id
int64
0
14.1k
problem_id
int64
1
1.31k
problem_title
stringclasses
441 values
difficulty
stringclasses
3 values
c_source
stringclasses
441 values
architecture
stringclasses
4 values
optimization
stringclasses
4 values
compiler
stringclasses
8 values
assembly
stringlengths
31
174k
13,900
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
mips64
-O0
mips64 gcc 15.2.0
brokenCalc: daddiu $sp,$sp,-48 sd $fp,40($sp) move $fp,$sp move $3,$4 move $2,$5 sll $3,$3,0 sw $3,16($fp) sll $2,$2,0 sw $2,20($fp) sw $0,0($fp) b .L2 nop .L5: lw $2,20($fp) andi $2,$2,0x1 beq $2,$0,.L3 nop lw $2,20($fp) addiu $2,$2,1 sw $2,20($fp) b .L4 nop .L3: lw $2,20($fp) srl $3,$2,31 addu $2,$3,$2 sra $2,$2,1 sw $2,20($fp) .L4: lw $2,0($fp) addiu $2,$2,1 sw $2,0($fp) .L2: lw $3,16($fp) lw $2,20($fp) slt $2,$3,$2 bne $2,$0,.L5 nop lw $3,16($fp) lw $2,20($fp) subu $2,$3,$2 lw $3,0($fp) addu $2,$3,$2 sw $2,0($fp) lw $2,0($fp) move $sp,$fp ld $fp,40($sp) daddiu $sp,$sp,48 jr $31 nop .LC0: .ascii "Usage: ./test x y\000" .LC1: .ascii "%d\012\000" main: daddiu $sp,$sp,-64 sd $31,56($sp) sd $fp,48($sp) sd $28,40($sp) move $fp,$sp lui $28,%hi(%neg(%gp_rel(main))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(main))) move $2,$4 sd $5,24($fp) sll $2,$2,0 sw $2,16($fp) lw $2,16($fp) li $3,3 # 0x3 beq $2,$3,.L8 nop ld $2,%got_disp(stderr)($28) ld $2,0($2) move $7,$2 li $6,17 # 0x11 li $5,1 # 0x1 ld $2,%got_page(.LC0)($28) daddiu $4,$2,%got_ofst(.LC0) ld $2,%call16(fwrite)($28) mtlo $2 mflo $25 jalr $25 nop li $4,-1 # 0xffffffffffffffff ld $2,%call16(exit)($28) mtlo $2 mflo $25 jalr $25 nop .L8: ld $2,24($fp) daddiu $2,$2,8 ld $2,0($2) move $4,$2 ld $2,%call16(atoi)($28) mtlo $2 mflo $25 jalr $25 nop sw $2,0($fp) ld $2,24($fp) daddiu $2,$2,16 ld $2,0($2) move $4,$2 ld $2,%call16(atoi)($28) mtlo $2 mflo $25 jalr $25 nop sw $2,4($fp) lw $3,4($fp) lw $2,0($fp) move $5,$3 move $4,$2 ld $2,%got_disp(brokenCalc)($28) mtlo $2 mflo $25 jalr $25 nop move $5,$2 ld $2,%got_page(.LC1)($28) daddiu $4,$2,%got_ofst(.LC1) ld $2,%call16(printf)($28) mtlo $2 mflo $25 jalr $25 nop move $2,$0 move $sp,$fp ld $31,56($sp) ld $fp,48($sp) ld $28,40($sp) daddiu $sp,$sp,64 jr $31 nop
13,901
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
mips64
-O1
mips64 gcc 15.2.0
brokenCalc: slt $2,$4,$5 beq $2,$0,.L6 move $3,$0 b .L9 andi $6,$5,0x1 .L3: addu $5,$2,$5 sra $5,$5,1 .L4: slt $6,$4,$5 beq $6,$0,.L2 addiu $3,$3,1 andi $6,$5,0x1 .L9: beq $6,$0,.L3 srl $2,$5,31 b .L4 addiu $5,$5,1 .L6: .L2: subu $2,$4,$5 jr $31 addu $2,$2,$3 .LC0: .ascii "Usage: ./test x y\000" .LC1: .ascii "%d\012\000" main: daddiu $sp,$sp,-32 sd $31,24($sp) sd $28,16($sp) sd $17,8($sp) sd $16,0($sp) lui $28,%hi(%neg(%gp_rel(main))) daddu $28,$28,$25 li $2,3 # 0x3 bne $2,$4,.L13 daddiu $28,$28,%lo(%neg(%gp_rel(main))) move $16,$5 li $6,10 # 0xa move $5,$0 ld $25,%call16(strtol)($28) 1: jalr $25 ld $4,8($16) move $17,$2 li $6,10 # 0xa move $5,$0 ld $25,%call16(strtol)($28) 1: jalr $25 ld $4,16($16) sll $5,$2,0 ld $25,%got_disp(brokenCalc)($28) 1: jalr $25 sll $4,$17,0 move $5,$2 ld $4,%got_page(.LC1)($28) ld $25,%call16(printf)($28) 1: jalr $25 daddiu $4,$4,%got_ofst(.LC1) move $2,$0 ld $31,24($sp) ld $28,16($sp) ld $17,8($sp) ld $16,0($sp) jr $31 daddiu $sp,$sp,32 .L13: ld $2,%got_disp(stderr)($28) ld $7,0($2) li $6,17 # 0x11 li $5,1 # 0x1 ld $4,%got_page(.LC0)($28) ld $25,%call16(fwrite)($28) 1: jalr $25 daddiu $4,$4,%got_ofst(.LC0) ld $25,%call16(exit)($28) 1: jalr $25 li $4,-1 # 0xffffffffffffffff
13,902
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
mips64
-O2
mips64 gcc 15.2.0
brokenCalc: slt $2,$4,$5 beq $2,$0,.L2 move $7,$0 .L5: srl $3,$5,31 andi $6,$5,0x1 addu $3,$3,$5 bne $6,$0,.L4 addiu $5,$5,1 sra $5,$3,1 .L4: slt $3,$4,$5 bne $3,$0,.L5 addiu $7,$7,1 .L2: subu $2,$4,$5 jr $31 addu $2,$2,$7 .LC0: .ascii "Usage: ./test x y\000" .LC1: .ascii "%d\012\000" main: daddiu $sp,$sp,-32 sd $28,16($sp) lui $28,%hi(%neg(%gp_rel(main))) daddu $28,$28,$25 li $2,3 # 0x3 sd $31,24($sp) sd $16,8($sp) bne $2,$4,.L19 daddiu $28,$28,%lo(%neg(%gp_rel(main))) ld $4,8($5) ld $25,%call16(strtol)($28) move $16,$5 li $6,10 # 0xa 1: jalr $25 move $5,$0 ld $4,16($16) ld $25,%call16(strtol)($28) li $6,10 # 0xa move $5,$0 1: jalr $25 sll $16,$2,0 sll $2,$2,0 slt $3,$16,$2 bne $3,$0,.L15 move $4,$0 b .L21 subu $5,$16,$2 .L20: slt $3,$16,$2 beq $3,$0,.L12 addiu $4,$4,1 .L15: andi $3,$2,0x1 bnel $3,$0,.L20 addiu $2,$2,1 srl $3,$2,31 addu $2,$3,$2 sra $2,$2,1 slt $3,$16,$2 bne $3,$0,.L15 addiu $4,$4,1 .L12: subu $5,$16,$2 .L21: addu $5,$5,$4 ld $4,%got_page(.LC1)($28) ld $25,%call16(printf)($28) 1: jalr $25 daddiu $4,$4,%got_ofst(.LC1) ld $31,24($sp) ld $28,16($sp) ld $16,8($sp) move $2,$0 jr $31 daddiu $sp,$sp,32 .L19: ld $2,%got_disp(stderr)($28) ld $4,%got_page(.LC0)($28) ld $25,%call16(fwrite)($28) ld $7,0($2) daddiu $4,$4,%got_ofst(.LC0) li $6,17 # 0x11 1: jalr $25 li $5,1 # 0x1 ld $25,%call16(exit)($28) 1: jalr $25 li $4,-1 # 0xffffffffffffffff
13,903
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
mips64
-O3
mips64 gcc 15.2.0
brokenCalc: slt $2,$4,$5 beq $2,$0,.L2 move $7,$0 .L5: srl $3,$5,31 andi $6,$5,0x1 addu $3,$3,$5 bne $6,$0,.L4 addiu $5,$5,1 sra $5,$3,1 .L4: slt $3,$4,$5 bne $3,$0,.L5 addiu $7,$7,1 .L2: subu $2,$4,$5 jr $31 addu $2,$2,$7 .LC0: .ascii "Usage: ./test x y\000" .LC1: .ascii "%d\012\000" main: daddiu $sp,$sp,-32 sd $28,16($sp) lui $28,%hi(%neg(%gp_rel(main))) daddu $28,$28,$25 li $2,3 # 0x3 sd $31,24($sp) sd $16,8($sp) bne $2,$4,.L19 daddiu $28,$28,%lo(%neg(%gp_rel(main))) ld $4,8($5) ld $25,%call16(strtol)($28) move $16,$5 li $6,10 # 0xa 1: jalr $25 move $5,$0 ld $4,16($16) ld $25,%call16(strtol)($28) li $6,10 # 0xa move $5,$0 1: jalr $25 sll $16,$2,0 sll $2,$2,0 slt $3,$16,$2 bne $3,$0,.L15 move $4,$0 b .L21 subu $5,$16,$2 .L20: slt $3,$16,$2 beq $3,$0,.L12 addiu $4,$4,1 .L15: andi $3,$2,0x1 bnel $3,$0,.L20 addiu $2,$2,1 srl $3,$2,31 addu $2,$3,$2 sra $2,$2,1 slt $3,$16,$2 bne $3,$0,.L15 addiu $4,$4,1 .L12: subu $5,$16,$2 .L21: addu $5,$5,$4 ld $4,%got_page(.LC1)($28) ld $25,%call16(printf)($28) 1: jalr $25 daddiu $4,$4,%got_ofst(.LC1) ld $31,24($sp) ld $28,16($sp) ld $16,8($sp) move $2,$0 jr $31 daddiu $sp,$sp,32 .L19: ld $2,%got_disp(stderr)($28) ld $4,%got_page(.LC0)($28) ld $25,%call16(fwrite)($28) ld $7,0($2) daddiu $4,$4,%got_ofst(.LC0) li $6,17 # 0x11 1: jalr $25 li $5,1 # 0x1 ld $25,%call16(exit)($28) 1: jalr $25 li $4,-1 # 0xffffffffffffffff
13,904
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
riscv64
-O0
RISC-V 64 clang 21.1.0
brokenCalc: addi sp, sp, -48 sd ra, 40(sp) sd s0, 32(sp) addi s0, sp, 48 sw a0, -20(s0) sw a1, -24(s0) li a0, 0 sw a0, -28(s0) j .LBB0_1 .LBB0_1: lw a0, -20(s0) lw a1, -24(s0) bge a0, a1, .LBB0_6 j .LBB0_2 .LBB0_2: lbu a0, -24(s0) andi a0, a0, 1 beqz a0, .LBB0_4 j .LBB0_3 .LBB0_3: lw a0, -24(s0) addiw a0, a0, 1 sd a0, -40(s0) j .LBB0_5 .LBB0_4: lw a0, -24(s0) srliw a1, a0, 31 addw a0, a0, a1 sraiw a0, a0, 1 sd a0, -40(s0) j .LBB0_5 .LBB0_5: ld a0, -40(s0) sw a0, -24(s0) lw a0, -28(s0) addiw a0, a0, 1 sw a0, -28(s0) j .LBB0_1 .LBB0_6: lw a0, -20(s0) lw a1, -24(s0) subw a1, a0, a1 lw a0, -28(s0) addw a0, a0, a1 sw a0, -28(s0) lw a0, -28(s0) ld ra, 40(sp) ld s0, 32(sp) addi sp, sp, 48 ret main: addi sp, sp, -48 sd ra, 40(sp) sd s0, 32(sp) addi s0, sp, 48 li a2, 0 sw a2, -20(s0) sw a0, -24(s0) sd a1, -32(s0) lw a0, -24(s0) li a1, 3 beq a0, a1, .LBB1_2 j .LBB1_1 .LBB1_1: .Lpcrel_hi0: auipc a0, %got_pcrel_hi(stderr) ld a0, %pcrel_lo(.Lpcrel_hi0)(a0) ld a0, 0(a0) .Lpcrel_hi1: auipc a1, %pcrel_hi(.L.str) addi a1, a1, %pcrel_lo(.Lpcrel_hi1) call fprintf li a0, -1 call exit .LBB1_2: ld a0, -32(s0) ld a0, 8(a0) call atoi sw a0, -36(s0) ld a0, -32(s0) ld a0, 16(a0) call atoi sw a0, -40(s0) lw a0, -36(s0) lw a1, -40(s0) call brokenCalc mv a1, a0 .Lpcrel_hi2: auipc a0, %pcrel_hi(.L.str.1) addi a0, a0, %pcrel_lo(.Lpcrel_hi2) call printf li a0, 0 ld ra, 40(sp) ld s0, 32(sp) addi sp, sp, 48 ret .L.str: .asciz "Usage: ./test x y" .L.str.1: .asciz "%d\n"
13,905
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
riscv64
-O1
RISC-V 64 clang 21.1.0
brokenCalc: li a2, 0 blt a0, a1, .LBB0_2 j .LBB0_4 .LBB0_1: addiw a1, a1, 1 addi a2, a2, 1 bge a0, a1, .LBB0_4 .LBB0_2: andi a3, a1, 1 bnez a3, .LBB0_1 sraiw a1, a1, 1 addi a2, a2, 1 blt a0, a1, .LBB0_2 .LBB0_4: subw a0, a0, a1 addw a0, a0, a2 ret main: addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) sd s1, 8(sp) mv s0, a1 li a1, 3 bne a0, a1, .LBB1_7 ld a0, 8(s0) li a2, 10 li a1, 0 call strtol ld a1, 16(s0) mv s0, a0 sext.w s1, a0 li a2, 10 mv a0, a1 li a1, 0 call strtol sext.w a1, a0 li a2, 0 bge s1, a1, .LBB1_6 li a2, 0 mv a1, a0 j .LBB1_4 .LBB1_3: addiw a1, a1, 1 addi a2, a2, 1 bge s1, a1, .LBB1_6 .LBB1_4: andi a0, a1, 1 bnez a0, .LBB1_3 sraiw a1, a1, 1 addi a2, a2, 1 blt s1, a1, .LBB1_4 .LBB1_6: add a2, a2, s0 subw a1, a2, a1 .Lpcrel_hi2: auipc a0, %pcrel_hi(.L.str.1) addi a0, a0, %pcrel_lo(.Lpcrel_hi2) call printf li a0, 0 ld ra, 24(sp) ld s0, 16(sp) ld s1, 8(sp) addi sp, sp, 32 ret .LBB1_7: .Lpcrel_hi0: auipc a0, %got_pcrel_hi(stderr) ld a0, %pcrel_lo(.Lpcrel_hi0)(a0) ld a3, 0(a0) .Lpcrel_hi1: auipc a0, %pcrel_hi(.L.str) li a1, 17 addi a0, a0, %pcrel_lo(.Lpcrel_hi1) li a2, 1 call fwrite li a0, -1 call exit .L.str: .asciz "Usage: ./test x y" .L.str.1: .asciz "%d\n"
13,906
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
riscv64
-O2
RISC-V 64 clang 21.1.0
brokenCalc: li a2, 0 blt a0, a1, .LBB0_2 j .LBB0_4 .LBB0_1: addiw a1, a1, 1 addi a2, a2, 1 bge a0, a1, .LBB0_4 .LBB0_2: andi a3, a1, 1 bnez a3, .LBB0_1 sraiw a1, a1, 1 addi a2, a2, 1 blt a0, a1, .LBB0_2 .LBB0_4: subw a0, a0, a1 addw a0, a0, a2 ret main: addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) sd s1, 8(sp) mv s0, a1 li a1, 3 bne a0, a1, .LBB1_7 ld a0, 8(s0) li a2, 10 li a1, 0 call strtol ld a1, 16(s0) mv s0, a0 sext.w s1, a0 li a2, 10 mv a0, a1 li a1, 0 call strtol sext.w a1, a0 li a2, 0 bge s1, a1, .LBB1_6 li a2, 0 mv a1, a0 j .LBB1_4 .LBB1_3: addiw a1, a1, 1 addi a2, a2, 1 bge s1, a1, .LBB1_6 .LBB1_4: andi a0, a1, 1 bnez a0, .LBB1_3 sraiw a1, a1, 1 addi a2, a2, 1 blt s1, a1, .LBB1_4 .LBB1_6: add a2, a2, s0 subw a1, a2, a1 .Lpcrel_hi2: auipc a0, %pcrel_hi(.L.str.1) addi a0, a0, %pcrel_lo(.Lpcrel_hi2) call printf li a0, 0 ld ra, 24(sp) ld s0, 16(sp) ld s1, 8(sp) addi sp, sp, 32 ret .LBB1_7: .Lpcrel_hi0: auipc a0, %got_pcrel_hi(stderr) ld a0, %pcrel_lo(.Lpcrel_hi0)(a0) ld a3, 0(a0) .Lpcrel_hi1: auipc a0, %pcrel_hi(.L.str) li a1, 17 addi a0, a0, %pcrel_lo(.Lpcrel_hi1) li a2, 1 call fwrite li a0, -1 call exit .L.str: .asciz "Usage: ./test x y" .L.str.1: .asciz "%d\n"
13,907
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
riscv64
-O3
RISC-V 64 clang 21.1.0
brokenCalc: li a2, 0 blt a0, a1, .LBB0_2 j .LBB0_4 .LBB0_1: addiw a1, a1, 1 addi a2, a2, 1 bge a0, a1, .LBB0_4 .LBB0_2: andi a3, a1, 1 bnez a3, .LBB0_1 sraiw a1, a1, 1 addi a2, a2, 1 blt a0, a1, .LBB0_2 .LBB0_4: subw a0, a0, a1 addw a0, a0, a2 ret main: addi sp, sp, -32 sd ra, 24(sp) sd s0, 16(sp) sd s1, 8(sp) mv s0, a1 li a1, 3 bne a0, a1, .LBB1_7 ld a0, 8(s0) li a2, 10 li a1, 0 call strtol ld a1, 16(s0) mv s0, a0 sext.w s1, a0 li a2, 10 mv a0, a1 li a1, 0 call strtol sext.w a1, a0 li a2, 0 bge s1, a1, .LBB1_6 li a2, 0 mv a1, a0 j .LBB1_4 .LBB1_3: addiw a1, a1, 1 addi a2, a2, 1 bge s1, a1, .LBB1_6 .LBB1_4: andi a0, a1, 1 bnez a0, .LBB1_3 sraiw a1, a1, 1 addi a2, a2, 1 blt s1, a1, .LBB1_4 .LBB1_6: add a2, a2, s0 subw a1, a2, a1 .Lpcrel_hi2: auipc a0, %pcrel_hi(.L.str.1) addi a0, a0, %pcrel_lo(.Lpcrel_hi2) call printf li a0, 0 ld ra, 24(sp) ld s0, 16(sp) ld s1, 8(sp) addi sp, sp, 32 ret .LBB1_7: .Lpcrel_hi0: auipc a0, %got_pcrel_hi(stderr) ld a0, %pcrel_lo(.Lpcrel_hi0)(a0) ld a3, 0(a0) .Lpcrel_hi1: auipc a0, %pcrel_hi(.L.str) li a1, 17 addi a0, a0, %pcrel_lo(.Lpcrel_hi1) li a2, 1 call fwrite li a0, -1 call exit .L.str: .asciz "Usage: ./test x y" .L.str.1: .asciz "%d\n"
13,908
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
riscv64
-O0
RISC-V 64 gcc 15.2.0
brokenCalc: addi sp,sp,-48 sd ra,40(sp) sd s0,32(sp) addi s0,sp,48 mv a5,a0 mv a4,a1 sw a5,-36(s0) mv a5,a4 sw a5,-40(s0) sw zero,-20(s0) j .L2 .L5: lw a5,-40(s0) andi a5,a5,1 sext.w a5,a5 beq a5,zero,.L3 lw a5,-40(s0) addiw a5,a5,1 sw a5,-40(s0) j .L4 .L3: lw a5,-40(s0) srliw a4,a5,31 addw a5,a4,a5 sraiw a5,a5,1 sw a5,-40(s0) .L4: lw a5,-20(s0) addiw a5,a5,1 sw a5,-20(s0) .L2: lw a5,-36(s0) mv a4,a5 lw a5,-40(s0) sext.w a4,a4 sext.w a5,a5 blt a4,a5,.L5 lw a5,-36(s0) mv a4,a5 lw a5,-40(s0) subw a5,a4,a5 sext.w a5,a5 lw a4,-20(s0) addw a5,a4,a5 sw a5,-20(s0) lw a5,-20(s0) mv a0,a5 ld ra,40(sp) ld s0,32(sp) addi sp,sp,48 jr ra .LC0: .string "Usage: ./test x y" .LC1: .string "%d\n" main: addi sp,sp,-48 sd ra,40(sp) sd s0,32(sp) addi s0,sp,48 mv a5,a0 sd a1,-48(s0) sw a5,-36(s0) lw a5,-36(s0) sext.w a4,a5 li a5,3 beq a4,a5,.L8 lui a5,%hi(stderr) ld a5,%lo(stderr)(a5) mv a3,a5 li a2,17 li a1,1 lui a5,%hi(.LC0) addi a0,a5,%lo(.LC0) call fwrite li a0,-1 call exit .L8: ld a5,-48(s0) addi a5,a5,8 ld a5,0(a5) mv a0,a5 call atoi mv a5,a0 sw a5,-20(s0) ld a5,-48(s0) addi a5,a5,16 ld a5,0(a5) mv a0,a5 call atoi mv a5,a0 sw a5,-24(s0) lw a4,-24(s0) lw a5,-20(s0) mv a1,a4 mv a0,a5 call brokenCalc mv a5,a0 mv a1,a5 lui a5,%hi(.LC1) addi a0,a5,%lo(.LC1) call printf li a5,0 mv a0,a5 ld ra,40(sp) ld s0,32(sp) addi sp,sp,48 jr ra
13,909
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
riscv64
-O1
RISC-V 64 gcc 15.2.0
brokenCalc: ble a1,a0,.L6 li a5,0 j .L5 .L3: srliw a4,a1,31 addw a1,a4,a1 sraiw a1,a1,1 .L4: addiw a5,a5,1 ble a1,a0,.L2 .L5: andi a4,a1,1 beq a4,zero,.L3 addiw a1,a1,1 j .L4 .L6: li a5,0 .L2: subw a0,a0,a1 addw a0,a0,a5 ret .LC0: .string "Usage: ./test x y" .LC1: .string "%d\n" main: addi sp,sp,-32 sd ra,24(sp) sd s0,16(sp) sd s1,8(sp) li a5,3 bne a0,a5,.L11 mv s0,a1 li a2,10 li a1,0 ld a0,8(s0) call strtol mv s1,a0 li a2,10 li a1,0 ld a0,16(s0) call strtol sext.w a1,a0 sext.w a0,s1 call brokenCalc mv a1,a0 lui a0,%hi(.LC1) addi a0,a0,%lo(.LC1) call printf li a0,0 ld ra,24(sp) ld s0,16(sp) ld s1,8(sp) addi sp,sp,32 jr ra .L11: lui a5,%hi(stderr) ld a3,%lo(stderr)(a5) li a2,17 li a1,1 lui a0,%hi(.LC0) addi a0,a0,%lo(.LC0) call fwrite li a0,-1 call exit
13,910
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
riscv64
-O2
RISC-V 64 gcc 15.2.0
brokenCalc: li a3,0 bgt a1,a0,.L5 j .L2 .L9: addiw a1,a1,1 addiw a3,a3,1 bge a0,a1,.L2 .L5: srliw a5,a1,31 andi a4,a1,1 addw a5,a5,a1 bne a4,zero,.L9 sraiw a1,a5,1 addiw a3,a3,1 blt a0,a1,.L5 .L2: subw a0,a0,a1 addw a0,a0,a3 ret .LC0: .string "Usage: ./test x y" .LC1: .string "%d\n" main: addi sp,sp,-32 sd ra,24(sp) sd s0,16(sp) sd s1,8(sp) li a5,3 bne a0,a5,.L19 ld a0,8(a1) mv s1,a1 li a2,10 li a1,0 call strtol mv s0,a0 ld a0,16(s1) li a2,10 li a1,0 call strtol sext.w s0,s0 sext.w a0,a0 li a5,0 bgt a0,s0,.L15 j .L12 .L20: addiw a0,a0,1 addiw a5,a5,1 bge s0,a0,.L12 .L15: andi a4,a0,1 bne a4,zero,.L20 srliw a4,a0,31 addw a0,a4,a0 sraiw a0,a0,1 addiw a5,a5,1 blt s0,a0,.L15 .L12: subw a1,s0,a0 lui a0,%hi(.LC1) addw a1,a1,a5 addi a0,a0,%lo(.LC1) call printf ld ra,24(sp) ld s0,16(sp) ld s1,8(sp) li a0,0 addi sp,sp,32 jr ra .L19: lui a5,%hi(stderr) ld a3,%lo(stderr)(a5) lui a0,%hi(.LC0) addi a0,a0,%lo(.LC0) li a2,17 li a1,1 call fwrite li a0,-1 call exit
13,911
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
riscv64
-O3
RISC-V 64 gcc 15.2.0
brokenCalc: li a3,0 bgt a1,a0,.L5 j .L2 .L9: addiw a1,a1,1 addiw a3,a3,1 bge a0,a1,.L2 .L5: srliw a5,a1,31 andi a4,a1,1 addw a5,a5,a1 bne a4,zero,.L9 sraiw a1,a5,1 addiw a3,a3,1 blt a0,a1,.L5 .L2: subw a0,a0,a1 addw a0,a0,a3 ret .LC0: .string "Usage: ./test x y" .LC1: .string "%d\n" main: addi sp,sp,-32 sd ra,24(sp) sd s0,16(sp) sd s1,8(sp) li a5,3 bne a0,a5,.L19 ld a0,8(a1) mv s1,a1 li a2,10 li a1,0 call strtol mv s0,a0 ld a0,16(s1) li a2,10 li a1,0 call strtol sext.w s0,s0 sext.w a0,a0 li a5,0 bgt a0,s0,.L15 j .L12 .L20: addiw a0,a0,1 addiw a5,a5,1 bge s0,a0,.L12 .L15: andi a4,a0,1 bne a4,zero,.L20 srliw a4,a0,31 addw a0,a4,a0 sraiw a0,a0,1 addiw a5,a5,1 blt s0,a0,.L15 .L12: subw a1,s0,a0 lui a0,%hi(.LC1) addw a1,a1,a5 addi a0,a0,%lo(.LC1) call printf ld ra,24(sp) ld s0,16(sp) ld s1,8(sp) li a0,0 addi sp,sp,32 jr ra .L19: lui a5,%hi(stderr) ld a3,%lo(stderr)(a5) lui a0,%hi(.LC0) addi a0,a0,%lo(.LC0) li a2,17 li a1,1 call fwrite li a0,-1 call exit
13,912
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
x86-64
-O0
x86-64 clang 21.1.0
brokenCalc: push rbp mov rbp, rsp mov dword ptr [rbp - 4], edi mov dword ptr [rbp - 8], esi mov dword ptr [rbp - 12], 0 .LBB0_1: mov eax, dword ptr [rbp - 4] cmp eax, dword ptr [rbp - 8] jge .LBB0_6 mov eax, dword ptr [rbp - 8] and eax, 1 cmp eax, 0 je .LBB0_4 mov eax, dword ptr [rbp - 8] add eax, 1 mov dword ptr [rbp - 16], eax jmp .LBB0_5 .LBB0_4: mov eax, dword ptr [rbp - 8] mov ecx, 2 cdq idiv ecx mov dword ptr [rbp - 16], eax .LBB0_5: mov eax, dword ptr [rbp - 16] mov dword ptr [rbp - 8], eax mov eax, dword ptr [rbp - 12] add eax, 1 mov dword ptr [rbp - 12], eax jmp .LBB0_1 .LBB0_6: mov eax, dword ptr [rbp - 4] sub eax, dword ptr [rbp - 8] add eax, dword ptr [rbp - 12] mov dword ptr [rbp - 12], eax mov eax, dword ptr [rbp - 12] pop rbp ret main: push rbp mov rbp, rsp sub rsp, 32 mov dword ptr [rbp - 4], 0 mov dword ptr [rbp - 8], edi mov qword ptr [rbp - 16], rsi cmp dword ptr [rbp - 8], 3 je .LBB1_2 mov rax, qword ptr [rip + stderr@GOTPCREL] mov rdi, qword ptr [rax] lea rsi, [rip + .L.str] mov al, 0 call fprintf@PLT mov edi, 4294967295 call exit@PLT .LBB1_2: mov rax, qword ptr [rbp - 16] mov rdi, qword ptr [rax + 8] call atoi@PLT mov dword ptr [rbp - 20], eax mov rax, qword ptr [rbp - 16] mov rdi, qword ptr [rax + 16] call atoi@PLT mov dword ptr [rbp - 24], eax mov edi, dword ptr [rbp - 20] mov esi, dword ptr [rbp - 24] call brokenCalc mov esi, eax lea rdi, [rip + .L.str.1] mov al, 0 call printf@PLT xor eax, eax add rsp, 32 pop rbp ret .L.str: .asciz "Usage: ./test x y" .L.str.1: .asciz "%d\n"
13,913
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
x86-64
-O1
x86-64 clang 21.1.0
brokenCalc: mov eax, edi xor ecx, ecx cmp edi, esi jge .LBB0_1 xor ecx, ecx .LBB0_3: lea edi, [rsi + 1] mov edx, esi sar edx test sil, 1 cmovne edx, edi inc ecx mov esi, edx cmp eax, edx jl .LBB0_3 jmp .LBB0_4 .LBB0_1: mov edx, esi .LBB0_4: sub eax, edx add eax, ecx ret main: push r15 push r14 push rbx cmp edi, 3 jne .LBB1_6 mov r14, rsi mov rdi, qword ptr [rsi + 8] xor r15d, r15d xor esi, esi mov edx, 10 call strtol@PLT mov rbx, rax mov rdi, qword ptr [r14 + 16] xor esi, esi mov edx, 10 call strtol@PLT cmp ebx, eax jge .LBB1_2 xor r15d, r15d .LBB1_4: lea edx, [rax + 1] mov ecx, eax sar ecx test al, 1 cmovne ecx, edx inc r15d mov eax, ecx cmp ecx, ebx jg .LBB1_4 jmp .LBB1_5 .LBB1_2: mov ecx, eax .LBB1_5: sub ebx, ecx add ebx, r15d lea rdi, [rip + .L.str.1] mov esi, ebx xor eax, eax call printf@PLT xor eax, eax pop rbx pop r14 pop r15 ret .LBB1_6: mov rax, qword ptr [rip + stderr@GOTPCREL] mov rcx, qword ptr [rax] lea rdi, [rip + .L.str] mov esi, 17 mov edx, 1 call fwrite@PLT mov edi, -1 call exit@PLT .L.str: .asciz "Usage: ./test x y" .L.str.1: .asciz "%d\n"
13,914
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
x86-64
-O2
x86-64 clang 21.1.0
brokenCalc: mov eax, edi xor ecx, ecx cmp edi, esi jge .LBB0_1 xor ecx, ecx .LBB0_3: lea edi, [rsi + 1] mov edx, esi sar edx test sil, 1 cmovne edx, edi inc ecx mov esi, edx cmp eax, edx jl .LBB0_3 jmp .LBB0_4 .LBB0_1: mov edx, esi .LBB0_4: sub eax, edx add eax, ecx ret main: push r15 push r14 push rbx cmp edi, 3 jne .LBB1_6 mov r14, rsi mov rdi, qword ptr [rsi + 8] xor r15d, r15d xor esi, esi mov edx, 10 call strtol@PLT mov rbx, rax mov rdi, qword ptr [r14 + 16] xor esi, esi mov edx, 10 call strtol@PLT cmp ebx, eax jge .LBB1_2 xor r15d, r15d .LBB1_4: lea edx, [rax + 1] mov ecx, eax sar ecx test al, 1 cmovne ecx, edx inc r15d mov eax, ecx cmp ecx, ebx jg .LBB1_4 jmp .LBB1_5 .LBB1_2: mov ecx, eax .LBB1_5: sub ebx, ecx add ebx, r15d lea rdi, [rip + .L.str.1] mov esi, ebx xor eax, eax call printf@PLT xor eax, eax pop rbx pop r14 pop r15 ret .LBB1_6: mov rax, qword ptr [rip + stderr@GOTPCREL] mov rcx, qword ptr [rax] lea rdi, [rip + .L.str] mov esi, 17 mov edx, 1 call fwrite@PLT mov edi, -1 call exit@PLT .L.str: .asciz "Usage: ./test x y" .L.str.1: .asciz "%d\n"
13,915
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
x86-64
-O3
x86-64 clang 21.1.0
brokenCalc: mov eax, edi xor ecx, ecx cmp edi, esi jge .LBB0_1 xor ecx, ecx .LBB0_3: lea edi, [rsi + 1] mov edx, esi sar edx test sil, 1 cmovne edx, edi inc ecx mov esi, edx cmp eax, edx jl .LBB0_3 sub eax, edx add eax, ecx ret .LBB0_1: mov edx, esi sub eax, edx add eax, ecx ret main: push r15 push r14 push rbx cmp edi, 3 jne .LBB1_6 mov r14, rsi mov rdi, qword ptr [rsi + 8] xor r15d, r15d xor esi, esi mov edx, 10 call strtol@PLT mov rbx, rax mov rdi, qword ptr [r14 + 16] xor esi, esi mov edx, 10 call strtol@PLT cmp ebx, eax jge .LBB1_2 xor r15d, r15d .LBB1_4: lea edx, [rax + 1] mov ecx, eax sar ecx test al, 1 cmovne ecx, edx inc r15d mov eax, ecx cmp ecx, ebx jg .LBB1_4 jmp .LBB1_5 .LBB1_2: mov ecx, eax .LBB1_5: sub ebx, ecx add ebx, r15d lea rdi, [rip + .L.str.1] mov esi, ebx xor eax, eax call printf@PLT xor eax, eax pop rbx pop r14 pop r15 ret .LBB1_6: mov rax, qword ptr [rip + stderr@GOTPCREL] mov rcx, qword ptr [rax] lea rdi, [rip + .L.str] mov esi, 17 mov edx, 1 call fwrite@PLT mov edi, -1 call exit@PLT .L.str: .asciz "Usage: ./test x y" .L.str.1: .asciz "%d\n"
13,916
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
x86-64
-O0
x86-64 gcc 15.2
brokenCalc: push rbp mov rbp, rsp mov DWORD PTR [rbp-20], edi mov DWORD PTR [rbp-24], esi mov DWORD PTR [rbp-4], 0 jmp .L2 .L5: mov eax, DWORD PTR [rbp-24] and eax, 1 test eax, eax je .L3 add DWORD PTR [rbp-24], 1 jmp .L4 .L3: mov eax, DWORD PTR [rbp-24] mov edx, eax shr edx, 31 add eax, edx sar eax mov DWORD PTR [rbp-24], eax .L4: add DWORD PTR [rbp-4], 1 .L2: mov eax, DWORD PTR [rbp-20] cmp eax, DWORD PTR [rbp-24] jl .L5 mov eax, DWORD PTR [rbp-20] sub eax, DWORD PTR [rbp-24] add DWORD PTR [rbp-4], eax mov eax, DWORD PTR [rbp-4] pop rbp ret .LC0: .string "Usage: ./test x y" .LC1: .string "%d\n" main: push rbp mov rbp, rsp sub rsp, 32 mov DWORD PTR [rbp-20], edi mov QWORD PTR [rbp-32], rsi cmp DWORD PTR [rbp-20], 3 je .L8 mov rax, QWORD PTR stderr[rip] mov rcx, rax mov edx, 17 mov esi, 1 mov edi, OFFSET FLAT:.LC0 call fwrite mov edi, -1 call exit .L8: mov rax, QWORD PTR [rbp-32] add rax, 8 mov rax, QWORD PTR [rax] mov rdi, rax call atoi mov DWORD PTR [rbp-4], eax mov rax, QWORD PTR [rbp-32] add rax, 16 mov rax, QWORD PTR [rax] mov rdi, rax call atoi mov DWORD PTR [rbp-8], eax mov edx, DWORD PTR [rbp-8] mov eax, DWORD PTR [rbp-4] mov esi, edx mov edi, eax call brokenCalc mov esi, eax mov edi, OFFSET FLAT:.LC1 mov eax, 0 call printf mov eax, 0 leave ret
