB0_10: add x15, x0, x17 mov x16, x10 .LBB0_11: ldrb w17, [x14, x16] add x16, x16, x11 add w9, w9, #1 cmp x16, x12 strb w17, [x15], #1 b.lt .LBB0_11 b .LBB0_5 .LBB0_12: sxtw x8, w9 b .LBB0_14 .LBB0_13: mov x8, xzr .LBB0_14: strb wzr, [x0, x8] ldp x20, x19, [sp, #32] ldr x21, [sp, #16] ldp x29, x30, [sp], #48 .LBB0_15: ret
168
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
mips64
-O0
mips64 clang 21.1.0
convert: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -96 sd $ra, 88($sp) sd $fp, 80($sp) sd $gp, 72($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(convert))) daddu $1, $1, $25 daddiu $1, $1, %lo(%neg(%gp_rel(convert))) sd $1, 8($fp) move $1, $5 sd $4, 56($fp) sw $1, 52($fp) sw $zero, 36($fp) ld $1, 56($fp) beqz $1, .LBB0_6 nop b .LBB0_2 nop .LBB0_2: ld $1, 56($fp) lbu $1, 0($1) beqz $1, .LBB0_6 nop b .LBB0_4 nop .LBB0_4: lw $1, 52($fp) addiu $2, $zero, 1 bne $1, $2, .LBB0_7 nop b .LBB0_6 nop .LBB0_6: ld $1, 56($fp) sd $1, 64($fp) b .LBB0_27 nop .LBB0_7: ld $gp, 8($fp) ld $4, 56($fp) ld $25, %call16(strlen)($gp) jalr $25 nop ld $gp, 8($fp) sw $2, 48($fp) lw $1, 48($fp) addiu $1, $1, 1 move $4, $1 ld $25, %call16(malloc)($gp) jalr $25 nop sd $2, 24($fp) lw $1, 52($fp) sll $1, $1, 1 addiu $1, $1, -2 sw $1, 20($fp) sw $zero, 44($fp) b .LBB0_8 nop .LBB0_8: lw $1, 44($fp) lw $2, 52($fp) slt $1, $1, $2 beqz $1, .LBB0_26 nop b .LBB0_10 nop .LBB0_10: lw $1, 44($fp) sw $1, 40($fp) addiu $1, $zero, 1 sw $1, 16($fp) b .LBB0_11 nop .LBB0_11: lw $1, 40($fp) lw $2, 48($fp) slt $1, $1, $2 beqz $1, .LBB0_24 nop b .LBB0_13 nop .LBB0_13: ld $1, 56($fp) lw $2, 40($fp) daddu $1, $1, $2 lbu $1, 0($1) ld $2, 24($fp) lw $3, 36($fp) addiu $4, $3, 1 sw $4, 36($fp) sll $3, $3, 0 daddu $2, $2, $3 sb $1, 0($2) lw $1, 44($fp) beqz $1, .LBB0_17 nop b .LBB0_15 nop .LBB0_15: lw $1, 44($fp) lw $2, 52($fp) addiu $2, $2, -1 bne $1, $2, .LBB0_18 nop b .LBB0_17 nop .LBB0_17: lw $2, 20($fp) lw $1, 40($fp) addu $1, $1, $2 sw $1, 40($fp) b .LBB0_23 nop .LBB0_18: lw $1, 16($fp) beqz $1, .LBB0_21 nop b .LBB0_20 nop .LBB0_20: lw $1, 20($fp) lw $2, 44($fp) sll $2, $2, 1 subu $2, $1, $2 lw $1, 40($fp) addu $1, $1, $2 sw $1, 40($fp) sw $zero, 16($fp) b .LBB0_22 nop .LBB0_21: lw $1, 44($fp) sll $2, $1, 1 lw $1, 40($fp) addu $1, $1, $2 sw $1, 40($fp) addiu $1, $zero, 1 sw $1, 16($fp) b .LBB0_22 nop .LBB0_22: b .LBB0_23 nop .LBB0_23: b .LBB0_11 nop .LBB0_24: b .LBB0_25 nop .LBB0_25: lw $1, 44($fp) addiu $1, $1, 1 sw $1, 44($fp) b .LBB0_8 nop .LBB0_26: ld $1, 24($fp) lw $2, 36($fp) daddu $1, $1, $2 addiu $2, $zero, 0 sb $zero, 0($1) ld $1, 24($fp) sd $1, 64($fp) b .LBB0_27 nop .LBB0_27: ld $2, 64($fp) move $sp, $fp ld $gp, 72($sp) ld $fp, 80($sp) ld $ra, 88($sp) daddiu $sp, $sp, 96 jr $ra nop
169
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
mips64
-O1
mips64 clang 21.1.0
convert: .Lfunc_begin0 = .Ltmp0 lui $1, %hi(%neg(%gp_rel(convert))) beqz $4, .LBB0_10 daddu $2, $1, $25 addiu $1, $zero, 1 beq $5, $1, .LBB0_13 nop lbu $1, 0($4) andi $1, $1, 255 beqz $1, .LBB0_12 nop daddiu $sp, $sp, -48 sd $ra, 40($sp) sd $fp, 32($sp) sd $gp, 24($sp) sd $18, 16($sp) sd $17, 8($sp) sd $16, 0($sp) move $fp, $sp daddiu $gp, $2, %lo(%neg(%gp_rel(convert))) ld $25, %call16(strlen)($gp) move $17, $4 jalr $25 move $18, $5 move $16, $2 dsll $1, $2, 32 daddiu $2, $zero, 1 dsll $2, $2, 32 daddu $1, $1, $2 ld $25, %call16(malloc)($gp) jalr $25 dsra $4, $1, 32 move $3, $18 blez $3, .LBB0_14 nop sll $4, $16, 0 addiu $5, $3, -1 addiu $6, $zero, 0 addiu $7, $zero, 0 b .LBB0_6 move $8, $17 .LBB0_5: addiu $6, $6, 1 beq $6, $3, .LBB0_11 nop .LBB0_6: slt $1, $6, $4 beqz $1, .LBB0_5 nop sll $1, $7, 0 subu $9, $5, $6 daddu $10, $2, $1 xor $1, $5, $6 sltu $1, $zero, $1 sltu $11, $zero, $6 and $11, $11, $1 addiu $12, $zero, 1 move $13, $6 .LBB0_8: move $1, $9 movz $1, $6, $12 move $14, $5 movn $14, $1, $11 sll $1, $14, 1 addu $1, $1, $13 sll $13, $13, 0 daddu $13, $8, $13 lbu $13, 0($13) sb $13, 0($10) slt $14, $1, $4 xor $12, $12, $11 addiu $7, $7, 1 daddiu $10, $10, 1 bnez $14, .LBB0_8 move $13, $1 b .LBB0_5 nop .LBB0_10: jr $ra move $2, $4 .LBB0_11: b .LBB0_15 sll $3, $7, 0 .LBB0_12: jr $ra move $2, $4 .LBB0_13: jr $ra move $2, $4 .LBB0_14: daddiu $3, $zero, 0 .LBB0_15: daddu $1, $2, $3 sb $zero, 0($1) move $sp, $fp ld $16, 0($sp) ld $17, 8($sp) ld $18, 16($sp) ld $gp, 24($sp) ld $fp, 32($sp) ld $ra, 40($sp) jr $ra daddiu $sp, $sp, 48
170
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
mips64
-O2
mips64 clang 21.1.0
convert: .Lfunc_begin0 = .Ltmp0 lui $1, %hi(%neg(%gp_rel(convert))) beqz $4, .LBB0_10 daddu $2, $1, $25 addiu $1, $zero, 1 beq $5, $1, .LBB0_13 nop lbu $1, 0($4) andi $1, $1, 255 beqz $1, .LBB0_12 nop daddiu $sp, $sp, -48 sd $ra, 40($sp) sd $fp, 32($sp) sd $gp, 24($sp) sd $18, 16($sp) sd $17, 8($sp) sd $16, 0($sp) move $fp, $sp daddiu $gp, $2, %lo(%neg(%gp_rel(convert))) ld $25, %call16(strlen)($gp) move $17, $4 jalr $25 move $18, $5 move $16, $2 dsll $1, $2, 32 daddiu $2, $zero, 1 dsll $2, $2, 32 daddu $1, $1, $2 ld $25, %call16(malloc)($gp) jalr $25 dsra $4, $1, 32 move $3, $18 blez $3, .LBB0_14 nop sll $4, $16, 0 addiu $5, $3, -1 addiu $6, $zero, 0 addiu $7, $zero, 0 b .LBB0_6 move $8, $17 .LBB0_5: addiu $6, $6, 1 beq $6, $3, .LBB0_11 nop .LBB0_6: slt $1, $6, $4 beqz $1, .LBB0_5 nop sll $1, $7, 0 subu $9, $5, $6 daddu $10, $2, $1 xor $1, $5, $6 sltu $1, $zero, $1 sltu $11, $zero, $6 and $11, $11, $1 addiu $12, $zero, 1 move $13, $6 .LBB0_8: move $1, $9 movz $1, $6, $12 move $14, $5 movn $14, $1, $11 sll $1, $14, 1 addu $1, $1, $13 sll $13, $13, 0 daddu $13, $8, $13 lbu $13, 0($13) sb $13, 0($10) slt $14, $1, $4 xor $12, $12, $11 addiu $7, $7, 1 daddiu $10, $10, 1 bnez $14, .LBB0_8 move $13, $1 b .LBB0_5 nop .LBB0_10: jr $ra daddiu $2, $zero, 0 .LBB0_11: b .LBB0_15 sll $3, $7, 0 .LBB0_12: jr $ra move $2, $4 .LBB0_13: jr $ra move $2, $4 .LBB0_14: daddiu $3, $zero, 0 .LBB0_15: daddu $1, $2, $3 sb $zero, 0($1) move $sp, $fp ld $16, 0($sp) ld $17, 8($sp) ld $18, 16($sp) ld $gp, 24($sp) ld $fp, 32($sp) ld $ra, 40($sp) jr $ra daddiu $sp, $sp, 48
171
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
mips64
-O3
mips64 clang 21.1.0
convert: .Lfunc_begin0 = .Ltmp0 lui $1, %hi(%neg(%gp_rel(convert))) beqz $4, .LBB0_14 daddu $2, $1, $25 addiu $1, $zero, 1 beq $5, $1, .LBB0_17 nop lbu $1, 0($4) andi $1, $1, 255 beqz $1, .LBB0_16 nop daddiu $sp, $sp, -48 sd $ra, 40($sp) sd $fp, 32($sp) sd $gp, 24($sp) sd $18, 16($sp) sd $17, 8($sp) sd $16, 0($sp) move $fp, $sp daddiu $gp, $2, %lo(%neg(%gp_rel(convert))) move $17, $4 ld $25, %call16(strlen)($gp) jalr $25 move $18, $5 move $16, $2 dsll $1, $2, 32 daddiu $2, $zero, 1 ld $25, %call16(malloc)($gp) dsll $2, $2, 32 daddu $1, $1, $2 jalr $25 dsra $4, $1, 32 blez $18, .LBB0_18 nop addiu $4, $18, -1 sll $3, $16, 0 sll $6, $18, 0 sll $16, $16, 0 addiu $7, $zero, 0 daddiu $8, $zero, 0 addiu $9, $zero, 0 move $10, $17 b .LBB0_6 sll $5, $4, 1 .LBB0_5: daddiu $8, $8, 1 beq $8, $6, .LBB0_15 addiu $7, $7, 1 .LBB0_6: slt $1, $7, $3 beqz $1, .LBB0_5 nop xor $1, $4, $7 sltu $11, $zero, $7 sltu $1, $zero, $1 and $11, $11, $1 beqz $11, .LBB0_11 sll $13, $9, 0 subu $12, $4, $7 daddu $13, $2, $13 addiu $14, $zero, 1 move $15, $7 .LBB0_9: move $1, $12 addiu $9, $9, 1 movz $1, $7, $14 xor $14, $14, $11 sll $1, $1, 1 addu $1, $1, $15 sll $15, $15, 0 daddu $15, $10, $15 slt $24, $1, $3 lbu $15, 0($15) sb $15, 0($13) daddiu $13, $13, 1 bnez $24, .LBB0_9 move $15, $1 b .LBB0_5 nop .LBB0_11: daddu $11, $2, $13 move $12, $8 .LBB0_12: daddu $1, $12, $5 daddu $12, $10, $12 addiu $9, $9, 1 lbu $12, 0($12) slt $13, $1, $16 sb $12, 0($11) daddiu $11, $11, 1 bnez $13, .LBB0_12 move $12, $1 b .LBB0_5 nop .LBB0_14: jr $ra daddiu $2, $zero, 0 .LBB0_15: b .LBB0_19 sll $3, $9, 0 .LBB0_16: jr $ra move $2, $4 .LBB0_17: jr $ra move $2, $4 .LBB0_18: daddiu $3, $zero, 0 .LBB0_19: daddu $1, $2, $3 sb $zero, 0($1) move $sp, $fp ld $16, 0($sp) ld $17, 8($sp) ld $18, 16($sp) ld $gp, 24($sp) ld $fp, 32($sp) ld $ra, 40($sp) jr $ra daddiu $sp, $sp, 48
172
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
mips64
-O0
mips64 gcc 15.2.0
convert: daddiu $sp,$sp,-96 sd $31,88($sp) sd $fp,80($sp) sd $28,72($sp) move $fp,$sp lui $28,%hi(%neg(%gp_rel(convert))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(convert))) sd $4,48($fp) move $2,$5 sll $2,$2,0 sw $2,56($fp) sw $0,8($fp) ld $2,48($fp) beq $2,$0,.L2 nop ld $2,48($fp) lb $2,0($2) beq $2,$0,.L2 nop lw $2,56($fp) li $3,1 # 0x1 bne $2,$3,.L3 nop .L2: ld $2,48($fp) b .L4 nop .L3: ld $4,48($fp) ld $2,%call16(strlen)($28) mtlo $2 mflo $25 jalr $25 nop sw $2,16($fp) lw $2,16($fp) addiu $2,$2,1 move $4,$2 ld $2,%call16(malloc)($28) mtlo $2 mflo $25 jalr $25 nop sd $2,24($fp) lw $2,56($fp) addiu $2,$2,-1 sll $2,$2,1 sw $2,32($fp) sw $0,0($fp) b .L5 nop .L11: lw $2,0($fp) sw $2,4($fp) li $2,1 # 0x1 sw $2,12($fp) b .L6 nop .L10: lw $2,4($fp) ld $3,48($fp) daddu $3,$3,$2 lw $2,8($fp) addiu $4,$2,1 sw $4,8($fp) move $4,$2 ld $2,24($fp) daddu $2,$2,$4 lb $3,0($3) sb $3,0($2) lw $2,0($fp) beq $2,$0,.L7 nop lw $2,56($fp) addiu $2,$2,-1 move $3,$2 lw $2,0($fp) bne $2,$3,.L8 nop .L7: lw $3,4($fp) lw $2,32($fp) addu $2,$3,$2 sw $2,4($fp) b .L6 nop .L8: lw $2,12($fp) beq $2,$0,.L9 nop lw $2,0($fp) sll $2,$2,1 lw $3,32($fp) subu $2,$3,$2 lw $3,4($fp) addu $2,$3,$2 sw $2,4($fp) sw $0,12($fp) b .L6 nop .L9: lw $2,0($fp) sll $2,$2,1 lw $3,4($fp) addu $2,$3,$2 sw $2,4($fp) li $2,1 # 0x1 sw $2,12($fp) .L6: lw $3,4($fp) lw $2,16($fp) slt $2,$3,$2 bne $2,$0,.L10 nop lw $2,0($fp) addiu $2,$2,1 sw $2,0($fp) .L5: lw $3,0($fp) lw $2,56($fp) slt $2,$3,$2 bne $2,$0,.L11 nop lw $2,8($fp) ld $3,24($fp) daddu $2,$3,$2 sb $0,0($2) ld $2,24($fp) .L4: move $sp,$fp ld $31,88($sp) ld $fp,80($sp) ld $28,72($sp) daddiu $sp,$sp,96 jr $31 nop
173
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
mips64
-O1
mips64 gcc 15.2.0
convert: daddiu $sp,$sp,-48 sd $31,40($sp) sd $28,32($sp) sd $18,24($sp) sd $17,16($sp) sd $16,8($sp) lui $28,%hi(%neg(%gp_rel(convert))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(convert))) beq $4,$0,.L2 move $16,$4 lb $2,0($4) beq $2,$0,.L2 move $18,$5 li $2,1 # 0x1 beq $5,$2,.L2 ld $25,%call16(strlen)($28) 1: jalr $25 nop sll $4,$2,0 move $17,$4 ld $25,%call16(malloc)($28) 1: jalr $25 addiu $4,$4,1 blez $18,.L12 addiu $11,$18,-1 addiu $5,$18,-1 sll $12,$5,1 sll $11,$11,1 move $7,$0 move $9,$0 li $13,1 # 0x1 move $24,$0 b .L4 li $25,-2 # 0xfffffffffffffffe .L5: addu $3,$12,$3 .L7: .L15: slt $8,$3,$17 beq $8,$0,.L11 daddiu $6,$6,1 .L9: addiu $7,$7,1 daddu $8,$16,$3 lbu $8,0($8) beq $9,$0,.L5 sb $8,0($6) beql $5,$10,.L15 addu $3,$12,$3 beql $4,$0,.L8 addu $3,$15,$3 addu $3,$14,$3 b .L7 move $4,$24 .L8: b .L7 move $4,$13 .L11: addiu $11,$11,-2 beq $11,$25,.L3 addiu $9,$9,1 .L4: slt $3,$9,$17 beq $3,$0,.L11 sll $15,$9,1 move $14,$11 daddu $6,$2,$7 move $3,$9 move $4,$13 b .L9 move $10,$9 .L12: move $7,$0 .L3: daddu $7,$2,$7 sb $0,0($7) move $16,$2 .L2: move $2,$16 ld $31,40($sp) ld $28,32($sp) ld $18,24($sp) ld $17,16($sp) ld $16,8($sp) jr $31 daddiu $sp,$sp,48
174
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
mips64
-O2
mips64 gcc 15.2.0
convert: beq $4,$0,.L25 move $9,$4 lb $2,0($4) beq $2,$0,.L25 nop li $2,1 # 0x1 beq $5,$2,.L25 nop daddiu $sp,$sp,-48 sd $28,32($sp) lui $28,%hi(%neg(%gp_rel(convert))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(convert))) ld $25,%call16(strlen)($28) sd $31,40($sp) sd $5,8($sp) 1: jalr $25 sd $4,16($sp) ld $25,%call16(malloc)($28) sll $10,$2,0 addiu $4,$10,1 1: jalr $25 sw $10,0($sp) ld $5,8($sp) lw $10,0($sp) ld $9,16($sp) blez $5,.L4 move $7,$2 addiu $14,$5,-1 addiu $13,$5,-1 sll $15,$13,1 sll $14,$14,1 move $7,$0 move $8,$0 .L11: slt $3,$8,$10 beq $3,$0,.L8 sll $24,$8,1 daddu $6,$2,$7 move $3,$8 li $11,1 # 0x1 b .L10 move $12,$8 .L5: addu $3,$3,$15 .L30: slt $4,$3,$10 beq $4,$0,.L8 daddiu $6,$6,1 .L10: daddu $4,$9,$3 lbu $4,0($4) addiu $7,$7,1 beq $8,$0,.L5 sb $4,0($6) .L6: beql $13,$12,.L30 addu $3,$3,$15 beql $11,$0,.L31 addu $3,$24,$3 addu $3,$14,$3 .L32: slt $4,$3,$10 daddu $11,$9,$3 beq $4,$0,.L8 daddiu $6,$6,1 lbu $4,0($11) addiu $7,$7,1 move $11,$0 beq $13,$12,.L5 sb $4,0($6) bnel $11,$0,.L32 addu $3,$14,$3 addu $3,$24,$3 .L31: slt $4,$3,$10 daddu $11,$9,$3 beq $4,$0,.L8 daddiu $6,$6,1 lbu $4,0($11) addiu $7,$7,1 li $11,1 # 0x1 b .L6 sb $4,0($6) .L25: jr $31 move $2,$9 .L8: addiu $8,$8,1 bne $5,$8,.L11 addiu $14,$14,-2 daddu $7,$2,$7 .L4: sb $0,0($7) ld $31,40($sp) ld $28,32($sp) jr $31 daddiu $sp,$sp,48
175
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
mips64
-O3
mips64 gcc 15.2.0