13,917
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
x86-64
-O1
x86-64 gcc 15.2
brokenCalc: cmp esi, edi jle .L6 mov ecx, 0 .L5: mov edx, esi shr edx, 31 add edx, esi sar edx lea eax, [rsi+1] test sil, 1 mov esi, edx cmovne esi, eax add ecx, 1 cmp esi, edi jg .L5 .L2: sub edi, esi lea eax, [rdi+rcx] ret .L6: mov ecx, 0 jmp .L2 .LC0: .string "Usage: ./test x y" .LC1: .string "%d\n" main: push r14 push rbx sub rsp, 8 cmp edi, 3 jne .L11 mov rbx, rsi mov rdi, QWORD PTR [rsi+8] mov edx, 10 mov esi, 0 call strtol mov r14, rax mov rdi, QWORD PTR [rbx+16] mov edx, 10 mov esi, 0 call strtol mov esi, eax mov edi, r14d call brokenCalc mov esi, eax mov edi, OFFSET FLAT:.LC1 mov eax, 0 call printf mov eax, 0 add rsp, 8 pop rbx pop r14 ret .L11: mov rcx, QWORD PTR stderr[rip] mov edx, 17 mov esi, 1 mov edi, OFFSET FLAT:.LC0 call fwrite mov edi, -1 call exit
13,918
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
x86-64
-O2
x86-64 gcc 15.2
brokenCalc: xor ecx, ecx cmp esi, edi jle .L2 .L5: mov edx, esi lea r8d, [rsi+1] shr edx, 31 add edx, esi sar edx and esi, 1 mov esi, edx cmovne esi, r8d add ecx, 1 cmp edi, esi jl .L5 .L2: sub edi, esi lea eax, [rdi+rcx] ret .LC0: .string "Usage: ./test x y" .LC1: .string "%d\n" main: push rbp push rbx sub rsp, 8 cmp edi, 3 jne .L18 mov rdi, QWORD PTR [rsi+8] mov rbp, rsi mov edx, 10 xor esi, esi call strtol mov rdi, QWORD PTR [rbp+16] mov edx, 10 xor esi, esi mov rbx, rax call strtol xor ecx, ecx cmp eax, ebx jle .L11 .L14: mov edx, eax lea esi, [rax+1] shr edx, 31 add edx, eax sar edx test al, 1 mov eax, edx cmovne eax, esi add ecx, 1 cmp ebx, eax jl .L14 .L11: sub ebx, eax mov edi, OFFSET FLAT:.LC1 xor eax, eax lea esi, [rbx+rcx] call printf add rsp, 8 xor eax, eax pop rbx pop rbp ret .L18: mov edi, OFFSET FLAT:.LC0 mov edx, 17 mov esi, 1 mov rcx, QWORD PTR stderr[rip] call fwrite mov edi, -1 call exit
13,919
991
Broken Calculator
Medium
#include <stdio.h> #include <stdlib.h> int brokenCalc(int X, int Y) { int step = 0; while (X < Y) { Y = Y & 1 ? Y + 1 : Y / 2; step++; } step += X - Y; return step; } int main(int argc, char **argv) { if (argc != 3) { fprintf(stderr, "Usage: ./test x y"); exit(-1); } int x = atoi(argv[1]); int y = atoi(argv[2]); printf("%d\n", brokenCalc(x, y)); return 0; }
x86-64
-O3
x86-64 gcc 15.2
brokenCalc: xor ecx, ecx cmp esi, edi jle .L2 .L5: mov edx, esi lea r8d, [rsi+1] shr edx, 31 add edx, esi sar edx and esi, 1 mov esi, edx cmovne esi, r8d add ecx, 1 cmp edi, esi jl .L5 .L2: sub edi, esi lea eax, [rdi+rcx] ret .LC0: .string "Usage: ./test x y" .LC1: .string "%d\n" main: push rbp push rbx sub rsp, 8 cmp edi, 3 jne .L18 mov rdi, QWORD PTR [rsi+8] mov rbp, rsi mov edx, 10 xor esi, esi call strtol mov rdi, QWORD PTR [rbp+16] mov edx, 10 xor esi, esi mov rbx, rax call strtol xor ecx, ecx cmp eax, ebx jle .L11 .L14: mov edx, eax lea esi, [rax+1] shr edx, 31 add edx, eax sar edx test al, 1 mov eax, edx cmovne eax, esi add ecx, 1 cmp ebx, eax jl .L14 .L11: sub ebx, eax mov edi, OFFSET FLAT:.LC1 xor eax, eax lea esi, [rbx+rcx] call printf add rsp, 8 xor eax, eax pop rbx pop rbp ret .L18: mov edi, OFFSET FLAT:.LC0 mov edx, 17 mov esi, 1 mov rcx, QWORD PTR stderr[rip] call fwrite mov edi, -1 call exit
13,920
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
aarch64
-O0
ARM64 gcc 15.2.0
subarraysWithKDistinct: sub sp, sp, #2240 sub sp, sp, #77824 stp x29, x30, [sp] mov x29, sp str x0, [sp, 24] str w1, [sp, 20] str w2, [sp, 16] add x0, sp, 40 mov x1, 14468 movk x1, 0x1, lsl 16 mov x2, x1 mov w1, 0 bl memset add x0, sp, 65536 str wzr, [x0, 14524] add x0, sp, 65536 str wzr, [x0, 14520] mov w0, 1 add x1, sp, 65536 str w0, [x1, 14516] add x0, sp, 65536 str wzr, [x0, 14512] b .L2 .L7: add x0, sp, 65536 ldr w0, [x0, 14520] add w1, w0, 1 add x2, sp, 65536 str w1, [x2, 14520] sxtw x0, w0 lsl x0, x0, 2 ldr x1, [sp, 24] add x0, x1, x0 ldr w0, [x0] add x1, sp, 65536 str w0, [x1, 14508] add x0, sp, 65536 ldrsw x0, [x0, 14508] lsl x0, x0, 2 add x1, sp, 40 ldr w0, [x1, x0] cmp w0, 0 bne .L3 ldr w0, [sp, 16] sub w0, w0, #1 str w0, [sp, 16] .L3: add x0, sp, 65536 ldrsw x0, [x0, 14508] lsl x0, x0, 2 add x1, sp, 40 ldr w0, [x1, x0] add w2, w0, 1 add x0, sp, 65536 ldrsw x0, [x0, 14508] lsl x0, x0, 2 add x1, sp, 40 str w2, [x1, x0] ldr w0, [sp, 16] cmp w0, 0 bge .L4 add x0, sp, 65536 ldr w0, [x0, 14524] add w1, w0, 1 add x2, sp, 65536 str w1, [x2, 14524] sxtw x0, w0 lsl x0, x0, 2 ldr x1, [sp, 24] add x0, x1, x0 ldr w0, [x0] add x1, sp, 65536 str w0, [x1, 14508] add x0, sp, 65536 ldrsw x0, [x0, 14508] lsl x0, x0, 2 add x1, sp, 40 str wzr, [x1, x0] str wzr, [sp, 16] mov w0, 1 add x1, sp, 65536 str w0, [x1, 14516] .L4: ldr w0, [sp, 16] cmp w0, 0 bne .L2 b .L5 .L6: add x0, sp, 65536 ldr w0, [x0, 14524] add w1, w0, 1 add x2, sp, 65536 str w1, [x2, 14524] sxtw x0, w0 lsl x0, x0, 2 ldr x1, [sp, 24] add x0, x1, x0 ldr w0, [x0] add x1, sp, 65536 str w0, [x1, 14508] add x0, sp, 65536 ldrsw x0, [x0, 14508] lsl x0, x0, 2 add x1, sp, 40 ldr w0, [x1, x0] sub w2, w0, #1 add x0, sp, 65536 ldrsw x0, [x0, 14508] lsl x0, x0, 2 add x1, sp, 40 str w2, [x1, x0] add x0, sp, 65536 ldr w0, [x0, 14516] add w0, w0, 1 add x1, sp, 65536 str w0, [x1, 14516] .L5: add x0, sp, 65536 ldrsw x0, [x0, 14524] lsl x0, x0, 2 ldr x1, [sp, 24] add x0, x1, x0 ldr w0, [x0] sxtw x0, w0 lsl x0, x0, 2 add x1, sp, 40 ldr w0, [x1, x0] cmp w0, 1 bgt .L6 add x0, sp, 65536 ldr w1, [x0, 14512] add x0, sp, 65536 ldr w0, [x0, 14516] add w0, w1, w0 add x1, sp, 65536 str w0, [x1, 14512] .L2: add x0, sp, 65536 ldr w1, [x0, 14520] ldr w0, [sp, 20] cmp w1, w0 blt .L7 add x0, sp, 65536 ldr w0, [x0, 14512] ldp x29, x30, [sp] add sp, sp, 2240 add sp, sp, 77824 ret
13,921
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
aarch64
-O1
ARM64 gcc 15.2.0
subarraysWithKDistinct: sub sp, sp, #2240 sub sp, sp, #77824 stp x29, x30, [sp] mov x29, sp stp x19, x20, [sp, 16] str x21, [sp, 32] mov x19, x0 mov w21, w1 mov w20, w2 mov x2, 14468 movk x2, 0x1, lsl 16 mov w1, 0 add x0, sp, 56 bl memset cmp w21, 0 ble .L10 mov x6, x19 add x9, x19, w21, sxtw 2 mov w0, 0 mov w8, 1 mov w5, 0 add x3, sp, 56 mov w10, w8 b .L9 .L4: cbz w20, .L15 .L6: add x6, x6, 4 cmp x6, x9 beq .L1 .L9: ldr w4, [x6] ldr w1, [x3, w4, sxtw 2] cmp w1, 0 cset w2, eq add w1, w1, 1 str w1, [x3, w4, sxtw 2] subs w20, w20, w2 bpl .L4 add w2, w5, 1 ldrsw x1, [x19, w5, sxtw 2] str wzr, [x3, x1, lsl 2] mov w8, w10 .L5: sbfiz x5, x2, 2, 32 ldr w4, [x19, x5] ldr w1, [x3, w4, sxtw 2] cmp w1, 1 ble .L11 mov w11, w2 add w2, w2, 1 sxtw x2, w2 sub x5, x5, x2, lsl 2 add x5, x5, 4 add x5, x19, x5 .L8: sub w1, w1, #1 str w1, [x3, w4, sxtw 2] ldr w4, [x5, x2, lsl 2] ldr w1, [x3, w4, sxtw 2] mov x7, x2 add x2, x2, 1 cmp w1, 1 bgt .L8 mov w5, w7 sub w8, w8, w11 add w8, w8, w7 .L7: add w0, w0, w8 mov w20, 0 b .L6 .L15: mov w2, w5 b .L5 .L11: mov w5, w2 b .L7 .L10: mov w0, 0 .L1: ldp x29, x30, [sp] ldp x19, x20, [sp, 16] ldr x21, [sp, 32] add sp, sp, 2240 add sp, sp, 77824 ret
13,922
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
aarch64
-O2
ARM64 gcc 15.2.0
subarraysWithKDistinct: sub sp, sp, #2240 sub sp, sp, #77824 stp x29, x30, [sp] mov x29, sp stp x19, x20, [sp, 16] mov w19, w2 mov x2, 14468 mov x20, x0 movk x2, 0x1, lsl 16 add x0, sp, 56 str x21, [sp, 32] mov w21, w1 mov w1, 0 bl memset cmp w21, 0 ble .L11 ldrsw x2, [x20] mov x3, x0 mov x6, x20 add x10, x20, w21, uxtw 2 ldr w5, [x0, x2, lsl 2] cbz w5, .L20 mov w1, w5 mov w0, 0 mov w9, 1 mov w5, 0 .L3: add w1, w1, 1 str w1, [x3, x2, lsl 2] tbz w19, #31, .L4 add w8, w5, 1 ldrsw x1, [x20, w5, sxtw 2] mov w9, 1 sbfiz x5, x8, 2, 32 ldrsw x4, [x20, w8, sxtw 2] str wzr, [x3, x1, lsl 2] ldr w1, [x3, x4, lsl 2] cmp w1, 1 ble .L21 .L5: add w2, w8, 1 sxtw x2, w2 sub x5, x5, x2, lsl 2 add x5, x5, 4 add x5, x20, x5 .L9: sub w1, w1, #1 str w1, [x3, x4, lsl 2] ldrsw x4, [x5, x2, lsl 2] mov x7, x2 add x2, x2, 1 ldr w1, [x3, x4, lsl 2] cmp w1, 1 bgt .L9 sub w9, w9, w8 mov w5, w7 add w9, w9, w7 .L6: add w0, w0, w9 mov w19, 0 .L8: add x6, x6, 4 cmp x6, x10 beq .L1 ldrsw x2, [x6] lsl x4, x2, 2 ldr w1, [x3, x4] cbz w1, .L10 add w1, w1, 1 str w1, [x3, x4] .L4: cbnz w19, .L8 mov w8, w5 sbfiz x5, x8, 2, 32 ldrsw x4, [x20, w8, sxtw 2] ldr w1, [x3, x4, lsl 2] cmp w1, 1 bgt .L5 .L21: mov w5, w8 b .L6 .L20: mov w0, 0 mov w9, 1 .L10: sub w19, w19, #1 mov w1, 0 b .L3 .L11: mov w0, 0 .L1: ldr x21, [sp, 32] ldp x29, x30, [sp] ldp x19, x20, [sp, 16] add sp, sp, 2240 add sp, sp, 77824 ret
13,923
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
aarch64
-O3
ARM64 gcc 15.2.0
subarraysWithKDistinct: sub sp, sp, #2240 sub sp, sp, #77824 stp x29, x30, [sp] mov x29, sp stp x19, x20, [sp, 16] mov w19, w2 mov x2, 14468 mov x20, x0 movk x2, 0x1, lsl 16 add x0, sp, 56 str x21, [sp, 32] mov w21, w1 mov w1, 0 bl memset cmp w21, 0 ble .L11 ldrsw x2, [x20] mov x3, x0 add x10, x20, w21, uxtw 2 mov x6, x20 ldr w7, [x0, x2, lsl 2] cbz w7, .L21 mov w1, w7 mov w0, 0 mov w7, 0 mov w9, 1 .L3: add w1, w1, 1 str w1, [x3, x2, lsl 2] tbz w19, #31, .L4 ldrsw x1, [x20, w7, sxtw 2] add w7, w7, 1 mov w9, 1 str wzr, [x3, x1, lsl 2] .L7: ldrsw x4, [x20, w7, sxtw 2] sbfiz x5, x7, 2, 32 ldr w1, [x3, x4, lsl 2] cmp w1, 1 ble .L6 add w2, w7, 1 sxtw x2, w2 sub x5, x5, x2, lsl 2 add x5, x5, 4 add x5, x20, x5 .L9: sub w1, w1, #1 str w1, [x3, x4, lsl 2] ldrsw x4, [x5, x2, lsl 2] mov x8, x2 add x2, x2, 1 ldr w1, [x3, x4, lsl 2] cmp w1, 1 bgt .L9 sub w9, w9, w7 mov w7, w8 add w9, w9, w8 .L6: add x6, x6, 4 add w0, w0, w9 mov w19, 0 cmp x10, x6 beq .L1 .L22: ldrsw x2, [x6] lsl x4, x2, 2 ldr w1, [x3, x4] cbz w1, .L10 add w1, w1, 1 str w1, [x3, x4] .L4: cbz w19, .L7 add x6, x6, 4 cmp x10, x6 bne .L22 .L1: ldr x21, [sp, 32] ldp x29, x30, [sp] ldp x19, x20, [sp, 16] add sp, sp, 2240 add sp, sp, 77824 ret .L21: mov w0, 0 mov w9, 1 .L10: sub w19, w19, #1 mov w1, 0 b .L3 .L11: ldr x21, [sp, 32] mov w0, 0 ldp x29, x30, [sp] ldp x19, x20, [sp, 16] add sp, sp, 2240 add sp, sp, 77824 ret
13,924
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
aarch64
-O0
armv8-a clang 21.1.0
subarraysWithKDistinct: stp x29, x30, [sp, #-32]! str x28, [sp, #16] mov x29, sp sub sp, sp, #19, lsl #12 sub sp, sp, #2224 sub x8, x29, #16 str x8, [sp] str x0, [x8, #8] str w1, [x8, #4] str w2, [x8] add x0, sp, #28 mov x2, #14468 movk x2, #1, lsl #16 mov w1, wzr bl memset str wzr, [sp, #20] str wzr, [sp, #16] mov w8, #1 str w8, [sp, #12] str wzr, [sp, #8] b .LBB0_1 .LBB0_1: ldr x9, [sp] ldr w8, [sp, #16] ldr w9, [x9, #4] subs w8, w8, w9 b.ge .LBB0_12 b .LBB0_2 .LBB0_2: ldr x8, [sp] ldr x8, [x8, #8] ldrsw x9, [sp, #16] mov w10, w9 add w10, w10, #1 str w10, [sp, #16] ldr w8, [x8, x9, lsl #2] str w8, [sp, #24] ldrsw x9, [sp, #24] add x8, sp, #28 ldr w8, [x8, x9, lsl #2] cbnz w8, .LBB0_4 b .LBB0_3 .LBB0_3: ldr x9, [sp] ldr w8, [x9] subs w8, w8, #1 str w8, [x9] b .LBB0_4 .LBB0_4: ldr x8, [sp] ldrsw x11, [sp, #24] add x10, sp, #28 ldr w9, [x10, x11, lsl #2] add w9, w9, #1 str w9, [x10, x11, lsl #2] ldr w8, [x8] tbz w8, #31, .LBB0_6 b .LBB0_5 .LBB0_5: ldr x9, [sp] ldr x10, [x9, #8] ldrsw x11, [sp, #20] mov w12, w11 mov w8, #1 add w12, w12, #1 str w12, [sp, #20] ldr w10, [x10, x11, lsl #2] str w10, [sp, #24] ldrsw x12, [sp, #24] add x11, sp, #28 mov w10, wzr str w10, [x11, x12, lsl #2] str wzr, [x9] str w8, [sp, #12] b .LBB0_6 .LBB0_6: ldr x8, [sp] ldr w8, [x8] cbnz w8, .LBB0_11 b .LBB0_7 .LBB0_7: b .LBB0_8 .LBB0_8: ldr x8, [sp] ldr x8, [x8, #8] ldrsw x9, [sp, #20] ldrsw x9, [x8, x9, lsl #2] add x8, sp, #28 ldr w8, [x8, x9, lsl #2] subs w8, w8, #1 b.le .LBB0_10 b .LBB0_9 .LBB0_9: ldr x8, [sp] ldr x8, [x8, #8] ldrsw x9, [sp, #20] mov w10, w9 add w10, w10, #1 str w10, [sp, #20] ldr w8, [x8, x9, lsl #2] str w8, [sp, #24] ldrsw x10, [sp, #24] add x9, sp, #28 ldr w8, [x9, x10, lsl #2] subs w8, w8, #1 str w8, [x9, x10, lsl #2] ldr w8, [sp, #12] add w8, w8, #1 str w8, [sp, #12] b .LBB0_8 .LBB0_10: ldr w9, [sp, #12] ldr w8, [sp, #8] add w8, w8, w9 str w8, [sp, #8] b .LBB0_11 .LBB0_11: b .LBB0_1 .LBB0_12: ldr w0, [sp, #8] add sp, sp, #19, lsl #12 add sp, sp, #2224 ldr x28, [sp, #16] ldp x29, x30, [sp], #32 ret
13,925
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
aarch64
-O1
armv8-a clang 21.1.0
subarraysWithKDistinct: stp x29, x30, [sp, #-64]! str x28, [sp, #16] stp x22, x21, [sp, #32] stp x20, x19, [sp, #48] mov x29, sp sub sp, sp, #19, lsl #12 sub sp, sp, #2192 mov w19, w2 mov w2, #14468 mov w21, w1 mov x20, x0 add x0, sp, #12 mov w1, wzr movk w2, #1, lsl #16 add x22, sp, #12 bl memset cmp w21, #1 b.lt .LBB0_10 mov x8, xzr mov w0, wzr mov w11, wzr mov w9, w21 add x10, x20, #4 mov w12, #1 b .LBB0_4 .LBB0_2: add w0, w12, w0 .LBB0_3: add x8, x8, #1 cmp x8, x9 b.eq .LBB0_11 .LBB0_4: ldrsw x13, [x20, x8, lsl #2] ldr w14, [x22, x13, lsl #2] cmp w14, #0 add w14, w14, #1 str w14, [x22, x13, lsl #2] cset w15, eq subs w19, w19, w15 b.mi .LBB0_6 cbnz w19, .LBB0_3 b .LBB0_7 .LBB0_6: ldrsw x12, [x20, w11, sxtw #2] mov w19, wzr add w11, w11, #1 str wzr, [x22, x12, lsl #2] mov w12, #1 cbnz w19, .LBB0_3 .LBB0_7: ldrsw x13, [x20, w11, sxtw #2] add x13, x22, x13, lsl #2 ldr w14, [x13] cmp w14, #2 b.lt .LBB0_2 add x15, x10, w11, sxtw #2 .LBB0_9: ldrsw x16, [x15], #4 sub w14, w14, #1 str w14, [x13] add w12, w12, #1 add w11, w11, #1 add x13, x22, x16, lsl #2 ldr w14, [x13] cmp w14, #1 b.gt .LBB0_9 b .LBB0_2 .LBB0_10: mov w0, wzr .LBB0_11: add sp, sp, #19, lsl #12 add sp, sp, #2192 ldp x20, x19, [sp, #48] ldr x28, [sp, #16] ldp x22, x21, [sp, #32] ldp x29, x30, [sp], #64 ret
13,926
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
aarch64
-O2
armv8-a clang 21.1.0
subarraysWithKDistinct: stp x29, x30, [sp, #-64]! str x28, [sp, #16] stp x22, x21, [sp, #32] stp x20, x19, [sp, #48] mov x29, sp sub sp, sp, #19, lsl #12 sub sp, sp, #2192 mov w20, w2 mov w2, #14468 mov w21, w1 mov x19, x0 add x0, sp, #12 mov w1, wzr movk w2, #1, lsl #16 add x22, sp, #12 bl memset cmp w21, #1 b.lt .LBB0_10 mov x8, xzr mov w0, wzr mov w11, wzr mov w9, w21 add x10, x19, #4 mov w12, #1 b .LBB0_4 .LBB0_2: mov w20, wzr add w0, w12, w0 .LBB0_3: add x8, x8, #1 cmp x8, x9 b.eq .LBB0_11 .LBB0_4: ldrsw x13, [x19, x8, lsl #2] ldr w14, [x22, x13, lsl #2] cmp w14, #0 add w14, w14, #1 str w14, [x22, x13, lsl #2] cset w15, eq subs w20, w20, w15 b.mi .LBB0_6 cbnz w20, .LBB0_3 b .LBB0_7 .LBB0_6: ldrsw x12, [x19, w11, sxtw #2] add w11, w11, #1 str wzr, [x22, x12, lsl #2] mov w12, #1 .LBB0_7: ldrsw x13, [x19, w11, sxtw #2] add x13, x22, x13, lsl #2 ldr w14, [x13] cmp w14, #2 b.lt .LBB0_2 sxtw x15, w11 add x15, x10, x15, lsl #2 .LBB0_9: ldrsw x16, [x15], #4 sub w14, w14, #1 str w14, [x13] add w12, w12, #1 add w11, w11, #1 add x13, x22, x16, lsl #2 ldr w14, [x13] cmp w14, #1 b.gt .LBB0_9 b .LBB0_2 .LBB0_10: mov w0, wzr .LBB0_11: add sp, sp, #19, lsl #12 add sp, sp, #2192 ldp x20, x19, [sp, #48] ldr x28, [sp, #16] ldp x22, x21, [sp, #32] ldp x29, x30, [sp], #64 ret
13,927
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
aarch64
-O3
armv8-a clang 21.1.0
subarraysWithKDistinct: stp x29, x30, [sp, #-64]! str x28, [sp, #16] stp x22, x21, [sp, #32] stp x20, x19, [sp, #48] mov x29, sp sub sp, sp, #19, lsl #12 sub sp, sp, #2192 mov w20, w2 mov w2, #14468 mov w21, w1 mov x19, x0 add x0, sp, #12 mov w1, wzr movk w2, #1, lsl #16 add x22, sp, #12 bl memset cmp w21, #1 b.lt .LBB0_10 mov x8, xzr mov w0, wzr mov w11, wzr mov w9, w21 add x10, x19, #4 mov w12, #1 b .LBB0_4 .LBB0_2: mov w20, wzr add w0, w12, w0 .LBB0_3: add x8, x8, #1 cmp x8, x9 b.eq .LBB0_11 .LBB0_4: ldrsw x13, [x19, x8, lsl #2] ldr w14, [x22, x13, lsl #2] cmp w14, #0 add w14, w14, #1 str w14, [x22, x13, lsl #2] cset w15, eq subs w20, w20, w15 b.mi .LBB0_7 cbnz w20, .LBB0_3 ldrsw x13, [x19, w11, sxtw #2] add x13, x22, x13, lsl #2 ldr w14, [x13] cmp w14, #2 b.lt .LBB0_2 b .LBB0_8 .LBB0_7: ldrsw x12, [x19, w11, sxtw #2] add w11, w11, #1 str wzr, [x22, x12, lsl #2] mov w12, #1 ldrsw x13, [x19, w11, sxtw #2] add x13, x22, x13, lsl #2 ldr w14, [x13] cmp w14, #2 b.lt .LBB0_2 .LBB0_8: sxtw x15, w11 add x15, x10, x15, lsl #2 .LBB0_9: ldrsw x16, [x15], #4 sub w14, w14, #1 str w14, [x13] add w12, w12, #1 add w11, w11, #1 add x13, x22, x16, lsl #2 ldr w14, [x13] cmp w14, #1 b.gt .LBB0_9 b .LBB0_2 .LBB0_10: mov w0, wzr .LBB0_11: add sp, sp, #19, lsl #12 add sp, sp, #2192 ldp x20, x19, [sp, #48] ldr x28, [sp, #16] ldp x22, x21, [sp, #32] ldp x29, x30, [sp], #64 ret
13,928
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
mips64
-O0
mips64 clang 21.1.0
subarraysWithKDistinct: .Lfunc_begin0 = .Ltmp0 lui $1, 1 daddiu $1, $1, 14544 dsubu $sp, $sp, $1 lui $1, 1 daddu $1, $sp, $1 sd $ra, 14536($1) lui $1, 1 daddu $1, $sp, $1 sd $fp, 14528($1) lui $1, 1 daddu $1, $sp, $1 sd $gp, 14520($1) move $fp, $sp lui $1, %hi(%neg(%gp_rel(subarraysWithKDistinct))) daddu $1, $1, $25 daddiu $gp, $1, %lo(%neg(%gp_rel(subarraysWithKDistinct))) move $1, $6 move $2, $5 lui $3, 1 daddu $3, $fp, $3 sd $4, 14512($3) lui $3, 1 daddu $3, $fp, $3 sw $2, 14508($3) lui $2, 1 daddu $2, $fp, $2 sw $1, 14504($2) ld $25, %call16(memset)($gp) lui $1, 1 ori $6, $1, 14468 daddiu $4, $fp, 36 daddiu $5, $zero, 0 jalr $25 nop sw $zero, 28($fp) sw $zero, 24($fp) addiu $1, $zero, 1 sw $1, 20($fp) sw $zero, 16($fp) b .LBB0_1 nop .LBB0_1: lw $1, 24($fp) lui $2, 1 daddu $2, $fp, $2 lw $2, 14508($2) slt $1, $1, $2 beqz $1, .LBB0_17 nop b .LBB0_3 nop .LBB0_3: lui $1, 1 daddu $1, $fp, $1 ld $1, 14512($1) lw $2, 24($fp) addiu $3, $2, 1 sw $3, 24($fp) sll $2, $2, 0 dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) sw $1, 32($fp) lw $1, 32($fp) dsll $2, $1, 2 daddiu $1, $fp, 36 daddu $1, $1, $2 lw $1, 0($1) bnez $1, .LBB0_6 nop b .LBB0_5 nop .LBB0_5: lui $1, 1 daddu $1, $fp, $1 lw $1, 14504($1) addiu $1, $1, -1 lui $2, 1 daddu $2, $fp, $2 sw $1, 14504($2) b .LBB0_6 nop .LBB0_6: lw $1, 32($fp) dsll $2, $1, 2 daddiu $1, $fp, 36 daddu $2, $1, $2 lw $1, 0($2) addiu $1, $1, 1 sw $1, 0($2) lui $1, 1 daddu $1, $fp, $1 lw $1, 14504($1) bgez $1, .LBB0_9 nop b .LBB0_8 nop .LBB0_8: lui $1, 1 daddu $1, $fp, $1 ld $1, 14512($1) lw $2, 28($fp) addiu $3, $2, 1 sw $3, 28($fp) sll $2, $2, 0 dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) sw $1, 32($fp) lw $1, 32($fp) dsll $2, $1, 2 daddiu $1, $fp, 36 daddu $1, $1, $2 sw $zero, 0($1) lui $1, 1 daddu $1, $fp, $1 sw $zero, 14504($1) addiu $1, $zero, 1 sw $1, 20($fp) b .LBB0_9 nop .LBB0_9: lui $1, 1 daddu $1, $fp, $1 lw $1, 14504($1) bnez $1, .LBB0_16 nop b .LBB0_11 nop .LBB0_11: b .LBB0_12 nop .LBB0_12: lui $1, 1 daddu $1, $fp, $1 ld $1, 14512($1) lw $2, 28($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) dsll $2, $1, 2 daddiu $1, $fp, 36 daddu $1, $1, $2 lw $1, 0($1) slti $1, $1, 2 bnez $1, .LBB0_15 nop b .LBB0_14 nop .LBB0_14: lui $1, 1 daddu $1, $fp, $1 ld $1, 14512($1) lw $2, 28($fp) addiu $3, $2, 1 sw $3, 28($fp) sll $2, $2, 0 dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) sw $1, 32($fp) lw $1, 32($fp) dsll $2, $1, 2 daddiu $1, $fp, 36 daddu $2, $1, $2 lw $1, 0($2) addiu $1, $1, -1 sw $1, 0($2) lw $1, 20($fp) addiu $1, $1, 1 sw $1, 20($fp) b .LBB0_12 nop .LBB0_15: lw $2, 20($fp) lw $1, 16($fp) addu $1, $1, $2 sw $1, 16($fp) b .LBB0_16 nop .LBB0_16: b .LBB0_1 nop .LBB0_17: lw $2, 16($fp) move $sp, $fp lui $1, 1 daddu $1, $sp, $1 ld $gp, 14520($1) lui $1, 1 daddu $1, $sp, $1 ld $fp, 14528($1) lui $1, 1 daddu $1, $sp, $1 ld $ra, 14536($1) lui $1, 1 daddiu $1, $1, 14544 daddu $sp, $sp, $1 jr $ra nop
13,929
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
mips64
-O1
mips64 clang 21.1.0
subarraysWithKDistinct: .Lfunc_begin0 = .Ltmp0 lui $1, 1 daddiu $1, $1, 14544 dsubu $sp, $sp, $1 lui $1, 1 daddu $1, $sp, $1 sd $ra, 14536($1) lui $1, 1 daddu $1, $sp, $1 sd $fp, 14528($1) lui $1, 1 daddu $1, $sp, $1 sd $gp, 14520($1) lui $1, 1 daddu $1, $sp, $1 sd $20, 14512($1) lui $1, 1 daddu $1, $sp, $1 sd $19, 14504($1) lui $1, 1 daddu $1, $sp, $1 sd $18, 14496($1) lui $1, 1 daddu $1, $sp, $1 sd $17, 14488($1) lui $1, 1 daddu $1, $sp, $1 sd $16, 14480($1) move $fp, $sp lui $1, %hi(%neg(%gp_rel(subarraysWithKDistinct))) daddu $1, $1, $25 daddiu $gp, $1, %lo(%neg(%gp_rel(subarraysWithKDistinct))) move $18, $6 move $19, $5 move $16, $4 lui $1, 1 ori $6, $1, 14468 daddiu $17, $fp, 12 daddiu $20, $zero, 0 ld $25, %call16(memset)($gp) move $4, $17 jalr $25 daddiu $5, $zero, 0 blez $19, .LBB0_12 nop daddiu $3, $16, 4 sll $4, $19, 0 addiu $6, $zero, 1 addiu $2, $zero, 0 b .LBB0_4 addiu $5, $zero, 0 .LBB0_2: addu $2, $6, $2 .LBB0_3: daddiu $20, $20, 1 beq $20, $4, .LBB0_13 nop .LBB0_4: dsll $1, $20, 2 daddu $1, $16, $1 lw $1, 0($1) dsll $1, $1, 2 daddu $1, $17, $1 lw $7, 0($1) addiu $8, $7, 1 sw $8, 0($1) sltiu $1, $7, 1 subu $18, $18, $1 bltz $18, .LBB0_7 nop bnez $18, .LBB0_3 nop b .LBB0_8 nop .LBB0_7: sll $1, $5, 0 dsll $1, $1, 2 daddu $1, $16, $1 lw $1, 0($1) dsll $1, $1, 2 daddu $1, $17, $1 sw $zero, 0($1) addiu $5, $5, 1 addiu $18, $zero, 0 bnez $18, .LBB0_3 addiu $6, $zero, 1 .LBB0_8: sll $1, $5, 0 dsll $8, $1, 2 daddu $1, $16, $8 lw $1, 0($1) dsll $1, $1, 2 daddu $7, $17, $1 lw $9, 0($7) slti $1, $9, 2 bnez $1, .LBB0_2 nop daddu $8, $3, $8 .LBB0_10: addiu $1, $9, -1 sw $1, 0($7) lw $1, 0($8) dsll $1, $1, 2 daddu $7, $17, $1 lw $9, 0($7) slti $1, $9, 2 daddiu $8, $8, 4 addiu $5, $5, 1 beqz $1, .LBB0_10 addiu $6, $6, 1 b .LBB0_2 nop .LBB0_12: addiu $2, $zero, 0 .LBB0_13: sll $2, $2, 0 move $sp, $fp lui $1, 1 daddu $1, $sp, $1 ld $16, 14480($1) lui $1, 1 daddu $1, $sp, $1 ld $17, 14488($1) lui $1, 1 daddu $1, $sp, $1 ld $18, 14496($1) lui $1, 1 daddu $1, $sp, $1 ld $19, 14504($1) lui $1, 1 daddu $1, $sp, $1 ld $20, 14512($1) lui $1, 1 daddu $1, $sp, $1 ld $gp, 14520($1) lui $1, 1 daddu $1, $sp, $1 ld $fp, 14528($1) lui $1, 1 daddu $1, $sp, $1 ld $ra, 14536($1) lui $1, 1 daddiu $1, $1, 14544 jr $ra daddu $sp, $sp, $1
13,930
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
mips64
-O2
mips64 clang 21.1.0