convert: beq $4,$0,.L31 move $8,$4 lb $2,0($4) beq $2,$0,.L31 nop li $2,1 # 0x1 beq $5,$2,.L31 nop daddiu $sp,$sp,-48 sd $28,32($sp) lui $28,%hi(%neg(%gp_rel(convert))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(convert))) ld $25,%call16(strlen)($28) sd $31,40($sp) sd $5,8($sp) 1: jalr $25 sd $4,16($sp) ld $25,%call16(malloc)($28) sll $9,$2,0 addiu $4,$9,1 1: jalr $25 sw $9,0($sp) ld $5,8($sp) lw $9,0($sp) ld $8,16($sp) blez $5,.L4 move $3,$2 blez $9,.L19 addiu $14,$5,-1 slt $3,$9,$5 addiu $12,$5,-1 bne $3,$0,.L35 sll $11,$14,1 .L16: move $13,$5 sll $12,$12,1 move $10,$0 move $3,$0 .L12: beq $10,$0,.L36 sll $4,$10,0 beq $4,$14,.L5 daddu $5,$8,$10 lbu $15,0($5) daddu $5,$2,$3 move $6,$4 sll $7,$4,1 addiu $3,$3,1 b .L8 sb $15,0($5) .L6: lbu $4,0($24) daddiu $5,$5,2 beq $15,$0,.L37 sb $4,-1($5) lbu $4,0($25) addiu $3,$3,2 sb $4,0($5) .L8: addu $4,$12,$6 addu $6,$7,$4 daddu $24,$8,$4 slt $4,$4,$9 daddu $25,$8,$6 bne $4,$0,.L6 slt $15,$6,$9 daddiu $10,$10,1 sll $4,$10,0 slt $4,$4,$13 bne $4,$0,.L12 addiu $12,$12,-2 .L14: daddu $3,$2,$3 .L4: sb $0,0($3) ld $31,40($sp) ld $28,32($sp) jr $31 daddiu $sp,$sp,48 .L31: jr $31 move $2,$8 .L36: daddu $7,$2,$3 move $5,$0 .L11: daddu $4,$8,$5 lbu $4,0($4) daddu $5,$5,$11 sll $6,$5,0 slt $6,$6,$9 sb $4,0($7) addiu $3,$3,1 bne $6,$0,.L11 daddiu $7,$7,1 daddiu $10,$10,1 sll $4,$10,0 slt $4,$4,$13 bne $4,$0,.L12 addiu $12,$12,-2 b .L4 daddu $3,$2,$3 .L5: daddu $6,$2,$3 move $4,$10 .L10: daddu $5,$8,$4 lbu $7,0($5) daddu $4,$4,$11 sll $5,$4,0 slt $5,$5,$9 sb $7,0($6) addiu $3,$3,1 bne $5,$0,.L10 daddiu $6,$6,1 daddiu $10,$10,1 sll $4,$10,0 slt $4,$4,$13 bne $4,$0,.L12 addiu $12,$12,-2 b .L4 daddu $3,$2,$3 .L37: daddiu $10,$10,1 sll $4,$10,0 slt $4,$4,$13 addiu $3,$3,1 bne $4,$0,.L12 addiu $12,$12,-2 b .L4 daddu $3,$2,$3 .L35: b .L16 move $5,$9 .L19: b .L14 move $3,$0
176
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
riscv64
-O0
RISC-V 64 clang 21.1.0
convert: addi sp, sp, -80 sd ra, 72(sp) sd s0, 64(sp) addi s0, sp, 80 sd a0, -32(s0) sw a1, -36(s0) li a0, 0 sw a0, -52(s0) ld a0, -32(s0) beqz a0, .LBB0_3 j .LBB0_1 .LBB0_1: ld a0, -32(s0) lbu a0, 0(a0) beqz a0, .LBB0_3 j .LBB0_2 .LBB0_2: lw a0, -36(s0) li a1, 1 bne a0, a1, .LBB0_4 j .LBB0_3 .LBB0_3: ld a0, -32(s0) sd a0, -24(s0) j .LBB0_19 .LBB0_4: ld a0, -32(s0) call strlen sw a0, -40(s0) lw a0, -40(s0) addiw a0, a0, 1 call malloc sd a0, -64(s0) lw a0, -36(s0) slliw a0, a0, 1 addiw a0, a0, -2 sw a0, -68(s0) li a0, 0 sw a0, -44(s0) j .LBB0_5 .LBB0_5: lw a0, -44(s0) lw a1, -36(s0) bge a0, a1, .LBB0_18 j .LBB0_6 .LBB0_6: lw a0, -44(s0) sw a0, -48(s0) li a0, 1 sw a0, -72(s0) j .LBB0_7 .LBB0_7: lw a0, -48(s0) lw a1, -40(s0) bge a0, a1, .LBB0_16 j .LBB0_8 .LBB0_8: ld a0, -32(s0) lw a1, -48(s0) add a0, a0, a1 lbu a0, 0(a0) ld a1, -64(s0) lw a2, -52(s0) addiw a3, a2, 1 sw a3, -52(s0) add a1, a1, a2 sb a0, 0(a1) lw a0, -44(s0) beqz a0, .LBB0_10 j .LBB0_9 .LBB0_9: lw a0, -44(s0) lw a1, -36(s0) addiw a1, a1, -1 bne a0, a1, .LBB0_11 j .LBB0_10 .LBB0_10: lw a1, -68(s0) lw a0, -48(s0) addw a0, a0, a1 sw a0, -48(s0) j .LBB0_15 .LBB0_11: lw a0, -72(s0) beqz a0, .LBB0_13 j .LBB0_12 .LBB0_12: lw a0, -68(s0) lw a1, -44(s0) slliw a1, a1, 1 subw a1, a0, a1 lw a0, -48(s0) addw a0, a0, a1 sw a0, -48(s0) li a0, 0 sw a0, -72(s0) j .LBB0_14 .LBB0_13: lw a0, -44(s0) slliw a1, a0, 1 lw a0, -48(s0) addw a0, a0, a1 sw a0, -48(s0) li a0, 1 sw a0, -72(s0) j .LBB0_14 .LBB0_14: j .LBB0_15 .LBB0_15: j .LBB0_7 .LBB0_16: j .LBB0_17 .LBB0_17: lw a0, -44(s0) addiw a0, a0, 1 sw a0, -44(s0) j .LBB0_5 .LBB0_18: ld a0, -64(s0) lw a1, -52(s0) add a1, a1, a0 li a0, 0 sb a0, 0(a1) ld a0, -64(s0) sd a0, -24(s0) j .LBB0_19 .LBB0_19: ld a0, -24(s0) ld ra, 72(sp) ld s0, 64(sp) addi sp, sp, 80 ret
177
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
riscv64
-O1
RISC-V 64 clang 21.1.0
convert: beqz a0, .LBB0_15 li a2, 1 beq a1, a2, .LBB0_15 lbu a2, 0(a0) beqz a2, .LBB0_15 addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) sd s1, 8(sp) sd s2, 0(sp) mv s2, a0 mv s1, a1 call strlen mv s0, a0 addiw a0, a0, 1 call malloc blez s1, .LBB0_13 mv a6, s1 li t3, 0 li a2, 0 addiw a7, s1, -1 sext.w t2, s0 mv t1, s2 j .LBB0_6 .LBB0_5: addiw t3, t3, 1 beq t3, a6, .LBB0_14 .LBB0_6: bge t3, t2, .LBB0_5 snez a3, t3 xor a4, a7, t3 subw t0, a7, t3 add a1, a0, a2 snez a4, a4 and a4, a4, a3 li a5, 1 mv s1, t3 j .LBB0_9 .LBB0_8: xor a5, a5, a4 slli s0, s0, 1 addw s1, s1, s0 addi a1, a1, 1 addiw a2, a2, 1 bge s1, t2, .LBB0_5 .LBB0_9: add a3, t1, s1 lbu a3, 0(a3) sb a3, 0(a1) mv s0, t3 beqz a5, .LBB0_11 mv s0, t0 .LBB0_11: bnez a4, .LBB0_8 mv s0, a7 j .LBB0_8 .LBB0_13: li a2, 0 .LBB0_14: add a2, a2, a0 sb zero, 0(a2) ld ra, 24(sp) ld s0, 16(sp) ld s1, 8(sp) ld s2, 0(sp) addi sp, sp, 32 .LBB0_15: ret
178
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
riscv64
-O2
RISC-V 64 clang 21.1.0
convert: beqz a0, .LBB0_15 li a2, 1 beq a1, a2, .LBB0_15 lbu a2, 0(a0) beqz a2, .LBB0_15 addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) sd s1, 8(sp) sd s2, 0(sp) mv s2, a0 mv s1, a1 call strlen mv s0, a0 addiw a0, a0, 1 call malloc blez s1, .LBB0_13 mv a6, s1 li t3, 0 li a2, 0 addiw a7, s1, -1 sext.w t2, s0 mv t1, s2 j .LBB0_6 .LBB0_5: addiw t3, t3, 1 beq t3, a6, .LBB0_14 .LBB0_6: bge t3, t2, .LBB0_5 snez a3, t3 xor a4, a7, t3 subw t0, a7, t3 add a1, a0, a2 snez a4, a4 and a4, a4, a3 li a5, 1 mv s1, t3 j .LBB0_9 .LBB0_8: xor a5, a5, a4 slli s0, s0, 1 addw s1, s1, s0 addi a1, a1, 1 addiw a2, a2, 1 bge s1, t2, .LBB0_5 .LBB0_9: add a3, t1, s1 lbu a3, 0(a3) sb a3, 0(a1) mv s0, t3 beqz a5, .LBB0_11 mv s0, t0 .LBB0_11: bnez a4, .LBB0_8 mv s0, a7 j .LBB0_8 .LBB0_13: li a2, 0 .LBB0_14: add a2, a2, a0 sb zero, 0(a2) ld ra, 24(sp) ld s0, 16(sp) ld s1, 8(sp) ld s2, 0(sp) addi sp, sp, 32 .LBB0_15: ret
179
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
riscv64
-O3
RISC-V 64 clang 21.1.0
convert: beqz a0, .LBB0_16 li a2, 1 beq a1, a2, .LBB0_16 lbu a2, 0(a0) beqz a2, .LBB0_16 addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) sd s1, 8(sp) sd s2, 0(sp) mv s2, a0 mv s0, a1 call strlen mv s1, a0 addiw a0, a0, 1 call malloc blez s0, .LBB0_14 mv a7, s0 li t0, 0 li t3, 0 li s0, 0 addiw a6, a7, -1 slliw t1, a6, 1 sext.w s1, s1 mv a5, s2 j .LBB0_6 .LBB0_5: addi t0, t0, 1 addiw t3, t3, 1 beq t0, a7, .LBB0_15 .LBB0_6: bge t3, s1, .LBB0_5 snez a1, t3 xor a2, a6, t3 snez a2, a2 and t4, a1, a2 beqz t4, .LBB0_12 subw t2, a6, t3 add a2, a0, s0 li a3, 1 mv a4, t3 j .LBB0_10 .LBB0_9: xor a3, a3, t4 slli a1, a1, 1 addw a4, a4, a1 addi a2, a2, 1 addiw s0, s0, 1 bge a4, s1, .LBB0_5 .LBB0_10: add a1, a5, a4 lbu a1, 0(a1) sb a1, 0(a2) mv a1, t3 beqz a3, .LBB0_9 mv a1, t2 j .LBB0_9 .LBB0_12: add a1, a0, s0 mv a2, t0 .LBB0_13: add a3, a5, a2 lbu a3, 0(a3) add a2, a2, t1 sb a3, 0(a1) addi a1, a1, 1 addiw s0, s0, 1 blt a2, s1, .LBB0_13 j .LBB0_5 .LBB0_14: li s0, 0 .LBB0_15: add s0, s0, a0 sb zero, 0(s0) ld ra, 24(sp) ld s0, 16(sp) ld s1, 8(sp) ld s2, 0(sp) addi sp, sp, 32 .LBB0_16: ret