subarraysWithKDistinct: .Lfunc_begin0 = .Ltmp0 lui $1, 1 daddiu $1, $1, 14544 dsubu $sp, $sp, $1 lui $1, 1 daddu $1, $sp, $1 sd $ra, 14536($1) lui $1, 1 daddu $1, $sp, $1 sd $fp, 14528($1) lui $1, 1 daddu $1, $sp, $1 sd $gp, 14520($1) lui $1, 1 daddu $1, $sp, $1 sd $20, 14512($1) lui $1, 1 daddu $1, $sp, $1 sd $19, 14504($1) lui $1, 1 daddu $1, $sp, $1 sd $18, 14496($1) lui $1, 1 daddu $1, $sp, $1 sd $17, 14488($1) lui $1, 1 daddu $1, $sp, $1 sd $16, 14480($1) move $fp, $sp lui $1, %hi(%neg(%gp_rel(subarraysWithKDistinct))) daddu $1, $1, $25 daddiu $gp, $1, %lo(%neg(%gp_rel(subarraysWithKDistinct))) move $18, $6 move $19, $5 move $16, $4 lui $1, 1 ori $6, $1, 14468 daddiu $17, $fp, 12 daddiu $20, $zero, 0 ld $25, %call16(memset)($gp) move $4, $17 jalr $25 daddiu $5, $zero, 0 blez $19, .LBB0_12 nop daddiu $3, $16, 4 sll $4, $19, 0 addiu $6, $zero, 1 addiu $2, $zero, 0 b .LBB0_4 addiu $5, $zero, 0 .LBB0_2: addu $2, $6, $2 addiu $18, $zero, 0 .LBB0_3: daddiu $20, $20, 1 beq $20, $4, .LBB0_13 nop .LBB0_4: dsll $1, $20, 2 daddu $1, $16, $1 lw $1, 0($1) dsll $1, $1, 2 daddu $1, $17, $1 lw $7, 0($1) addiu $8, $7, 1 sw $8, 0($1) sltiu $1, $7, 1 subu $18, $18, $1 bltz $18, .LBB0_7 nop bnez $18, .LBB0_3 nop b .LBB0_8 nop .LBB0_7: sll $1, $5, 0 dsll $1, $1, 2 daddu $1, $16, $1 lw $1, 0($1) dsll $1, $1, 2 daddu $1, $17, $1 sw $zero, 0($1) addiu $5, $5, 1 addiu $6, $zero, 1 .LBB0_8: sll $1, $5, 0 dsll $8, $1, 2 daddu $1, $16, $8 lw $1, 0($1) dsll $1, $1, 2 daddu $7, $17, $1 lw $9, 0($7) slti $1, $9, 2 bnez $1, .LBB0_2 nop daddu $8, $3, $8 .LBB0_10: addiu $1, $9, -1 sw $1, 0($7) lw $1, 0($8) dsll $1, $1, 2 daddu $7, $17, $1 lw $9, 0($7) slti $1, $9, 2 daddiu $8, $8, 4 addiu $5, $5, 1 beqz $1, .LBB0_10 addiu $6, $6, 1 b .LBB0_2 nop .LBB0_12: addiu $2, $zero, 0 .LBB0_13: sll $2, $2, 0 move $sp, $fp lui $1, 1 daddu $1, $sp, $1 ld $16, 14480($1) lui $1, 1 daddu $1, $sp, $1 ld $17, 14488($1) lui $1, 1 daddu $1, $sp, $1 ld $18, 14496($1) lui $1, 1 daddu $1, $sp, $1 ld $19, 14504($1) lui $1, 1 daddu $1, $sp, $1 ld $20, 14512($1) lui $1, 1 daddu $1, $sp, $1 ld $gp, 14520($1) lui $1, 1 daddu $1, $sp, $1 ld $fp, 14528($1) lui $1, 1 daddu $1, $sp, $1 ld $ra, 14536($1) lui $1, 1 daddiu $1, $1, 14544 jr $ra daddu $sp, $sp, $1
13,931
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
mips64
-O3
mips64 clang 21.1.0
subarraysWithKDistinct: .Lfunc_begin0 = .Ltmp0 lui $1, 1 daddiu $1, $1, 14544 dsubu $sp, $sp, $1 lui $1, 1 daddu $1, $sp, $1 sd $ra, 14536($1) lui $1, 1 daddu $1, $sp, $1 sd $fp, 14528($1) lui $1, 1 daddu $1, $sp, $1 sd $gp, 14520($1) lui $1, 1 daddu $1, $sp, $1 sd $20, 14512($1) lui $1, 1 daddu $1, $sp, $1 sd $19, 14504($1) lui $1, 1 daddu $1, $sp, $1 sd $18, 14496($1) lui $1, 1 daddu $1, $sp, $1 sd $17, 14488($1) lui $1, 1 daddu $1, $sp, $1 sd $16, 14480($1) move $fp, $sp lui $1, %hi(%neg(%gp_rel(subarraysWithKDistinct))) daddiu $17, $fp, 12 move $19, $5 move $16, $4 move $18, $6 daddiu $5, $zero, 0 daddiu $20, $zero, 0 daddu $1, $1, $25 move $4, $17 daddiu $gp, $1, %lo(%neg(%gp_rel(subarraysWithKDistinct))) lui $1, 1 ld $25, %call16(memset)($gp) jalr $25 ori $6, $1, 14468 blez $19, .LBB0_12 nop daddiu $3, $16, 4 sll $4, $19, 0 addiu $6, $zero, 1 addiu $2, $zero, 0 b .LBB0_4 addiu $5, $zero, 0 .LBB0_2: addu $2, $6, $2 addiu $18, $zero, 0 .LBB0_3: daddiu $20, $20, 1 beq $20, $4, .LBB0_13 nop .LBB0_4: dsll $1, $20, 2 daddu $1, $16, $1 lw $1, 0($1) dsll $1, $1, 2 daddu $1, $17, $1 lw $7, 0($1) addiu $8, $7, 1 sw $8, 0($1) sltiu $1, $7, 1 subu $18, $18, $1 bltz $18, .LBB0_7 nop bnez $18, .LBB0_3 nop b .LBB0_8 nop .LBB0_7: sll $1, $5, 0 addiu $5, $5, 1 addiu $6, $zero, 1 dsll $1, $1, 2 daddu $1, $16, $1 lw $1, 0($1) dsll $1, $1, 2 daddu $1, $17, $1 sw $zero, 0($1) .LBB0_8: sll $1, $5, 0 dsll $8, $1, 2 daddu $1, $16, $8 lw $1, 0($1) dsll $1, $1, 2 daddu $7, $17, $1 lw $9, 0($7) slti $1, $9, 2 bnez $1, .LBB0_2 nop daddu $8, $3, $8 .LBB0_10: addiu $1, $9, -1 addiu $5, $5, 1 addiu $6, $6, 1 sw $1, 0($7) lw $1, 0($8) dsll $1, $1, 2 daddu $7, $17, $1 lw $9, 0($7) slti $1, $9, 2 beqz $1, .LBB0_10 daddiu $8, $8, 4 b .LBB0_2 nop .LBB0_12: addiu $2, $zero, 0 .LBB0_13: sll $2, $2, 0 move $sp, $fp lui $1, 1 daddu $1, $sp, $1 ld $16, 14480($1) lui $1, 1 daddu $1, $sp, $1 ld $17, 14488($1) lui $1, 1 daddu $1, $sp, $1 ld $18, 14496($1) lui $1, 1 daddu $1, $sp, $1 ld $19, 14504($1) lui $1, 1 daddu $1, $sp, $1 ld $20, 14512($1) lui $1, 1 daddu $1, $sp, $1 ld $gp, 14520($1) lui $1, 1 daddu $1, $sp, $1 ld $fp, 14528($1) lui $1, 1 daddu $1, $sp, $1 ld $ra, 14536($1) lui $1, 1 daddiu $1, $1, 14544 jr $ra daddu $sp, $sp, $1
13,932
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
mips64
-O0
mips64 gcc 15.2.0
subarraysWithKDistinct: daddiu $sp,$sp,-32752 sd $31,32744($sp) sd $fp,32736($sp) sd $28,32728($sp) li $3,47328 # 0xb8e0 dsubu $sp,$sp,$3 move $fp,$sp lui $28,%hi(%neg(%gp_rel(subarraysWithKDistinct))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(subarraysWithKDistinct))) li $2,65536 # 0x10000 daddu $2,$fp,$2 sd $4,14496($2) move $3,$5 move $2,$6 sll $3,$3,0 li $4,65536 # 0x10000 daddu $4,$fp,$4 sw $3,14504($4) sll $2,$2,0 li $3,65536 # 0x10000 daddu $3,$fp,$3 sw $2,14508($3) daddiu $3,$fp,24 li $2,65536 # 0x10000 ori $2,$2,0x3884 move $6,$2 move $5,$0 move $4,$3 ld $2,%call16(memset)($28) mtlo $2 mflo $25 jalr $25 nop sw $0,0($fp) sw $0,4($fp) li $2,1 # 0x1 sw $2,8($fp) sw $0,12($fp) b .L2 nop .L7: lw $2,4($fp) addiu $3,$2,1 sw $3,4($fp) dsll $2,$2,2 li $3,65536 # 0x10000 daddu $3,$fp,$3 ld $3,14496($3) daddu $2,$3,$2 lw $2,0($2) sw $2,16($fp) lw $2,16($fp) dsll $2,$2,2 daddu $2,$fp,$2 lw $2,24($2) bne $2,$0,.L3 nop li $2,65536 # 0x10000 daddu $3,$fp,$2 li $2,65536 # 0x10000 daddu $2,$fp,$2 lw $2,14508($2) addiu $2,$2,-1 sw $2,14508($3) .L3: lw $2,16($fp) dsll $2,$2,2 daddu $2,$fp,$2 lw $2,24($2) addiu $2,$2,1 move $3,$2 lw $2,16($fp) dsll $2,$2,2 daddu $2,$fp,$2 sw $3,24($2) li $2,65536 # 0x10000 daddu $2,$fp,$2 lw $2,14508($2) bgez $2,.L4 nop lw $2,0($fp) addiu $3,$2,1 sw $3,0($fp) dsll $2,$2,2 li $3,65536 # 0x10000 daddu $3,$fp,$3 ld $3,14496($3) daddu $2,$3,$2 lw $2,0($2) sw $2,16($fp) lw $2,16($fp) dsll $2,$2,2 daddu $2,$fp,$2 sw $0,24($2) li $2,65536 # 0x10000 daddu $2,$fp,$2 sw $0,14508($2) li $2,1 # 0x1 sw $2,8($fp) .L4: li $2,65536 # 0x10000 daddu $2,$fp,$2 lw $2,14508($2) bne $2,$0,.L2 nop b .L5 nop .L6: lw $2,0($fp) addiu $3,$2,1 sw $3,0($fp) dsll $2,$2,2 li $3,65536 # 0x10000 daddu $3,$fp,$3 ld $3,14496($3) daddu $2,$3,$2 lw $2,0($2) sw $2,16($fp) lw $2,16($fp) dsll $2,$2,2 daddu $2,$fp,$2 lw $2,24($2) addiu $2,$2,-1 move $3,$2 lw $2,16($fp) dsll $2,$2,2 daddu $2,$fp,$2 sw $3,24($2) lw $2,8($fp) addiu $2,$2,1 sw $2,8($fp) .L5: lw $2,0($fp) dsll $2,$2,2 li $3,65536 # 0x10000 daddu $3,$fp,$3 ld $3,14496($3) daddu $2,$3,$2 lw $2,0($2) dsll $2,$2,2 daddu $2,$fp,$2 lw $2,24($2) slt $2,$2,2 beq $2,$0,.L6 nop lw $3,12($fp) lw $2,8($fp) addu $2,$3,$2 sw $2,12($fp) .L2: li $2,65536 # 0x10000 daddu $2,$fp,$2 lw $3,4($fp) lw $2,14504($2) slt $2,$3,$2 bne $2,$0,.L7 nop lw $2,12($fp) li $8,47328 # 0xb8e0 daddu $sp,$fp,$8 ld $31,32744($sp) ld $fp,32736($sp) ld $28,32728($sp) daddiu $sp,$sp,32752 jr $31 nop
13,933
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
mips64
-O1
mips64 gcc 15.2.0
subarraysWithKDistinct: daddiu $sp,$sp,-32752 sd $31,32744($sp) sd $28,32736($sp) sd $18,32728($sp) sd $17,32720($sp) sd $16,32712($sp) li $3,47312 # 0xb8d0 dsubu $sp,$sp,$3 lui $28,%hi(%neg(%gp_rel(subarraysWithKDistinct))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(subarraysWithKDistinct))) move $16,$4 move $18,$5 move $17,$6 li $6,65536 # 0x10000 daddiu $6,$6,14468 move $5,$0 ld $25,%call16(memset)($28) 1: jalr $25 move $4,$sp blez $18,.L10 dsll $12,$18,2 daddu $12,$12,$16 move $8,$16 move $2,$0 li $9,1 # 0x1 move $4,$0 move $11,$0 b .L9 li $10,1 # 0x1 .L3: dsll $3,$3,2 .L17: daddu $3,$sp,$3 addiu $5,$5,1 bltz $17,.L15 sw $5,0($3) beq $17,$0,.L5 move $13,$4 .L6: daddiu $8,$8,4 beql $8,$12,.L18 li $8,47312 # 0xb8d0 .L9: lw $3,0($8) dsll $5,$3,2 daddu $5,$sp,$5 lw $5,0($5) beql $5,$0,.L3 addiu $17,$17,-1 b .L17 dsll $3,$3,2 .L15: addiu $13,$4,1 dsll $4,$4,2 daddu $4,$16,$4 lw $3,0($4) dsll $3,$3,2 daddu $3,$sp,$3 sw $0,0($3) move $9,$10 .L5: dsll $6,$13,2 daddu $3,$16,$6 lw $3,0($3) dsll $4,$3,2 daddu $4,$sp,$4 lw $5,0($4) slt $4,$5,2 bne $4,$0,.L7 move $4,$13 daddu $6,$16,$6 .L8: addiu $4,$4,1 dsll $3,$3,2 daddu $3,$sp,$3 addiu $5,$5,-1 sw $5,0($3) lw $3,4($6) dsll $5,$3,2 daddu $5,$sp,$5 lw $5,0($5) slt $7,$5,2 beq $7,$0,.L8 daddiu $6,$6,4 subu $9,$9,$13 addu $9,$9,$4 .L7: addu $2,$9,$2 b .L6 move $17,$11 b .L7 move $4,$13 .L10: move $2,$0 li $8,47312 # 0xb8d0 .L18: daddu $sp,$sp,$8 ld $31,32744($sp) ld $28,32736($sp) ld $18,32728($sp) ld $17,32720($sp) ld $16,32712($sp) jr $31 daddiu $sp,$sp,32752
13,934
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
mips64
-O2
mips64 gcc 15.2.0
subarraysWithKDistinct: daddiu $sp,$sp,-32752 sd $28,32736($sp) lui $28,%hi(%neg(%gp_rel(subarraysWithKDistinct))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(subarraysWithKDistinct))) ld $25,%call16(memset)($28) li $3,47312 # 0xb8d0 sd $18,32728($sp) sd $17,32720($sp) sd $16,32712($sp) sd $31,32744($sp) move $16,$6 dsubu $sp,$sp,$3 li $6,65536 # 0x10000 move $17,$4 move $18,$5 daddiu $6,$6,14468 move $5,$0 1: jalr $25 move $4,$sp blez $18,.L11 dsll $10,$18,32 lw $3,0($17) dsrl $10,$10,32 dsll $3,$3,2 daddu $2,$sp,$3 lw $7,0($2) dsll $10,$10,2 beq $7,$0,.L21 daddu $10,$17,$10 move $4,$7 move $9,$17 move $2,$0 li $11,1 # 0x1 move $7,$0 .L3: daddu $3,$sp,$3 addiu $4,$4,1 bgez $16,.L4 sw $4,0($3) dsll $3,$7,2 daddu $3,$17,$3 lw $3,0($3) addiu $12,$7,1 li $11,1 # 0x1 dsll $3,$3,2 daddu $3,$sp,$3 sw $0,0($3) .L7: dsll $4,$12,2 daddu $4,$17,$4 lw $6,0($4) dsll $5,$6,2 daddu $3,$sp,$5 lw $3,0($3) slt $6,$3,2 bne $6,$0,.L6 move $7,$12 .L9: lw $6,4($4) daddu $8,$sp,$5 addiu $3,$3,-1 dsll $5,$6,2 sw $3,0($8) daddu $3,$sp,$5 lw $3,0($3) addiu $7,$7,1 slt $6,$3,2 beq $6,$0,.L9 daddiu $4,$4,4 subu $11,$11,$12 addu $11,$11,$7 .L6: addu $2,$11,$2 move $16,$0 daddiu $9,$9,4 .L24: beq $9,$10,.L22 li $8,47312 # 0xb8d0 lw $3,0($9) dsll $3,$3,2 daddu $5,$sp,$3 lw $4,0($5) beql $4,$0,.L23 addiu $16,$16,-1 addiu $4,$4,1 sw $4,0($5) .L4: bnel $16,$0,.L24 daddiu $9,$9,4 b .L7 move $12,$7 .L21: move $2,$0 move $9,$17 li $11,1 # 0x1 addiu $16,$16,-1 .L23: b .L3 move $4,$0 .L11: move $2,$0 li $8,47312 # 0xb8d0 .L22: daddu $sp,$sp,$8 ld $31,32744($sp) ld $28,32736($sp) ld $18,32728($sp) ld $17,32720($sp) ld $16,32712($sp) jr $31 daddiu $sp,$sp,32752
13,935
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
mips64
-O3
mips64 gcc 15.2.0
subarraysWithKDistinct: daddiu $sp,$sp,-32752 sd $28,32736($sp) lui $28,%hi(%neg(%gp_rel(subarraysWithKDistinct))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(subarraysWithKDistinct))) ld $25,%call16(memset)($28) li $3,47312 # 0xb8d0 sd $18,32728($sp) sd $17,32720($sp) sd $16,32712($sp) sd $31,32744($sp) move $16,$6 dsubu $sp,$sp,$3 li $6,65536 # 0x10000 move $17,$4 move $18,$5 daddiu $6,$6,14468 move $5,$0 1: jalr $25 move $4,$sp blez $18,.L11 dsll $10,$18,32 lw $3,0($17) dsrl $10,$10,32 dsll $3,$3,2 daddu $2,$sp,$3 lw $7,0($2) dsll $10,$10,2 beq $7,$0,.L21 daddu $10,$17,$10 move $4,$7 move $9,$17 move $2,$0 li $11,1 # 0x1 move $7,$0 .L3: daddu $3,$sp,$3 addiu $4,$4,1 bgez $16,.L4 sw $4,0($3) dsll $3,$7,2 daddu $3,$17,$3 lw $3,0($3) addiu $12,$7,1 li $11,1 # 0x1 dsll $3,$3,2 daddu $3,$sp,$3 sw $0,0($3) .L7: dsll $4,$12,2 daddu $4,$17,$4 lw $6,0($4) dsll $5,$6,2 daddu $3,$sp,$5 lw $3,0($3) slt $6,$3,2 bne $6,$0,.L6 move $7,$12 .L9: lw $6,4($4) daddu $8,$sp,$5 addiu $3,$3,-1 dsll $5,$6,2 sw $3,0($8) daddu $3,$sp,$5 lw $3,0($3) addiu $7,$7,1 slt $6,$3,2 beq $6,$0,.L9 daddiu $4,$4,4 subu $11,$11,$12 addu $11,$11,$7 .L6: addu $2,$2,$11 move $16,$0 daddiu $9,$9,4 .L24: beq $10,$9,.L22 li $8,47312 # 0xb8d0 lw $3,0($9) dsll $3,$3,2 daddu $5,$sp,$3 lw $4,0($5) beql $4,$0,.L23 addiu $16,$16,-1 addiu $4,$4,1 sw $4,0($5) .L4: bnel $16,$0,.L24 daddiu $9,$9,4 b .L7 move $12,$7 .L21: move $9,$17 move $2,$0 li $11,1 # 0x1 addiu $16,$16,-1 .L23: b .L3 move $4,$0 .L11: move $2,$0 li $8,47312 # 0xb8d0 .L22: daddu $sp,$sp,$8 ld $31,32744($sp) ld $28,32736($sp) ld $18,32728($sp) ld $17,32720($sp) ld $16,32712($sp) jr $31 daddiu $sp,$sp,32752
13,936
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
riscv64
-O0
RISC-V 64 clang 21.1.0
subarraysWithKDistinct: addi sp, sp, -496 sd ra, 488(sp) sd s0, 480(sp) addi s0, sp, 496 lui a3, 19 addi a3, a3, 1760 sub sp, sp, a3 lui a3, 20 addi a3, a3, -1856 sub a3, s0, a3 lui a4, 20 sub a4, s0, a4 sd a3, 1840(a4) sd a0, -32(s0) sw a1, -36(s0) sw a2, -40(s0) lui a0, 20 addi a2, a0, -1916 lui a0, 20 addi a0, a0, -1876 sub a0, s0, a0 li a1, 0 lui a3, 20 sub a3, s0, a3 sd a1, 1848(a3) call memset lui a1, 20 sub a1, s0, a1 ld a1, 1840(a1) lui a0, 20 sub a0, s0, a0 ld a0, 1848(a0) sw a0, 12(a1) sw a0, 8(a1) li a2, 1 sw a2, 4(a1) sw a0, 0(a1) j .LBB0_1 .LBB0_1: lui a0, 20 sub a0, s0, a0 ld a0, 1840(a0) lw a0, 8(a0) lw a1, -36(s0) bge a0, a1, .LBB0_12 j .LBB0_2 .LBB0_2: lui a0, 20 sub a0, s0, a0 ld a0, 1840(a0) ld a1, -32(s0) lw a2, 8(a0) addiw a3, a2, 1 sw a3, 8(a0) slli a2, a2, 2 add a1, a1, a2 lw a1, 0(a1) sw a1, 16(a0) lw a0, 16(a0) slli a1, a0, 2 lui a0, 20 addi a0, a0, -1876 sub a0, s0, a0 add a0, a0, a1 lw a0, 0(a0) bnez a0, .LBB0_4 j .LBB0_3 .LBB0_3: lw a0, -40(s0) addiw a0, a0, -1 sw a0, -40(s0) j .LBB0_4 .LBB0_4: lui a0, 20 sub a0, s0, a0 ld a0, 1840(a0) lw a0, 16(a0) slli a1, a0, 2 lui a0, 20 addi a0, a0, -1876 sub a0, s0, a0 add a1, a1, a0 lw a0, 0(a1) addiw a0, a0, 1 sw a0, 0(a1) lw a0, -40(s0) bgez a0, .LBB0_6 j .LBB0_5 .LBB0_5: lui a0, 20 sub a0, s0, a0 ld a1, 1840(a0) ld a0, -32(s0) lw a2, 12(a1) addiw a3, a2, 1 sw a3, 12(a1) slli a2, a2, 2 add a0, a0, a2 lw a0, 0(a0) sw a0, 16(a1) lw a0, 16(a1) slli a2, a0, 2 lui a0, 20 addi a0, a0, -1876 sub a0, s0, a0 add a2, a2, a0 li a0, 0 sw a0, 0(a2) sw a0, -40(s0) li a0, 1 sw a0, 4(a1) j .LBB0_6 .LBB0_6: lw a0, -40(s0) bnez a0, .LBB0_11 j .LBB0_7 .LBB0_7: j .LBB0_8 .LBB0_8: lui a0, 20 sub a0, s0, a0 ld a1, 1840(a0) ld a0, -32(s0) lw a1, 12(a1) slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) slli a1, a0, 2 lui a0, 20 addi a0, a0, -1876 sub a0, s0, a0 add a0, a0, a1 lw a0, 0(a0) li a1, 2 blt a0, a1, .LBB0_10 j .LBB0_9 .LBB0_9: lui a0, 20 sub a0, s0, a0 ld a1, 1840(a0) ld a0, -32(s0) lw a2, 12(a1) addiw a3, a2, 1 sw a3, 12(a1) slli a2, a2, 2 add a0, a0, a2 lw a0, 0(a0) sw a0, 16(a1) lw a0, 16(a1) slli a2, a0, 2 lui a0, 20 addi a0, a0, -1876 sub a0, s0, a0 add a2, a2, a0 lw a0, 0(a2) addiw a0, a0, -1 sw a0, 0(a2) lw a0, 4(a1) addiw a0, a0, 1 sw a0, 4(a1) j .LBB0_8 .LBB0_10: lui a0, 20 sub a0, s0, a0 ld a1, 1840(a0) lw a2, 4(a1) lw a0, 0(a1) addw a0, a0, a2 sw a0, 0(a1) j .LBB0_11 .LBB0_11: j .LBB0_1 .LBB0_12: lui a0, 20 sub a0, s0, a0 ld a0, 1840(a0) lw a0, 0(a0) lui a1, 19 addi a1, a1, 1760 add sp, sp, a1 ld ra, 488(sp) ld s0, 480(sp) addi sp, sp, 496 ret
13,937
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
riscv64
-O1
RISC-V 64 clang 21.1.0
subarraysWithKDistinct: addi sp, sp, -496 sd ra, 488(sp) sd s0, 480(sp) sd s1, 472(sp) sd s2, 464(sp) sd s3, 456(sp) sd s4, 448(sp) sd s5, 440(sp) lui a3, 19 addi a3, a3, 1760 sub sp, sp, a3 mv s5, a2 mv s2, a1 mv s3, a0 lui a0, 20 addi a2, a0, -1916 addi a0, sp, 20 addi s4, sp, 20 li a1, 0 call memset blez s2, .LBB0_10 li a1, 0 li a0, 0 li a5, 0 addi a7, s3, 4 li t0, 1 li a6, 2 li a4, 1 j .LBB0_4 .LBB0_2: addw a0, a0, a4 .LBB0_3: addi a1, a1, 1 beq a1, s2, .LBB0_11 .LBB0_4: slli a2, a1, 2 add a2, a2, s3 lw a2, 0(a2) slli a2, a2, 2 add a2, a2, s4 lw a3, 0(a2) seqz s0, a3 subw s5, s5, s0 addi a3, a3, 1 sw a3, 0(a2) bltz s5, .LBB0_6 bnez s5, .LBB0_3 j .LBB0_7 .LBB0_6: li s5, 0 slli a2, a5, 2 add a2, a2, s3 lw a2, 0(a2) addiw a5, a5, 1 slli a2, a2, 2 add a2, a2, s4 sw zero, 0(a2) li a4, 1 bnez s5, .LBB0_3 .LBB0_7: slli a2, a5, 2 add a3, s3, a2 lw a3, 0(a3) slli a3, a3, 2 add s0, s4, a3 lw a3, 0(s0) blt a3, a6, .LBB0_2 add a2, a2, a7 .LBB0_9: lw s1, 0(a2) addi a3, a3, -1 sw a3, 0(s0) slli s0, s1, 2 add s0, s0, s4 lw a3, 0(s0) addi a4, a4, 1 addiw a5, a5, 1 addi a2, a2, 4 blt t0, a3, .LBB0_9 j .LBB0_2 .LBB0_10: li a0, 0 .LBB0_11: lui a1, 19 addi a1, a1, 1760 add sp, sp, a1 ld ra, 488(sp) ld s0, 480(sp) ld s1, 472(sp) ld s2, 464(sp) ld s3, 456(sp) ld s4, 448(sp) ld s5, 440(sp) addi sp, sp, 496 ret
13,938
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
riscv64
-O2
RISC-V 64 clang 21.1.0
subarraysWithKDistinct: addi sp, sp, -496 sd ra, 488(sp) sd s0, 480(sp) sd s1, 472(sp) sd s2, 464(sp) sd s3, 456(sp) sd s4, 448(sp) lui a3, 19 addi a3, a3, 1744 sub sp, sp, a3 mv s0, a2 mv s2, a1 mv s3, a0 lui a0, 20 addi a2, a0, -1916 addi a0, sp, 12 addi s4, sp, 12 li a1, 0 call memset blez s2, .LBB0_10 li a1, 0 li a0, 0 li a4, 0 addi a7, s3, 4 li t0, 1 li a6, 2 li a5, 1 j .LBB0_4 .LBB0_2: li s0, 0 addw a0, a0, a5 .LBB0_3: addi a1, a1, 1 beq a1, s2, .LBB0_11 .LBB0_4: slli a2, a1, 2 add a2, a2, s3 lw a2, 0(a2) slli a2, a2, 2 add a2, a2, s4 lw s1, 0(a2) seqz a3, s1 subw s0, s0, a3 addi s1, s1, 1 sw s1, 0(a2) bltz s0, .LBB0_6 bnez s0, .LBB0_3 j .LBB0_7 .LBB0_6: slli a2, a4, 2 add a2, a2, s3 lw a2, 0(a2) addiw a4, a4, 1 slli a2, a2, 2 add a2, a2, s4 sw zero, 0(a2) li a5, 1 .LBB0_7: slli a2, a4, 2 add a3, s3, a2 lw a3, 0(a3) slli a3, a3, 2 add s1, s4, a3 lw s0, 0(s1) blt s0, a6, .LBB0_2 add a2, a2, a7 .LBB0_9: lw a3, 0(a2) addi s0, s0, -1 sw s0, 0(s1) slli a3, a3, 2 add s1, s4, a3 lw s0, 0(s1) addi a5, a5, 1 addiw a4, a4, 1 addi a2, a2, 4 blt t0, s0, .LBB0_9 j .LBB0_2 .LBB0_10: li a0, 0 .LBB0_11: lui a1, 19 addi a1, a1, 1744 add sp, sp, a1 ld ra, 488(sp) ld s0, 480(sp) ld s1, 472(sp) ld s2, 464(sp) ld s3, 456(sp) ld s4, 448(sp) addi sp, sp, 496 ret
13,939
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
riscv64
-O3
RISC-V 64 clang 21.1.0
subarraysWithKDistinct: addi sp, sp, -496 sd ra, 488(sp) sd s0, 480(sp) sd s1, 472(sp) sd s2, 464(sp) sd s3, 456(sp) sd s4, 448(sp) lui a3, 19 addi a3, a3, 1744 sub sp, sp, a3 mv s0, a2 mv s2, a1 mv s3, a0 lui a0, 20 addi a2, a0, -1916 addi a0, sp, 12 addi s4, sp, 12 li a1, 0 call memset blez s2, .LBB0_10 li a1, 0 li a0, 0 li a4, 0 addi a7, s3, 4 li t0, 1 li a6, 2 li a5, 1 j .LBB0_4 .LBB0_2: li s0, 0 addw a0, a0, a5 .LBB0_3: addi a1, a1, 1 beq a1, s2, .LBB0_11 .LBB0_4: slli a2, a1, 2 add a2, a2, s3 lw a2, 0(a2) slli a2, a2, 2 add a2, a2, s4 lw s1, 0(a2) seqz a3, s1 subw s0, s0, a3 addi s1, s1, 1 sw s1, 0(a2) bltz s0, .LBB0_6 bnez s0, .LBB0_3 j .LBB0_7 .LBB0_6: slli a2, a4, 2 add a2, a2, s3 lw a2, 0(a2) addiw a4, a4, 1 slli a2, a2, 2 add a2, a2, s4 sw zero, 0(a2) li a5, 1 .LBB0_7: slli a2, a4, 2 add a3, s3, a2 lw a3, 0(a3) slli a3, a3, 2 add s1, s4, a3 lw s0, 0(s1) blt s0, a6, .LBB0_2 add a2, a2, a7 .LBB0_9: lw a3, 0(a2) addi s0, s0, -1 sw s0, 0(s1) slli a3, a3, 2 add s1, s4, a3 lw s0, 0(s1) addi a5, a5, 1 addiw a4, a4, 1 addi a2, a2, 4 blt t0, s0, .LBB0_9 j .LBB0_2 .LBB0_10: li a0, 0 .LBB0_11: lui a1, 19 addi a1, a1, 1744 add sp, sp, a1 ld ra, 488(sp) ld s0, 480(sp) ld s1, 472(sp) ld s2, 464(sp) ld s3, 456(sp) ld s4, 448(sp) addi sp, sp, 496 ret
13,940
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
riscv64
-O0
RISC-V 64 gcc 15.2.0
subarraysWithKDistinct: addi sp,sp,-16 sd ra,8(sp) sd s0,0(sp) addi s0,sp,16 li t0,-81920 addi t0,t0,1872 add sp,sp,t0 li a5,-81920 addi a5,a5,-16 add a5,a5,s0 sd a0,1880(a5) mv a4,a1 mv a3,a2 li a5,-81920 addi a5,a5,-16 add a5,a5,s0 sw a4,1876(a5) li a5,-81920 addi a5,a5,-16 add a5,a5,s0 mv a4,a3 sw a4,1872(a5) li a5,-81920 addi a5,a5,-16 add a5,a5,s0 addi a4,a5,1896 li a5,81920 addi a5,a5,-1916 mv a2,a5 li a1,0 mv a0,a4 call memset sw zero,-20(s0) sw zero,-24(s0) li a5,1 sw a5,-28(s0) sw zero,-32(s0) j .L2 .L7: lw a5,-24(s0) addiw a4,a5,1 sw a4,-24(s0) slli a5,a5,2 li a4,-81920 addi a4,a4,-16 add a4,a4,s0 ld a4,1880(a4) add a5,a4,a5 lw a5,0(a5) sw a5,-36(s0) li a5,-81920 addi a5,a5,-16 add a4,a5,s0 lw a5,-36(s0) slli a5,a5,2 add a5,a4,a5 lw a5,1896(a5) bne a5,zero,.L3 li a5,-81920 addi a5,a5,-16 add a5,a5,s0 li a4,-81920 addi a4,a4,-16 add a4,a4,s0 lw a4,1872(a4) addiw a4,a4,-1 sw a4,1872(a5) .L3: li a5,-81920 addi a5,a5,-16 add a4,a5,s0 lw a5,-36(s0) slli a5,a5,2 add a5,a4,a5 lw a5,1896(a5) addiw a5,a5,1 sext.w a4,a5 li a5,-81920 addi a5,a5,-16 add a3,a5,s0 lw a5,-36(s0) slli a5,a5,2 add a5,a3,a5 sw a4,1896(a5) li a5,-81920 addi a5,a5,-16 add a5,a5,s0 lw a5,1872(a5) sext.w a5,a5 bge a5,zero,.L4 lw a5,-20(s0) addiw a4,a5,1 sw a4,-20(s0) slli a5,a5,2 li a4,-81920 addi a4,a4,-16 add a4,a4,s0 ld a4,1880(a4) add a5,a4,a5 lw a5,0(a5) sw a5,-36(s0) li a5,-81920 addi a5,a5,-16 add a4,a5,s0 lw a5,-36(s0) slli a5,a5,2 add a5,a4,a5 sw zero,1896(a5) li a5,-81920 addi a5,a5,-16 add a5,a5,s0 sw zero,1872(a5) li a5,1 sw a5,-28(s0) .L4: li a5,-81920 addi a5,a5,-16 add a5,a5,s0 lw a5,1872(a5) sext.w a5,a5 bne a5,zero,.L2 j .L5 .L6: lw a5,-20(s0) addiw a4,a5,1 sw a4,-20(s0) slli a5,a5,2 li a4,-81920 addi a4,a4,-16 add a4,a4,s0 ld a4,1880(a4) add a5,a4,a5 lw a5,0(a5) sw a5,-36(s0) li a5,-81920 addi a5,a5,-16 add a4,a5,s0 lw a5,-36(s0) slli a5,a5,2 add a5,a4,a5 lw a5,1896(a5) addiw a5,a5,-1 sext.w a4,a5 li a5,-81920 addi a5,a5,-16 add a3,a5,s0 lw a5,-36(s0) slli a5,a5,2 add a5,a3,a5 sw a4,1896(a5) lw a5,-28(s0) addiw a5,a5,1 sw a5,-28(s0) .L5: lw a5,-20(s0) slli a5,a5,2 li a4,-81920 addi a4,a4,-16 add a4,a4,s0 ld a4,1880(a4) add a5,a4,a5 lw a5,0(a5) li a4,-81920 addi a4,a4,-16 add a4,a4,s0 slli a5,a5,2 add a5,a4,a5 lw a4,1896(a5) li a5,1 bgt a4,a5,.L6 lw a5,-32(s0) mv a4,a5 lw a5,-28(s0) addw a5,a4,a5 sw a5,-32(s0) .L2: li a5,-81920 addi a5,a5,-16 add a5,a5,s0 lw a4,-24(s0) lw a5,1876(a5) sext.w a4,a4 sext.w a5,a5 blt a4,a5,.L7 lw a5,-32(s0) mv a0,a5 li t0,81920 addi t0,t0,-1872 add sp,sp,t0 ld ra,8(sp) ld s0,0(sp) addi sp,sp,16 jr ra
13,941
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
riscv64
-O1
RISC-V 64 gcc 15.2.0
subarraysWithKDistinct: addi sp,sp,-32 sd ra,24(sp) sd s0,16(sp) sd s1,8(sp) sd s2,0(sp) li t0,-81920 addi t0,t0,1904 add sp,sp,t0 mv s0,a0 mv s2,a1 mv s1,a2 li a2,81920 addi a2,a2,-1916 li a1,0 addi a0,sp,8 call memset ble s2,zero,.L10 slli t3,s2,2 add t3,t3,s0 mv a7,s0 li a0,0 li t5,1 li a6,0 addi a1,sp,-1904 mv t1,t5 j .L9 .L3: slli a5,a5,2 add a5,a1,a5 addiw a4,a4,1 sw a4,1912(a5) blt s1,zero,.L15 beq s1,zero,.L16 .L6: addi a7,a7,4 beq a7,t3,.L2 .L9: lw a5,0(a7) slli a4,a5,2 add a4,a1,a4 lw a4,1912(a4) bne a4,zero,.L3 addiw s1,s1,-1 j .L3 .L15: addiw t4,a6,1 slli a6,a6,2 add a6,s0,a6 lw a5,0(a6) slli a5,a5,2 add a5,a1,a5 sw zero,1912(a5) mv t5,t1 .L5: slli a3,t4,2 add a5,s0,a3 lw a5,0(a5) slli a4,a5,2 add a4,a1,a4 lw a4,1912(a4) ble a4,t1,.L11 add a3,s0,a3 mv a6,t4 .L8: addiw a2,a6,1 mv a6,a2 slli a5,a5,2 add a5,a1,a5 addiw a4,a4,-1 sw a4,1912(a5) lw a5,4(a3) slli a4,a5,2 add a4,a1,a4 lw a4,1912(a4) addi a3,a3,4 bgt a4,t1,.L8 subw t4,t5,t4 addw t5,t4,a2 .L7: addw a0,t5,a0 li s1,0 j .L6 .L16: mv t4,a6 j .L5 .L11: mv a6,t4 j .L7 .L10: li a0,0 .L2: li t0,81920 addi t0,t0,-1904 add sp,sp,t0 ld ra,24(sp) ld s0,16(sp) ld s1,8(sp) ld s2,0(sp) addi sp,sp,32 jr ra