180
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
riscv64
-O0
RISC-V 64 gcc 15.2.0
convert: addi sp,sp,-80 sd ra,72(sp) sd s0,64(sp) addi s0,sp,80 sd a0,-72(s0) mv a5,a1 sw a5,-76(s0) sw zero,-28(s0) ld a5,-72(s0) beq a5,zero,.L2 ld a5,-72(s0) lbu a5,0(a5) beq a5,zero,.L2 lw a5,-76(s0) sext.w a4,a5 li a5,1 bne a4,a5,.L3 .L2: ld a5,-72(s0) j .L4 .L3: ld a0,-72(s0) call strlen mv a5,a0 sw a5,-36(s0) lw a5,-36(s0) addiw a5,a5,1 sext.w a5,a5 mv a0,a5 call malloc mv a5,a0 sd a5,-48(s0) lw a5,-76(s0) addiw a5,a5,-1 sext.w a5,a5 slliw a5,a5,1 sw a5,-52(s0) sw zero,-20(s0) j .L5 .L11: lw a5,-20(s0) sw a5,-24(s0) li a5,1 sw a5,-32(s0) j .L6 .L10: lw a5,-24(s0) ld a4,-72(s0) add a4,a4,a5 lw a5,-28(s0) addiw a3,a5,1 sw a3,-28(s0) mv a3,a5 ld a5,-48(s0) add a5,a5,a3 lbu a4,0(a4) sb a4,0(a5) lw a5,-20(s0) sext.w a5,a5 beq a5,zero,.L7 lw a5,-76(s0) addiw a5,a5,-1 sext.w a5,a5 lw a4,-20(s0) sext.w a4,a4 bne a4,a5,.L8 .L7: lw a5,-24(s0) mv a4,a5 lw a5,-52(s0) addw a5,a4,a5 sw a5,-24(s0) j .L6 .L8: lw a5,-32(s0) sext.w a5,a5 beq a5,zero,.L9 lw a5,-20(s0) slliw a5,a5,1 sext.w a5,a5 lw a4,-52(s0) subw a5,a4,a5 sext.w a5,a5 lw a4,-24(s0) addw a5,a4,a5 sw a5,-24(s0) sw zero,-32(s0) j .L6 .L9: lw a5,-20(s0) slliw a5,a5,1 sext.w a5,a5 lw a4,-24(s0) addw a5,a4,a5 sw a5,-24(s0) li a5,1 sw a5,-32(s0) .L6: lw a5,-24(s0) mv a4,a5 lw a5,-36(s0) sext.w a4,a4 sext.w a5,a5 blt a4,a5,.L10 lw a5,-20(s0) addiw a5,a5,1 sw a5,-20(s0) .L5: lw a5,-20(s0) mv a4,a5 lw a5,-76(s0) sext.w a4,a4 sext.w a5,a5 blt a4,a5,.L11 lw a5,-28(s0) ld a4,-48(s0) add a5,a4,a5 sb zero,0(a5) ld a5,-48(s0) .L4: mv a0,a5 ld ra,72(sp) ld s0,64(sp) addi sp,sp,80 jr ra
181
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
riscv64
-O1
RISC-V 64 gcc 15.2.0
convert: addi sp,sp,-32 sd ra,24(sp) sd s0,16(sp) mv s0,a0 beq a0,zero,.L2 sd s2,0(sp) mv s2,a1 lbu a5,0(a0) beq a5,zero,.L14 addi a5,a1,-1 beq a5,zero,.L15 sd s1,8(sp) call strlen sext.w s1,a0 addiw a0,a0,1 call malloc ble s2,zero,.L11 addiw t0,s2,-1 slliw t1,t0,1 mv t3,t1 li a3,0 li a7,0 li t4,1 li t2,-2 j .L4 .L5: beq a6,zero,.L7 addw a5,t5,a5 li a6,0 .L6: addi a4,a4,1 ble s1,a5,.L10 .L8: addiw a3,a3,1 add a2,s0,a5 lbu a2,0(a2) sb a2,0(a4) beq a1,zero,.L5 addw a5,t1,a5 j .L6 .L7: addw a5,t6,a5 mv a6,t4 j .L6 .L10: addiw a7,a7,1 addiw t3,t3,-2 beq t3,t2,.L3 .L4: ble s1,a7,.L10 sub a1,t0,a7 seqz a1,a1 seqz a5,a7 or a1,a1,a5 slliw t6,a7,1 mv t5,t3 add a4,a0,a3 mv a5,a7 mv a6,t4 j .L8 .L11: li a3,0 .L3: add a3,a0,a3 sb zero,0(a3) mv s0,a0 ld s1,8(sp) ld s2,0(sp) .L2: mv a0,s0 ld ra,24(sp) ld s0,16(sp) addi sp,sp,32 jr ra .L14: ld s2,0(sp) j .L2 .L15: ld s2,0(sp) j .L2
182
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
riscv64
-O2
RISC-V 64 gcc 15.2.0
convert: mv a2,a0 beq a0,zero,.L22 lbu a5,0(a0) beq a5,zero,.L22 addi a5,a1,-1 beq a5,zero,.L22 addi sp,sp,-48 sd a1,16(sp) sd ra,40(sp) sd a0,24(sp) call strlen mv a6,a0 sext.w a6,a6 addiw a0,a0,1 sd a6,8(sp) call malloc ld a1,16(sp) ld a6,8(sp) ld a2,24(sp) mv a4,a0 ble a1,zero,.L4 addiw t0,a1,-1 slliw t3,t0,1 mv t4,t3 li a4,0 li a7,0 .L12: ble a6,a7,.L8 add a5,a2,a7 lbu a3,0(a5) add a5,a0,a4 addiw a4,a4,1 sb a3,0(a5) beq t0,a7,.L14 beq a7,zero,.L14 slliw t6,a7,1 mv a3,a7 j .L19 .L10: lbu t1,0(t1) addw a3,t6,a3 add t5,a2,a3 sb t1,1(a5) addiw a4,a4,1 addi a5,a5,2 ble a6,a3,.L8 lbu t1,0(t5) addiw a4,a4,1 sb t1,0(a5) .L19: addw a3,t4,a3 add t1,a2,a3 bgt a6,a3,.L10 .L8: addiw a7,a7,1 addiw t4,t4,-2 bne a1,a7,.L12 .L26: add a4,a0,a4 .L4: sb zero,0(a4) ld ra,40(sp) addi sp,sp,48 jr ra .L22: mv a0,a2 ret .L14: mv a3,a7 j .L5 .L7: lbu t1,0(t1) addiw a4,a4,1 sb t1,0(a5) .L5: addw a3,t3,a3 add t1,a2,a3 addi a5,a5,1 bgt a6,a3,.L7 addiw a7,a7,1 addiw t4,t4,-2 bne a1,a7,.L12 j .L26
183
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
riscv64
-O3
RISC-V 64 gcc 15.2.0
convert: mv a2,a0 beq a0,zero,.L24 lbu a5,0(a0) beq a5,zero,.L24 addi a5,a1,-1 beq a5,zero,.L24 addi sp,sp,-48 sd a1,16(sp) sd ra,40(sp) sd a0,24(sp) call strlen mv a7,a0 sext.w a7,a7 addiw a0,a0,1 sd a7,8(sp) call malloc ld a1,16(sp) ld a7,8(sp) ld a2,24(sp) mv a3,a0 ble a1,zero,.L4 ble a7,zero,.L16 addiw t2,a1,-1 slliw t3,t2,1 sext.w t0,a1 bgt a1,a7,.L28 slliw t4,t2,1 li t1,0 li a3,0 li a5,0 .L9: beq a5,t2,.L14 beq t1,zero,.L14 add a4,a2,t1 lbu a1,0(a4) add a4,a0,a3 slliw t6,t1,1 sb a1,0(a4) addiw a3,a3,1 j .L7 .L30: lbu a1,0(a6) addi a4,a4,2 sb a1,-1(a4) ble a7,a5,.L29 lbu a1,0(t5) addiw a3,a3,2 sb a1,0(a4) .L7: addw a1,a5,t4 addw a5,t6,a1 add a6,a2,a1 add t5,a2,a5 bgt a7,a1,.L30 addi t1,t1,1 sext.w a5,t1 addiw t4,t4,-2 blt a5,t0,.L9 .L11: add a3,a0,a3 .L4: sb zero,0(a3) ld ra,40(sp) addi sp,sp,48 jr ra .L24: mv a0,a2 ret .L14: add a4,a0,a3 mv a5,t1 .L8: add a1,a2,a5 lbu a6,0(a1) add a5,a5,t3 sext.w a1,a5 sb a6,0(a4) addiw a3,a3,1 addi a4,a4,1 bgt a7,a1,.L8 addi t1,t1,1 sext.w a5,t1 addiw t4,t4,-2 blt a5,t0,.L9 j .L11 .L29: addi t1,t1,1 sext.w a5,t1 addiw a3,a3,1 addiw t4,t4,-2 blt a5,t0,.L9 j .L11 .L28: sext.w t0,a7 slliw t4,t2,1 li t1,0 li a3,0 li a5,0 j .L9 .L16: li a3,0 j .L11
184
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
x86-64
-O0
x86-64 clang 21.1.0
convert: push rbp mov rbp, rsp sub rsp, 64 mov qword ptr [rbp - 16], rdi mov dword ptr [rbp - 20], esi mov dword ptr [rbp - 36], 0 cmp qword ptr [rbp - 16], 0 je .LBB0_3 mov rax, qword ptr [rbp - 16] cmp byte ptr [rax], 0 je .LBB0_3 cmp dword ptr [rbp - 20], 1 jne .LBB0_4 .LBB0_3: mov rax, qword ptr [rbp - 16] mov qword ptr [rbp - 8], rax jmp .LBB0_19 .LBB0_4: mov rdi, qword ptr [rbp - 16] call strlen@PLT mov dword ptr [rbp - 24], eax mov eax, dword ptr [rbp - 24] add eax, 1 movsxd rdi, eax shl rdi, 0 call malloc@PLT mov qword ptr [rbp - 48], rax mov eax, dword ptr [rbp - 20] sub eax, 1 shl eax mov dword ptr [rbp - 52], eax mov dword ptr [rbp - 28], 0 .LBB0_5: mov eax, dword ptr [rbp - 28] cmp eax, dword ptr [rbp - 20] jge .LBB0_18 mov eax, dword ptr [rbp - 28] mov dword ptr [rbp - 32], eax mov dword ptr [rbp - 56], 1 .LBB0_7: mov eax, dword ptr [rbp - 32] cmp eax, dword ptr [rbp - 24] jge .LBB0_16 mov rax, qword ptr [rbp - 16] movsxd rcx, dword ptr [rbp - 32] mov dl, byte ptr [rax + rcx] mov rax, qword ptr [rbp - 48] mov ecx, dword ptr [rbp - 36] mov esi, ecx add esi, 1 mov dword ptr [rbp - 36], esi movsxd rcx, ecx mov byte ptr [rax + rcx], dl cmp dword ptr [rbp - 28], 0 je .LBB0_10 mov eax, dword ptr [rbp - 28] mov ecx, dword ptr [rbp - 20] sub ecx, 1 cmp eax, ecx jne .LBB0_11 .LBB0_10: mov eax, dword ptr [rbp - 52] add eax, dword ptr [rbp - 32] mov dword ptr [rbp - 32], eax jmp .LBB0_15 .LBB0_11: cmp dword ptr [rbp - 56], 0 je .LBB0_13 mov eax, dword ptr [rbp - 52] mov ecx, dword ptr [rbp - 28] shl ecx sub eax, ecx add eax, dword ptr [rbp - 32] mov dword ptr [rbp - 32], eax mov dword ptr [rbp - 56], 0 jmp .LBB0_14 .LBB0_13: mov eax, dword ptr [rbp - 28] shl eax add eax, dword ptr [rbp - 32] mov dword ptr [rbp - 32], eax mov dword ptr [rbp - 56], 1 .LBB0_14: jmp .LBB0_15 .LBB0_15: jmp .LBB0_7 .LBB0_16: jmp .LBB0_17 .LBB0_17: mov eax, dword ptr [rbp - 28] add eax, 1 mov dword ptr [rbp - 28], eax jmp .LBB0_5 .LBB0_18: mov rax, qword ptr [rbp - 48] movsxd rcx, dword ptr [rbp - 36] mov byte ptr [rax + rcx], 0 mov rax, qword ptr [rbp - 48] mov qword ptr [rbp - 8], rax .LBB0_19: mov rax, qword ptr [rbp - 8] add rsp, 64 pop rbp ret
185
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
x86-64
-O1
x86-64 clang 21.1.0
convert: test rdi, rdi je .LBB0_9 push rbp push r15 push r14 push r12 push rbx mov ebx, esi cmp esi, 1 je .LBB0_13 cmp byte ptr [rdi], 0 je .LBB0_13 mov r15, rdi call strlen@PLT mov r14, rax inc eax movsxd rdi, eax call malloc@PLT xor ecx, ecx test ebx, ebx jle .LBB0_11 lea edx, [rbx - 1] xor esi, esi mov rdi, r15 jmp .LBB0_6 .LBB0_5: inc ecx cmp ecx, ebx je .LBB0_10 .LBB0_6: cmp ecx, r14d jge .LBB0_5 test ecx, ecx setne r9b mov r8d, edx sub r8d, ecx setne r10b and r10b, r9b movzx r9d, r10b movsxd r10, esi add r10, rax mov r11d, 1 mov ebp, ecx .LBB0_8: movsxd r15, ebp movzx ebp, byte ptr [rdi + r15] mov byte ptr [r10], bpl test r11d, r11d mov r12d, r8d cmove r12d, ecx test r9d, r9d cmove r12d, edx xor r11d, r9d lea ebp, [r15 + 2*r12] inc r10 inc esi cmp ebp, r14d jl .LBB0_8 jmp .LBB0_5 .LBB0_9: mov rax, rdi ret .LBB0_13: mov rax, rdi jmp .LBB0_14 .LBB0_10: movsxd rcx, esi .LBB0_11: mov byte ptr [rax + rcx], 0 .LBB0_14: pop rbx pop r12 pop r14 pop r15 pop rbp ret
186
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
x86-64
-O2
x86-64 clang 21.1.0
convert: test rdi, rdi je .LBB0_9 push rbp push r15 push r14 push r12 push rbx mov ebx, esi cmp esi, 1 je .LBB0_13 cmp byte ptr [rdi], 0 je .LBB0_13 mov r15, rdi call strlen@PLT mov r14, rax inc eax movsxd rdi, eax call malloc@PLT xor ecx, ecx test ebx, ebx jle .LBB0_11 lea edx, [rbx - 1] xor esi, esi mov rdi, r15 jmp .LBB0_6 .LBB0_5: inc ecx cmp ecx, ebx je .LBB0_10 .LBB0_6: cmp ecx, r14d jge .LBB0_5 test ecx, ecx setne r9b mov r8d, edx sub r8d, ecx setne r10b and r10b, r9b movzx r9d, r10b movsxd r10, esi add r10, rax mov r11d, 1 mov ebp, ecx .LBB0_8: movsxd r15, ebp movzx ebp, byte ptr [rdi + r15] mov byte ptr [r10], bpl test r11d, r11d mov r12d, r8d cmove r12d, ecx test r9d, r9d cmove r12d, edx xor r11d, r9d lea ebp, [r15 + 2*r12] inc r10 inc esi cmp ebp, r14d jl .LBB0_8 jmp .LBB0_5 .LBB0_9: xor eax, eax ret .LBB0_13: mov rax, rdi jmp .LBB0_14 .LBB0_10: movsxd rcx, esi .LBB0_11: mov byte ptr [rax + rcx], 0 .LBB0_14: pop rbx pop r12 pop r14 pop r15 pop rbp ret
187
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
x86-64
-O3
x86-64 clang 21.1.0
convert: test rdi, rdi je .LBB0_12 push rbp push r15 push r14 push r13 push r12 push rbx push rax mov r14d, esi cmp esi, 1 je .LBB0_16 cmp byte ptr [rdi], 0 je .LBB0_16 mov r15, rdi call strlen@PLT mov rbx, rax inc eax movsxd rdi, eax call malloc@PLT xor ecx, ecx test r14d, r14d jle .LBB0_14 lea edx, [r14 - 1] lea esi, [rdx + rdx] movsxd rsi, esi movsxd rdi, ebx mov r8d, r14d xor r9d, r9d mov r10, r15 jmp .LBB0_6 .LBB0_5: inc r9 cmp r9, r8 je .LBB0_13 .LBB0_6: cmp r9d, ebx jge .LBB0_5 test r9d, r9d setne r15b mov ebp, edx sub ebp, r9d setne r14b movsxd r11, ecx and r14b, r15b je .LBB0_10 movzx r14d, r14b add r11, rax mov r15d, 1 mov r12d, r9d .LBB0_9: movsxd r12, r12d movzx r13d, byte ptr [r10 + r12] mov byte ptr [r11], r13b test r15d, r15d mov r13d, ebp cmove r13d, r9d xor r15d, r14d lea r12d, [r12 + 2*r13] inc r11 inc ecx cmp r12d, ebx jl .LBB0_9 jmp .LBB0_5 .LBB0_10: add r11, rax mov r14, r9 .LBB0_11: movzx ebp, byte ptr [r10 + r14] mov byte ptr [r11], bpl add r14, rsi inc r11 inc ecx cmp r14, rdi jl .LBB0_11 jmp .LBB0_5 .LBB0_12: xor eax, eax ret .LBB0_16: mov rax, rdi jmp .LBB0_17 .LBB0_13: movsxd rcx, ecx .LBB0_14: mov byte ptr [rax + rcx], 0 .LBB0_17: add rsp, 8 pop rbx pop r12 pop r13 pop r14 pop r15 pop rbp ret
188
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
x86-64
-O0
x86-64 gcc 15.2
convert: push rbp mov rbp, rsp sub rsp, 64 mov QWORD PTR [rbp-56], rdi mov DWORD PTR [rbp-60], esi mov DWORD PTR [rbp-12], 0 cmp QWORD PTR [rbp-56], 0 je .L2 mov rax, QWORD PTR [rbp-56] movzx eax, BYTE PTR [rax] test al, al je .L2 cmp DWORD PTR [rbp-60], 1 jne .L3 .L2: mov rax, QWORD PTR [rbp-56] jmp .L4 .L3: mov rax, QWORD PTR [rbp-56] mov rdi, rax call strlen mov DWORD PTR [rbp-20], eax mov eax, DWORD PTR [rbp-20] add eax, 1 cdqe mov rdi, rax call malloc mov QWORD PTR [rbp-32], rax mov eax, DWORD PTR [rbp-60] sub eax, 1 add eax, eax mov DWORD PTR [rbp-36], eax mov DWORD PTR [rbp-4], 0 jmp .L5 .L11: mov eax, DWORD PTR [rbp-4] mov DWORD PTR [rbp-8], eax mov DWORD PTR [rbp-16], 1 jmp .L6 .L10: mov eax, DWORD PTR [rbp-8] movsx rdx, eax mov rax, QWORD PTR [rbp-56] lea rcx, [rdx+rax] mov eax, DWORD PTR [rbp-12] lea edx, [rax+1] mov DWORD PTR [rbp-12], edx movsx rdx, eax mov rax, QWORD PTR [rbp-32] add rdx, rax movzx eax, BYTE PTR [rcx] mov BYTE PTR [rdx], al cmp DWORD PTR [rbp-4], 0 je .L7 mov eax, DWORD PTR [rbp-60] sub eax, 1 cmp DWORD PTR [rbp-4], eax jne .L8 .L7: mov eax, DWORD PTR [rbp-36] add DWORD PTR [rbp-8], eax jmp .L6 .L8: cmp DWORD PTR [rbp-16], 0 je .L9 mov eax, DWORD PTR [rbp-4] lea edx, [rax+rax] mov eax, DWORD PTR [rbp-36] sub eax, edx add DWORD PTR [rbp-8], eax mov DWORD PTR [rbp-16], 0 jmp .L6 .L9: mov eax, DWORD PTR [rbp-4] add eax, eax add DWORD PTR [rbp-8], eax mov DWORD PTR [rbp-16], 1 .L6: mov eax, DWORD PTR [rbp-8] cmp eax, DWORD PTR [rbp-20] jl .L10 add DWORD PTR [rbp-4], 1 .L5: mov eax, DWORD PTR [rbp-4] cmp eax, DWORD PTR [rbp-60] jl .L11 mov eax, DWORD PTR [rbp-12] movsx rdx, eax mov rax, QWORD PTR [rbp-32] add rax, rdx mov BYTE PTR [rax], 0 mov rax, QWORD PTR [rbp-32] .L4: leave ret