13,942
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
riscv64
-O2
RISC-V 64 gcc 15.2.0
subarraysWithKDistinct: li t0,-81920 addi sp,sp,-48 addi t0,t0,1904 sd s0,32(sp) sd s1,24(sp) sd s3,8(sp) sd ra,40(sp) sd s2,16(sp) mv s1,a2 add sp,sp,t0 li a2,81920 mv s3,a1 mv s0,a0 addi a2,a2,-1916 addi a0,sp,8 li a1,0 call memset ble s3,zero,.L11 lw a4,0(s0) slli t3,s3,2 add t3,s0,t3 slli a4,a4,2 add s2,sp,a4 lw a1,8(s2) beq a1,zero,.L21 mv a3,a1 mv t1,s0 li a0,0 li t4,1 li a1,0 .L3: addi a5,sp,-1904 addiw a3,a3,1 add a4,a5,a4 sw a3,1912(a4) bge s1,zero,.L4 slli a4,a1,2 add a4,s0,a4 lw a4,0(a4) addiw t6,a1,1 li t4,1 slli a4,a4,2 add a5,a5,a4 sw zero,1912(a5) .L7: slli a4,t6,2 add a4,s0,a4 lw a6,0(a4) addi a2,sp,-1904 li t5,1 slli a3,a6,2 add a5,a2,a3 lw a5,1912(a5) mv a1,t6 ble a5,t5,.L6 .L9: lw a6,4(a4) add a7,a2,a3 addiw a5,a5,-1 slli a3,a6,2 sw a5,1912(a7) add a5,a2,a3 lw a5,1912(a5) addiw a1,a1,1 addi a4,a4,4 bgt a5,t5,.L9 subw t6,t4,t6 addw t4,t6,a1 .L6: addw a0,t4,a0 li s1,0 .L8: addi t1,t1,4 beq t1,t3,.L2 lw a4,0(t1) addi a5,sp,-1904 slli a4,a4,2 add a5,a5,a4 lw a3,1912(a5) beq a3,zero,.L10 addiw a3,a3,1 sw a3,1912(a5) .L4: bne s1,zero,.L8 mv t6,a1 j .L7 .L21: li a0,0 mv t1,s0 li t4,1 .L10: addiw s1,s1,-1 li a3,0 j .L3 .L11: li a0,0 .L2: li t0,81920 addi t0,t0,-1904 add sp,sp,t0 ld ra,40(sp) ld s0,32(sp) ld s1,24(sp) ld s2,16(sp) ld s3,8(sp) addi sp,sp,48 jr ra
13,943
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
riscv64
-O3
RISC-V 64 gcc 15.2.0
subarraysWithKDistinct: li t0,-81920 addi sp,sp,-48 addi t0,t0,1904 sd s0,32(sp) sd s1,24(sp) sd s3,8(sp) sd ra,40(sp) sd s2,16(sp) mv s1,a2 add sp,sp,t0 li a2,81920 mv s3,a1 mv s0,a0 addi a2,a2,-1916 addi a0,sp,8 li a1,0 call memset ble s3,zero,.L11 lw a4,0(s0) slli t3,s3,2 add t3,s0,t3 slli a4,a4,2 add s2,sp,a4 lw a1,8(s2) beq a1,zero,.L21 mv a3,a1 mv t1,s0 li a0,0 li t4,1 li a1,0 .L3: addi a5,sp,-1904 addiw a3,a3,1 add a4,a5,a4 sw a3,1912(a4) bge s1,zero,.L4 slli a4,a1,2 add a4,s0,a4 lw a4,0(a4) addiw t6,a1,1 li t4,1 slli a4,a4,2 add a5,a5,a4 sw zero,1912(a5) .L7: slli a4,t6,2 add a4,s0,a4 lw a6,0(a4) addi a2,sp,-1904 li t5,1 slli a3,a6,2 add a5,a2,a3 lw a5,1912(a5) mv a1,t6 ble a5,t5,.L6 .L9: lw a6,4(a4) add a7,a2,a3 addiw a5,a5,-1 slli a3,a6,2 sw a5,1912(a7) add a5,a2,a3 lw a5,1912(a5) addiw a1,a1,1 addi a4,a4,4 bgt a5,t5,.L9 subw t6,t4,t6 addw t4,t6,a1 .L6: addw a0,a0,t4 li s1,0 .L8: addi t1,t1,4 beq t3,t1,.L2 lw a4,0(t1) addi a5,sp,-1904 slli a4,a4,2 add a5,a5,a4 lw a3,1912(a5) beq a3,zero,.L10 addiw a3,a3,1 sw a3,1912(a5) .L4: bne s1,zero,.L8 mv t6,a1 j .L7 .L21: mv t1,s0 li a0,0 li t4,1 .L10: addiw s1,s1,-1 li a3,0 j .L3 .L11: li a0,0 .L2: li t0,81920 addi t0,t0,-1904 add sp,sp,t0 ld ra,40(sp) ld s0,32(sp) ld s1,24(sp) ld s2,16(sp) ld s3,8(sp) addi sp,sp,48 jr ra
13,944
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
x86-64
-O0
x86-64 clang 21.1.0
subarraysWithKDistinct: push rbp mov rbp, rsp sub rsp, 80064 mov qword ptr [rbp - 8], rdi mov dword ptr [rbp - 12], esi mov dword ptr [rbp - 16], edx lea rdi, [rbp - 80032] xor esi, esi mov edx, 80004 call memset@PLT mov dword ptr [rbp - 80040], 0 mov dword ptr [rbp - 80044], 0 mov dword ptr [rbp - 80048], 1 mov dword ptr [rbp - 80052], 0 .LBB0_1: mov eax, dword ptr [rbp - 80044] cmp eax, dword ptr [rbp - 12] jge .LBB0_12 mov rax, qword ptr [rbp - 8] mov ecx, dword ptr [rbp - 80044] mov edx, ecx add edx, 1 mov dword ptr [rbp - 80044], edx movsxd rcx, ecx mov eax, dword ptr [rax + 4*rcx] mov dword ptr [rbp - 80036], eax movsxd rax, dword ptr [rbp - 80036] cmp dword ptr [rbp + 4*rax - 80032], 0 jne .LBB0_4 mov eax, dword ptr [rbp - 16] add eax, -1 mov dword ptr [rbp - 16], eax .LBB0_4: movsxd rax, dword ptr [rbp - 80036] mov ecx, dword ptr [rbp + 4*rax - 80032] add ecx, 1 mov dword ptr [rbp + 4*rax - 80032], ecx cmp dword ptr [rbp - 16], 0 jge .LBB0_6 mov rax, qword ptr [rbp - 8] mov ecx, dword ptr [rbp - 80040] mov edx, ecx add edx, 1 mov dword ptr [rbp - 80040], edx movsxd rcx, ecx mov eax, dword ptr [rax + 4*rcx] mov dword ptr [rbp - 80036], eax movsxd rax, dword ptr [rbp - 80036] mov dword ptr [rbp + 4*rax - 80032], 0 mov dword ptr [rbp - 16], 0 mov dword ptr [rbp - 80048], 1 .LBB0_6: cmp dword ptr [rbp - 16], 0 jne .LBB0_11 jmp .LBB0_8 .LBB0_8: mov rax, qword ptr [rbp - 8] movsxd rcx, dword ptr [rbp - 80040] movsxd rax, dword ptr [rax + 4*rcx] cmp dword ptr [rbp + 4*rax - 80032], 1 jle .LBB0_10 mov rax, qword ptr [rbp - 8] mov ecx, dword ptr [rbp - 80040] mov edx, ecx add edx, 1 mov dword ptr [rbp - 80040], edx movsxd rcx, ecx mov eax, dword ptr [rax + 4*rcx] mov dword ptr [rbp - 80036], eax movsxd rax, dword ptr [rbp - 80036] mov ecx, dword ptr [rbp + 4*rax - 80032] add ecx, -1 mov dword ptr [rbp + 4*rax - 80032], ecx mov eax, dword ptr [rbp - 80048] add eax, 1 mov dword ptr [rbp - 80048], eax jmp .LBB0_8 .LBB0_10: mov eax, dword ptr [rbp - 80048] add eax, dword ptr [rbp - 80052] mov dword ptr [rbp - 80052], eax .LBB0_11: jmp .LBB0_1 .LBB0_12: mov eax, dword ptr [rbp - 80052] add rsp, 80064 pop rbp ret
13,945
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
x86-64
-O1
x86-64 clang 21.1.0
subarraysWithKDistinct: push rbp push r15 push r14 push rbx sub rsp, 80008 mov ebp, edx mov r15d, esi mov rbx, rdi mov rdi, rsp xor r14d, r14d mov edx, 80004 xor esi, esi call memset@PLT test r15d, r15d jle .LBB0_10 mov eax, r15d lea rcx, [rbx + 4] mov edi, 1 xor edx, edx xor r14d, r14d xor esi, esi jmp .LBB0_2 .LBB0_8: add r14d, edi .LBB0_9: inc rdx cmp rdx, rax je .LBB0_10 .LBB0_2: movsxd r8, dword ptr [rbx + 4*rdx] mov r9d, dword ptr [rsp + 4*r8] xor r10d, r10d test r9d, r9d sete r10b inc r9d sub ebp, r10d mov dword ptr [rsp + 4*r8], r9d js .LBB0_3 test ebp, ebp jne .LBB0_9 jmp .LBB0_5 .LBB0_3: movsxd rdi, esi inc esi movsxd rdi, dword ptr [rbx + 4*rdi] mov dword ptr [rsp + 4*rdi], 0 mov edi, 1 xor ebp, ebp test ebp, ebp jne .LBB0_9 .LBB0_5: movsxd r8, esi movsxd r10, dword ptr [rbx + 4*r8] mov r9d, dword ptr [rsp + 4*r10] cmp r9d, 2 jl .LBB0_8 lea r10, [rsp + 4*r10] lea r8, [rcx + 4*r8] .LBB0_7: dec r9d mov dword ptr [r10], r9d inc edi movsxd r9, dword ptr [r8] lea r10, [rsp + 4*r9] mov r9d, dword ptr [rsp + 4*r9] inc esi add r8, 4 cmp r9d, 1 jg .LBB0_7 jmp .LBB0_8 .LBB0_10: mov eax, r14d add rsp, 80008 pop rbx pop r14 pop r15 pop rbp ret
13,946
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
x86-64
-O2
x86-64 clang 21.1.0
subarraysWithKDistinct: push rbp push r15 push r14 push rbx sub rsp, 80008 mov r14d, edx mov r15d, esi mov rbx, rdi mov rdi, rsp xor ebp, ebp mov edx, 80004 xor esi, esi call memset@PLT test r15d, r15d jle .LBB0_10 mov eax, r15d lea rcx, [rbx + 4] mov edi, 1 xor edx, edx xor ebp, ebp xor esi, esi jmp .LBB0_2 .LBB0_8: add ebp, edi xor r14d, r14d .LBB0_9: inc rdx cmp rdx, rax je .LBB0_10 .LBB0_2: movsxd r8, dword ptr [rbx + 4*rdx] mov r9d, dword ptr [rsp + 4*r8] xor r10d, r10d test r9d, r9d sete r10b inc r9d sub r14d, r10d mov dword ptr [rsp + 4*r8], r9d js .LBB0_3 jne .LBB0_9 jmp .LBB0_5 .LBB0_3: movsxd rdi, esi inc esi movsxd rdi, dword ptr [rbx + 4*rdi] mov dword ptr [rsp + 4*rdi], 0 mov edi, 1 .LBB0_5: movsxd r8, esi movsxd r10, dword ptr [rbx + 4*r8] mov r9d, dword ptr [rsp + 4*r10] cmp r9d, 2 jl .LBB0_8 lea r10, [rsp + 4*r10] lea r8, [rcx + 4*r8] .LBB0_7: dec r9d mov dword ptr [r10], r9d inc edi movsxd r9, dword ptr [r8] lea r10, [rsp + 4*r9] mov r9d, dword ptr [rsp + 4*r9] inc esi add r8, 4 cmp r9d, 1 jg .LBB0_7 jmp .LBB0_8 .LBB0_10: mov eax, ebp add rsp, 80008 pop rbx pop r14 pop r15 pop rbp ret
13,947
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
x86-64
-O3
x86-64 clang 21.1.0
subarraysWithKDistinct: push rbp push r15 push r14 push rbx sub rsp, 80008 mov r14d, edx mov r15d, esi mov rbx, rdi mov rdi, rsp xor ebp, ebp mov edx, 80004 xor esi, esi call memset@PLT test r15d, r15d jle .LBB0_10 mov eax, r15d lea rcx, [rbx + 4] mov edi, 1 xor edx, edx xor ebp, ebp xor esi, esi jmp .LBB0_2 .LBB0_8: add ebp, edi xor r14d, r14d .LBB0_9: inc rdx cmp rdx, rax je .LBB0_10 .LBB0_2: movsxd r8, dword ptr [rbx + 4*rdx] mov r9d, dword ptr [rsp + 4*r8] xor r10d, r10d test r9d, r9d sete r10b inc r9d sub r14d, r10d mov dword ptr [rsp + 4*r8], r9d js .LBB0_3 jne .LBB0_9 jmp .LBB0_5 .LBB0_3: movsxd rdi, esi inc esi movsxd rdi, dword ptr [rbx + 4*rdi] mov dword ptr [rsp + 4*rdi], 0 mov edi, 1 .LBB0_5: movsxd r8, esi movsxd r10, dword ptr [rbx + 4*r8] mov r9d, dword ptr [rsp + 4*r10] cmp r9d, 2 jl .LBB0_8 lea r10, [rsp + 4*r10] lea r8, [rcx + 4*r8] .LBB0_7: dec r9d mov dword ptr [r10], r9d inc edi movsxd r9, dword ptr [r8] lea r10, [rsp + 4*r9] mov r9d, dword ptr [rsp + 4*r9] inc esi add r8, 4 cmp r9d, 1 jg .LBB0_7 jmp .LBB0_8 .LBB0_10: mov eax, ebp add rsp, 80008 pop rbx pop r14 pop r15 pop rbp ret
13,948
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
x86-64
-O0
x86-64 gcc 15.2
subarraysWithKDistinct: push rbp mov rbp, rsp sub rsp, 80048 mov QWORD PTR [rbp-80040], rdi mov DWORD PTR [rbp-80044], esi mov DWORD PTR [rbp-80048], edx lea rax, [rbp-80032] mov edx, 80004 mov esi, 0 mov rdi, rax call memset mov DWORD PTR [rbp-4], 0 mov DWORD PTR [rbp-8], 0 mov DWORD PTR [rbp-12], 1 mov DWORD PTR [rbp-16], 0 jmp .L2 .L7: mov eax, DWORD PTR [rbp-8] lea edx, [rax+1] mov DWORD PTR [rbp-8], edx cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-80040] add rax, rdx mov eax, DWORD PTR [rax] mov DWORD PTR [rbp-20], eax mov eax, DWORD PTR [rbp-20] cdqe mov eax, DWORD PTR [rbp-80032+rax*4] test eax, eax jne .L3 sub DWORD PTR [rbp-80048], 1 .L3: mov eax, DWORD PTR [rbp-20] cdqe mov eax, DWORD PTR [rbp-80032+rax*4] lea edx, [rax+1] mov eax, DWORD PTR [rbp-20] cdqe mov DWORD PTR [rbp-80032+rax*4], edx cmp DWORD PTR [rbp-80048], 0 jns .L4 mov eax, DWORD PTR [rbp-4] lea edx, [rax+1] mov DWORD PTR [rbp-4], edx cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-80040] add rax, rdx mov eax, DWORD PTR [rax] mov DWORD PTR [rbp-20], eax mov eax, DWORD PTR [rbp-20] cdqe mov DWORD PTR [rbp-80032+rax*4], 0 mov DWORD PTR [rbp-80048], 0 mov DWORD PTR [rbp-12], 1 .L4: cmp DWORD PTR [rbp-80048], 0 jne .L2 jmp .L5 .L6: mov eax, DWORD PTR [rbp-4] lea edx, [rax+1] mov DWORD PTR [rbp-4], edx cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-80040] add rax, rdx mov eax, DWORD PTR [rax] mov DWORD PTR [rbp-20], eax mov eax, DWORD PTR [rbp-20] cdqe mov eax, DWORD PTR [rbp-80032+rax*4] lea edx, [rax-1] mov eax, DWORD PTR [rbp-20] cdqe mov DWORD PTR [rbp-80032+rax*4], edx add DWORD PTR [rbp-12], 1 .L5: mov eax, DWORD PTR [rbp-4] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-80040] add rax, rdx mov eax, DWORD PTR [rax] cdqe mov eax, DWORD PTR [rbp-80032+rax*4] cmp eax, 1 jg .L6 mov eax, DWORD PTR [rbp-12] add DWORD PTR [rbp-16], eax .L2: mov eax, DWORD PTR [rbp-8] cmp eax, DWORD PTR [rbp-80044] jl .L7 mov eax, DWORD PTR [rbp-16] leave ret
13,949
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
x86-64
-O1
x86-64 gcc 15.2
subarraysWithKDistinct: push r12 push rbp push rbx sub rsp, 80016 mov rbx, rdi mov r12d, esi mov ebp, edx mov rdi, rsp mov edx, 80004 mov esi, 0 call memset test r12d, r12d jle .L10 mov rcx, rbx movsx r12, r12d lea rdi, [rbx+r12*4] mov r8d, 0 mov esi, 1 mov r11d, 0 mov r9d, 1 jmp .L9 .L4: je .L15 .L6: add rcx, 4 cmp rcx, rdi je .L1 .L9: mov eax, DWORD PTR [rcx] movsx rdx, eax mov edx, DWORD PTR [rsp+rdx*4] cmp edx, 1 sbb ebp, 0 cdqe add edx, 1 mov DWORD PTR [rsp+rax*4], edx test ebp, ebp jns .L4 lea r10d, [r11+1] movsx r11, r11d movsx rax, DWORD PTR [rbx+r11*4] mov DWORD PTR [rsp+rax*4], 0 mov esi, r9d .L5: movsx rax, r10d lea r11, [0+rax*4] mov eax, DWORD PTR [rbx+rax*4] movsx rdx, eax mov edx, DWORD PTR [rsp+rdx*4] cmp edx, 1 jle .L11 mov ebp, r10d add r10d, 1 movsx r10, r10d mov r12, r10 neg r12 lea r11, [r11+r12*4] add r11, rbx .L8: cdqe sub edx, 1 mov DWORD PTR [rsp+rax*4], edx mov eax, DWORD PTR [r11+4+r10*4] movsx rdx, eax mov edx, DWORD PTR [rsp+rdx*4] mov r12, r10 add r10, 1 cmp edx, 1 jg .L8 mov r11d, r12d sub esi, ebp add esi, r12d .L7: add r8d, esi mov ebp, 0 jmp .L6 .L15: mov r10d, r11d jmp .L5 .L11: mov r11d, r10d jmp .L7 .L10: mov r8d, 0 .L1: mov eax, r8d add rsp, 80016 pop rbx pop rbp pop r12 ret
13,950
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
x86-64
-O2
x86-64 gcc 15.2
subarraysWithKDistinct: push r12 movsx r12, esi xor esi, esi push rbp mov ebp, edx mov edx, 80004 push rbx mov rbx, rdi sub rsp, 80016 mov rdi, rsp call memset test r12d, r12d jle .L11 movsx rdx, DWORD PTR [rbx] mov rsi, rbx lea r9, [rbx+r12*4] movsx rcx, DWORD PTR [rsp+rdx*4] test ecx, ecx je .L20 mov eax, ecx xor r10d, r10d mov r8d, 1 xor ecx, ecx .L3: add eax, 1 mov DWORD PTR [rsp+rdx*4], eax test ebp, ebp jns .L4 movsx rax, DWORD PTR [rbx+rcx*4] lea ebp, [rcx+1] mov r8d, 1 mov DWORD PTR [rsp+rax*4], 0 .L7: movsx rax, ebp movsx rcx, DWORD PTR [rbx+rax*4] lea rdi, [0+rax*4] mov eax, DWORD PTR [rsp+rcx*4] cmp eax, 1 jle .L21 lea edx, [rbp+1] movsx rdx, edx mov r11, rdx neg r11 lea rdi, [rdi+r11*4] add rdi, rbx .L9: sub eax, 1 mov r11, rdx mov DWORD PTR [rsp+rcx*4], eax movsx rcx, DWORD PTR [rdi+4+rdx*4] add rdx, 1 mov eax, DWORD PTR [rsp+rcx*4] cmp eax, 1 jg .L9 sub r8d, ebp movsx rcx, r11d add r8d, r11d .L6: add r10d, r8d xor ebp, ebp .L8: add rsi, 4 cmp rsi, r9 je .L1 movsx rdx, DWORD PTR [rsi] mov eax, DWORD PTR [rsp+rdx*4] test eax, eax je .L10 add eax, 1 mov DWORD PTR [rsp+rdx*4], eax .L4: test ebp, ebp jne .L8 mov ebp, ecx jmp .L7 .L20: xor r10d, r10d mov r8d, 1 .L10: sub ebp, 1 xor eax, eax jmp .L3 .L11: xor r10d, r10d .L1: add rsp, 80016 mov eax, r10d pop rbx pop rbp pop r12 ret .L21: movsx rcx, ebp jmp .L6
13,951
992
Subarrays with K Different Integers
Hard
/* 992. Subarrays with K Different Integers Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K. (For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.) Return the number of good subarrays of A. Example 1: Input: A = [1,2,1,2,3], K = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]. Example 2: Input: A = [1,2,1,3,4], K = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4]. Note: 1 <= A.length <= 20000 1 <= A[i] <= A.length 1 <= K <= A.length */ int subarraysWithKDistinct(int* A, int ASize, int K) { int cnt[20001] = { 0 }; int a, l = 0, r = 0, n = 1, t = 0; while (r < ASize) { a = A[r ++]; if (cnt[a] == 0) { // reduce K when a new number is pushed in from right K --; } cnt[a] ++; if (K < 0) { // number on far left is uniq, pop it out and reset all a = A[l ++]; cnt[a] = 0; K = 0; n = 1; } if (K == 0) { // a valid result is found while (cnt[A[l]] > 1) { // pop out all dup numbers from far left a = A[l ++]; cnt[a] --; n ++; // all possible combinations after one pop } t += n; // all possible combinations so far } } return t; } /* Difficulty:Hard */
x86-64
-O3
x86-64 gcc 15.2
subarraysWithKDistinct: push r12 movsx r12, esi xor esi, esi push rbp mov ebp, edx mov edx, 80004 push rbx mov rbx, rdi sub rsp, 80016 mov rdi, rsp call memset test r12d, r12d jle .L11 movsx rdx, DWORD PTR [rbx] mov rsi, rbx lea r9, [rbx+r12*4] movsx rcx, DWORD PTR [rsp+rdx*4] test ecx, ecx je .L20 mov eax, ecx xor r10d, r10d mov r8d, 1 xor ecx, ecx .L3: add eax, 1 mov DWORD PTR [rsp+rdx*4], eax test ebp, ebp jns .L4 movsx rax, DWORD PTR [rbx+rcx*4] lea ebp, [rcx+1] mov r8d, 1 mov DWORD PTR [rsp+rax*4], 0 .L7: movsx rax, ebp movsx rcx, DWORD PTR [rbx+rax*4] lea rdi, [0+rax*4] mov eax, DWORD PTR [rsp+rcx*4] cmp eax, 1 jle .L21 lea edx, [rbp+1] movsx rdx, edx mov r11, rdx neg r11 lea rdi, [rdi+r11*4] add rdi, rbx .L9: sub eax, 1 mov r11, rdx mov DWORD PTR [rsp+rcx*4], eax movsx rcx, DWORD PTR [rdi+4+rdx*4] add rdx, 1 mov eax, DWORD PTR [rsp+rcx*4] cmp eax, 1 jg .L9 sub r8d, ebp movsx rcx, r11d add r8d, r11d .L6: add r10d, r8d xor ebp, ebp .L8: add rsi, 4 cmp r9, rsi je .L1 movsx rdx, DWORD PTR [rsi] mov eax, DWORD PTR [rsp+rdx*4] test eax, eax je .L10 add eax, 1 mov DWORD PTR [rsp+rdx*4], eax .L4: test ebp, ebp jne .L8 mov ebp, ecx jmp .L7 .L20: xor r10d, r10d mov r8d, 1 .L10: sub ebp, 1 xor eax, eax jmp .L3 .L11: xor r10d, r10d .L1: add rsp, 80016 mov eax, r10d pop rbx pop rbp pop r12 ret .L21: movsx rcx, ebp jmp .L6
13,952
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
aarch64
-O0
ARM64 gcc 15.2.0
minDominoRotations: sub sp, sp, #64 str x0, [sp, 24] str w1, [sp, 20] str x2, [sp, 8] str w3, [sp, 16] mov w0, 1 strb w0, [sp, 62] ldrb w0, [sp, 62] strb w0, [sp, 63] str wzr, [sp, 40] ldr w0, [sp, 40] str w0, [sp, 44] ldr w0, [sp, 44] str w0, [sp, 48] ldr w0, [sp, 48] str w0, [sp, 52] str wzr, [sp, 56] b .L2 .L11: ldrb w0, [sp, 63] and w0, w0, 1 cmp w0, 0 beq .L3 ldrsw x0, [sp, 56] lsl x0, x0, 2 ldr x1, [sp, 24] add x0, x1, x0 ldr w1, [x0] ldr x0, [sp, 24] ldr w0, [x0] cmp w1, w0 beq .L3 ldrsw x0, [sp, 56] lsl x0, x0, 2 ldr x1, [sp, 8] add x0, x1, x0 ldr w1, [x0] ldr x0, [sp, 24] ldr w0, [x0] cmp w1, w0 beq .L3 strb wzr, [sp, 63] .L3: ldrb w0, [sp, 62] and w0, w0, 1 cmp w0, 0 beq .L4 ldrsw x0, [sp, 56] lsl x0, x0, 2 ldr x1, [sp, 8] add x0, x1, x0 ldr w1, [x0] ldr x0, [sp, 8] ldr w0, [x0] cmp w1, w0 beq .L4 ldrsw x0, [sp, 56] lsl x0, x0, 2 ldr x1, [sp, 24] add x0, x1, x0 ldr w1, [x0] ldr x0, [sp, 8] ldr w0, [x0] cmp w1, w0 beq .L4 strb wzr, [sp, 62] .L4: ldrb w0, [sp, 63] eor w0, w0, 1 and w0, w0, 255 and w0, w0, 1 cmp w0, 0 beq .L5 ldrb w0, [sp, 62] eor w0, w0, 1 and w0, w0, 255 and w0, w0, 1 cmp w0, 0 beq .L5 mov w0, -1 b .L6 .L5: ldrb w0, [sp, 63] and w0, w0, 1 cmp w0, 0 beq .L7 ldrsw x0, [sp, 56] lsl x0, x0, 2 ldr x1, [sp, 24] add x0, x1, x0 ldr w1, [x0] ldr x0, [sp, 24] ldr w0, [x0] cmp w1, w0 beq .L8 ldr w0, [sp, 52] add w0, w0, 1 str w0, [sp, 52] b .L7 .L8: ldrsw x0, [sp, 56] lsl x0, x0, 2 ldr x1, [sp, 8] add x0, x1, x0 ldr w1, [x0] ldr x0, [sp, 24] ldr w0, [x0] cmp w1, w0 beq .L7 ldr w0, [sp, 48] add w0, w0, 1 str w0, [sp, 48] .L7: ldrb w0, [sp, 62] and w0, w0, 1 cmp w0, 0 beq .L9 ldrsw x0, [sp, 56] lsl x0, x0, 2 ldr x1, [sp, 8] add x0, x1, x0 ldr w1, [x0] ldr x0, [sp, 8] ldr w0, [x0] cmp w1, w0 beq .L10 ldr w0, [sp, 44] add w0, w0, 1 str w0, [sp, 44] b .L9 .L10: ldrsw x0, [sp, 56] lsl x0, x0, 2 ldr x1, [sp, 24] add x0, x1, x0 ldr w1, [x0] ldr x0, [sp, 8] ldr w0, [x0] cmp w1, w0 beq .L9 ldr w0, [sp, 40] add w0, w0, 1 str w0, [sp, 40] .L9: ldr w0, [sp, 56] add w0, w0, 1 str w0, [sp, 56] .L2: ldr w1, [sp, 56] ldr w0, [sp, 20] cmp w1, w0 blt .L11 ldrb w0, [sp, 63] and w0, w0, 1 cmp w0, 0 beq .L12 ldr w0, [sp, 52] ldr w2, [sp, 48] ldr w1, [sp, 48] cmp w2, w0 csel w0, w1, w0, le b .L6 .L12: ldrb w0, [sp, 62] and w0, w0, 1 cmp w0, 0 beq .L13 ldr w0, [sp, 40] ldr w2, [sp, 44] ldr w1, [sp, 44] cmp w2, w0 csel w0, w1, w0, le b .L6 .L13: mov w0, -1 .L6: add sp, sp, 64 ret
13,953
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
aarch64
-O1
ARM64 gcc 15.2.0
minDominoRotations: cmp w1, 0 ble .L18 sbfiz x5, x1, 2, 32 mov x1, 0 mov w11, 0 mov w6, 0 mov w12, 0 mov w8, 0 mov w4, 1 mov w3, w4 mov w10, w4 b .L13 .L22: mov w3, w4 b .L15 .L29: mov w4, w3 .L16: ldr w3, [x0] ldr w7, [x0, x1] cmp w7, w3 beq .L9 add w8, w8, 1 .L10: mov w3, w10 tbnz x4, 0, .L26 .L11: add x1, x1, 4 cmp x5, x1 beq .L27 .L13: tbz x3, 0, .L3 ldr w3, [x0] ldr w7, [x0, x1] cmp w7, w3 beq .L4 ldr w7, [x2, x1] cmp w7, w3 cset w3, eq tbnz x4, 0, .L15 .L5: cmp w4, 0 ccmp w3, 0, 0, eq beq .L19 tbnz x3, 0, .L16 .L8: ldr w7, [x2] ldr w9, [x2, x1] cmp w9, w7 beq .L12 add w6, w6, 1 b .L11 .L26: mov w3, w4 b .L8 .L27: tbnz x3, 0, .L2 tbz x4, 0, .L21 cmp w6, w11 csel w0, w6, w11, le b .L1 .L18: mov w12, 0 mov w8, 0 .L2: cmp w8, w12 csel w0, w8, w12, le b .L1 .L19: mov w0, -1 b .L1 .L21: mov w0, -1 b .L1 .L3: tbz x4, 0, .L28 .L15: ldr w4, [x2] ldr w7, [x2, x1] cmp w7, w4 beq .L6 ldr w7, [x0, x1] cmp w7, w4 cset w4, eq b .L5 .L28: mov w0, -1 .L1: ret .L4: tbnz x4, 0, .L22 ldr w3, [x0] .L9: ldr w7, [x2, x1] cmp w3, w7 cinc w12, w12, ne b .L10 .L6: tbnz x3, 0, .L29 ldr w7, [x2] mov w4, 1 .L12: ldr w9, [x0, x1] cmp w7, w9 cinc w11, w11, ne b .L11
13,954
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
aarch64
-O2
ARM64 gcc 15.2.0
minDominoRotations: cmp w1, 0 ble .L39 ldr w5, [x0] ubfiz x1, x1, 2, 32 ldr w4, [x2] mov w12, 0 mov x3, 0 mov w7, 0 mov w8, 0 mov w11, 0 .L3: ldr w9, [x0, x3] cmp w9, w5 beq .L54 ldr w6, [x2, x3] mov w10, w4 cmp w6, w4 beq .L55 cmp w9, w4 beq .L56 cmp w5, w6 bne .L41 add x3, x3, 4 add w7, w7, 1 cmp x3, x1 beq .L33 .L51: ldr w6, [x0, x3] mov w4, w5 cmp w6, w5 beq .L57 ldr w6, [x2, x3] cmp w4, w6 bne .L41 add x3, x3, 4 add w7, w7, 1 cmp x1, x3 bne .L51 .L33: cmp w7, w8 csel w0, w7, w8, le ret .L41: mov w0, -1 ret .L57: ldr w6, [x2, x3] cmp w6, w4 cinc w8, w8, ne .L44: add x3, x3, 4 cmp x1, x3 bne .L51 b .L33 .L54: ldr w9, [x2, x3] mov w6, w4 cmp w9, w4 beq .L30 cmp w5, w4 beq .L32 cmp w5, w9 beq .L44 add w8, w8, 1 b .L44 .L32: mov w6, w9 add w8, w8, 1 mov w9, w4 mov w10, 1 .L12: cmp w6, w9 beq .L22 .L58: add x3, x3, 4 add w11, w11, 1 cmp x1, x3 beq .L24 .L46: cbnz w10, .L3 ldr w6, [x2, x3] mov w9, w4 mov w10, 0 cmp w6, w4 beq .L22 ldr w9, [x0, x3] cmp w9, w4 bne .L41 .L10: mov w9, w4 mov w10, 0 cmp w6, w9 bne .L58 .L22: ldr w6, [x0, x3] cmp w6, w9 beq .L25 add x3, x3, 4 add w12, w12, 1 cmp x1, x3 bne .L46 .L24: cbnz w10, .L33 cmp w12, w11 csel w0, w12, w11, le ret .L55: cmp w5, w4 bne .L10 .L9: mov w6, w10 add w7, w7, 1 mov w9, w4 mov w10, 1 b .L12 .L25: add x3, x3, 4 cmp x1, x3 bne .L46 b .L24 .L56: mov w10, w5 cmp w5, w6 beq .L9 b .L10 .L39: mov w0, 0 ret .L30: cmp w5, w4 bne .L32 mov w9, w5 mov w10, 1 b .L12
13,955
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
aarch64
-O3
ARM64 gcc 15.2.0
minDominoRotations: cmp w1, 0 ble .L39 ldr w5, [x0] ubfiz x1, x1, 2, 32 ldr w4, [x2] mov w12, 0 mov w7, 0 mov w8, 0 mov w11, 0 mov x3, 0 .L3: ldr w9, [x0, x3] cmp w9, w5 beq .L55 ldr w6, [x2, x3] mov w10, w4 cmp w6, w4 beq .L56 cmp w9, w4 beq .L57 cmp w5, w6 bne .L41 .L15: add x3, x3, 4 add w7, w7, 1 cmp x1, x3 beq .L33 .L51: ldr w6, [x0, x3] mov w4, w5 cmp w6, w5 beq .L58 ldr w6, [x2, x3] cmp w4, w6 beq .L15 .L41: mov w0, -1 ret .L58: ldr w6, [x2, x3] cmp w6, w4 cinc w8, w8, ne .L44: add x3, x3, 4 cmp x1, x3 bne .L51 .L33: cmp w7, w8 csel w0, w7, w8, le ret .L55: ldr w9, [x2, x3] mov w6, w4 cmp w9, w4 beq .L30 cmp w5, w4 beq .L32 cmp w5, w9 beq .L44 add w8, w8, 1 b .L44 .L32: mov w6, w9 add w8, w8, 1 mov w9, w4 mov w10, 1 .L12: cmp w6, w9 beq .L22 .L59: add x3, x3, 4 add w11, w11, 1 cmp x1, x3 beq .L24 .L46: cbnz w10, .L3 ldr w6, [x2, x3] mov w9, w4 mov w10, 0 cmp w6, w4 beq .L22 ldr w9, [x0, x3] cmp w9, w4 bne .L41 .L10: mov w9, w4 mov w10, 0 cmp w6, w9 bne .L59 .L22: ldr w6, [x0, x3] add x3, x3, 4 cmp w6, w9 beq .L25 add w12, w12, 1 cmp x1, x3 bne .L46 .L24: cbnz w10, .L33 cmp w12, w11 csel w0, w12, w11, le ret .L56: cmp w5, w4 bne .L10 .L9: mov w6, w10 add w7, w7, 1 mov w9, w4 mov w10, 1 b .L12 .L25: cmp x1, x3 bne .L46 b .L24 .L57: mov w10, w5 cmp w5, w6 beq .L9 b .L10 .L39: mov w0, 0 ret .L30: cmp w5, w4 bne .L32 mov w9, w5 mov w10, 1 b .L12