189
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
x86-64
-O1
x86-64 gcc 15.2
convert: push r15 push r14 push r13 push r12 push rbp push rbx sub rsp, 24 mov rbx, rdi test rdi, rdi je .L2 mov r12d, esi cmp BYTE PTR [rdi], 0 je .L2 cmp esi, 1 je .L2 call strlen mov ebp, eax add eax, 1 movsx rdi, eax call malloc mov QWORD PTR [rsp], rax test r12d, r12d jle .L11 lea eax, [r12-1] mov DWORD PTR [rsp+12], eax lea r11d, [rax+rax] mov r12d, r11d mov r8d, 0 mov r9d, 0 mov r13d, 1 jmp .L4 .L5: test edi, edi je .L7 add eax, r14d mov edi, 0 .L6: lea rcx, [rdx+1] cmp ebp, eax jle .L15 mov rdx, rcx .L8: movsx rcx, eax movzx ecx, BYTE PTR [rbx+rcx] mov BYTE PTR [rdx], cl test sil, sil je .L5 add eax, r11d jmp .L6 .L7: add eax, r15d mov edi, r13d jmp .L6 .L15: add r8d, 1 sub r8d, r10d add r8d, edx .L10: add r9d, 1 sub r12d, 2 cmp r12d, -2 je .L3 .L4: cmp ebp, r9d jle .L10 cmp DWORD PTR [rsp+12], r9d sete sil test r9d, r9d sete al or esi, eax lea r15d, [r9+r9] mov r14d, r12d movsx r10, r8d mov rax, QWORD PTR [rsp] add r10, rax mov rdx, r10 mov eax, r9d mov edi, r13d jmp .L8 .L11: mov r8d, 0 .L3: movsx r8, r8d mov rax, QWORD PTR [rsp] mov BYTE PTR [rax+r8], 0 mov rbx, rax .L2: mov rax, rbx add rsp, 24 pop rbx pop rbp pop r12 pop r13 pop r14 pop r15 ret
190
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
x86-64
-O2
x86-64 gcc 15.2
convert: mov r8, rdi test rdi, rdi je .L18 cmp BYTE PTR [rdi], 0 je .L18 cmp esi, 1 je .L18 push r15 push r14 push r13 mov r13d, esi push r12 push rbp push rbx sub rsp, 24 mov QWORD PTR [rsp+8], rdi call strlen lea edi, [rax+1] mov QWORD PTR [rsp], rax movsx rdi, edi call malloc test r13d, r13d mov r9, QWORD PTR [rsp] mov r8, QWORD PTR [rsp+8] mov r15, rax jle .L4 lea eax, [r13-1] xor r11d, r11d xor r10d, r10d mov DWORD PTR [rsp], eax lea ebp, [rax+rax] mov r12d, ebp .L9: cmp r9d, r10d jle .L11 cmp DWORD PTR [rsp], r10d movsx rbx, r11d lea r14d, [r10+r10] mov edi, 1 sete sil test r10d, r10d sete al add rbx, r15 or esi, eax mov rdx, rbx mov eax, r10d jmp .L8 .L23: add eax, ebp .L6: cmp r9d, eax jle .L22 .L12: add rdx, 1 .L8: movsx rcx, eax movzx ecx, BYTE PTR [r8+rcx] mov BYTE PTR [rdx], cl test sil, sil jne .L23 test edi, edi je .L7 add eax, r12d xor edi, edi cmp r9d, eax jg .L12 .L22: add r11d, 1 sub r11d, ebx add r11d, edx .L11: add r10d, 1 sub r12d, 2 cmp r13d, r10d jne .L9 movsx rax, r11d add rax, r15 .L4: mov BYTE PTR [rax], 0 add rsp, 24 mov rax, r15 pop rbx pop rbp pop r12 pop r13 pop r14 pop r15 ret .L18: mov rax, r8 ret .L7: add eax, r14d mov edi, 1 jmp .L6
191
6
Zigzag Conversion
Medium
/* 6. ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows); convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR". */ char* convert(char* s, int numRows) { int len; int i, j, k = 0; char *p; int step, up; if (!s || !*s || numRows == 1) return s; len = strlen(s); p = malloc((len + 1) * sizeof(char)); //assert(p); step = (numRows - 1) * 2; // max span for (i = 0; i < numRows; i ++) { j = i; // first letter of each row up = 1; while (j < len) { p[k ++] = s[j]; if (i == 0 || i == numRows - 1) { j += step; // full span } else if (up) { j += step - i * 2; // full span - offset up = 0; } else { j += i * 2; // offset up = 1; } } } p[k] = 0; return p; } /* Difficulty:Medium Total Accepted:163.3K Total Submissions:610.5K Related Topics String */
x86-64
-O3
x86-64 gcc 15.2
convert: mov r8, rdi test rdi, rdi je .L27 cmp BYTE PTR [rdi], 0 je .L27 cmp esi, 1 je .L27 push r15 push r14 push r13 push r12 push rbp push rbx mov ebx, esi sub rsp, 24 mov QWORD PTR [rsp+8], rdi call strlen lea edi, [rax+1] mov QWORD PTR [rsp], rax movsx rdi, edi call malloc test ebx, ebx mov r9, QWORD PTR [rsp] mov r8, QWORD PTR [rsp+8] mov rbp, rax jle .L4 test r9d, r9d jle .L18 lea r12d, [rbx-1] cmp ebx, r9d lea r11d, [r12+r12] cmovg ebx, r9d xor edi, edi xor ecx, ecx movsx r10, r11d .L11: cmp r12d, edi je .L15 test rdi, rdi je .L15 movsx r14, ecx mov eax, edi lea r15d, [rdi+rdi] mov r13d, 1 add r14, rbp mov rdx, r14 jmp .L7 .L32: add eax, r15d mov r13d, 1 cmp r9d, eax jle .L31 .L17: add rdx, 1 .L7: movsx rsi, eax movzx esi, BYTE PTR [r8+rsi] mov BYTE PTR [rdx], sil test r13d, r13d je .L32 add eax, r11d xor r13d, r13d cmp r9d, eax jg .L17 .L31: add ecx, 1 add rdi, 1 sub r11d, 2 sub ecx, r14d add ecx, edx cmp ebx, edi jg .L11 .L13: movsx rax, ecx add rax, rbp .L4: mov BYTE PTR [rax], 0 add rsp, 24 mov rax, rbp pop rbx pop rbp pop r12 pop r13 pop r14 pop r15 ret .L27: mov rax, r8 ret .L15: movsx rdx, ecx mov rax, rdi add rdx, rbp .L9: movzx esi, BYTE PTR [r8+rax] add rax, r10 add ecx, 1 add rdx, 1 mov BYTE PTR [rdx-1], sil cmp r9d, eax jg .L9 add rdi, 1 sub r11d, 2 cmp ebx, edi jg .L11 jmp .L13 .L18: xor ecx, ecx jmp .L13
192
7
Reverse Integer
Medium
/* 7. Reverse Integer Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 click to show spoilers. Have you thought about this? Here are some good questions to ask before coding. Bonus points for you if you have already thought through this! If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100. Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases? For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows. Note: The input is assumed to be a 32-bit signed integer. Your function should return 0 when the reversed integer overflows. */ int reverse(int x) { int d, k = 0; // 2147483647 //-2147483648 while (x) { d = x % 10; if ((x > 0 && k > (0x7fffffff - d) / 10) || (x < 0 && k < ((signed)0x80000000 - d) / 10)) { return 0; // overflow } k = k * 10 + d; x = x / 10; } return k; //(int)k == k ? (int)k : 0; } /* Difficulty:Easy Total Accepted:275.6K Total Submissions:1.1M Companies Bloomberg Apple Related Topics Math Similar Questions String to Integer (atoi) */
aarch64
-O0
ARM64 gcc 15.2.0
reverse: sub sp, sp, #32 str w0, [sp, 12] str wzr, [sp, 28] b .L2 .L7: ldr w1, [sp, 12] mov w0, 10 sdiv w2, w1, w0 mov w0, w2 lsl w0, w0, 2 add w0, w0, w2 lsl w0, w0, 1 sub w0, w1, w0 str w0, [sp, 24] ldr w0, [sp, 12] cmp w0, 0 ble .L3 mov w1, 2147483647 ldr w0, [sp, 24] sub w0, w1, w0 mov w1, 26215 movk w1, 0x6666, lsl 16 smull x1, w0, w1 lsr x1, x1, 32 asr w1, w1, 2 asr w0, w0, 31 sub w0, w1, w0 ldr w1, [sp, 28] cmp w1, w0 bgt .L4 .L3: ldr w0, [sp, 12] cmp w0, 0 bge .L5 mov w1, -2147483648 ldr w0, [sp, 24] sub w0, w1, w0 mov w1, 26215 movk w1, 0x6666, lsl 16 smull x1, w0, w1 lsr x1, x1, 32 asr w1, w1, 2 asr w0, w0, 31 sub w0, w1, w0 ldr w1, [sp, 28] cmp w1, w0 bge .L5 .L4: mov w0, 0 b .L6 .L5: ldr w1, [sp, 28] mov w0, w1 lsl w0, w0, 2 add w0, w0, w1 lsl w0, w0, 1 mov w1, w0 ldr w0, [sp, 24] add w0, w0, w1 str w0, [sp, 28] ldr w0, [sp, 12] mov w1, 26215 movk w1, 0x6666, lsl 16 smull x1, w0, w1 lsr x1, x1, 32 asr w1, w1, 2 asr w0, w0, 31 sub w0, w1, w0 str w0, [sp, 12] .L2: ldr w0, [sp, 12] cmp w0, 0 bne .L7 ldr w0, [sp, 28] .L6: add sp, sp, 32 ret
193
7
Reverse Integer
Medium
/* 7. Reverse Integer Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 click to show spoilers. Have you thought about this? Here are some good questions to ask before coding. Bonus points for you if you have already thought through this! If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100. Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases? For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows. Note: The input is assumed to be a 32-bit signed integer. Your function should return 0 when the reversed integer overflows. */ int reverse(int x) { int d, k = 0; // 2147483647 //-2147483648 while (x) { d = x % 10; if ((x > 0 && k > (0x7fffffff - d) / 10) || (x < 0 && k < ((signed)0x80000000 - d) / 10)) { return 0; // overflow } k = k * 10 + d; x = x / 10; } return k; //(int)k == k ? (int)k : 0; } /* Difficulty:Easy Total Accepted:275.6K Total Submissions:1.1M Companies Bloomberg Apple Related Topics Math Similar Questions String to Integer (atoi) */
aarch64
-O1
ARM64 gcc 15.2.0
reverse: mov w2, w0 cbz w0, .L1 mov w0, 0 mov w6, 10 mov w8, -2147483648 mov w5, 26215 movk w5, 0x6666, lsl 16 mov w7, 2147483647 b .L5 .L3: sub w3, w8, w1 smull x4, w3, w5 asr x4, x4, 34 sub w3, w4, w3, asr 31 cmp w3, w0 bgt .L8 .L4: add w0, w0, w0, lsl 2 add w0, w1, w0, lsl 1 smull x1, w2, w5 asr x1, x1, 34 subs w2, w1, w2, asr 31 beq .L1 .L5: sdiv w1, w2, w6 add w1, w1, w1, lsl 2 sub w1, w2, w1, lsl 1 cmp w2, 0 ble .L3 sub w3, w7, w1 smull x4, w3, w5 asr x4, x4, 34 sub w3, w4, w3, asr 31 cmp w3, w0 bge .L4 mov w0, 0 .L1: ret .L8: mov w0, 0 b .L1
194
7
Reverse Integer
Medium
/* 7. Reverse Integer Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 click to show spoilers. Have you thought about this? Here are some good questions to ask before coding. Bonus points for you if you have already thought through this! If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100. Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases? For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows. Note: The input is assumed to be a 32-bit signed integer. Your function should return 0 when the reversed integer overflows. */ int reverse(int x) { int d, k = 0; // 2147483647 //-2147483648 while (x) { d = x % 10; if ((x > 0 && k > (0x7fffffff - d) / 10) || (x < 0 && k < ((signed)0x80000000 - d) / 10)) { return 0; // overflow } k = k * 10 + d; x = x / 10; } return k; //(int)k == k ? (int)k : 0; } /* Difficulty:Easy Total Accepted:275.6K Total Submissions:1.1M Companies Bloomberg Apple Related Topics Math Similar Questions String to Integer (atoi) */
aarch64
-O2
ARM64 gcc 15.2.0
reverse: mov w2, w0 mov w0, 0 cbz w2, .L1 mov w5, 26215 mov w7, 52429 mov w6, 10 mov w9, -2147483648 movk w5, 0x6666, lsl 16 mov w8, 2147483647 movk w7, 0xcccc, lsl 16 b .L5 .L11: sub w3, w8, w1 umull x3, w3, w7 lsr x3, x3, 35 cmp w3, w0 blt .L8 .L4: add w0, w0, w0, lsl 2 add w0, w1, w0, lsl 1 smull x1, w2, w5 asr x1, x1, 34 subs w2, w1, w2, asr 31 beq .L1 .L5: sdiv w1, w2, w6 add w1, w1, w1, lsl 2 sub w1, w2, w1, lsl 1 cmp w2, 0 bgt .L11 sub w3, w9, w1 smull x4, w3, w5 asr x4, x4, 34 sub w3, w4, w3, asr 31 cmp w3, w0 ble .L4 .L8: mov w0, 0 .L1: ret
195
7
Reverse Integer
Medium
/* 7. Reverse Integer Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 click to show spoilers. Have you thought about this? Here are some good questions to ask before coding. Bonus points for you if you have already thought through this! If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100. Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases? For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows. Note: The input is assumed to be a 32-bit signed integer. Your function should return 0 when the reversed integer overflows. */ int reverse(int x) { int d, k = 0; // 2147483647 //-2147483648 while (x) { d = x % 10; if ((x > 0 && k > (0x7fffffff - d) / 10) || (x < 0 && k < ((signed)0x80000000 - d) / 10)) { return 0; // overflow } k = k * 10 + d; x = x / 10; } return k; //(int)k == k ? (int)k : 0; } /* Difficulty:Easy Total Accepted:275.6K Total Submissions:1.1M Companies Bloomberg Apple Related Topics Math Similar Questions String to Integer (atoi) */
aarch64
-O3
ARM64 gcc 15.2.0
reverse: mov w2, w0 mov w0, 0 cbz w2, .L1 mov w7, 26215 mov w9, 52429 mov w8, 10 mov w11, -2147483648 movk w7, 0x6666, lsl 16 mov w10, 2147483647 movk w9, 0xcccc, lsl 16 b .L5 .L11: sub w4, w10, w1 umull x4, w4, w9 lsr x4, x4, 35 cmp w4, w0 blt .L8 .L4: add w0, w1, w5, lsl 1 subs w2, w3, w2, asr 31 beq .L1 .L5: sdiv w1, w2, w8 smull x3, w2, w7 add w5, w0, w0, lsl 2 asr x3, x3, 34 add w1, w1, w1, lsl 2 sub w1, w2, w1, lsl 1 cmp w2, 0 bgt .L11 sub w4, w11, w1 smull x6, w4, w7 asr x6, x6, 34 sub w4, w6, w4, asr 31 cmp w4, w0 ble .L4 .L8: mov w0, 0 .L1: ret
196
7
Reverse Integer
Medium
/* 7. Reverse Integer Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 click to show spoilers. Have you thought about this? Here are some good questions to ask before coding. Bonus points for you if you have already thought through this! If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100. Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases? For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows. Note: The input is assumed to be a 32-bit signed integer. Your function should return 0 when the reversed integer overflows. */ int reverse(int x) { int d, k = 0; // 2147483647 //-2147483648 while (x) { d = x % 10; if ((x > 0 && k > (0x7fffffff - d) / 10) || (x < 0 && k < ((signed)0x80000000 - d) / 10)) { return 0; // overflow } k = k * 10 + d; x = x / 10; } return k; //(int)k == k ? (int)k : 0; } /* Difficulty:Easy Total Accepted:275.6K Total Submissions:1.1M Companies Bloomberg Apple Related Topics Math Similar Questions String to Integer (atoi) */