13,956
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
aarch64
-O0
armv8-a clang 21.1.0
minDominoRotations: sub sp, sp, #80 str x0, [sp, #64] str w1, [sp, #60] str x2, [sp, #48] str w3, [sp, #44] mov w8, #1 strb w8, [sp, #42] strb w8, [sp, #43] str wzr, [sp, #20] str wzr, [sp, #24] str wzr, [sp, #28] str wzr, [sp, #32] str wzr, [sp, #36] b .LBB0_1 .LBB0_1: ldr w8, [sp, #36] ldr w9, [sp, #60] subs w8, w8, w9 b.ge .LBB0_29 b .LBB0_2 .LBB0_2: ldrb w8, [sp, #43] tbz w8, #0, .LBB0_6 b .LBB0_3 .LBB0_3: ldr x8, [sp, #64] ldrsw x9, [sp, #36] ldr w8, [x8, x9, lsl #2] ldr x9, [sp, #64] ldr w9, [x9] subs w8, w8, w9 b.eq .LBB0_6 b .LBB0_4 .LBB0_4: ldr x8, [sp, #48] ldrsw x9, [sp, #36] ldr w8, [x8, x9, lsl #2] ldr x9, [sp, #64] ldr w9, [x9] subs w8, w8, w9 b.eq .LBB0_6 b .LBB0_5 .LBB0_5: strb wzr, [sp, #43] b .LBB0_6 .LBB0_6: ldrb w8, [sp, #42] tbz w8, #0, .LBB0_10 b .LBB0_7 .LBB0_7: ldr x8, [sp, #48] ldrsw x9, [sp, #36] ldr w8, [x8, x9, lsl #2] ldr x9, [sp, #48] ldr w9, [x9] subs w8, w8, w9 b.eq .LBB0_10 b .LBB0_8 .LBB0_8: ldr x8, [sp, #64] ldrsw x9, [sp, #36] ldr w8, [x8, x9, lsl #2] ldr x9, [sp, #48] ldr w9, [x9] subs w8, w8, w9 b.eq .LBB0_10 b .LBB0_9 .LBB0_9: strb wzr, [sp, #42] b .LBB0_10 .LBB0_10: ldrb w8, [sp, #43] tbnz w8, #0, .LBB0_13 b .LBB0_11 .LBB0_11: ldrb w8, [sp, #42] tbnz w8, #0, .LBB0_13 b .LBB0_12 .LBB0_12: mov w8, #-1 str w8, [sp, #76] b .LBB0_40 .LBB0_13: ldrb w8, [sp, #43] tbz w8, #0, .LBB0_20 b .LBB0_14 .LBB0_14: ldr x8, [sp, #64] ldrsw x9, [sp, #36] ldr w8, [x8, x9, lsl #2] ldr x9, [sp, #64] ldr w9, [x9] subs w8, w8, w9 b.eq .LBB0_16 b .LBB0_15 .LBB0_15: ldr w8, [sp, #32] add w8, w8, #1 str w8, [sp, #32] b .LBB0_19 .LBB0_16: ldr x8, [sp, #48] ldrsw x9, [sp, #36] ldr w8, [x8, x9, lsl #2] ldr x9, [sp, #64] ldr w9, [x9] subs w8, w8, w9 b.eq .LBB0_18 b .LBB0_17 .LBB0_17: ldr w8, [sp, #28] add w8, w8, #1 str w8, [sp, #28] b .LBB0_18 .LBB0_18: b .LBB0_19 .LBB0_19: b .LBB0_20 .LBB0_20: ldrb w8, [sp, #42] tbz w8, #0, .LBB0_27 b .LBB0_21 .LBB0_21: ldr x8, [sp, #48] ldrsw x9, [sp, #36] ldr w8, [x8, x9, lsl #2] ldr x9, [sp, #48] ldr w9, [x9] subs w8, w8, w9 b.eq .LBB0_23 b .LBB0_22 .LBB0_22: ldr w8, [sp, #24] add w8, w8, #1 str w8, [sp, #24] b .LBB0_26 .LBB0_23: ldr x8, [sp, #64] ldrsw x9, [sp, #36] ldr w8, [x8, x9, lsl #2] ldr x9, [sp, #48] ldr w9, [x9] subs w8, w8, w9 b.eq .LBB0_25 b .LBB0_24 .LBB0_24: ldr w8, [sp, #20] add w8, w8, #1 str w8, [sp, #20] b .LBB0_25 .LBB0_25: b .LBB0_26 .LBB0_26: b .LBB0_27 .LBB0_27: b .LBB0_28 .LBB0_28: ldr w8, [sp, #36] add w8, w8, #1 str w8, [sp, #36] b .LBB0_1 .LBB0_29: ldrb w8, [sp, #43] tbz w8, #0, .LBB0_34 b .LBB0_30 .LBB0_30: ldr w8, [sp, #32] ldr w9, [sp, #28] subs w8, w8, w9 b.ge .LBB0_32 b .LBB0_31 .LBB0_31: ldr w8, [sp, #32] str w8, [sp, #16] b .LBB0_33 .LBB0_32: ldr w8, [sp, #28] str w8, [sp, #16] b .LBB0_33 .LBB0_33: ldr w8, [sp, #16] str w8, [sp, #76] b .LBB0_40 .LBB0_34: ldrb w8, [sp, #42] tbz w8, #0, .LBB0_39 b .LBB0_35 .LBB0_35: ldr w8, [sp, #20] ldr w9, [sp, #24] subs w8, w8, w9 b.ge .LBB0_37 b .LBB0_36 .LBB0_36: ldr w8, [sp, #20] str w8, [sp, #12] b .LBB0_38 .LBB0_37: ldr w8, [sp, #24] str w8, [sp, #12] b .LBB0_38 .LBB0_38: ldr w8, [sp, #12] str w8, [sp, #76] b .LBB0_40 .LBB0_39: mov w8, #-1 str w8, [sp, #76] b .LBB0_40 .LBB0_40: ldr w0, [sp, #76] add sp, sp, #80 ret
13,957
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
aarch64
-O1
armv8-a clang 21.1.0
minDominoRotations: cmp w1, #1 b.lt .LBB0_21 ubfiz x14, x1, #2, #32 mov x12, xzr mov w8, wzr mov w9, wzr mov w11, wzr mov w10, wzr mov w13, #1 mov w15, #1 b .LBB0_4 .LBB0_2: ldr w17, [x0, x12] cmp w17, w16 cinc w8, w8, ne .LBB0_3: add x12, x12, #4 cmp x14, x12 b.eq .LBB0_22 .LBB0_4: tbz w15, #0, .LBB0_7 ldr w16, [x0, x12] ldr w15, [x0] cmp w16, w15 b.ne .LBB0_10 mov w15, #1 tbnz w13, #0, .LBB0_8 b .LBB0_11 .LBB0_7: mov w15, wzr tbz w13, #0, .LBB0_11 .LBB0_8: ldr w16, [x2, x12] ldr w13, [x2] cmp w16, w13 b.ne .LBB0_12 mov w13, #1 b .LBB0_13 .LBB0_10: ldr w16, [x2, x12] cmp w16, w15 cset w15, eq tbnz w13, #0, .LBB0_8 .LBB0_11: mov w13, wzr b .LBB0_13 .LBB0_12: ldr w16, [x0, x12] cmp w16, w13 cset w13, eq .LBB0_13: orr w16, w15, w13 cmp w16, #1 b.ne .LBB0_25 cbz w15, .LBB0_17 ldr w17, [x0, x12] ldr w16, [x0] cmp w17, w16 b.ne .LBB0_20 ldr w17, [x2, x12] cmp w17, w16 cinc w11, w11, ne .LBB0_17: cbz w13, .LBB0_3 .LBB0_18: ldr w17, [x2, x12] ldr w16, [x2] cmp w17, w16 b.eq .LBB0_2 add w9, w9, #1 b .LBB0_3 .LBB0_20: add w10, w10, #1 cbz w13, .LBB0_3 b .LBB0_18 .LBB0_21: mov w10, wzr mov w11, wzr mov w9, wzr mov w8, wzr mov w15, #1 mov w13, #1 .LBB0_22: cbz w15, .LBB0_24 cmp w10, w11 csel w0, w10, w11, lt ret .LBB0_24: cmp w8, w9 csel w8, w8, w9, lt cmp w13, #0 csinv w0, w8, wzr, ne ret .LBB0_25: mov w0, #-1 ret
13,958
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
aarch64
-O2
armv8-a clang 21.1.0
minDominoRotations: cmp w1, #1 b.lt .LBB0_21 ubfiz x13, x1, #2, #32 mov x12, xzr mov w10, wzr mov w11, wzr mov w8, wzr mov w9, wzr mov w14, #1 mov w15, #1 b .LBB0_4 .LBB0_2: ldr w17, [x0, x12] cmp w17, w16 cinc w10, w10, ne .LBB0_3: add x12, x12, #4 cmp x13, x12 b.eq .LBB0_22 .LBB0_4: tbz w15, #0, .LBB0_7 ldr w16, [x0, x12] ldr w15, [x0] cmp w16, w15 b.ne .LBB0_10 mov w15, #1 tbnz w14, #0, .LBB0_8 b .LBB0_11 .LBB0_7: mov w15, wzr tbz w14, #0, .LBB0_11 .LBB0_8: ldr w16, [x2, x12] ldr w14, [x2] cmp w16, w14 b.ne .LBB0_12 mov w14, #1 b .LBB0_14 .LBB0_10: ldr w16, [x2, x12] cmp w16, w15 cset w15, eq tbnz w14, #0, .LBB0_8 .LBB0_11: mov w14, wzr b .LBB0_13 .LBB0_12: ldr w16, [x0, x12] cmp w16, w14 cset w14, eq .LBB0_13: orr w16, w15, w14 cmp w16, #1 b.ne .LBB0_24 .LBB0_14: cbz w15, .LBB0_17 ldr w16, [x0, x12] ldr w17, [x0] cmp w16, w17 b.ne .LBB0_20 ldr w17, [x2, x12] cmp w17, w16 cinc w8, w8, ne .LBB0_17: cbz w14, .LBB0_3 .LBB0_18: ldr w16, [x2, x12] ldr w17, [x2] cmp w16, w17 b.eq .LBB0_2 add w11, w11, #1 b .LBB0_3 .LBB0_20: add w9, w9, #1 cbz w14, .LBB0_3 b .LBB0_18 .LBB0_21: mov w8, wzr mov w9, wzr b .LBB0_23 .LBB0_22: cbz w15, .LBB0_25 .LBB0_23: cmp w9, w8 csel w0, w9, w8, lt ret .LBB0_24: mov w0, #-1 ret .LBB0_25: cmp w10, w11 csel w8, w10, w11, lt cmp w14, #0 csinv w0, w8, wzr, ne ret
13,959
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
aarch64
-O3
armv8-a clang 21.1.0
minDominoRotations: cmp w1, #1 b.lt .LBB0_20 ubfiz x13, x1, #2, #32 mov x12, xzr mov w10, wzr mov w11, wzr mov w8, wzr mov w9, wzr mov w14, #1 mov w15, #1 b .LBB0_4 .LBB0_2: ldr w17, [x0, x12] cmp w17, w16 cinc w10, w10, ne .LBB0_3: add x12, x12, #4 cmp x13, x12 b.eq .LBB0_21 .LBB0_4: tbz w15, #0, .LBB0_7 ldr w16, [x0, x12] ldr w15, [x0] cmp w16, w15 b.ne .LBB0_10 mov w15, #1 tbnz w14, #0, .LBB0_8 b .LBB0_11 .LBB0_7: mov w15, wzr tbz w14, #0, .LBB0_11 .LBB0_8: ldr w16, [x2, x12] ldr w14, [x2] cmp w16, w14 b.ne .LBB0_12 mov w14, #1 b .LBB0_13 .LBB0_10: ldr w16, [x2, x12] cmp w16, w15 cset w15, eq tbnz w14, #0, .LBB0_8 .LBB0_11: mov w14, wzr orr w16, w15, wzr cmp w16, #1 b.eq .LBB0_13 b .LBB0_23 .LBB0_12: ldr w16, [x0, x12] cmp w16, w14 cset w14, eq orr w16, w15, w14 cmp w16, #1 b.ne .LBB0_23 .LBB0_13: cbnz w15, .LBB0_17 cbz w14, .LBB0_3 .LBB0_15: ldr w16, [x2, x12] ldr w17, [x2] cmp w16, w17 b.eq .LBB0_2 add w11, w11, #1 b .LBB0_3 .LBB0_17: ldr w16, [x0, x12] ldr w17, [x0] cmp w16, w17 b.ne .LBB0_19 ldr w17, [x2, x12] cmp w17, w16 cinc w8, w8, ne cbz w14, .LBB0_3 b .LBB0_15 .LBB0_19: add w9, w9, #1 cbz w14, .LBB0_3 b .LBB0_15 .LBB0_20: cmp wzr, wzr csel w0, wzr, wzr, lt ret .LBB0_21: cbz w15, .LBB0_24 cmp w9, w8 csel w0, w9, w8, lt ret .LBB0_23: mov w0, #-1 ret .LBB0_24: cmp w10, w11 csel w8, w10, w11, lt cmp w14, #0 csinv w0, w8, wzr, ne ret
13,960
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
mips64
-O0
mips64 clang 21.1.0
minDominoRotations: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -96 sd $ra, 88($sp) sd $fp, 80($sp) move $fp, $sp move $1, $7 move $2, $5 sd $4, 64($fp) sw $2, 60($fp) sd $6, 48($fp) sw $1, 44($fp) addiu $1, $zero, 1 sb $1, 42($fp) sb $1, 43($fp) sw $zero, 20($fp) sw $zero, 24($fp) sw $zero, 28($fp) sw $zero, 32($fp) sw $zero, 36($fp) b .LBB0_1 nop .LBB0_1: lw $1, 36($fp) lw $2, 60($fp) slt $1, $1, $2 beqz $1, .LBB0_44 nop b .LBB0_3 nop .LBB0_3: lbu $1, 43($fp) andi $1, $1, 1 beqz $1, .LBB0_10 nop b .LBB0_5 nop .LBB0_5: ld $2, 64($fp) lw $1, 36($fp) dsll $1, $1, 2 daddu $1, $2, $1 lw $1, 0($1) lw $2, 0($2) beq $1, $2, .LBB0_10 nop b .LBB0_7 nop .LBB0_7: ld $1, 48($fp) lw $2, 36($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) ld $2, 64($fp) lw $2, 0($2) beq $1, $2, .LBB0_10 nop b .LBB0_9 nop .LBB0_9: addiu $1, $zero, 0 sb $zero, 43($fp) b .LBB0_10 nop .LBB0_10: lbu $1, 42($fp) andi $1, $1, 1 beqz $1, .LBB0_17 nop b .LBB0_12 nop .LBB0_12: ld $2, 48($fp) lw $1, 36($fp) dsll $1, $1, 2 daddu $1, $2, $1 lw $1, 0($1) lw $2, 0($2) beq $1, $2, .LBB0_17 nop b .LBB0_14 nop .LBB0_14: ld $1, 64($fp) lw $2, 36($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) ld $2, 48($fp) lw $2, 0($2) beq $1, $2, .LBB0_17 nop b .LBB0_16 nop .LBB0_16: addiu $1, $zero, 0 sb $zero, 42($fp) b .LBB0_17 nop .LBB0_17: lbu $1, 43($fp) andi $1, $1, 1 bnez $1, .LBB0_22 nop b .LBB0_19 nop .LBB0_19: lbu $1, 42($fp) andi $1, $1, 1 bnez $1, .LBB0_22 nop b .LBB0_21 nop .LBB0_21: addiu $1, $zero, -1 sw $1, 76($fp) b .LBB0_59 nop .LBB0_22: lbu $1, 43($fp) andi $1, $1, 1 beqz $1, .LBB0_32 nop b .LBB0_24 nop .LBB0_24: ld $2, 64($fp) lw $1, 36($fp) dsll $1, $1, 2 daddu $1, $2, $1 lw $1, 0($1) lw $2, 0($2) beq $1, $2, .LBB0_27 nop b .LBB0_26 nop .LBB0_26: lw $1, 32($fp) addiu $1, $1, 1 sw $1, 32($fp) b .LBB0_31 nop .LBB0_27: ld $1, 48($fp) lw $2, 36($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) ld $2, 64($fp) lw $2, 0($2) beq $1, $2, .LBB0_30 nop b .LBB0_29 nop .LBB0_29: lw $1, 28($fp) addiu $1, $1, 1 sw $1, 28($fp) b .LBB0_30 nop .LBB0_30: b .LBB0_31 nop .LBB0_31: b .LBB0_32 nop .LBB0_32: lbu $1, 42($fp) andi $1, $1, 1 beqz $1, .LBB0_42 nop b .LBB0_34 nop .LBB0_34: ld $2, 48($fp) lw $1, 36($fp) dsll $1, $1, 2 daddu $1, $2, $1 lw $1, 0($1) lw $2, 0($2) beq $1, $2, .LBB0_37 nop b .LBB0_36 nop .LBB0_36: lw $1, 24($fp) addiu $1, $1, 1 sw $1, 24($fp) b .LBB0_41 nop .LBB0_37: ld $1, 64($fp) lw $2, 36($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) ld $2, 48($fp) lw $2, 0($2) beq $1, $2, .LBB0_40 nop b .LBB0_39 nop .LBB0_39: lw $1, 20($fp) addiu $1, $1, 1 sw $1, 20($fp) b .LBB0_40 nop .LBB0_40: b .LBB0_41 nop .LBB0_41: b .LBB0_42 nop .LBB0_42: b .LBB0_43 nop .LBB0_43: lw $1, 36($fp) addiu $1, $1, 1 sw $1, 36($fp) b .LBB0_1 nop .LBB0_44: lbu $1, 43($fp) andi $1, $1, 1 beqz $1, .LBB0_51 nop b .LBB0_46 nop .LBB0_46: lw $1, 32($fp) lw $2, 28($fp) slt $1, $1, $2 beqz $1, .LBB0_49 nop b .LBB0_48 nop .LBB0_48: lw $1, 32($fp) sw $1, 16($fp) b .LBB0_50 nop .LBB0_49: lw $1, 28($fp) sw $1, 16($fp) b .LBB0_50 nop .LBB0_50: lw $1, 16($fp) sw $1, 76($fp) b .LBB0_59 nop .LBB0_51: lbu $1, 42($fp) andi $1, $1, 1 beqz $1, .LBB0_58 nop b .LBB0_53 nop .LBB0_53: lw $1, 20($fp) lw $2, 24($fp) slt $1, $1, $2 beqz $1, .LBB0_56 nop b .LBB0_55 nop .LBB0_55: lw $1, 20($fp) sw $1, 12($fp) b .LBB0_57 nop .LBB0_56: lw $1, 24($fp) sw $1, 12($fp) b .LBB0_57 nop .LBB0_57: lw $1, 12($fp) sw $1, 76($fp) b .LBB0_59 nop .LBB0_58: addiu $1, $zero, -1 sw $1, 76($fp) b .LBB0_59 nop .LBB0_59: lw $2, 76($fp) move $sp, $fp ld $fp, 80($sp) ld $ra, 88($sp) daddiu $sp, $sp, 96 jr $ra nop
13,961
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
mips64
-O1
mips64 clang 21.1.0
minDominoRotations: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp blez $5, .LBB0_19 nop sll $9, $5, 0 addiu $10, $zero, 1 addiu $5, $zero, 0 move $12, $4 move $13, $6 addiu $7, $zero, 0 addiu $2, $zero, 0 addiu $3, $zero, 0 addiu $8, $zero, 1 b .LBB0_4 addiu $11, $zero, 1 .LBB0_2: lw $1, 0($12) xor $1, $1, $14 sltu $1, $zero, $1 addu $5, $5, $1 .LBB0_3: daddiu $9, $9, -1 daddiu $12, $12, 4 beqz $9, .LBB0_20 daddiu $13, $13, 4 .LBB0_4: andi $1, $11, 1 beqz $1, .LBB0_7 addiu $11, $zero, 0 lw $14, 0($4) lw $1, 0($12) beq $1, $14, .LBB0_7 addiu $11, $zero, 1 lw $1, 0($13) xor $1, $1, $14 sltiu $11, $1, 1 .LBB0_7: andi $1, $8, 1 beqz $1, .LBB0_10 addiu $8, $zero, 0 lw $14, 0($6) lw $1, 0($13) beq $1, $14, .LBB0_10 addiu $8, $zero, 1 lw $1, 0($12) xor $1, $1, $14 sltiu $8, $1, 1 .LBB0_10: or $1, $11, $8 bne $1, $10, .LBB0_23 nop beqz $11, .LBB0_14 nop lw $14, 0($4) lw $1, 0($12) bne $1, $14, .LBB0_17 nop lw $1, 0($13) xor $1, $1, $14 sltu $1, $zero, $1 addu $2, $2, $1 .LBB0_14: beqz $8, .LBB0_3 nop .LBB0_15: lw $14, 0($6) lw $1, 0($13) beq $1, $14, .LBB0_2 nop b .LBB0_3 addiu $7, $7, 1 .LBB0_17: beqz $8, .LBB0_3 addiu $3, $3, 1 b .LBB0_15 nop .LBB0_19: addiu $3, $zero, 0 addiu $11, $zero, 1 addiu $8, $zero, 1 addiu $2, $zero, 0 addiu $7, $zero, 0 addiu $5, $zero, 0 .LBB0_20: beqz $11, .LBB0_22 nop slt $1, $3, $2 b .LBB0_24 movn $2, $3, $1 .LBB0_22: slt $1, $5, $7 movn $7, $5, $1 addiu $2, $zero, -1 b .LBB0_24 movn $2, $7, $8 .LBB0_23: addiu $2, $zero, -1 .LBB0_24: sll $2, $2, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16
13,962
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
mips64
-O2
mips64 clang 21.1.0
minDominoRotations: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp blez $5, .LBB0_19 nop sll $8, $5, 0 addiu $9, $zero, 1 addiu $3, $zero, 0 move $10, $4 move $11, $6 addiu $5, $zero, 0 addiu $2, $zero, 0 addiu $7, $zero, 0 addiu $12, $zero, 1 b .LBB0_4 addiu $13, $zero, 1 .LBB0_2: lw $1, 0($10) xor $1, $1, $14 sltu $1, $zero, $1 addu $3, $3, $1 .LBB0_3: daddiu $8, $8, -1 daddiu $10, $10, 4 beqz $8, .LBB0_20 daddiu $11, $11, 4 .LBB0_4: andi $1, $13, 1 beqz $1, .LBB0_7 addiu $13, $zero, 0 lw $14, 0($4) lw $1, 0($10) beq $1, $14, .LBB0_7 addiu $13, $zero, 1 lw $1, 0($11) xor $1, $1, $14 sltiu $13, $1, 1 .LBB0_7: andi $1, $12, 1 beqz $1, .LBB0_10 addiu $12, $zero, 0 lw $14, 0($6) lw $1, 0($11) beq $1, $14, .LBB0_11 addiu $12, $zero, 1 lw $1, 0($10) xor $1, $1, $14 sltiu $12, $1, 1 .LBB0_10: or $1, $13, $12 bne $1, $9, .LBB0_22 nop .LBB0_11: beqz $13, .LBB0_14 nop lw $14, 0($10) lw $1, 0($4) bne $14, $1, .LBB0_17 nop lw $1, 0($11) xor $1, $1, $14 sltu $1, $zero, $1 addu $2, $2, $1 .LBB0_14: beqz $12, .LBB0_3 nop .LBB0_15: lw $14, 0($11) lw $1, 0($6) beq $14, $1, .LBB0_2 nop b .LBB0_3 addiu $5, $5, 1 .LBB0_17: beqz $12, .LBB0_3 addiu $7, $7, 1 b .LBB0_15 nop .LBB0_19: addiu $2, $zero, 0 b .LBB0_21 addiu $7, $zero, 0 .LBB0_20: beqz $13, .LBB0_23 nop .LBB0_21: slt $1, $7, $2 b .LBB0_24 movn $2, $7, $1 .LBB0_22: b .LBB0_24 addiu $2, $zero, -1 .LBB0_23: slt $1, $3, $5 movn $5, $3, $1 addiu $2, $zero, -1 movn $2, $5, $12 .LBB0_24: sll $2, $2, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16
13,963
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
mips64
-O3
mips64 clang 21.1.0
minDominoRotations: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -16 sd $ra, 8($sp) sd $fp, 0($sp) move $fp, $sp blez $5, .LBB0_20 nop sll $8, $5, 0 addiu $9, $zero, 1 addiu $3, $zero, 0 move $10, $4 move $11, $6 addiu $5, $zero, 0 addiu $2, $zero, 0 addiu $7, $zero, 0 addiu $12, $zero, 1 b .LBB0_4 addiu $13, $zero, 1 .LBB0_2: lw $1, 0($10) xor $1, $1, $14 sltu $1, $zero, $1 addu $3, $3, $1 .LBB0_3: daddiu $8, $8, -1 daddiu $10, $10, 4 beqz $8, .LBB0_21 daddiu $11, $11, 4 .LBB0_4: andi $1, $13, 1 beqz $1, .LBB0_7 addiu $13, $zero, 0 lw $14, 0($4) lw $1, 0($10) beq $1, $14, .LBB0_7 addiu $13, $zero, 1 lw $1, 0($11) xor $1, $1, $14 sltiu $13, $1, 1 .LBB0_7: andi $1, $12, 1 beqz $1, .LBB0_10 addiu $12, $zero, 0 lw $14, 0($6) lw $1, 0($11) beq $1, $14, .LBB0_11 addiu $12, $zero, 1 lw $1, 0($10) xor $1, $1, $14 sltiu $12, $1, 1 .LBB0_10: or $1, $13, $12 bne $1, $9, .LBB0_23 nop .LBB0_11: bnez $13, .LBB0_15 nop beqz $12, .LBB0_3 nop .LBB0_13: lw $14, 0($11) lw $1, 0($6) beq $14, $1, .LBB0_2 nop b .LBB0_3 addiu $5, $5, 1 .LBB0_15: lw $14, 0($10) lw $1, 0($4) bne $14, $1, .LBB0_18 nop lw $1, 0($11) xor $1, $1, $14 sltu $1, $zero, $1 beqz $12, .LBB0_3 addu $2, $2, $1 b .LBB0_13 nop .LBB0_18: beqz $12, .LBB0_3 addiu $7, $7, 1 b .LBB0_13 nop .LBB0_20: addiu $2, $zero, 0 b .LBB0_22 addiu $7, $zero, 0 .LBB0_21: beqz $13, .LBB0_24 nop .LBB0_22: slt $1, $7, $2 b .LBB0_25 movn $2, $7, $1 .LBB0_23: b .LBB0_25 addiu $2, $zero, -1 .LBB0_24: slt $1, $3, $5 addiu $2, $zero, -1 movn $5, $3, $1 movn $2, $5, $12 .LBB0_25: sll $2, $2, 0 move $sp, $fp ld $fp, 0($sp) ld $ra, 8($sp) jr $ra daddiu $sp, $sp, 16
13,964
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
mips64
-O0
mips64 gcc 15.2.0
minDominoRotations: daddiu $sp,$sp,-80 sd $fp,72($sp) move $fp,$sp sd $4,32($fp) move $3,$5 sd $6,48($fp) move $2,$7 sll $3,$3,0 sw $3,40($fp) sll $2,$2,0 sw $2,44($fp) li $2,1 # 0x1 sb $2,1($fp) lbu $2,1($fp) sb $2,0($fp) sw $0,20($fp) lw $2,20($fp) sw $2,16($fp) lw $2,16($fp) sw $2,12($fp) lw $2,12($fp) sw $2,8($fp) sw $0,4($fp) b .L2 nop .L11: lbu $2,0($fp) beq $2,$0,.L3 nop lw $2,4($fp) dsll $2,$2,2 ld $3,32($fp) daddu $2,$3,$2 lw $2,0($2) ld $3,32($fp) lw $3,0($3) beq $2,$3,.L3 nop lw $2,4($fp) dsll $2,$2,2 ld $3,48($fp) daddu $2,$3,$2 lw $2,0($2) ld $3,32($fp) lw $3,0($3) beq $2,$3,.L3 nop sb $0,0($fp) .L3: lbu $2,1($fp) beq $2,$0,.L4 nop lw $2,4($fp) dsll $2,$2,2 ld $3,48($fp) daddu $2,$3,$2 lw $2,0($2) ld $3,48($fp) lw $3,0($3) beq $2,$3,.L4 nop lw $2,4($fp) dsll $2,$2,2 ld $3,32($fp) daddu $2,$3,$2 lw $2,0($2) ld $3,48($fp) lw $3,0($3) beq $2,$3,.L4 nop sb $0,1($fp) .L4: lbu $2,0($fp) xori $2,$2,0x1 andi $2,$2,0x00ff beq $2,$0,.L5 nop lbu $2,1($fp) xori $2,$2,0x1 andi $2,$2,0x00ff beq $2,$0,.L5 nop li $2,-1 # 0xffffffffffffffff b .L6 nop .L5: lbu $2,0($fp) beq $2,$0,.L7 nop lw $2,4($fp) dsll $2,$2,2 ld $3,32($fp) daddu $2,$3,$2 lw $2,0($2) ld $3,32($fp) lw $3,0($3) beq $2,$3,.L8 nop lw $2,8($fp) addiu $2,$2,1 sw $2,8($fp) b .L7 nop .L8: lw $2,4($fp) dsll $2,$2,2 ld $3,48($fp) daddu $2,$3,$2 lw $2,0($2) ld $3,32($fp) lw $3,0($3) beq $2,$3,.L7 nop lw $2,12($fp) addiu $2,$2,1 sw $2,12($fp) .L7: lbu $2,1($fp) beq $2,$0,.L9 nop lw $2,4($fp) dsll $2,$2,2 ld $3,48($fp) daddu $2,$3,$2 lw $2,0($2) ld $3,48($fp) lw $3,0($3) beq $2,$3,.L10 nop lw $2,16($fp) addiu $2,$2,1 sw $2,16($fp) b .L9 nop .L10: lw $2,4($fp) dsll $2,$2,2 ld $3,32($fp) daddu $2,$3,$2 lw $2,0($2) ld $3,48($fp) lw $3,0($3) beq $2,$3,.L9 nop lw $2,20($fp) addiu $2,$2,1 sw $2,20($fp) .L9: lw $2,4($fp) addiu $2,$2,1 sw $2,4($fp) .L2: lw $3,4($fp) lw $2,40($fp) slt $2,$3,$2 bne $2,$0,.L11 nop lbu $2,0($fp) beq $2,$0,.L12 nop lw $3,8($fp) lw $2,12($fp) slt $4,$3,$2 beq $4,$0,.L13 nop move $2,$3 .L13: b .L6 nop .L12: lbu $2,1($fp) beq $2,$0,.L14 nop lw $3,20($fp) lw $2,16($fp) slt $4,$3,$2 beq $4,$0,.L15 nop move $2,$3 .L15: b .L6 nop .L14: li $2,-1 # 0xffffffffffffffff .L6: move $sp,$fp ld $fp,72($sp) daddiu $sp,$sp,80 jr $31 nop
13,965
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
mips64
-O1
mips64 gcc 15.2.0
minDominoRotations: blez $5,.L20 move $2,$4 move $3,$6 dsll $5,$5,2 daddu $9,$5,$4 move $14,$0 move $11,$0 move $15,$0 move $12,$0 li $5,1 # 0x1 li $7,1 # 0x1 b .L14 li $13,1 # 0x1 .L31: bne $7,$0,.L7 lw $8,0($2) beql $5,$8,.L33 lw $5,0($6) jr $31 li $2,-1 # 0xffffffffffffffff .L7: xor $5,$5,$8 b .L18 sltu $5,$5,1 .L10: bnel $10,$8,.L11 addiu $15,$15,1 b .L11 nop .L13: beql $8,$5,.L12 li $5,1 # 0x1 addiu $14,$14,1 b .L12 move $5,$13 .L29: bnel $7,$0,.L34 move $2,$12 beq $5,$0,.L22 nop move $2,$11 slt $11,$14,$11 beq $11,$0,.L36 nop jr $31 move $2,$14 .L20: move $15,$0 move $12,$0 move $2,$12 .L34: slt $12,$15,$12 beq $12,$0,.L36 nop jr $31 move $2,$15 .L22: jr $31 li $2,-1 # 0xffffffffffffffff .L4: bnel $5,$0,.L19 move $7,$5 .L18: lw $8,0($4) lw $10,0($2) .L35: beql $10,$8,.L10 lw $10,0($3) addiu $12,$12,1 .L11: bnel $5,$0,.L33 lw $5,0($6) .L12: daddiu $2,$2,4 beq $9,$2,.L29 daddiu $3,$3,4 .L14: beq $7,$0,.L3 nop lw $8,0($4) lw $10,0($2) beq $10,$8,.L4 nop lw $10,0($3) xor $7,$8,$10 bne $5,$0,.L19 sltu $7,$7,1 beql $8,$10,.L35 lw $10,0($2) jr $31 li $2,-1 # 0xffffffffffffffff .L3: beql $5,$0,.L36 li $2,-1 # 0xffffffffffffffff .L19: lw $5,0($6) lw $8,0($3) bne $8,$5,.L31 nop bnel $7,$0,.L18 move $5,$7 .L33: lw $8,0($3) beql $8,$5,.L13 lw $8,0($2) addiu $11,$11,1 b .L12 move $5,$13 .L36: jr $31 nop
13,966
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
mips64
-O2
mips64 gcc 15.2.0
minDominoRotations: blez $5,.L38 dsll $5,$5,32 lw $11,0($4) dsrl $5,$5,32 move $7,$6 dsll $5,$5,2 move $3,$0 move $15,$0 move $2,$0 move $13,$0 move $14,$0 li $10,1 # 0x1 .L3: lw $12,0($4) beq $12,$11,.L66 lw $9,0($7) .L29: beq $9,$11,.L7 nop beq $10,$0,.L43 nop lw $8,0($6) beq $9,$8,.L67 nop bne $12,$8,.L43 daddiu $3,$3,4 beq $5,$3,.L17 addiu $2,$2,1 daddiu $7,$7,4 daddiu $4,$4,4 .L18: move $9,$8 .L16: lw $10,0($7) beq $10,$9,.L68 lw $12,0($4) bne $12,$8,.L43 move $10,$0 lw $9,0($7) .L21: beql $9,$8,.L73 lw $12,0($4) .L69: daddiu $3,$3,4 beq $5,$3,.L15 addiu $2,$2,1 .L59: daddiu $7,$7,4 .L75: beq $10,$0,.L18 daddiu $4,$4,4 lw $12,0($4) lw $9,0($7) bne $12,$11,.L29 li $10,1 # 0x1 .L66: beq $10,$0,.L4 nop lw $8,0($6) beq $8,$9,.L22 nop bne $12,$8,.L4 nop .L22: beq $9,$11,.L21 nop bne $9,$8,.L69 addiu $13,$13,1 lw $12,0($4) .L73: bne $12,$9,.L74 daddiu $3,$3,4 bnel $5,$3,.L75 daddiu $7,$7,4 .L15: bnel $10,$0,.L76 slt $3,$13,$14 .L17: slt $3,$15,$2 .L72: beq $3,$0,.L78 nop jr $31 move $2,$15 .L7: beql $10,$0,.L77 daddiu $3,$3,4 lw $8,0($6) beql $11,$8,.L21 addiu $14,$14,1 beql $12,$8,.L21 addiu $14,$14,1 daddiu $3,$3,4 .L77: addiu $14,$14,1 .L61: beql $5,$3,.L76 slt $3,$13,$14 lw $8,4($4) daddiu $7,$7,4 daddiu $4,$4,4 beq $8,$11,.L4 lw $9,0($7) beq $9,$11,.L77 daddiu $3,$3,4 .L43: jr $31 li $2,-1 # 0xffffffffffffffff .L68: beq $12,$8,.L70 move $10,$0 daddiu $3,$3,4 .L74: bne $5,$3,.L59 addiu $15,$15,1 b .L15 nop .L4: beq $9,$11,.L61 daddiu $3,$3,4 addiu $13,$13,1 daddiu $7,$7,4 daddiu $4,$4,4 bne $3,$5,.L3 move $10,$0 slt $3,$13,$14 .L76: bne $3,$0,.L71 move $2,$14 .L78: jr $31 nop .L67: beq $12,$8,.L64 daddiu $3,$3,4 addiu $15,$15,1 .L64: beql $5,$3,.L72 slt $3,$15,$2 daddiu $7,$7,4 b .L18 daddiu $4,$4,4 .L70: daddiu $3,$3,4 daddiu $7,$7,4 bne $5,$3,.L16 daddiu $4,$4,4 b .L72 slt $3,$15,$2 .L71: jr $31 move $2,$13 .L38: jr $31 move $2,$0
13,967
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
mips64
-O3
mips64 gcc 15.2.0
minDominoRotations: daddiu $sp,$sp,-16 blez $5,.L38 dsll $5,$5,32 lw $13,0($4) dsrl $5,$5,32 move $7,$6 dsll $5,$5,2 move $3,$0 move $24,$0 move $2,$0 move $14,$0 move $15,$0 li $10,1 # 0x1 .L3: lw $12,0($4) beq $12,$13,.L66 lw $9,0($7) .L29: beq $9,$13,.L7 nop beql $10,$0,.L54 li $2,-1 # 0xffffffffffffffff lw $8,0($6) beq $9,$8,.L67 nop bnel $12,$8,.L54 li $2,-1 # 0xffffffffffffffff daddiu $3,$3,4 beq $5,$3,.L17 addiu $2,$2,1 daddiu $7,$7,4 daddiu $4,$4,4 .L18: move $9,$8 .L16: lw $10,0($7) beq $10,$9,.L68 lw $11,0($4) bnel $11,$8,.L54 li $2,-1 # 0xffffffffffffffff lw $9,0($7) move $10,$0 .L21: beql $11,$9,.L72 lw $11,0($4) .L69: daddiu $3,$3,4 beq $5,$3,.L15 addiu $2,$2,1 .L59: daddiu $7,$7,4 .L74: beq $10,$0,.L18 daddiu $4,$4,4 lw $12,0($4) lw $9,0($7) bne $12,$13,.L29 li $10,1 # 0x1 .L66: beq $10,$0,.L4 nop lw $8,0($6) beq $8,$9,.L22 move $11,$8 bne $12,$8,.L4 nop .L22: beq $9,$13,.L21 nop move $11,$8 bne $11,$9,.L69 addiu $14,$14,1 lw $11,0($4) .L72: bne $11,$9,.L73 daddiu $3,$3,4 bnel $5,$3,.L74 daddiu $7,$7,4 .L15: bnel $10,$0,.L75 slt $3,$14,$15 .L17: slt $3,$24,$2 .L71: beq $3,$0,.L54 nop move $2,$24 jr $31 daddiu $sp,$sp,16 .L7: beql $10,$0,.L76 daddiu $3,$3,4 lw $8,0($6) beq $13,$8,.L11 move $11,$8 beql $12,$8,.L21 addiu $15,$15,1 daddiu $3,$3,4 .L76: addiu $15,$15,1 .L61: beql $5,$3,.L75 slt $3,$14,$15 lw $12,4($4) daddiu $7,$7,4 daddiu $4,$4,4 beq $12,$13,.L4 lw $9,0($7) beql $9,$13,.L76 daddiu $3,$3,4 li $2,-1 # 0xffffffffffffffff .L54: jr $31 daddiu $sp,$sp,16 .L68: beq $11,$8,.L70 move $10,$0 daddiu $3,$3,4 .L73: bne $5,$3,.L59 addiu $24,$24,1 b .L15 nop .L11: b .L21 addiu $15,$15,1 .L4: beq $9,$13,.L61 daddiu $3,$3,4 addiu $14,$14,1 daddiu $7,$7,4 daddiu $4,$4,4 bne $5,$3,.L3 move $10,$0 slt $3,$14,$15 .L75: beq $3,$0,.L54 move $2,$15 move $2,$14 jr $31 daddiu $sp,$sp,16 .L67: beq $12,$8,.L64 daddiu $3,$3,4 addiu $24,$24,1 .L64: beql $5,$3,.L71 slt $3,$24,$2 daddiu $7,$7,4 b .L18 daddiu $4,$4,4 .L70: daddiu $3,$3,4 daddiu $7,$7,4 bne $5,$3,.L16 daddiu $4,$4,4 b .L71 slt $3,$24,$2 .L38: b .L54 move $2,$0
13,968
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
riscv64
-O0
RISC-V 64 clang 21.1.0
minDominoRotations: addi sp, sp, -96 sd ra, 88(sp) sd s0, 80(sp) addi s0, sp, 96 sd a0, -32(s0) sw a1, -36(s0) sd a2, -48(s0) sw a3, -52(s0) li a0, 1 sb a0, -54(s0) sb a0, -53(s0) li a0, 0 sw a0, -76(s0) sw a0, -72(s0) sw a0, -68(s0) sw a0, -64(s0) sw a0, -60(s0) j .LBB0_1 .LBB0_1: lw a0, -60(s0) lw a1, -36(s0) bge a0, a1, .LBB0_29 j .LBB0_2 .LBB0_2: lbu a0, -53(s0) andi a0, a0, 1 beqz a0, .LBB0_6 j .LBB0_3 .LBB0_3: ld a1, -32(s0) lw a0, -60(s0) slli a0, a0, 2 add a0, a0, a1 lw a0, 0(a0) lw a1, 0(a1) beq a0, a1, .LBB0_6 j .LBB0_4 .LBB0_4: ld a0, -48(s0) lw a1, -60(s0) slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) ld a1, -32(s0) lw a1, 0(a1) beq a0, a1, .LBB0_6 j .LBB0_5 .LBB0_5: li a0, 0 sb a0, -53(s0) j .LBB0_6 .LBB0_6: lbu a0, -54(s0) andi a0, a0, 1 beqz a0, .LBB0_10 j .LBB0_7 .LBB0_7: ld a1, -48(s0) lw a0, -60(s0) slli a0, a0, 2 add a0, a0, a1 lw a0, 0(a0) lw a1, 0(a1) beq a0, a1, .LBB0_10 j .LBB0_8 .LBB0_8: ld a0, -32(s0) lw a1, -60(s0) slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) ld a1, -48(s0) lw a1, 0(a1) beq a0, a1, .LBB0_10 j .LBB0_9 .LBB0_9: li a0, 0 sb a0, -54(s0) j .LBB0_10 .LBB0_10: lbu a0, -53(s0) andi a0, a0, 1 bnez a0, .LBB0_13 j .LBB0_11 .LBB0_11: lbu a0, -54(s0) andi a0, a0, 1 bnez a0, .LBB0_13 j .LBB0_12 .LBB0_12: li a0, -1 sw a0, -20(s0) j .LBB0_40 .LBB0_13: lbu a0, -53(s0) andi a0, a0, 1 beqz a0, .LBB0_20 j .LBB0_14 .LBB0_14: ld a1, -32(s0) lw a0, -60(s0) slli a0, a0, 2 add a0, a0, a1 lw a0, 0(a0) lw a1, 0(a1) beq a0, a1, .LBB0_16 j .LBB0_15 .LBB0_15: lw a0, -64(s0) addiw a0, a0, 1 sw a0, -64(s0) j .LBB0_19 .LBB0_16: ld a0, -48(s0) lw a1, -60(s0) slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) ld a1, -32(s0) lw a1, 0(a1) beq a0, a1, .LBB0_18 j .LBB0_17 .LBB0_17: lw a0, -68(s0) addiw a0, a0, 1 sw a0, -68(s0) j .LBB0_18 .LBB0_18: j .LBB0_19 .LBB0_19: j .LBB0_20 .LBB0_20: lbu a0, -54(s0) andi a0, a0, 1 beqz a0, .LBB0_27 j .LBB0_21 .LBB0_21: ld a1, -48(s0) lw a0, -60(s0) slli a0, a0, 2 add a0, a0, a1 lw a0, 0(a0) lw a1, 0(a1) beq a0, a1, .LBB0_23 j .LBB0_22 .LBB0_22: lw a0, -72(s0) addiw a0, a0, 1 sw a0, -72(s0) j .LBB0_26 .LBB0_23: ld a0, -32(s0) lw a1, -60(s0) slli a1, a1, 2 add a0, a0, a1 lw a0, 0(a0) ld a1, -48(s0) lw a1, 0(a1) beq a0, a1, .LBB0_25 j .LBB0_24 .LBB0_24: lw a0, -76(s0) addiw a0, a0, 1 sw a0, -76(s0) j .LBB0_25 .LBB0_25: j .LBB0_26 .LBB0_26: j .LBB0_27 .LBB0_27: j .LBB0_28 .LBB0_28: lw a0, -60(s0) addiw a0, a0, 1 sw a0, -60(s0) j .LBB0_1 .LBB0_29: lbu a0, -53(s0) andi a0, a0, 1 beqz a0, .LBB0_34 j .LBB0_30 .LBB0_30: lw a0, -64(s0) lw a1, -68(s0) bge a0, a1, .LBB0_32 j .LBB0_31 .LBB0_31: lw a0, -64(s0) sd a0, -88(s0) j .LBB0_33 .LBB0_32: lw a0, -68(s0) sd a0, -88(s0) j .LBB0_33 .LBB0_33: ld a0, -88(s0) sw a0, -20(s0) j .LBB0_40 .LBB0_34: lbu a0, -54(s0) andi a0, a0, 1 beqz a0, .LBB0_39 j .LBB0_35 .LBB0_35: lw a0, -76(s0) lw a1, -72(s0) bge a0, a1, .LBB0_37 j .LBB0_36 .LBB0_36: lw a0, -76(s0) sd a0, -96(s0) j .LBB0_38 .LBB0_37: lw a0, -72(s0) sd a0, -96(s0) j .LBB0_38 .LBB0_38: ld a0, -96(s0) sw a0, -20(s0) j .LBB0_40 .LBB0_39: li a0, -1 sw a0, -20(s0) j .LBB0_40 .LBB0_40: lw a0, -20(s0) ld ra, 88(sp) ld s0, 80(sp) addi sp, sp, 96 ret
13,969
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
riscv64
-O1
RISC-V 64 clang 21.1.0
minDominoRotations: blez a1, .LBB0_20 mv t1, a0 li t0, 0 li a7, 0 li a6, 0 li a0, 0 li t2, 1 mv a3, t1 mv a4, a2 li t3, 1 j .LBB0_4 .LBB0_2: lw a5, 0(a3) xor a5, a5, t5 snez a5, a5 addw t0, t0, a5 .LBB0_3: addi a4, a4, 4 addi a1, a1, -1 addi a3, a3, 4 beqz a1, .LBB0_21 .LBB0_4: andi a5, t3, 1 beqz a5, .LBB0_7 lw t3, 0(a3) lw t4, 0(t1) bne t3, t4, .LBB0_10 li t3, 1 andi a5, t2, 1 bnez a5, .LBB0_8 j .LBB0_11 .LBB0_7: li t3, 0 andi a5, t2, 1 beqz a5, .LBB0_11 .LBB0_8: lw t2, 0(a4) lw t4, 0(a2) bne t2, t4, .LBB0_12 li t2, 1 or a5, t3, t2 bnez a5, .LBB0_13 j .LBB0_28 .LBB0_10: lw a5, 0(a4) xor a5, a5, t4 seqz t3, a5 andi a5, t2, 1 bnez a5, .LBB0_8 .LBB0_11: li t2, 0 or a5, t3, t2 bnez a5, .LBB0_13 j .LBB0_28 .LBB0_12: lw a5, 0(a3) xor a5, a5, t4 seqz t2, a5 or a5, t3, t2 beqz a5, .LBB0_28 .LBB0_13: beqz t3, .LBB0_16 lw t4, 0(a3) lw t5, 0(t1) bne t4, t5, .LBB0_19 lw a5, 0(a4) xor a5, a5, t5 snez a5, a5 addw a6, a6, a5 .LBB0_16: beqz t2, .LBB0_3 .LBB0_17: lw t4, 0(a4) lw t5, 0(a2) beq t4, t5, .LBB0_2 addiw a7, a7, 1 j .LBB0_3 .LBB0_19: addiw a0, a0, 1 beqz t2, .LBB0_3 j .LBB0_17 .LBB0_20: li a0, 0 li a6, 0 li a7, 0 li t0, 0 li t3, 1 li t2, 1 .LBB0_21: beqz t3, .LBB0_24 blt a0, a6, .LBB0_27 mv a0, a6 ret .LBB0_24: blt t0, a7, .LBB0_26 mv t0, a7 .LBB0_26: addi t2, t2, -1 or a0, t2, t0 .LBB0_27: ret .LBB0_28: li a0, -1 ret
13,970
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
riscv64
-O2
RISC-V 64 clang 21.1.0
minDominoRotations: blez a1, .LBB0_20 mv t1, a0 li a7, 0 li a6, 0 li t0, 0 li a0, 0 li t2, 1 mv a3, t1 mv a4, a2 li t3, 1 j .LBB0_4 .LBB0_2: lw a5, 0(a3) xor a5, a5, t4 snez a5, a5 addw a7, a7, a5 .LBB0_3: addi a4, a4, 4 addi a1, a1, -1 addi a3, a3, 4 beqz a1, .LBB0_21 .LBB0_4: andi a5, t3, 1 beqz a5, .LBB0_7 lw t3, 0(a3) lw t4, 0(t1) bne t3, t4, .LBB0_10 li t3, 1 andi a5, t2, 1 bnez a5, .LBB0_8 j .LBB0_11 .LBB0_7: li t3, 0 andi a5, t2, 1 beqz a5, .LBB0_11 .LBB0_8: lw t2, 0(a4) lw t4, 0(a2) bne t2, t4, .LBB0_12 li t2, 1 j .LBB0_13 .LBB0_10: lw a5, 0(a4) xor a5, a5, t4 seqz t3, a5 andi a5, t2, 1 bnez a5, .LBB0_8 .LBB0_11: li t2, 0 bnez t3, .LBB0_13 j .LBB0_24 .LBB0_12: lw a5, 0(a3) xor a5, a5, t4 seqz t2, a5 or a5, t3, t2 beqz a5, .LBB0_24 .LBB0_13: beqz t3, .LBB0_16 lw t4, 0(a3) lw a5, 0(t1) bne t4, a5, .LBB0_19 lw a5, 0(a4) xor a5, a5, t4 snez a5, a5 addw t0, t0, a5 .LBB0_16: beqz t2, .LBB0_3 .LBB0_17: lw t4, 0(a4) lw a5, 0(a2) beq t4, a5, .LBB0_2 addiw a6, a6, 1 j .LBB0_3 .LBB0_19: addiw a0, a0, 1 beqz t2, .LBB0_3 j .LBB0_17 .LBB0_20: li t0, 0 li a0, 0 j .LBB0_22 .LBB0_21: beqz t3, .LBB0_25 .LBB0_22: blt a0, t0, .LBB0_28 mv a0, t0 ret .LBB0_24: li a0, -1 ret .LBB0_25: blt a7, a6, .LBB0_27 mv a7, a6 .LBB0_27: addi t2, t2, -1 or a0, t2, a7 .LBB0_28: ret
13,971
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
riscv64
-O3
RISC-V 64 clang 21.1.0
minDominoRotations: blez a1, .LBB0_20 mv t1, a0 li a7, 0 li a6, 0 li t0, 0 li a0, 0 li t2, 1 mv a3, t1 mv a4, a2 li t3, 1 j .LBB0_4 .LBB0_2: lw a5, 0(a3) xor a5, a5, t4 snez a5, a5 addw a7, a7, a5 .LBB0_3: addi a4, a4, 4 addi a1, a1, -1 addi a3, a3, 4 beqz a1, .LBB0_21 .LBB0_4: andi a5, t3, 1 beqz a5, .LBB0_7 lw t3, 0(a3) lw t4, 0(t1) bne t3, t4, .LBB0_10 li t3, 1 andi a5, t2, 1 bnez a5, .LBB0_8 j .LBB0_11 .LBB0_7: li t3, 0 andi a5, t2, 1 beqz a5, .LBB0_11 .LBB0_8: lw t2, 0(a4) lw t4, 0(a2) bne t2, t4, .LBB0_12 li t2, 1 j .LBB0_13 .LBB0_10: lw a5, 0(a4) xor a5, a5, t4 seqz t3, a5 andi a5, t2, 1 bnez a5, .LBB0_8 .LBB0_11: li t2, 0 bnez t3, .LBB0_13 j .LBB0_24 .LBB0_12: lw a5, 0(a3) xor a5, a5, t4 seqz t2, a5 or a5, t3, t2 beqz a5, .LBB0_24 .LBB0_13: bnez t3, .LBB0_17 beqz t2, .LBB0_3 .LBB0_15: lw t4, 0(a4) lw a5, 0(a2) beq t4, a5, .LBB0_2 addiw a6, a6, 1 j .LBB0_3 .LBB0_17: lw t4, 0(a3) lw a5, 0(t1) bne t4, a5, .LBB0_19 lw a5, 0(a4) xor a5, a5, t4 snez a5, a5 addw t0, t0, a5 beqz t2, .LBB0_3 j .LBB0_15 .LBB0_19: addiw a0, a0, 1 beqz t2, .LBB0_3 j .LBB0_15 .LBB0_20: li t0, 0 li a0, 0 j .LBB0_22 .LBB0_21: beqz t3, .LBB0_25 .LBB0_22: blt a0, t0, .LBB0_28 mv a0, t0 ret .LBB0_24: li a0, -1 ret .LBB0_25: blt a7, a6, .LBB0_27 mv a7, a6 .LBB0_27: addi t2, t2, -1 or a0, t2, a7 .LBB0_28: ret
13,972
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
riscv64
-O0
RISC-V 64 gcc 15.2.0
minDominoRotations: addi sp,sp,-80 sd ra,72(sp) sd s0,64(sp) addi s0,sp,80 sd a0,-56(s0) mv a5,a1 sd a2,-72(s0) mv a4,a3 sw a5,-60(s0) mv a5,a4 sw a5,-64(s0) li a5,1 sb a5,-18(s0) lbu a5,-18(s0) sb a5,-17(s0) sw zero,-40(s0) lw a5,-40(s0) sw a5,-36(s0) lw a5,-36(s0) sw a5,-32(s0) lw a5,-32(s0) sw a5,-28(s0) sw zero,-24(s0) j .L2 .L11: lbu a5,-17(s0) andi a5,a5,0xff beq a5,zero,.L3 lw a5,-24(s0) slli a5,a5,2 ld a4,-56(s0) add a5,a4,a5 lw a4,0(a5) ld a5,-56(s0) lw a5,0(a5) beq a4,a5,.L3 lw a5,-24(s0) slli a5,a5,2 ld a4,-72(s0) add a5,a4,a5 lw a4,0(a5) ld a5,-56(s0) lw a5,0(a5) beq a4,a5,.L3 sb zero,-17(s0) .L3: lbu a5,-18(s0) andi a5,a5,0xff beq a5,zero,.L4 lw a5,-24(s0) slli a5,a5,2 ld a4,-72(s0) add a5,a4,a5 lw a4,0(a5) ld a5,-72(s0) lw a5,0(a5) beq a4,a5,.L4 lw a5,-24(s0) slli a5,a5,2 ld a4,-56(s0) add a5,a4,a5 lw a4,0(a5) ld a5,-72(s0) lw a5,0(a5) beq a4,a5,.L4 sb zero,-18(s0) .L4: lbu a5,-17(s0) xori a5,a5,1 andi a5,a5,0xff beq a5,zero,.L5 lbu a5,-18(s0) xori a5,a5,1 andi a5,a5,0xff beq a5,zero,.L5 li a5,-1 j .L6 .L5: lbu a5,-17(s0) andi a5,a5,0xff beq a5,zero,.L7 lw a5,-24(s0) slli a5,a5,2 ld a4,-56(s0) add a5,a4,a5 lw a4,0(a5) ld a5,-56(s0) lw a5,0(a5) beq a4,a5,.L8 lw a5,-28(s0) addiw a5,a5,1 sw a5,-28(s0) j .L7 .L8: lw a5,-24(s0) slli a5,a5,2 ld a4,-72(s0) add a5,a4,a5 lw a4,0(a5) ld a5,-56(s0) lw a5,0(a5) beq a4,a5,.L7 lw a5,-32(s0) addiw a5,a5,1 sw a5,-32(s0) .L7: lbu a5,-18(s0) andi a5,a5,0xff beq a5,zero,.L9 lw a5,-24(s0) slli a5,a5,2 ld a4,-72(s0) add a5,a4,a5 lw a4,0(a5) ld a5,-72(s0) lw a5,0(a5) beq a4,a5,.L10 lw a5,-36(s0) addiw a5,a5,1 sw a5,-36(s0) j .L9 .L10: lw a5,-24(s0) slli a5,a5,2 ld a4,-56(s0) add a5,a4,a5 lw a4,0(a5) ld a5,-72(s0) lw a5,0(a5) beq a4,a5,.L9 lw a5,-40(s0) addiw a5,a5,1 sw a5,-40(s0) .L9: lw a5,-24(s0) addiw a5,a5,1 sw a5,-24(s0) .L2: lw a5,-24(s0) mv a4,a5 lw a5,-60(s0) sext.w a4,a4 sext.w a5,a5 blt a4,a5,.L11 lbu a5,-17(s0) andi a5,a5,0xff beq a5,zero,.L12 lw a5,-28(s0) mv a2,a5 lw a5,-32(s0) mv a3,a5 sext.w a4,a3 sext.w a5,a2 ble a4,a5,.L13 mv a3,a2 .L13: sext.w a5,a3 j .L6 .L12: lbu a5,-18(s0) andi a5,a5,0xff beq a5,zero,.L14 lw a5,-40(s0) mv a2,a5 lw a5,-36(s0) mv a3,a5 sext.w a4,a3 sext.w a5,a2 ble a4,a5,.L15 mv a3,a2 .L15: sext.w a5,a3 j .L6 .L14: li a5,-1 .L6: mv a0,a5 ld ra,72(sp) ld s0,64(sp) addi sp,sp,80 jr ra
13,973
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
riscv64
-O1
RISC-V 64 gcc 15.2.0
minDominoRotations: ble a1,zero,.L21 mv a4,a0 mv a6,a2 slli a1,a1,2 add a1,a1,a0 li t6,0 li t1,0 li t0,0 li t3,0 li a3,1 mv a5,a3 mv t5,a3 j .L14 .L25: mv a5,a3 j .L18 .L34: mv a3,a5 .L19: lw a5,0(a0) lw a7,0(a4) beq a7,a5,.L10 addiw t3,t3,1 .L11: mv a5,t5 bne a3,zero,.L31 .L12: addi a4,a4,4 addi a6,a6,4 beq a1,a4,.L32 .L14: beq a5,zero,.L3 lw a7,0(a0) lw a5,0(a4) beq a5,a7,.L4 lw a5,0(a6) sub a5,a5,a7 seqz a5,a5 bne a3,zero,.L18 .L5: bne a3,zero,.L27 beq a5,zero,.L22 .L27: bne a5,zero,.L19 .L9: lw a7,0(a2) lw t4,0(a6) beq t4,a7,.L13 addiw t1,t1,1 j .L12 .L31: mv a5,a3 j .L9 .L32: bne a5,zero,.L2 beq a3,zero,.L24 mv a0,t1 ble t1,t6,.L17 mv a0,t6 .L17: sext.w a0,a0 ret .L21: li t0,0 li t3,0 .L2: mv a0,t3 ble t3,t0,.L16 mv a0,t0 .L16: sext.w a0,a0 ret .L22: li a0,-1 ret .L24: li a0,-1 ret .L3: beq a3,zero,.L33 .L18: lw a7,0(a2) lw a3,0(a6) beq a3,a7,.L6 lw a3,0(a4) sub a3,a3,a7 seqz a3,a3 j .L5 .L33: li a0,-1 ret .L4: bne a3,zero,.L25 lw a5,0(a0) .L10: lw a7,0(a6) beq a7,a5,.L11 addiw t0,t0,1 j .L11 .L6: bne a5,zero,.L34 lw a7,0(a2) li a3,1 .L13: lw t4,0(a4) beq t4,a7,.L12 addiw t6,t6,1 j .L12
13,974
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
riscv64
-O2
RISC-V 64 gcc 15.2.0
minDominoRotations: ble a1,zero,.L41 lw a6,0(a0) lw a4,0(a2) slli a1,a1,2 li a5,0 li t6,0 li t1,0 li t5,0 li t4,0 .L3: lw a7,0(a0) beq a7,a6,.L59 lw a3,0(a2) mv t3,a4 beq a3,a4,.L60 beq a7,a4,.L61 bne a6,a3,.L43 .L15: addi a5,a5,4 addiw t1,t1,1 beq a1,a5,.L35 .L55: lw a3,4(a0) addi a0,a0,4 addi a2,a2,4 mv a4,a6 beq a3,a6,.L62 lw a3,0(a2) beq a4,a3,.L15 .L43: li a0,-1 ret .L62: lw a3,0(a2) beq a3,a4,.L48 .L37: addiw t5,t5,1 .L48: addi a5,a5,4 bne a1,a5,.L55 .L35: sext.w a0,t1 ble t1,t5,.L46 sext.w a0,t5 ret .L59: lw a7,0(a2) mv a3,a4 beq a7,a4,.L31 beq a6,a4,.L33 bne a7,a6,.L37 j .L48 .L33: lw a3,0(a2) addiw t5,t5,1 mv a7,a4 li t3,1 .L34: beq a7,a3,.L22 .L63: addi a5,a5,4 addiw t4,t4,1 beq a1,a5,.L24 .L50: addi a0,a0,4 addi a2,a2,4 bne t3,zero,.L3 lw a3,0(a2) mv a7,a4 li t3,0 beq a3,a4,.L34 lw a7,0(a0) bne a7,a4,.L43 .L10: mv a7,a4 li t3,0 bne a7,a3,.L63 .L22: lw a3,0(a0) addi a5,a5,4 beq a3,a7,.L25 addiw t6,t6,1 bne a1,a5,.L50 .L24: bne t3,zero,.L35 sext.w a0,t4 bgt t4,t6,.L64 .L46: ret .L60: bne a6,a4,.L10 .L9: mv a3,t3 addiw t1,t1,1 mv a7,a4 li t3,1 j .L34 .L25: bne a1,a5,.L50 j .L24 .L61: mv t3,a6 beq a6,a3,.L9 j .L10 .L64: sext.w a0,t6 ret .L41: li a0,0 ret .L31: bne a6,a4,.L33 mv a7,a6 li t3,1 j .L34
13,975
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
riscv64
-O3
RISC-V 64 gcc 15.2.0
minDominoRotations: ble a1,zero,.L41 lw a6,0(a0) lw a4,0(a2) slli a1,a1,2 li a5,0 li t6,0 li t1,0 li t5,0 li t4,0 .L3: lw a7,0(a0) beq a7,a6,.L59 lw a3,0(a2) mv t3,a4 beq a3,a4,.L60 beq a7,a4,.L61 bne a6,a3,.L43 .L15: addi a5,a5,4 addiw t1,t1,1 beq a1,a5,.L35 .L55: lw a3,4(a0) addi a0,a0,4 addi a2,a2,4 mv a4,a6 beq a3,a6,.L62 lw a3,0(a2) beq a4,a3,.L15 .L43: li a0,-1 ret .L62: lw a3,0(a2) beq a3,a4,.L48 .L37: addiw t5,t5,1 .L48: addi a5,a5,4 bne a5,a1,.L55 .L35: sext.w a0,t1 ble t1,t5,.L46 sext.w a0,t5 ret .L59: lw a7,0(a2) mv a3,a4 beq a7,a4,.L31 beq a6,a4,.L33 bne a7,a6,.L37 j .L48 .L33: lw a3,0(a2) addiw t5,t5,1 mv a7,a4 li t3,1 .L34: beq a7,a3,.L22 .L63: addi a5,a5,4 addiw t4,t4,1 beq a1,a5,.L24 .L50: addi a0,a0,4 addi a2,a2,4 bne t3,zero,.L3 lw a3,0(a2) mv a7,a4 li t3,0 beq a3,a4,.L34 lw a7,0(a0) bne a7,a4,.L43 .L10: mv a7,a4 li t3,0 bne a7,a3,.L63 .L22: lw a3,0(a0) addi a5,a5,4 beq a3,a7,.L25 addiw t6,t6,1 bne a1,a5,.L50 .L24: bne t3,zero,.L35 sext.w a0,t4 bgt t4,t6,.L64 .L46: ret .L60: bne a6,a4,.L10 .L9: mv a3,t3 addiw t1,t1,1 mv a7,a4 li t3,1 j .L34 .L25: bne a1,a5,.L50 j .L24 .L61: mv t3,a6 beq a6,a3,.L9 j .L10 .L64: sext.w a0,t6 ret .L41: li a0,0 ret .L31: bne a6,a4,.L33 mv a7,a6 li t3,1 j .L34
13,976
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
x86-64
-O0
x86-64 clang 21.1.0
minDominoRotations: push rbp mov rbp, rsp mov qword ptr [rbp - 16], rdi mov dword ptr [rbp - 20], esi mov qword ptr [rbp - 32], rdx mov dword ptr [rbp - 36], ecx mov byte ptr [rbp - 38], 1 mov byte ptr [rbp - 37], 1 mov dword ptr [rbp - 60], 0 mov dword ptr [rbp - 56], 0 mov dword ptr [rbp - 52], 0 mov dword ptr [rbp - 48], 0 mov dword ptr [rbp - 44], 0 .LBB0_1: mov eax, dword ptr [rbp - 44] cmp eax, dword ptr [rbp - 20] jge .LBB0_29 test byte ptr [rbp - 37], 1 je .LBB0_6 mov rax, qword ptr [rbp - 16] movsxd rcx, dword ptr [rbp - 44] mov eax, dword ptr [rax + 4*rcx] mov rcx, qword ptr [rbp - 16] cmp eax, dword ptr [rcx] je .LBB0_6 mov rax, qword ptr [rbp - 32] movsxd rcx, dword ptr [rbp - 44] mov eax, dword ptr [rax + 4*rcx] mov rcx, qword ptr [rbp - 16] cmp eax, dword ptr [rcx] je .LBB0_6 mov byte ptr [rbp - 37], 0 .LBB0_6: test byte ptr [rbp - 38], 1 je .LBB0_10 mov rax, qword ptr [rbp - 32] movsxd rcx, dword ptr [rbp - 44] mov eax, dword ptr [rax + 4*rcx] mov rcx, qword ptr [rbp - 32] cmp eax, dword ptr [rcx] je .LBB0_10 mov rax, qword ptr [rbp - 16] movsxd rcx, dword ptr [rbp - 44] mov eax, dword ptr [rax + 4*rcx] mov rcx, qword ptr [rbp - 32] cmp eax, dword ptr [rcx] je .LBB0_10 mov byte ptr [rbp - 38], 0 .LBB0_10: test byte ptr [rbp - 37], 1 jne .LBB0_13 test byte ptr [rbp - 38], 1 jne .LBB0_13 mov dword ptr [rbp - 4], -1 jmp .LBB0_40 .LBB0_13: test byte ptr [rbp - 37], 1 je .LBB0_20 mov rax, qword ptr [rbp - 16] movsxd rcx, dword ptr [rbp - 44] mov eax, dword ptr [rax + 4*rcx] mov rcx, qword ptr [rbp - 16] cmp eax, dword ptr [rcx] je .LBB0_16 mov eax, dword ptr [rbp - 48] add eax, 1 mov dword ptr [rbp - 48], eax jmp .LBB0_19 .LBB0_16: mov rax, qword ptr [rbp - 32] movsxd rcx, dword ptr [rbp - 44] mov eax, dword ptr [rax + 4*rcx] mov rcx, qword ptr [rbp - 16] cmp eax, dword ptr [rcx] je .LBB0_18 mov eax, dword ptr [rbp - 52] add eax, 1 mov dword ptr [rbp - 52], eax .LBB0_18: jmp .LBB0_19 .LBB0_19: jmp .LBB0_20 .LBB0_20: test byte ptr [rbp - 38], 1 je .LBB0_27 mov rax, qword ptr [rbp - 32] movsxd rcx, dword ptr [rbp - 44] mov eax, dword ptr [rax + 4*rcx] mov rcx, qword ptr [rbp - 32] cmp eax, dword ptr [rcx] je .LBB0_23 mov eax, dword ptr [rbp - 56] add eax, 1 mov dword ptr [rbp - 56], eax jmp .LBB0_26 .LBB0_23: mov rax, qword ptr [rbp - 16] movsxd rcx, dword ptr [rbp - 44] mov eax, dword ptr [rax + 4*rcx] mov rcx, qword ptr [rbp - 32] cmp eax, dword ptr [rcx] je .LBB0_25 mov eax, dword ptr [rbp - 60] add eax, 1 mov dword ptr [rbp - 60], eax .LBB0_25: jmp .LBB0_26 .LBB0_26: jmp .LBB0_27 .LBB0_27: jmp .LBB0_28 .LBB0_28: mov eax, dword ptr [rbp - 44] add eax, 1 mov dword ptr [rbp - 44], eax jmp .LBB0_1 .LBB0_29: test byte ptr [rbp - 37], 1 je .LBB0_34 mov eax, dword ptr [rbp - 48] cmp eax, dword ptr [rbp - 52] jge .LBB0_32 mov eax, dword ptr [rbp - 48] mov dword ptr [rbp - 64], eax jmp .LBB0_33 .LBB0_32: mov eax, dword ptr [rbp - 52] mov dword ptr [rbp - 64], eax .LBB0_33: mov eax, dword ptr [rbp - 64] mov dword ptr [rbp - 4], eax jmp .LBB0_40 .LBB0_34: test byte ptr [rbp - 38], 1 je .LBB0_39 mov eax, dword ptr [rbp - 60] cmp eax, dword ptr [rbp - 56] jge .LBB0_37 mov eax, dword ptr [rbp - 60] mov dword ptr [rbp - 68], eax jmp .LBB0_38 .LBB0_37: mov eax, dword ptr [rbp - 56] mov dword ptr [rbp - 68], eax .LBB0_38: mov eax, dword ptr [rbp - 68] mov dword ptr [rbp - 4], eax jmp .LBB0_40 .LBB0_39: mov dword ptr [rbp - 4], -1 .LBB0_40: mov eax, dword ptr [rbp - 4] pop rbp ret
13,977
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
x86-64
-O1
x86-64 clang 21.1.0
minDominoRotations: push rbp push r15 push r14 push rbx test esi, esi jle .LBB0_1 mov r11d, esi mov sil, 1 xor ebx, ebx xor r14d, r14d xor r9d, r9d xor eax, eax xor ecx, ecx xor r8d, r8d mov r10b, 1 jmp .LBB0_3 .LBB0_18: xor r15d, r15d cmp dword ptr [rdi + 4*r14], ebp setne r15b add r9d, r15d .LBB0_19: inc r14 cmp r11, r14 je .LBB0_20 .LBB0_3: test r10b, 1 je .LBB0_6 mov ebp, dword ptr [rdi] cmp dword ptr [rdi + 4*r14], ebp je .LBB0_6 cmp dword ptr [rdx + 4*r14], ebp movzx r10d, r10b cmovne r10d, ebx .LBB0_6: test sil, 1 je .LBB0_9 mov ebp, dword ptr [rdx] cmp dword ptr [rdx + 4*r14], ebp je .LBB0_9 cmp dword ptr [rdi + 4*r14], ebp movzx esi, sil cmovne esi, ebx .LBB0_9: test r10b, 1 jne .LBB0_11 test sil, 1 je .LBB0_24 .LBB0_11: test r10b, 1 je .LBB0_15 mov ebp, dword ptr [rdi] cmp dword ptr [rdi + 4*r14], ebp jne .LBB0_13 xor r15d, r15d cmp dword ptr [rdx + 4*r14], ebp setne r15b add ecx, r15d .LBB0_15: test sil, 1 je .LBB0_19 .LBB0_16: mov ebp, dword ptr [rdx] cmp dword ptr [rdx + 4*r14], ebp je .LBB0_18 inc eax jmp .LBB0_19 .LBB0_13: inc r8d test sil, 1 je .LBB0_19 jmp .LBB0_16 .LBB0_1: xor r8d, r8d mov r10b, 1 mov sil, 1 xor ecx, ecx xor eax, eax xor r9d, r9d .LBB0_20: test r10b, 1 je .LBB0_22 cmp r8d, ecx cmovl ecx, r8d mov eax, ecx jmp .LBB0_25 .LBB0_22: test sil, 1 je .LBB0_24 cmp r9d, eax cmovl eax, r9d jmp .LBB0_25 .LBB0_24: mov eax, -1 .LBB0_25: pop rbx pop r14 pop r15 pop rbp ret
13,978
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
x86-64
-O2
x86-64 clang 21.1.0
minDominoRotations: push rbp push r14 push rbx test esi, esi jle .LBB0_1 mov r9d, esi mov r11b, 1 xor r10d, r10d xor esi, esi xor ecx, ecx xor eax, eax xor r8d, r8d mov bl, 1 jmp .LBB0_3 .LBB0_27: xor r14d, r14d cmp dword ptr [rdi + 4*r10], ebp setne r14b add esi, r14d .LBB0_28: inc r10 cmp r9, r10 je .LBB0_29 .LBB0_3: test bl, 1 je .LBB0_4 mov ebp, dword ptr [rdi] mov bl, 1 cmp dword ptr [rdi + 4*r10], ebp je .LBB0_7 cmp dword ptr [rdx + 4*r10], ebp sete bl .LBB0_7: test r11b, 1 je .LBB0_8 .LBB0_9: mov r11d, dword ptr [rdx] cmp dword ptr [rdx + 4*r10], r11d jne .LBB0_13 mov r11b, 1 test bl, bl je .LBB0_25 mov ebp, dword ptr [rdi + 4*r10] cmp ebp, dword ptr [rdi] jne .LBB0_24 xor r14d, r14d cmp dword ptr [rdx + 4*r10], ebp setne r14b add eax, r14d jmp .LBB0_25 .LBB0_4: xor ebx, ebx test r11b, 1 jne .LBB0_9 .LBB0_8: xor r11d, r11d test bl, bl je .LBB0_15 jmp .LBB0_16 .LBB0_13: cmp dword ptr [rdi + 4*r10], r11d sete r11b test bl, bl jne .LBB0_16 .LBB0_15: test r11b, r11b je .LBB0_33 .LBB0_16: test bl, bl je .LBB0_21 mov ebp, dword ptr [rdi + 4*r10] cmp ebp, dword ptr [rdi] jne .LBB0_18 xor r14d, r14d cmp dword ptr [rdx + 4*r10], ebp setne r14b add eax, r14d jmp .LBB0_19 .LBB0_21: test r11b, r11b je .LBB0_23 mov r11b, 1 jmp .LBB0_25 .LBB0_18: inc r8d .LBB0_19: test r11b, r11b je .LBB0_28 jmp .LBB0_25 .LBB0_23: xor r11d, r11d jmp .LBB0_28 .LBB0_24: inc r8d .LBB0_25: mov ebp, dword ptr [rdx + 4*r10] cmp ebp, dword ptr [rdx] je .LBB0_27 inc ecx jmp .LBB0_28 .LBB0_1: xor eax, eax xor r8d, r8d jmp .LBB0_30 .LBB0_29: test bl, bl je .LBB0_31 .LBB0_30: cmp r8d, eax cmovl eax, r8d jmp .LBB0_34 .LBB0_31: test r11b, r11b je .LBB0_33 cmp esi, ecx cmovl ecx, esi mov eax, ecx jmp .LBB0_34 .LBB0_33: mov eax, -1 .LBB0_34: pop rbx pop r14 pop rbp ret