aarch64
-O0
armv8-a clang 21.1.0
reverse: sub sp, sp, #16 str w0, [sp, #8] str wzr, [sp] b .LBB0_1 .LBB0_1: ldr w8, [sp, #8] cbz w8, .LBB0_8 b .LBB0_2 .LBB0_2: ldr w8, [sp, #8] mov w10, #10 sdiv w9, w8, w10 mul w9, w9, w10 subs w8, w8, w9 str w8, [sp, #4] ldr w8, [sp, #8] subs w8, w8, #0 b.le .LBB0_4 b .LBB0_3 .LBB0_3: ldr w8, [sp] ldr w10, [sp, #4] mov w9, #2147483647 subs w9, w9, w10 mov w10, #10 sdiv w9, w9, w10 subs w8, w8, w9 b.gt .LBB0_6 b .LBB0_4 .LBB0_4: ldr w8, [sp, #8] tbz w8, #31, .LBB0_7 b .LBB0_5 .LBB0_5: ldr w8, [sp] ldr w10, [sp, #4] mov w9, #-2147483648 subs w9, w9, w10 mov w10, #10 sdiv w9, w9, w10 subs w8, w8, w9 b.ge .LBB0_7 b .LBB0_6 .LBB0_6: str wzr, [sp, #12] b .LBB0_9 .LBB0_7: ldr w8, [sp] mov w9, #10 mul w8, w8, w9 ldr w10, [sp, #4] add w8, w8, w10 str w8, [sp] ldr w8, [sp, #8] sdiv w8, w8, w9 str w8, [sp, #8] b .LBB0_1 .LBB0_8: ldr w8, [sp] str w8, [sp, #12] b .LBB0_9 .LBB0_9: ldr w0, [sp, #12] add sp, sp, #16 ret
197
7
Reverse Integer
Medium
/* 7. Reverse Integer Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 click to show spoilers. Have you thought about this? Here are some good questions to ask before coding. Bonus points for you if you have already thought through this! If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100. Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases? For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows. Note: The input is assumed to be a 32-bit signed integer. Your function should return 0 when the reversed integer overflows. */ int reverse(int x) { int d, k = 0; // 2147483647 //-2147483648 while (x) { d = x % 10; if ((x > 0 && k > (0x7fffffff - d) / 10) || (x < 0 && k < ((signed)0x80000000 - d) / 10)) { return 0; // overflow } k = k * 10 + d; x = x / 10; } return k; //(int)k == k ? (int)k : 0; } /* Difficulty:Easy Total Accepted:275.6K Total Submissions:1.1M Companies Bloomberg Apple Related Topics Math Similar Questions String to Integer (atoi) */
aarch64
-O1
armv8-a clang 21.1.0
reverse: cbz w0, .LBB0_8 mov w9, #26215 mov w8, w0 mov w0, wzr movk w9, #26214, lsl #16 mov w10, #10 mov w11, #-2147483648 b .LBB0_3 .LBB0_2: madd w0, w0, w10, w13 add w8, w8, #9 cmp w8, #18 mov w8, w12 b.ls .LBB0_8 .LBB0_3: smull x12, w8, w9 cmp w8, #1 asr x12, x12, #34 add w12, w12, w12, lsr #31 msub w13, w12, w10, w8 b.lt .LBB0_5 eor w14, w13, #0x7fffffff umull x14, w14, w9 lsr x14, x14, #34 cmp w0, w14 b.gt .LBB0_7 .LBB0_5: tbz w8, #31, .LBB0_2 sub w14, w11, w13 smull x14, w14, w9 asr x14, x14, #34 add w14, w14, w14, lsr #31 cmp w0, w14 b.ge .LBB0_2 .LBB0_7: mov w0, wzr .LBB0_8: ret
198
7
Reverse Integer
Medium
/* 7. Reverse Integer Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 click to show spoilers. Have you thought about this? Here are some good questions to ask before coding. Bonus points for you if you have already thought through this! If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100. Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases? For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows. Note: The input is assumed to be a 32-bit signed integer. Your function should return 0 when the reversed integer overflows. */ int reverse(int x) { int d, k = 0; // 2147483647 //-2147483648 while (x) { d = x % 10; if ((x > 0 && k > (0x7fffffff - d) / 10) || (x < 0 && k < ((signed)0x80000000 - d) / 10)) { return 0; // overflow } k = k * 10 + d; x = x / 10; } return k; //(int)k == k ? (int)k : 0; } /* Difficulty:Easy Total Accepted:275.6K Total Submissions:1.1M Companies Bloomberg Apple Related Topics Math Similar Questions String to Integer (atoi) */
aarch64
-O2
armv8-a clang 21.1.0
reverse: cbz w0, .LBB0_7 mov w9, #26215 mov w11, #52429 mov w8, w0 mov w0, wzr movk w9, #26214, lsl #16 mov w10, #10 movk w11, #52428, lsl #16 b .LBB0_4 .LBB0_2: eor w14, w13, #0x80000000 umull x14, w14, w11 lsr x14, x14, #35 cmn w0, w14 b.lt .LBB0_6 .LBB0_3: madd w0, w0, w10, w13 add w8, w8, #9 cmp w8, #18 mov w8, w12 b.ls .LBB0_7 .LBB0_4: smull x12, w8, w9 cmp w8, #1 asr x12, x12, #34 add w12, w12, w12, lsr #31 msub w13, w12, w10, w8 b.lt .LBB0_2 eor w14, w13, #0x7fffffff umull x14, w14, w9 lsr x14, x14, #34 cmp w0, w14 b.le .LBB0_3 .LBB0_6: mov w0, wzr .LBB0_7: ret
199
7
Reverse Integer
Medium
/* 7. Reverse Integer Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 click to show spoilers. Have you thought about this? Here are some good questions to ask before coding. Bonus points for you if you have already thought through this! If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100. Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases? For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows. Note: The input is assumed to be a 32-bit signed integer. Your function should return 0 when the reversed integer overflows. */ int reverse(int x) { int d, k = 0; // 2147483647 //-2147483648 while (x) { d = x % 10; if ((x > 0 && k > (0x7fffffff - d) / 10) || (x < 0 && k < ((signed)0x80000000 - d) / 10)) { return 0; // overflow } k = k * 10 + d; x = x / 10; } return k; //(int)k == k ? (int)k : 0; } /* Difficulty:Easy Total Accepted:275.6K Total Submissions:1.1M Companies Bloomberg Apple Related Topics Math Similar Questions String to Integer (atoi) */
aarch64
-O3
armv8-a clang 21.1.0
reverse: cbz w0, .LBB0_7 mov w9, #26215 mov w11, #52429 mov w8, w0 mov w0, wzr movk w9, #26214, lsl #16 mov w10, #10 movk w11, #52428, lsl #16 b .LBB0_4 .LBB0_2: eor w14, w13, #0x80000000 umull x14, w14, w11 lsr x14, x14, #35 cmn w0, w14 b.lt .LBB0_6 .LBB0_3: madd w0, w0, w10, w13 add w8, w8, #9 cmp w8, #18 mov w8, w12 b.ls .LBB0_7 .LBB0_4: smull x12, w8, w9 cmp w8, #1 asr x12, x12, #34 add w12, w12, w12, lsr #31 msub w13, w12, w10, w8 b.lt .LBB0_2 eor w14, w13, #0x7fffffff umull x14, w14, w9 lsr x14, x14, #34 cmp w0, w14 b.le .LBB0_3 .LBB0_6: mov w0, wzr .LBB0_7: ret