13,979
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
x86-64
-O3
x86-64 clang 21.1.0
minDominoRotations: push rbp push r14 push rbx test esi, esi jle .LBB0_1 mov r9d, esi mov r11b, 1 xor r10d, r10d xor esi, esi xor ecx, ecx xor eax, eax xor r8d, r8d mov bl, 1 jmp .LBB0_3 .LBB0_27: xor r14d, r14d cmp dword ptr [rdi + 4*r10], ebp setne r14b add esi, r14d .LBB0_28: inc r10 cmp r9, r10 je .LBB0_29 .LBB0_3: test bl, 1 je .LBB0_4 mov ebp, dword ptr [rdi] mov bl, 1 cmp dword ptr [rdi + 4*r10], ebp je .LBB0_7 cmp dword ptr [rdx + 4*r10], ebp sete bl .LBB0_7: test r11b, 1 je .LBB0_8 .LBB0_9: mov r11d, dword ptr [rdx] cmp dword ptr [rdx + 4*r10], r11d jne .LBB0_13 mov r11b, 1 test bl, bl je .LBB0_25 mov ebp, dword ptr [rdi + 4*r10] cmp ebp, dword ptr [rdi] jne .LBB0_24 xor r14d, r14d cmp dword ptr [rdx + 4*r10], ebp setne r14b add eax, r14d mov ebp, dword ptr [rdx + 4*r10] cmp ebp, dword ptr [rdx] je .LBB0_27 jmp .LBB0_26 .LBB0_4: xor ebx, ebx test r11b, 1 jne .LBB0_9 .LBB0_8: xor r11d, r11d test bl, bl je .LBB0_15 jmp .LBB0_16 .LBB0_13: cmp dword ptr [rdi + 4*r10], r11d sete r11b test bl, bl jne .LBB0_16 .LBB0_15: test r11b, r11b je .LBB0_33 .LBB0_16: test bl, bl je .LBB0_21 mov ebp, dword ptr [rdi + 4*r10] cmp ebp, dword ptr [rdi] jne .LBB0_18 xor r14d, r14d cmp dword ptr [rdx + 4*r10], ebp setne r14b add eax, r14d test r11b, r11b je .LBB0_28 jmp .LBB0_25 .LBB0_21: test r11b, r11b je .LBB0_23 mov r11b, 1 mov ebp, dword ptr [rdx + 4*r10] cmp ebp, dword ptr [rdx] je .LBB0_27 jmp .LBB0_26 .LBB0_18: inc r8d test r11b, r11b je .LBB0_28 .LBB0_25: mov ebp, dword ptr [rdx + 4*r10] cmp ebp, dword ptr [rdx] je .LBB0_27 .LBB0_26: inc ecx jmp .LBB0_28 .LBB0_23: xor r11d, r11d jmp .LBB0_28 .LBB0_24: inc r8d mov ebp, dword ptr [rdx + 4*r10] cmp ebp, dword ptr [rdx] je .LBB0_27 jmp .LBB0_26 .LBB0_1: xor eax, eax xor r8d, r8d jmp .LBB0_30 .LBB0_29: test bl, bl je .LBB0_31 .LBB0_30: cmp r8d, eax cmovl eax, r8d pop rbx pop r14 pop rbp ret .LBB0_31: test r11b, r11b je .LBB0_33 cmp esi, ecx cmovl ecx, esi mov eax, ecx pop rbx pop r14 pop rbp ret .LBB0_33: mov eax, -1 pop rbx pop r14 pop rbp ret
13,980
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
x86-64
-O0
x86-64 gcc 15.2
minDominoRotations: push rbp mov rbp, rsp mov QWORD PTR [rbp-40], rdi mov DWORD PTR [rbp-44], esi mov QWORD PTR [rbp-56], rdx mov DWORD PTR [rbp-48], ecx mov BYTE PTR [rbp-2], 1 movzx eax, BYTE PTR [rbp-2] mov BYTE PTR [rbp-1], al mov DWORD PTR [rbp-24], 0 mov eax, DWORD PTR [rbp-24] mov DWORD PTR [rbp-20], eax mov eax, DWORD PTR [rbp-20] mov DWORD PTR [rbp-16], eax mov eax, DWORD PTR [rbp-16] mov DWORD PTR [rbp-12], eax mov DWORD PTR [rbp-8], 0 jmp .L2 .L11: cmp BYTE PTR [rbp-1], 0 je .L3 mov eax, DWORD PTR [rbp-8] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-40] add rax, rdx mov edx, DWORD PTR [rax] mov rax, QWORD PTR [rbp-40] mov eax, DWORD PTR [rax] cmp edx, eax je .L3 mov eax, DWORD PTR [rbp-8] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-56] add rax, rdx mov edx, DWORD PTR [rax] mov rax, QWORD PTR [rbp-40] mov eax, DWORD PTR [rax] cmp edx, eax je .L3 mov BYTE PTR [rbp-1], 0 .L3: cmp BYTE PTR [rbp-2], 0 je .L4 mov eax, DWORD PTR [rbp-8] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-56] add rax, rdx mov edx, DWORD PTR [rax] mov rax, QWORD PTR [rbp-56] mov eax, DWORD PTR [rax] cmp edx, eax je .L4 mov eax, DWORD PTR [rbp-8] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-40] add rax, rdx mov edx, DWORD PTR [rax] mov rax, QWORD PTR [rbp-56] mov eax, DWORD PTR [rax] cmp edx, eax je .L4 mov BYTE PTR [rbp-2], 0 .L4: movzx eax, BYTE PTR [rbp-1] xor eax, 1 test al, al je .L5 movzx eax, BYTE PTR [rbp-2] xor eax, 1 test al, al je .L5 mov eax, -1 jmp .L6 .L5: cmp BYTE PTR [rbp-1], 0 je .L7 mov eax, DWORD PTR [rbp-8] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-40] add rax, rdx mov edx, DWORD PTR [rax] mov rax, QWORD PTR [rbp-40] mov eax, DWORD PTR [rax] cmp edx, eax je .L8 add DWORD PTR [rbp-12], 1 jmp .L7 .L8: mov eax, DWORD PTR [rbp-8] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-56] add rax, rdx mov edx, DWORD PTR [rax] mov rax, QWORD PTR [rbp-40] mov eax, DWORD PTR [rax] cmp edx, eax je .L7 add DWORD PTR [rbp-16], 1 .L7: cmp BYTE PTR [rbp-2], 0 je .L9 mov eax, DWORD PTR [rbp-8] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-56] add rax, rdx mov edx, DWORD PTR [rax] mov rax, QWORD PTR [rbp-56] mov eax, DWORD PTR [rax] cmp edx, eax je .L10 add DWORD PTR [rbp-20], 1 jmp .L9 .L10: mov eax, DWORD PTR [rbp-8] cdqe lea rdx, [0+rax*4] mov rax, QWORD PTR [rbp-40] add rax, rdx mov edx, DWORD PTR [rax] mov rax, QWORD PTR [rbp-56] mov eax, DWORD PTR [rax] cmp edx, eax je .L9 add DWORD PTR [rbp-24], 1 .L9: add DWORD PTR [rbp-8], 1 .L2: mov eax, DWORD PTR [rbp-8] cmp eax, DWORD PTR [rbp-44] jl .L11 cmp BYTE PTR [rbp-1], 0 je .L12 mov edx, DWORD PTR [rbp-16] mov eax, DWORD PTR [rbp-12] cmp edx, eax cmovle eax, edx jmp .L6 .L12: cmp BYTE PTR [rbp-2], 0 je .L13 mov edx, DWORD PTR [rbp-20] mov eax, DWORD PTR [rbp-24] cmp edx, eax cmovle eax, edx jmp .L6 .L13: mov eax, -1 .L6: pop rbp ret
13,981
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
x86-64
-O1
x86-64 gcc 15.2
minDominoRotations: push r12 push rbp push rbx test esi, esi jle .L19 mov r8, rdx mov rax, rdi movsx rsi, esi lea r10, [rdi+rsi*4] mov ebx, 0 mov r9d, 0 mov ebp, 0 mov r11d, 0 mov esi, 1 mov ecx, 1 jmp .L14 .L23: mov ecx, esi jmp .L16 .L32: mov esi, ecx .L17: mov ecx, DWORD PTR [rdi] cmp DWORD PTR [rax], ecx je .L10 add r11d, 1 .L11: test sil, sil jne .L29 mov ecx, 1 .L12: add rax, 4 add rdx, 4 cmp r10, rax je .L30 .L14: test cl, cl je .L3 mov ecx, DWORD PTR [rdi] cmp DWORD PTR [rax], ecx je .L4 cmp DWORD PTR [rdx], ecx sete cl test sil, sil jne .L16 .L5: test sil, sil jne .L25 test cl, cl je .L20 .L25: test cl, cl jne .L17 .L9: mov r12d, DWORD PTR [r8] cmp DWORD PTR [rdx], r12d je .L13 add r9d, 1 jmp .L12 .L29: mov ecx, esi jmp .L9 .L30: test cl, cl jne .L2 cmp r9d, ebx mov eax, ebx cmovle eax, r9d test sil, sil mov edx, -1 cmove eax, edx jmp .L1 .L19: mov ebp, 0 mov r11d, 0 .L2: cmp r11d, ebp mov eax, ebp cmovle eax, r11d jmp .L1 .L20: mov eax, -1 jmp .L1 .L3: test sil, sil je .L31 .L16: mov esi, DWORD PTR [r8] cmp DWORD PTR [rdx], esi je .L6 cmp DWORD PTR [rax], esi sete sil jmp .L5 .L31: mov eax, -1 .L1: pop rbx pop rbp pop r12 ret .L4: test sil, sil jne .L23 mov ecx, DWORD PTR [rdi] .L10: cmp ecx, DWORD PTR [rdx] setne cl movzx ecx, cl add ebp, ecx jmp .L11 .L6: test cl, cl jne .L32 mov r12d, DWORD PTR [r8] mov esi, 1 .L13: cmp r12d, DWORD PTR [rax] setne r12b movzx r12d, r12b add ebx, r12d jmp .L12
13,982
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
x86-64
-O2
x86-64 gcc 15.2
minDominoRotations: test esi, esi jle .L39 push r13 mov rcx, rdx movsx rsi, esi xor edx, edx push r12 xor r13d, r13d xor r9d, r9d xor r10d, r10d push rbp mov rbp, rdi lea rdi, [0+rsi*4] xor eax, eax push rbx mov r12d, DWORD PTR [rbp+0] mov esi, DWORD PTR [rcx] .L3: mov r11d, DWORD PTR [rbp+0+rdx] cmp r11d, r12d je .L55 mov r8d, DWORD PTR [rcx] mov ebx, esi cmp r8d, esi je .L56 cmp r11d, esi je .L57 cmp r12d, r8d jne .L41 add rdx, 4 add r9d, 1 cmp rdi, rdx je .L33 .L53: add rcx, 4 mov eax, r12d cmp DWORD PTR [rbp+0+rdx], r12d je .L17 .L21: mov esi, DWORD PTR [rcx] cmp eax, esi jne .L41 add rdx, 4 add r9d, 1 cmp rdx, rdi jne .L53 .L33: cmp r10d, r9d mov eax, r9d pop rbx pop rbp cmovle eax, r10d pop r12 pop r13 ret .L41: pop rbx mov eax, -1 pop rbp pop r12 pop r13 ret .L58: add rcx, 4 mov eax, r12d cmp r12d, DWORD PTR [rbp+0+rdx] jne .L21 .L17: cmp DWORD PTR [rcx], eax setne al movzx eax, al add r10d, eax .L20: add rdx, 4 cmp rdi, rdx jne .L58 jmp .L33 .L55: mov r8d, esi cmp DWORD PTR [rcx], esi je .L30 cmp r12d, esi je .L32 cmp r12d, DWORD PTR [rcx] je .L59 add r10d, 1 jmp .L20 .L32: mov r8d, DWORD PTR [rcx] add r10d, 1 mov r11d, esi mov ebx, 1 .L12: cmp r11d, r8d je .L22 .L60: add rdx, 4 add eax, 1 cmp rdi, rdx je .L24 .L50: add rcx, 4 test bl, bl jne .L3 mov r8d, DWORD PTR [rcx] mov r11d, esi xor ebx, ebx cmp r8d, esi je .L22 cmp DWORD PTR [rbp+0+rdx], esi jne .L41 .L10: mov r11d, esi xor ebx, ebx cmp r11d, r8d jne .L60 .L22: cmp DWORD PTR [rbp+0+rdx], r11d je .L25 add rdx, 4 add r13d, 1 cmp rdi, rdx jne .L50 .L24: test bl, bl jne .L33 cmp eax, r13d pop rbx pop rbp cmovg eax, r13d pop r12 pop r13 ret .L56: cmp r12d, esi jne .L10 .L9: mov r8d, ebx add r9d, 1 mov r11d, esi mov ebx, 1 jmp .L12 .L25: add rdx, 4 cmp rdi, rdx jne .L50 jmp .L24 .L57: cmp r12d, r8d jne .L10 mov ebx, r12d jmp .L9 .L39: xor eax, eax ret .L30: cmp r12d, esi jne .L32 mov r11d, r12d mov ebx, 1 jmp .L12 .L59: add rdx, 4 cmp rdx, rdi jne .L53 jmp .L33
13,983
1,007
Minimum Domino Rotations For Equal Row
Medium
/* 1007. Minimum Domino Rotations For Equal Row In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same. If it cannot be done, return -1. Example 1: Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2] Output: 2 Explanation: The first figure represents the dominoes as given by A and B: before we do any rotations. If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure. Example 2: Input: A = [3,5,1,2,3], B = [3,6,3,3,4] Output: -1 Explanation: In this case, it is not possible to rotate the dominoes to make one row of values equal. Note: 1 <= A[i], B[i] <= 6 2 <= A.length == B.length <= 20000 */ int minDominoRotations(int* A, int ASize, int* B, int BSize){ bool a_ok, b_ok; int i, a_up, a_down, b_down, b_up; a_ok = b_ok = true; a_up = a_down = b_down = b_up = 0; for (i = 0; i < ASize; i ++) { if (a_ok && A[i] != A[0] && B[i] != A[0]) a_ok = false; if (b_ok && B[i] != B[0] && A[i] != B[0]) b_ok = false; if (!a_ok && !b_ok) return -1; if (a_ok) { if (A[i] != A[0]) a_up ++; // flip up to make all are A[0] on top else if (B[i] != A[0]) a_down ++; // flip down to make all are A[0] in bottom } if (b_ok) { if (B[i] != B[0]) b_down ++; else if (A[i] != B[0]) b_up ++; } } if (a_ok) return a_up < a_down ? a_up : a_down; if (b_ok) return b_up < b_down ? b_up : b_down; return -1; } /* Difficulty:Medium */
x86-64
-O3
x86-64 gcc 15.2
minDominoRotations: test esi, esi jle .L39 push r13 mov rcx, rdx movsx rsi, esi xor edx, edx push r12 xor r13d, r13d xor r9d, r9d xor r10d, r10d push rbp mov rbp, rdi lea rdi, [0+rsi*4] xor eax, eax push rbx mov r12d, DWORD PTR [rbp+0] mov esi, DWORD PTR [rcx] .L3: mov r11d, DWORD PTR [rbp+0+rdx] cmp r11d, r12d je .L55 mov r8d, DWORD PTR [rcx] mov ebx, esi cmp r8d, esi je .L56 cmp r11d, esi je .L57 cmp r12d, r8d jne .L41 add rdx, 4 add r9d, 1 cmp rdi, rdx je .L33 .L53: add rcx, 4 mov eax, r12d cmp DWORD PTR [rbp+0+rdx], r12d je .L17 .L21: mov esi, DWORD PTR [rcx] cmp eax, esi jne .L41 add rdx, 4 add r9d, 1 cmp rdx, rdi jne .L53 .L33: cmp r10d, r9d mov eax, r9d pop rbx pop rbp cmovle eax, r10d pop r12 pop r13 ret .L41: pop rbx mov eax, -1 pop rbp pop r12 pop r13 ret .L58: add rcx, 4 mov eax, r12d cmp r12d, DWORD PTR [rbp+0+rdx] jne .L21 .L17: cmp DWORD PTR [rcx], eax setne al movzx eax, al add r10d, eax .L20: add rdx, 4 cmp rdi, rdx jne .L58 jmp .L33 .L55: mov r8d, esi cmp DWORD PTR [rcx], esi je .L30 cmp r12d, esi je .L32 cmp r12d, DWORD PTR [rcx] je .L59 add r10d, 1 jmp .L20 .L32: mov r8d, DWORD PTR [rcx] add r10d, 1 mov r11d, esi mov ebx, 1 .L12: cmp r11d, r8d je .L22 .L60: add rdx, 4 add eax, 1 cmp rdi, rdx je .L24 .L50: add rcx, 4 test bl, bl jne .L3 mov r8d, DWORD PTR [rcx] mov r11d, esi xor ebx, ebx cmp r8d, esi je .L22 cmp DWORD PTR [rbp+0+rdx], esi jne .L41 .L10: mov r11d, esi xor ebx, ebx cmp r11d, r8d jne .L60 .L22: cmp DWORD PTR [rbp+0+rdx], r11d je .L25 add rdx, 4 add r13d, 1 cmp rdi, rdx jne .L50 .L24: test bl, bl jne .L33 cmp eax, r13d pop rbx pop rbp cmovg eax, r13d pop r12 pop r13 ret .L56: cmp r12d, esi jne .L10 .L9: mov r8d, ebx add r9d, 1 mov r11d, esi mov ebx, 1 jmp .L12 .L25: add rdx, 4 cmp rdi, rdx jne .L50 jmp .L24 .L57: cmp r12d, r8d jne .L10 mov ebx, r12d jmp .L9 .L39: xor eax, eax ret .L30: cmp r12d, esi jne .L32 mov r11d, r12d mov ebx, 1 jmp .L12 .L59: add rdx, 4 cmp rdx, rdi jne .L53 jmp .L33
13,984
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
aarch64
-O0
ARM64 gcc 15.2.0
bstFromPreorder: stp x29, x30, [sp, -48]! mov x29, sp str x0, [sp, 24] str w1, [sp, 20] ldr w0, [sp, 20] cmp w0, 0 bne .L2 mov x0, 0 b .L3 .L2: mov x0, 24 bl malloc str x0, [sp, 32] ldr x0, [sp, 24] ldr w1, [x0] ldr x0, [sp, 32] str w1, [x0] mov w0, 1 str w0, [sp, 44] b .L4 .L6: ldr w0, [sp, 44] add w0, w0, 1 str w0, [sp, 44] .L4: ldr w1, [sp, 44] ldr w0, [sp, 20] cmp w1, w0 bge .L5 ldrsw x0, [sp, 44] lsl x0, x0, 2 ldr x1, [sp, 24] add x0, x1, x0 ldr w1, [x0] ldr x0, [sp, 32] ldr w0, [x0] cmp w1, w0 blt .L6 .L5: ldr x0, [sp, 24] add x2, x0, 4 ldr w0, [sp, 44] sub w0, w0, #1 mov w1, w0 mov x0, x2 bl bstFromPreorder mov x1, x0 ldr x0, [sp, 32] str x1, [x0, 8] ldrsw x0, [sp, 44] lsl x0, x0, 2 ldr x1, [sp, 24] add x2, x1, x0 ldr w1, [sp, 20] ldr w0, [sp, 44] sub w0, w1, w0 mov w1, w0 mov x0, x2 bl bstFromPreorder mov x1, x0 ldr x0, [sp, 32] str x1, [x0, 16] ldr x0, [sp, 32] .L3: ldp x29, x30, [sp], 48 ret
13,985
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
aarch64
-O1
ARM64 gcc 15.2.0
bstFromPreorder: stp x29, x30, [sp, -48]! mov x29, sp stp x21, x22, [sp, 32] mov x22, 0 cbz w1, .L1 stp x19, x20, [sp, 16] mov x20, x0 mov w21, w1 mov x0, 24 bl malloc mov x22, x0 ldr w1, [x20] str w1, [x0] mov x2, 1 mov w19, 1 cmp w21, 1 ble .L4 .L3: ldr w3, [x20, x2, lsl 2] cmp w1, w3 ble .L11 add x3, x2, 1 cmp w21, w3 ble .L12 mov x2, x3 b .L3 .L12: add w19, w2, 1 b .L4 .L11: mov w19, w2 .L4: sub w1, w19, #1 add x0, x20, 4 bl bstFromPreorder str x0, [x22, 8] sub w1, w21, w19 add x0, x20, w19, sxtw 2 bl bstFromPreorder str x0, [x22, 16] ldp x19, x20, [sp, 16] .L1: mov x0, x22 ldp x21, x22, [sp, 32] ldp x29, x30, [sp], 48 ret
13,986
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
aarch64
-O2
ARM64 gcc 15.2.0
bstFromPreorder: stp x29, x30, [sp, -48]! mov x29, sp stp x19, x20, [sp, 16] mov x20, 0 cbz w1, .L1 mov x5, x0 mov w19, w1 mov x0, 24 str x5, [sp, 32] bl malloc mov x20, x0 ldr x5, [sp, 32] mov w4, 1 mov x0, x5 ldr w1, [x0], 4 str w1, [x20] mov x2, x0 cmp w19, w4 bgt .L5 b .L12 .L6: add w3, w4, 1 add x2, x2, 4 cmp w19, w3 beq .L13 mov w4, w3 .L5: ldr w3, [x2] cmp w1, w3 bgt .L6 sub w1, w4, #1 .L4: str x2, [sp, 32] str w4, [sp, 44] bl bstFromPreorder ldr w4, [sp, 44] str x0, [x20, 8] ldr x0, [sp, 32] sub w1, w19, w4 bl bstFromPreorder str x0, [x20, 16] .L1: mov x0, x20 ldp x19, x20, [sp, 16] ldp x29, x30, [sp], 48 ret .L13: mov w1, w4 add x2, x5, w19, uxtw 2 mov w4, w19 b .L4 .L12: mov w1, 0 b .L4
13,987
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
aarch64
-O3
ARM64 gcc 15.2.0
bstFromPreorder: stp x29, x30, [sp, -176]! mov x29, sp stp x21, x22, [sp, 32] mov x21, 0 cbz w1, .L1 stp x25, x26, [sp, 64] mov x26, x0 mov x25, x26 mov x0, 24 stp x19, x20, [sp, 16] mov w20, w1 stp x23, x24, [sp, 48] bl malloc ldr w1, [x25], 4 str w1, [x0] mov x21, x0 cmp w20, 1 ble .L3 neg x2, x25, lsr 2 mov w3, 5 and w19, w2, 3 stp x27, x28, [sp, 80] add w0, w19, 4 cmp w0, w3 sub w27, w20, #2 csel w0, w0, w3, cs cmp w27, w0 bcc .L634 cbz w19, .L345 ldr w0, [x26, 4] cmp w1, w0 ble .L8 tbz x2, 1, .L346 ldr w0, [x26, 8] cmp w1, w0 ble .L10 cmp w19, 3 bne .L347 ldr w0, [x26, 12] cmp w1, w0 ble .L11 movi v26.2s, 0x4 .L7: adrp x0, .LC0 sub w27, w20, #1 add w2, w19, 1 sub w19, w27, w19 ldr q31, [x0, #:lo12:.LC0] ubfiz x2, x2, 2, 3 dup v30.4s, v26.s[0] lsr w0, w19, 2 add x2, x26, x2 dup v27.4s, w1 movi v28.4s, 0x4 add x0, x2, w0, uxtw 4 add v30.4s, v30.4s, v31.4s b .L12 .L29: cmp x2, x0 beq .L635 add v30.4s, v30.4s, v28.4s .L12: ldr q31, [x2] add x2, x2, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x3, d31 cbz x3, .L29 fmov x0, d30 ubfiz x2, x0, 2, 32 ldr w3, [x26, x2] cmp w1, w3 ble .L636 .L5: add w22, w0, 1 cmp w20, w22 ble .L350 add x2, x26, x2 ldr w3, [x2, 4] cmp w1, w3 ble .L350 add w19, w0, 2 cmp w20, w19 ble .L19 ldr w3, [x2, 8] cmp w1, w3 ble .L20 add w22, w0, 3 cmp w20, w22 ble .L21 ldr w3, [x2, 12] cmp w1, w3 ble .L26 add w19, w0, 4 cmp w20, w19 ble .L19 ldr w3, [x2, 16] cmp w1, w3 ble .L20 add w22, w0, 5 mov w24, w22 cmp w20, w22 ble .L21 ldr w3, [x2, 20] cmp w1, w3 ble .L26 add w28, w0, 6 cmp w20, w28 ble .L27 ldr w2, [x2, 24] cmp w1, w2 ble .L28 add w22, w0, 7 mov x0, 24 bl malloc mov x23, x0 ldr w3, [x26, 4] str w3, [x0] .L16: add x27, x26, 8 mov w2, 5 sub w24, w28, #2 neg x1, x27, lsr 2 and w19, w1, 3 add w0, w19, 4 cmp w0, w2 csel w0, w0, w2, cs cmp w24, w0 bcc .L637 cbz w19, .L352 ldr w0, [x26, 8] cmp w3, w0 ble .L36 tbz x1, 1, .L353 ldr w0, [x26, 12] cmp w3, w0 ble .L39 cmp w19, 3 bne .L354 ldr w0, [x26, 16] cmp w0, w3 bge .L40 movi v26.2s, 0x4 .L37: adrp x0, .LC0 sub w1, w28, w19 dup v30.4s, v26.s[0] add w19, w19, 2 ldr q31, [x0, #:lo12:.LC0] sub w1, w1, #1 ubfiz x2, x19, 2, 3 dup v27.4s, w3 lsr w0, w1, 2 add x2, x26, x2 add v30.4s, v30.4s, v31.4s movi v28.4s, 0x4 add x0, x2, w0, uxtw 4 b .L41 .L57: cmp x0, x2 beq .L638 add v30.4s, v30.4s, v28.4s .L41: ldr q31, [x2] add x2, x2, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x4, d31 cbz x4, .L57 fmov x0, d30 ubfiz x1, x0, 2, 32 ldr w2, [x25, x1] cmp w3, w2 ble .L639 .L35: add w19, w0, 1 cmp w28, w19 ble .L357 add x1, x25, x1 ldr w2, [x1, 4] cmp w3, w2 ble .L357 add w2, w0, 2 cmp w28, w2 ble .L47 ldr w4, [x1, 8] cmp w3, w4 ble .L48 add w19, w0, 3 cmp w28, w19 ble .L49 ldr w4, [x1, 12] cmp w3, w4 ble .L54 add w2, w0, 4 cmp w28, w2 ble .L47 ldr w4, [x1, 16] cmp w3, w4 ble .L48 add w19, w0, 5 mov w7, w19 cmp w28, w19 ble .L49 ldr w4, [x1, 20] cmp w3, w4 ble .L54 add w24, w0, 6 cmp w28, w24 ble .L55 ldr w1, [x1, 24] cmp w1, w3 bge .L56 add w19, w0, 7 mov x0, 24 bl malloc str x0, [sp, 104] ldr w6, [x26, 8] str w6, [x0] .L44: add x3, x26, 12 mov w7, 5 sub w4, w24, #2 neg x2, x3, lsr 2 and w1, w2, 3 add w0, w1, 4 cmp w0, w7 csel w0, w0, w7, cs cmp w4, w0 bcc .L640 cbz w1, .L359 ldr w0, [x26, 12] cmp w6, w0 ble .L63 tbz x2, 1, .L360 ldr w0, [x26, 16] cmp w6, w0 ble .L66 cmp w1, 3 bne .L361 ldr w0, [x26, 20] cmp w0, w6 bge .L67 movi v26.2s, 0x4 .L64: adrp x0, .LC0 sub w2, w24, w1 dup v30.4s, v26.s[0] add w1, w1, 3 ldr q31, [x0, #:lo12:.LC0] sub w2, w2, #1 ubfiz x1, x1, 2, 3 dup v27.4s, w6 lsr w0, w2, 2 add x1, x26, x1 add v30.4s, v30.4s, v31.4s movi v28.4s, 0x4 add x0, x1, w0, uxtw 4 b .L68 .L84: cmp x0, x1 beq .L641 add v30.4s, v30.4s, v28.4s .L68: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x4, d31 cbz x4, .L84 fmov x0, d30 ubfiz x1, x0, 2, 32 ldr w2, [x27, x1] cmp w6, w2 ble .L642 .L62: add w4, w0, 1 cmp w24, w4 ble .L364 add x1, x27, x1 ldr w2, [x1, 4] cmp w6, w2 ble .L364 add w2, w0, 2 cmp w24, w2 ble .L74 ldr w7, [x1, 8] cmp w6, w7 ble .L75 add w4, w0, 3 cmp w24, w4 ble .L76 ldr w7, [x1, 12] cmp w6, w7 ble .L81 add w2, w0, 4 cmp w24, w2 ble .L74 ldr w7, [x1, 16] cmp w6, w7 ble .L75 add w4, w0, 5 mov w8, w4 cmp w24, w4 ble .L76 ldr w7, [x1, 20] cmp w6, w7 ble .L81 add w9, w0, 6 cmp w24, w9 ble .L82 ldr w1, [x1, 24] cmp w1, w6 bge .L83 add w4, w0, 7 mov x0, 24 str w4, [sp, 112] str x3, [sp, 120] str w9, [sp, 128] bl malloc ldr x3, [sp, 120] mov x6, x0 ldr w4, [sp, 112] ldr w9, [sp, 128] ldr w11, [x26, 12] str w11, [x0] .L71: add x7, x26, 16 mov w0, 5 sub w8, w9, #2 neg x10, x7, lsr 2 and w2, w10, 3 add w1, w2, 4 cmp w1, w0 csel w0, w1, w0, cs cmp w8, w0 bcc .L643 cbz w2, .L366 ldr w0, [x26, 16] cmp w11, w0 ble .L90 tbz x10, 1, .L367 ldr w0, [x26, 20] cmp w11, w0 ble .L93 cmp w2, 3 bne .L368 ldr w0, [x26, 24] cmp w11, w0 ble .L94 movi v26.2s, 0x4 .L91: adrp x0, .LC0 sub w2, w9, w2 dup v30.4s, v26.s[0] sub w2, w2, #1 ldr q31, [x0, #:lo12:.LC0] ubfiz x1, x1, 2, 4 lsr w0, w2, 2 add x1, x26, x1 dup v27.4s, w11 add v30.4s, v30.4s, v31.4s add x0, x1, w0, uxtw 4 movi v28.4s, 0x4 b .L95 .L111: cmp x0, x1 beq .L644 add v30.4s, v30.4s, v28.4s .L95: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x5, d31 cbz x5, .L111 fmov x0, d30 ubfiz x1, x0, 2, 32 ldr w2, [x3, x1] cmp w11, w2 ble .L645 .L89: add w8, w0, 1 cmp w9, w8 ble .L371 add x1, x3, x1 ldr w2, [x1, 4] cmp w11, w2 ble .L371 add w2, w0, 2 cmp w9, w2 ble .L101 ldr w10, [x1, 8] cmp w11, w10 ble .L102 add w8, w0, 3 cmp w9, w8 ble .L103 ldr w10, [x1, 12] cmp w11, w10 ble .L108 add w2, w0, 4 cmp w9, w2 ble .L101 ldr w10, [x1, 16] cmp w11, w10 ble .L102 add w8, w0, 5 mov w14, w8 cmp w9, w8 ble .L103 ldr w10, [x1, 20] cmp w11, w10 ble .L108 add w10, w0, 6 cmp w9, w10 ble .L109 ldr w1, [x1, 24] cmp w11, w1 ble .L110 add w8, w0, 7 add x12, x26, 20 mov x0, 24 str x12, [sp, 112] str w8, [sp, 120] stp x3, x7, [sp, 128] str w4, [sp, 144] str x6, [sp, 152] stp w9, w10, [sp, 164] bl malloc ldr x12, [sp, 112] mov x11, x0 ldr x6, [sp, 152] ldr w8, [sp, 120] ldr w4, [sp, 144] ldr w13, [x26, 16] ldp x3, x7, [sp, 128] ldp w9, w10, [sp, 164] str w13, [x0] .L98: neg x14, x12, lsr 2 mov w15, 6 and w2, w14, 3 sub w1, w10, #2 add w0, w2, 4 cmp w0, w15 csel w0, w0, w15, cs cmp w1, w0 bcc .L381 cbz w2, .L382 ldr w0, [x12] cmp w13, w0 ble .L383 tbz x14, 1, .L384 ldr w0, [x26, 24] cmp w13, w0 ble .L646 cmp w2, 3 bne .L385 ldr w0, [x26, 28] movi v26.2s, 0x4 add x14, x26, 28 cmp w13, w0 ble .L118 .L119: sub w0, w10, w2 add w1, w2, 5 sub w2, w0, #1 adrp x0, .LC0 dup v30.4s, v26.s[0] ubfiz x1, x1, 2, 4 ldr q31, [x0, #:lo12:.LC0] lsr w0, w2, 2 add x1, x26, x1 dup v27.4s, w13 movi v28.4s, 0x4 add x0, x1, w0, uxtw 4 add v30.4s, v30.4s, v31.4s b .L115 .L122: cmp x0, x1 beq .L647 add v30.4s, v30.4s, v28.4s .L115: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x5, d31 cbz x5, .L122 fmov w15, s30 .L114: ubfiz x0, x15, 2, 32 add x14, x7, x0 ldr w1, [x7, x0] cmp w1, w13 bge .L373 add w2, w15, 1 cmp w2, w10 bge .L374 add x1, x0, 4 add x14, x7, x1 ldr w1, [x7, x1] cmp w1, w13 bge .L118 add w1, w15, 2 cmp w1, w10 bge .L379 add x2, x0, 8 add x14, x7, x2 ldr w2, [x7, x2] cmp w2, w13 bge .L380 add w2, w15, 3 cmp w2, w10 bge .L117 add x1, x0, 12 add x14, x7, x1 ldr w1, [x7, x1] cmp w1, w13 bge .L118 add w1, w15, 4 cmp w1, w10 bge .L379 add x2, x0, 16 add x14, x7, x2 ldr w2, [x7, x2] cmp w2, w13 bge .L380 add w2, w15, 5 cmp w2, w10 bge .L117 add x1, x0, 20 add x14, x7, x1 ldr w1, [x7, x1] cmp w1, w13 bge .L118 add w1, w15, 6 cmp w1, w10 bge .L379 add x0, x0, 24 add x14, x7, x0 ldr w0, [x7, x0] cmp w0, w13 bge .L380 add w2, w15, 7 .L117: add x14, x7, w2, uxtw 2 .L113: mov x0, x12 stp x11, x3, [sp, 112] str w2, [sp, 128] str x14, [sp, 136] str w4, [sp, 144] str x6, [sp, 152] stp w9, w8, [sp, 164] str w10, [sp, 172] bl bstFromPreorder ldr x11, [sp, 112] ldr w2, [sp, 128] ldr w10, [sp, 172] str x0, [x11, 8] ldr x0, [sp, 136] sub w1, w10, w2 bl bstFromPreorder ldr x6, [sp, 152] ldp x11, x3, [sp, 112] ldp w9, w8, [sp, 164] str x11, [x6, 8] str x0, [x11, 16] ldr w4, [sp, 144] add x7, x3, w8, uxtw 2 subs w8, w9, w8 beq .L96 .L342: mov x0, 24 str x7, [sp, 112] str w8, [sp, 120] str w4, [sp, 128] str x6, [sp, 136] bl malloc ldr x7, [sp, 112] mov x9, x0 ldr w8, [sp, 120] mov w1, 0 mov x0, x7 ldr w4, [sp, 128] ldr x6, [sp, 136] cmp w8, 1 ldr w3, [x0], 4 mov w2, 1 str w3, [x9] mov x12, x0 ble .L127 neg x11, x0, lsr 2 mov w12, 6 and w2, w11, 3 sub w10, w8, #2 add w1, w2, 4 cmp w1, w12 csel w1, w1, w12, cs cmp w10, w1 bcc .L396 cbz w2, .L397 ldr w1, [x7, 4] cmp w3, w1 ble .L398 tbz x11, 1, .L399 ldr w1, [x7, 8] cmp w3, w1 ble .L648 cmp w2, 3 bne .L400 ldr w1, [x7, 12] movi v26.2s, 0x4 add x12, x7, 12 cmp w3, w1 ble .L131 .L133: sub w10, w8, #1 add w1, w2, 1 sub w10, w10, w2 adrp x2, .LC0 dup v30.4s, v26.s[0] ubfiz x1, x1, 2, 3 ldr q31, [x2, #:lo12:.LC0] lsr w2, w10, 2 add x1, x7, x1 dup v27.4s, w3 movi v28.4s, 0x4 add x2, x1, w2, uxtw 4 add v30.4s, v30.4s, v31.4s b .L128 .L136: cmp x2, x1 beq .L649 add v30.4s, v30.4s, v28.4s .L128: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x5, d31 cbz x5, .L136 fmov w11, s30 .L132: ubfiz x10, x11, 2, 32 add x12, x7, x10 ldr w1, [x7, x10] cmp w3, w1 ble .L388 add w2, w11, 1 cmp w8, w2 ble .L389 add x1, x10, 4 add x12, x7, x1 ldr w1, [x7, x1] cmp w3, w1 ble .L131 add w1, w11, 2 cmp w8, w1 ble .L394 add x2, x10, 8 add x12, x7, x2 ldr w2, [x7, x2] cmp w3, w2 ble .L395 add w2, w11, 3 cmp w8, w2 ble .L130 add x1, x10, 12 add x12, x7, x1 ldr w1, [x7, x1] cmp w3, w1 ble .L131 add w1, w11, 4 cmp w8, w1 ble .L394 add x2, x10, 16 add x12, x7, x2 ldr w2, [x7, x2] cmp w3, w2 ble .L395 add w2, w11, 5 cmp w8, w2 ble .L130 add x1, x10, 20 add x12, x7, x1 ldr w1, [x7, x1] cmp w3, w1 ble .L131 add w1, w11, 6 cmp w8, w1 ble .L394 add x10, x10, 24 add x12, x7, x10 ldr w2, [x7, x10] cmp w3, w2 ble .L395 add w2, w11, 7 .L130: add x12, x7, w2, uxtw 2 .L127: str x9, [sp, 112] str w2, [sp, 120] str w8, [sp, 128] str x12, [sp, 136] str w4, [sp, 144] str x6, [sp, 152] bl bstFromPreorder ldr x9, [sp, 112] ldr w2, [sp, 120] ldr w8, [sp, 128] str x0, [x9, 8] ldr x0, [sp, 136] sub w1, w8, w2 bl bstFromPreorder ldr x9, [sp, 112] ldr x6, [sp, 152] ldr w4, [sp, 144] str x0, [x9, 16] .L125: ldr x0, [sp, 104] str x9, [x6, 16] subs w24, w24, w4 str x6, [x0, 8] beq .L69 .L86: add x3, x27, w4, uxtw 2 .L341: mov x0, 24 str x3, [sp, 112] bl malloc mov x27, x0 ldr x3, [sp, 112] mov w1, 0 mov w6, 1 mov x0, x3 ldr w7, [x0], 4 str w7, [x27] mov x4, x0 cmp w24, 1 ble .L140 neg x6, x0, lsr 2 mov w8, 6 and w2, w6, 3 sub w4, w24, #2 add w1, w2, 4 cmp w1, w8 csel w1, w1, w8, cs cmp w4, w1 bcc .L415 cbz w2, .L416 ldr w1, [x3, 4] cmp w7, w1 ble .L417 tbz x6, 1, .L418 ldr w1, [x3, 8] add x4, x3, 8 mov w6, 2 cmp w7, w1 ble .L144 cmp w2, 3 bne .L419 ldr w1, [x3, 12] movi v26.2s, 0x4 add x4, x3, 12 mov w6, w2 cmp w7, w1 ble .L144 .L146: sub w4, w24, #1 add w1, w2, 1 sub w4, w4, w2 adrp x2, .LC0 dup v30.4s, v26.s[0] ubfiz x1, x1, 2, 3 ldr q31, [x2, #:lo12:.LC0] lsr w2, w4, 2 add x1, x3, x1 dup v27.4s, w7 movi v28.4s, 0x4 add x2, x1, w2, uxtw 4 add v30.4s, v30.4s, v31.4s b .L141 .L149: cmp x1, x2 beq .L650 add v30.4s, v30.4s, v28.4s .L141: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x5, d31 cbz x5, .L149 fmov w6, s30 .L145: ubfiz x2, x6, 2, 32 add x4, x3, x2 ldr w1, [x3, x2] cmp w7, w1 ble .L144 add w1, w6, 1 cmp w24, w1 ble .L403 add x8, x2, 4 add x4, x3, x8 ldr w8, [x3, x8] cmp w7, w8 ble .L414 add w8, w6, 2 cmp w24, w8 ble .L409 add x1, x2, 8 add x4, x3, x1 ldr w1, [x3, x1] cmp w7, w1 ble .L410 add w1, w6, 3 cmp w24, w1 ble .L407 add x8, x2, 12 add x4, x3, x8 ldr w8, [x3, x8] cmp w7, w8 ble .L414 add w8, w6, 4 cmp w24, w8 ble .L409 add x1, x2, 16 add x4, x3, x1 ldr w1, [x3, x1] cmp w7, w1 ble .L410 add w9, w6, 5 cmp w24, w9 ble .L411 add x1, x2, 20 add x4, x3, x1 ldr w1, [x3, x1] cmp w7, w1 ble .L412 add w1, w6, 6 cmp w24, w1 ble .L413 add x2, x2, 24 add x4, x3, x2 ldr w2, [x3, x2] cmp w7, w2 ble .L414 add w6, w6, 7 .L143: add x4, x3, w6, uxtw 2 .L140: str w6, [sp, 112] str x4, [sp, 120] bl bstFromPreorder ldr w6, [sp, 112] str x0, [x27, 8] ldr x0, [sp, 120] sub w1, w24, w6 bl bstFromPreorder str x0, [x27, 16] .L138: ldr x0, [sp, 104] str x0, [x23, 8] subs w2, w28, w19 str x27, [x0, 16] beq .L42 .L59: add x27, x25, w19, uxtw 2 .L340: mov x0, 24 str w2, [sp, 104] bl malloc mov x28, x0 ldr w5, [x27] ldr w2, [sp, 104] str w5, [x0] cmp w2, 1 ble .L152 add x25, x27, 4 mov w4, 5 sub w1, w2, #2 neg x3, x25, lsr 2 and w19, w3, 3 add w0, w19, 4 cmp w0, w4 csel w0, w0, w4, cs cmp w1, w0 bcc .L651 cbz w19, .L422 ldr w0, [x27, 4] cmp w5, w0 ble .L629 tbz x3, 1, .L423 ldr w0, [x27, 8] cmp w5, w0 ble .L158 cmp w19, 3 bne .L424 ldr w0, [x27, 12] cmp w5, w0 ble .L159 movi v26.2s, 0x4 .L156: adrp x0, .LC0 sub w3, w2, #1 add w1, w19, 1 sub w19, w3, w19 ldr q31, [x0, #:lo12:.LC0] ubfiz x1, x1, 2, 3 dup v30.4s, v26.s[0] lsr w0, w19, 2 add x1, x27, x1 dup v27.4s, w5 movi v28.4s, 0x4 add x0, x1, w0, uxtw 4 add v30.4s, v30.4s, v31.4s b .L160 .L177: cmp x1, x0 beq .L652 add v30.4s, v30.4s, v28.4s .L160: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x4, d31 cbz x4, .L177 fmov x0, d30 fmov w1, s30 ubfiz x0, x0, 2, 32 ldr w4, [x27, x0] cmp w5, w4 ble .L653 .L154: add w24, w1, 1 cmp w2, w24 ble .L427 add x0, x27, x0 ldr w3, [x0, 4] cmp w5, w3 ble .L427 add w19, w1, 2 cmp w2, w19 ble .L167 ldr w3, [x0, 8] cmp w5, w3 ble .L168 add w24, w1, 3 cmp w2, w24 ble .L169 ldr w3, [x0, 12] cmp w5, w3 ble .L174 add w19, w1, 4 cmp w2, w19 ble .L167 ldr w3, [x0, 16] cmp w5, w3 ble .L168 add w24, w1, 5 mov w8, w24 cmp w2, w24 ble .L169 ldr w3, [x0, 20] cmp w5, w3 ble .L174 add w4, w1, 6 cmp w2, w4 ble .L175 ldr w0, [x0, 24] cmp w5, w0 ble .L176 add x6, x27, 8 add w24, w1, 7 mov x0, 24 str x6, [sp, 104] str w2, [sp, 112] str w4, [sp, 120] bl malloc ldr x6, [sp, 104] mov x5, x0 ldr w2, [sp, 112] ldr w4, [sp, 120] ldr w7, [x27, 4] str w7, [x0] .L164: neg x3, x6, lsr 2 mov w8, 6 and w19, w3, 3 sub w1, w4, #2 add w0, w19, 4 cmp w0, w8 csel w0, w0, w8, cs cmp w1, w0 bcc .L441 cbz w19, .L442 ldr w0, [x6] cmp w7, w0 ble .L443 tbz x3, 1, .L444 ldr w0, [x27, 12] cmp w7, w0 ble .L654 cmp w19, 3 bne .L445 ldr w0, [x27, 16] movi v26.2s, 0x4 add x8, x27, 16 cmp w7, w0 ble .L184 .L185: adrp x3, .LC0 sub w0, w4, w19 dup v30.4s, v26.s[0] add w1, w19, 2 ldr q31, [x3, #:lo12:.LC0] sub w0, w0, #1 ubfiz x1, x1, 2, 3 dup v27.4s, w7 lsr w3, w0, 2 add x1, x27, x1 add v30.4s, v30.4s, v31.4s movi v28.4s, 0x4 add x3, x1, w3, uxtw 4 b .L181 .L188: cmp x3, x1 beq .L655 add v30.4s, v30.4s, v28.4s .L181: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x8, d31 cbz x8, .L188 fmov w19, s30 .L180: ubfiz x3, x19, 2, 32 add x8, x25, x3 ldr w0, [x25, x3] cmp w0, w7 bge .L184 add w1, w19, 1 cmp w1, w4 bge .L429 add x0, x3, 4 add x8, x25, x0 ldr w0, [x25, x0] cmp w0, w7 bge .L440 add w9, w19, 2 cmp w9, w4 bge .L435 add x0, x3, 8 add x8, x25, x0 ldr w0, [x25, x0] cmp w0, w7 bge .L436 add w1, w19, 3 cmp w1, w4 bge .L433 add x0, x3, 12 add x8, x25, x0 ldr w0, [x25, x0] cmp w0, w7 bge .L440 add w9, w19, 4 cmp w9, w4 bge .L435 add x0, x3, 16 add x8, x25, x0 ldr w0, [x25, x0] cmp w0, w7 bge .L436 add w10, w19, 5 cmp w10, w4 bge .L437 add x0, x3, 20 add x8, x25, x0 ldr w0, [x25, x0] cmp w0, w7 bge .L438 add w1, w19, 6 cmp w1, w4 bge .L439 add x3, x3, 24 add x8, x25, x3 ldr w0, [x25, x3] cmp w0, w7 bge .L440 add w19, w19, 7 .L183: add x8, x25, w19, uxtw 2 .L179: mov x0, x6 str x5, [sp, 104] str w2, [sp, 112] str x8, [sp, 120] str w4, [sp, 128] bl bstFromPreorder ldr x5, [sp, 104] ldr w4, [sp, 128] str x0, [x5, 8] sub w1, w4, w19 ldr x0, [sp, 120] bl bstFromPreorder ldr x5, [sp, 104] str x5, [x28, 8] ldr w2, [sp, 112] str x0, [x5, 16] subs w19, w2, w24 beq .L190 add x25, x27, w24, uxtw 2 .L339: mov x0, 24 bl malloc mov x24, x0 mov x0, x25 ldr w4, [x0], 4 str w4, [x24] cmp w19, 1 ble .L656 neg x5, x0, lsr 2 mov w6, 6 and w2, w5, 3 sub w3, w19, #2 add w1, w2, 4 cmp w1, w6 csel w1, w1, w6, cs cmp w3, w1 bcc .L460 cbz w2, .L461 ldr w1, [x25, 4] cmp w4, w1 ble .L462 tbz x5, 1, .L463 ldr w1, [x25, 8] add x3, x25, 8 mov w27, 2 cmp w4, w1 ble .L196 cmp w2, 3 bne .L464 ldr w1, [x25, 12] movi v26.2s, 0x4 add x3, x25, 12 mov w27, w2 cmp w4, w1 ble .L196 .L198: sub w3, w19, #1 add w1, w2, 1 sub w3, w3, w2 adrp x2, .LC0 dup v30.4s, v26.s[0] ubfiz x1, x1, 2, 3 ldr q31, [x2, #:lo12:.LC0] lsr w2, w3, 2 add x1, x25, x1 dup v27.4s, w4 movi v28.4s, 0x4 add x2, x1, w2, uxtw 4 add v30.4s, v30.4s, v31.4s b .L193 .L201: cmp x2, x1 beq .L657 add v30.4s, v30.4s, v28.4s .L193: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x5, d31 cbz x5, .L201 fmov w27, s30 .L197: ubfiz x2, x27, 2, 32 add x3, x25, x2 ldr w1, [x25, x2] cmp w4, w1 ble .L196 add w1, w27, 1 cmp w19, w1 ble .L448 add x5, x2, 4 add x3, x25, x5 ldr w5, [x25, x5] cmp w4, w5 ble .L459 add w5, w27, 2 cmp w19, w5 ble .L454 add x1, x2, 8 add x3, x25, x1 ldr w1, [x25, x1] cmp w4, w1 ble .L455 add w1, w27, 3 cmp w19, w1 ble .L452 add x5, x2, 12 add x3, x25, x5 ldr w5, [x25, x5] cmp w4, w5 ble .L459 add w5, w27, 4 cmp w19, w5 ble .L454 add x1, x2, 16 add x3, x25, x1 ldr w1, [x25, x1] cmp w4, w1 ble .L455 add w6, w27, 5 cmp w19, w6 ble .L456 add x1, x2, 20 add x3, x25, x1 ldr w1, [x25, x1] cmp w4, w1 ble .L457 add w1, w27, 6 cmp w19, w1 ble .L458 add x2, x2, 24 add x3, x25, x2 ldr w2, [x25, x2] cmp w4, w2 ble .L459 add w27, w27, 7 .L195: add x3, x25, w27, uxtw 2 .L192: str x3, [sp, 104] bl bstFromPreorder str x0, [x24, 8] sub w1, w19, w27 ldr x0, [sp, 104] bl bstFromPreorder str x0, [x24, 16] .L162: str x24, [x28, 16] .L151: str x23, [x21, 8] subs w27, w20, w22 str x28, [x23, 16] beq .L622 .L31: add x25, x26, w22, uxtw 2 .L338: mov x0, 24 bl malloc ldr w4, [x25] mov x22, x0 str w4, [x0] cmp w27, 1 ble .L204 .L32: add x23, x25, 4 mov w2, 5 sub w20, w27, #2 neg x1, x23, lsr 2 and w19, w1, 3 add w0, w19, 4 cmp w0, w2 csel w0, w0, w2, cs cmp w20, w0 bcc .L658 cbz w19, .L467 ldr w0, [x25, 4] cmp w0, w4 bge .L209 tbz x1, 1, .L468 ldr w0, [x25, 8] cmp w0, w4 bge .L211 cmp w19, 3 bne .L469 ldr w0, [x25, 12] cmp w0, w4 bge .L212 movi v26.2s, 0x4 .L208: adrp x0, .LC0 sub w2, w27, #1 add w1, w19, 1 sub w19, w2, w19 ldr q31, [x0, #:lo12:.LC0] ubfiz x1, x1, 2, 3 dup v30.4s, v26.s[0] lsr w0, w19, 2 add x1, x25, x1 dup v27.4s, w4 movi v28.4s, 0x4 add x0, x1, w0, uxtw 4 add v30.4s, v30.4s, v31.4s b .L213 .L230: cmp x0, x1 beq .L659 add v30.4s, v30.4s, v28.4s .L213: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x3, d31 cbz x3, .L230 fmov x0, d30 ubfiz x1, x0, 2, 32 ldr w3, [x25, x1] cmp w3, w4 bge .L660 .L206: add w20, w0, 1 cmp w20, w27 bge .L473 add x1, x25, x1 ldr w2, [x1, 4] cmp w2, w4 bge .L473 add w19, w0, 2 cmp w19, w27 bge .L220 ldr w2, [x1, 8] cmp w2, w4 bge .L221 add w20, w0, 3 cmp w20, w27 bge .L222 ldr w2, [x1, 12] cmp w2, w4 bge .L227 add w19, w0, 4 cmp w19, w27 bge .L220 ldr w2, [x1, 16] cmp w2, w4 bge .L221 add w20, w0, 5 mov w24, w20 cmp w20, w27 bge .L222 ldr w2, [x1, 20] cmp w2, w4 bge .L227 add w3, w0, 6 cmp w3, w27 bge .L228 ldr w1, [x1, 24] cmp w1, w4 bge .L229 add w20, w0, 7 mov x0, 24 str w3, [sp, 104] bl malloc ldr w3, [sp, 104] mov x28, x0 ldr w5, [x25, 4] str w5, [x0] .L217: add x26, x25, 8 mov w4, 5 sub w1, w3, #2 neg x2, x26, lsr 2 and w24, w2, 3 add w0, w24, 4 cmp w0, w4 csel w0, w0, w4, cs cmp w1, w0 bcc .L661 cbz w24, .L475 ldr w0, [x25, 8] cmp w0, w5 bge .L237 tbz x2, 1, .L476 ldr w0, [x25, 12] cmp w0, w5 bge .L240 cmp w24, 3 bne .L477 ldr w0, [x25, 16] cmp w0, w5 bge .L241 movi v26.2s, 0x4 .L238: adrp x2, .LC0 sub w0, w3, w24 dup v30.4s, v26.s[0] add w1, w24, 2 ldr q31, [x2, #:lo12:.LC0] sub w0, w0, #1 ubfiz x1, x1, 2, 3 dup v27.4s, w5 lsr w2, w0, 2 add x1, x25, x1 add v30.4s, v30.4s, v31.4s movi v28.4s, 0x4 add x2, x1, w2, uxtw 4 b .L242 .L258: cmp x2, x1 beq .L662 add v30.4s, v30.4s, v28.4s .L242: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x4, d31 cbz x4, .L258 fmov x0, d30 fmov w1, s30 ubfiz x0, x0, 2, 32 ldr w2, [x23, x0] cmp w5, w2 ble .L663 .L236: add w24, w1, 1 cmp w3, w24 ble .L480 add x0, x23, x0 ldr w2, [x0, 4] cmp w5, w2 ble .L480 add w19, w1, 2 cmp w3, w19 ble .L248 ldr w2, [x0, 8] cmp w5, w2 ble .L249 add w24, w1, 3 cmp w3, w24 ble .L250 ldr w2, [x0, 12] cmp w5, w2 ble .L255 add w19, w1, 4 cmp w3, w19 ble .L248 ldr w2, [x0, 16] cmp w5, w2 ble .L249 add w24, w1, 5 mov w8, w24 cmp w3, w24 ble .L250 ldr w2, [x0, 20] cmp w2, w5 bge .L255 add w4, w1, 6 cmp w4, w3 bge .L256 ldr w0, [x0, 24] cmp w0, w5 bge .L257 add x6, x25, 12 add w24, w1, 7 mov x0, 24 str x6, [sp, 104] str w3, [sp, 112] str w4, [sp, 120] bl malloc ldr x6, [sp, 104] mov x5, x0 ldr w3, [sp, 112] ldr w4, [sp, 120] ldr w7, [x25, 8] str w7, [x0] .L245: neg x2, x6, lsr 2 mov w8, 6 and w19, w2, 3 sub w1, w4, #2 add w0, w19, 4 cmp w0, w8 csel w0, w0, w8, cs cmp w1, w0 bcc .L494 cbz w19, .L495 ldr w0, [x6] cmp w7, w0 ble .L496 tbz x2, 1, .L497 ldr w0, [x25, 16] cmp w7, w0 ble .L664 cmp w19, 3 bne .L498 ldr w0, [x25, 20] movi v26.2s, 0x4 add x8, x25, 20 cmp w0, w7 bge .L265 .L266: adrp x2, .LC0 sub w0, w4, w19 dup v30.4s, v26.s[0] add w1, w19, 3 ldr q31, [x2, #:lo12:.LC0] sub w0, w0, #1 ubfiz x1, x1, 2, 3 dup v27.4s, w7 lsr w2, w0, 2 add x1, x25, x1 add v30.4s, v30.4s, v31.4s movi v28.4s, 0x4 add x2, x1, w2, uxtw 4 b .L262 .L269: cmp x2, x1 beq .L665 add v30.4s, v30.4s, v28.4s .L262: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x8, d31 cbz x8, .L269 fmov w19, s30 .L261: ubfiz x2, x19, 2, 32 add x8, x26, x2 ldr w0, [x26, x2] cmp w0, w7 bge .L265 add w1, w19, 1 cmp w1, w4 bge .L482 add x0, x2, 4 add x8, x26, x0 ldr w0, [x26, x0] cmp w0, w7 bge .L493 add w9, w19, 2 cmp w9, w4 bge .L488 add x0, x2, 8 add x8, x26, x0 ldr w0, [x26, x0] cmp w0, w7 bge .L489 add w1, w19, 3 cmp w1, w4 bge .L486 add x0, x2, 12 add x8, x26, x0 ldr w0, [x26, x0] cmp w0, w7 bge .L493 add w9, w19, 4 cmp w9, w4 bge .L488 add x0, x2, 16 add x8, x26, x0 ldr w0, [x26, x0] cmp w0, w7 bge .L489 add w10, w19, 5 cmp w10, w4 bge .L490 add x0, x2, 20 add x8, x26, x0 ldr w0, [x26, x0] cmp w0, w7 bge .L491 add w1, w19, 6 cmp w1, w4 bge .L492 add x2, x2, 24 add x8, x26, x2 ldr w0, [x26, x2] cmp w0, w7 bge .L493 add w19, w19, 7 .L264: add x8, x26, w19, uxtw 2 .L260: mov x0, x6 stp x5, x8, [sp, 104] add x26, x23, w24, uxtw 2 str w3, [sp, 120] str w4, [sp, 128] bl bstFromPreorder ldr x5, [sp, 104] ldr w4, [sp, 128] str x0, [x5, 8] sub w1, w4, w19 ldr x0, [sp, 112] bl bstFromPreorder ldr x5, [sp, 104] str x5, [x28, 8] ldr w3, [sp, 120] str x0, [x5, 16] subs w24, w3, w24 beq .L243 .L337: mov x0, 24 bl malloc mov x23, x0 mov x0, x26 mov w1, 0 mov w19, 1 ldr w4, [x0], 4 str w4, [x23] mov x3, x0 cmp w24, 1 ble .L274 neg x5, x0, lsr 2 mov w6, 6 and w2, w5, 3 sub w3, w24, #2 add w1, w2, 4 cmp w1, w6 csel w1, w1, w6, cs cmp w3, w1 bcc .L513 cbz w2, .L514 ldr w1, [x26, 4] cmp w4, w1 ble .L515 tbz x5, 1, .L516 ldr w1, [x26, 8] add x3, x26, 8 mov w19, 2 cmp w4, w1 ble .L278 cmp w2, 3 bne .L517 ldr w1, [x26, 12] movi v26.2s, 0x4 add x3, x26, 12 mov w19, w2 cmp w4, w1 ble .L278 .L280: sub w3, w24, #1 add w1, w2, 1 sub w3, w3, w2 adrp x2, .LC0 dup v30.4s, v26.s[0] ubfiz x1, x1, 2, 3 ldr q31, [x2, #:lo12:.LC0] lsr w2, w3, 2 add x1, x26, x1 dup v27.4s, w4 movi v28.4s, 0x4 add x2, x1, w2, uxtw 4 add v30.4s, v30.4s, v31.4s b .L275 .L283: cmp x2, x1 beq .L666 add v30.4s, v30.4s, v28.4s .L275: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x5, d31 cbz x5, .L283 fmov w19, s30 .L279: ubfiz x2, x19, 2, 32 add x3, x26, x2 ldr w1, [x26, x2] cmp w1, w4 bge .L278 add w1, w19, 1 cmp w1, w24 bge .L501 add x5, x2, 4 add x3, x26, x5 ldr w5, [x26, x5] cmp w4, w5 ble .L512 add w5, w19, 2 cmp w24, w5 ble .L507 add x1, x2, 8 add x3, x26, x1 ldr w1, [x26, x1] cmp w1, w4 bge .L508 add w1, w19, 3 cmp w1, w24 bge .L505 add x5, x2, 12 add x3, x26, x5 ldr w5, [x26, x5] cmp w5, w4 bge .L512 add w5, w19, 4 cmp w5, w24 bge .L507 add x1, x2, 16 add x3, x26, x1 ldr w1, [x26, x1] cmp w4, w1 ble .L508 add w6, w19, 5 cmp w6, w24 bge .L509 add x1, x2, 20 add x3, x26, x1 ldr w1, [x26, x1] cmp w4, w1 ble .L510 add w1, w19, 6 cmp w24, w1 ble .L511 add x2, x2, 24 add x3, x26, x2 ldr w2, [x26, x2] cmp w4, w2 ble .L512 add w19, w19, 7 .L277: add x3, x26, w19, uxtw 2 .L274: str x3, [sp, 104] bl bstFromPreorder str x0, [x23, 8] sub w1, w24, w19 ldr x0, [sp, 104] bl bstFromPreorder str x0, [x23, 16] .L272: str x28, [x22, 8] subs w27, w27, w20 str x23, [x28, 16] mov x26, 0 beq .L624 .L232: add x23, x25, w20, uxtw 2 .L336: mov x0, 24 bl malloc ldr w3, [x23] mov x26, x0 str w3, [x0] cmp w27, 1 ble .L285 .L233: add x24, x23, 4 mov w4, 5 sub w1, w27, #2 neg x2, x24, lsr 2 and w20, w2, 3 add w0, w20, 4 cmp w0, w4 csel w0, w0, w4, cs cmp w0, w1 bhi .L667 cbz w20, .L521 ldr w0, [x23, 4] cmp w0, w3 bge .L628 tbz x2, 1, .L522 ldr w0, [x23, 8] cmp w0, w3 bge .L291 cmp w20, 3 bne .L523 ldr w0, [x23, 12] cmp w0, w3 bge .L292 movi v26.2s, 0x4 .L289: adrp x0, .LC0 sub w19, w27, #1 add w1, w20, 1 sub w20, w19, w20 ldr q31, [x0, #:lo12:.LC0] ubfiz x1, x1, 2, 3 dup v30.4s, v26.s[0] lsr w0, w20, 2 add x1, x23, x1 dup v27.4s, w3 movi v28.4s, 0x4 add x0, x1, w0, uxtw 4 add v30.4s, v30.4s, v31.4s b .L293 .L310: cmp x0, x1 beq .L668 add v30.4s, v30.4s, v28.4s .L293: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x2, d31 cbz x2, .L310 fmov x0, d30 fmov w1, s30 ubfiz x0, x0, 2, 32 ldr w2, [x23, x0] cmp w2, w3 bge .L669 .L287: add w20, w1, 1 cmp w20, w27 bge .L527 add x0, x23, x0 ldr w2, [x0, 4] cmp w2, w3 bge .L527 add w19, w1, 2 cmp w19, w27 bge .L300 ldr w2, [x0, 8] cmp w2, w3 bge .L301 add w20, w1, 3 cmp w20, w27 bge .L302 ldr w2, [x0, 12] cmp w2, w3 bge .L307 add w19, w1, 4 cmp w19, w27 bge .L300 ldr w2, [x0, 16] cmp w2, w3 bge .L301 add w20, w1, 5 mov w5, w20 cmp w20, w27 bge .L302 ldr w2, [x0, 20] cmp w2, w3 bge .L307 add w25, w1, 6 cmp w25, w27 bge .L308 ldr w0, [x0, 24] cmp w0, w3 bge .L309 add x3, x23, 8 add w20, w1, 7 mov x0, 24 str x3, [sp, 104] bl malloc mov x28, x0 ldr w4, [x23, 4] ldr x3, [sp, 104] str w4, [x0] .L297: neg x2, x3, lsr 2 mov w5, 6 and w19, w2, 3 sub w1, w25, #2 add w0, w19, 4 cmp w0, w5 csel w0, w0, w5, cs cmp w1, w0 bcc .L541 cbz w19, .L542 ldr w0, [x3] cmp w0, w4 bge .L543 tbz x2, 1, .L544 ldr w0, [x23, 12] cmp w4, w0 ble .L670 cmp w19, 3 bne .L545 ldr w0, [x23, 16] movi v26.2s, 0x4 add x5, x23, 16 cmp w0, w4 bge .L317 .L318: adrp x2, .LC0 sub w0, w25, w19 dup v30.4s, v26.s[0] add w1, w19, 2 ldr q31, [x2, #:lo12:.LC0] sub w0, w0, #1 ubfiz x1, x1, 2, 3 dup v27.4s, w4 lsr w2, w0, 2 add x1, x23, x1 add v30.4s, v30.4s, v31.4s movi v28.4s, 0x4 add x2, x1, w2, uxtw 4 b .L314 .L321: cmp x2, x1 beq .L671 add v30.4s, v30.4s, v28.4s .L314: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x5, d31 cbz x5, .L321 fmov w19, s30 .L313: ubfiz x2, x19, 2, 32 add x5, x24, x2 ldr w0, [x24, x2] cmp w0, w4 bge .L317 add w1, w19, 1 cmp w1, w25 bge .L529 add x0, x2, 4 add x5, x24, x0 ldr w0, [x24, x0] cmp w0, w4 bge .L540 add w6, w19, 2 cmp w6, w25 bge .L535 add x0, x2, 8 add x5, x24, x0 ldr w0, [x24, x0] cmp w0, w4 bge .L536 add w1, w19, 3 cmp w1, w25 bge .L533 add x0, x2, 12 add x5, x24, x0 ldr w0, [x24, x0] cmp w0, w4 bge .L540 add w6, w19, 4 cmp w6, w25 bge .L535 add x0, x2, 16 add x5, x24, x0 ldr w0, [x24, x0] cmp w0, w4 bge .L536 add w7, w19, 5 cmp w7, w25 bge .L537 add x0, x2, 20 add x5, x24, x0 ldr w0, [x24, x0] cmp w0, w4 bge .L538 add w1, w19, 6 cmp w1, w25 bge .L539 add x2, x2, 24 add x5, x24, x2 ldr w0, [x24, x2] cmp w0, w4 bge .L540 add w19, w19, 7 .L316: add x5, x24, w19, uxtw 2 .L312: mov x0, x3 str x5, [sp, 104] bl bstFromPreorder str x0, [x28, 8] ldr x0, [sp, 104] sub w1, w25, w19 mov x25, 0 bl bstFromPreorder str x28, [x26, 8] str x0, [x28, 16] subs w19, w27, w20 beq .L626 add x24, x23, w20, uxtw 2 .L335: mov x0, 24 bl malloc mov x25, x0 mov x0, x24 ldr w4, [x0], 4 str w4, [x25] cmp w19, 1 ble .L672 neg x3, x0, lsr 2 mov w5, 6 and w20, w3, 3 sub w2, w19, #2 add w1, w20, 4 cmp w1, w5 csel w1, w1, w5, cs cmp w1, w2 bhi .L561 cbz w20, .L562 ldr w1, [x24, 4] cmp w1, w4 bge .L563 tbz x3, 1, .L564 ldr w1, [x24, 8] cmp w4, w1 ble .L673 cmp w20, 3 bne .L565 ldr w1, [x24, 12] movi v26.2s, 0x4 add x23, x24, 12 cmp w4, w1 ble .L328 .L330: adrp x2, .LC0 sub w3, w19, #1 dup v30.4s, v26.s[0] add w1, w20, 1 ldr q31, [x2, #:lo12:.LC0] sub w3, w3, w20 ubfiz x1, x1, 2, 3 dup v27.4s, w4 lsr w2, w3, 2 add x1, x24, x1 add v30.4s, v30.4s, v31.4s movi v28.4s, 0x4 add x2, x1, w2, uxtw 4 b .L325 .L333: cmp x2, x1 beq .L674 add v30.4s, v30.4s, v28.4s .L325: ldr q31, [x1] add x1, x1, 16 cmge v31.4s, v31.4s, v27.4s umaxp v31.4s, v31.4s, v31.4s fmov x5, d31 cbz x5, .L333 fmov w20, s30 .L329: ubfiz x2, x20, 2, 32 add x23, x24, x2 ldr w1, [x24, x2] cmp w1, w4 bge .L328 add w1, w20, 1 cmp w1, w19 bge .L549 add x3, x2, 4 add x23, x24, x3 ldr w3, [x24, x3] cmp w3, w4 bge .L560 add w3, w20, 2 cmp w3, w19 bge .L555 add x1, x2, 8 add x23, x24, x1 ldr w1, [x24, x1] cmp w1, w4 bge .L556 add w1, w20, 3 cmp w1, w19 bge .L553 add x3, x2, 12 add x23, x24, x3 ldr w3, [x24, x3] cmp w3, w4 bge .L560 add w3, w20, 4 cmp w3, w19 bge .L555 add x1, x2, 16 add x23, x24, x1 ldr w1, [x24, x1] cmp w1, w4 bge .L556 add w5, w20, 5 cmp w5, w19 bge .L557 add x1, x2, 20 add x23, x24, x1 ldr w1, [x24, x1] cmp w1, w4 bge .L558 add w1, w20, 6 cmp w1, w19 bge .L559 add x2, x2, 24 add x23, x24, x2 ldr w2, [x24, x2] cmp w4, w2 ble .L560 add w20, w20, 7 .L327: ldp x27, x28, [sp, 80] add x23, x24, w20, uxtw 2 .L324: bl bstFromPreorder str x0, [x25, 8] sub w1, w19, w20 mov x0, x23 bl bstFromPreorder str x25, [x26, 16] str x0, [x25, 16] .L214: str x26, [x22, 16] .L677: str x22, [x21, 16] ldp x19, x20, [sp, 16] ldp x23, x24, [sp, 48] ldp x25, x26, [sp, 64] .L1: mov x0, x21 ldp x21, x22, [sp, 32] ldp x29, x30, [sp], 176 ret .L635: tst x19, 3 beq .L675 fmov w0, s26 and w19, w19, -4 add w2, w19, w0 add w0, w19, w0 sub w28, w0, #1 mov w22, w0 lsl x2, x2, 2 ldr w3, [x26, x2] cmp w1, w3 bgt .L5 .L18: mov x0, 24 bl malloc ldr w3, [x26, 4] mov x23, x0 str w3, [x0] cmp w28, 1 bne .L16 str xzr, [x0, 8] .L42: mov x28, 0 b .L151 .L638: tst x1, 3 beq .L676 and w0, w1, -4 fmov w1, s26 fmov w2, s26 add w1, w0, w1 add w0, w0, w2 lsl x1, x1, 2 sub w24, w0, #1 mov w19, w0 ldr w2, [x25, x1] cmp w3, w2 bgt .L35 b .L46 .L345: movi v26.2s, 0x1 b .L7 .L622: ldp x27, x28, [sp, 80] .L203: mov x22, 0 str x22, [x21, 16] mov x0, x21 ldp x19, x20, [sp, 16] ldp x23, x24, [sp, 48] ldp x25, x26, [sp, 64] ldp x21, x22, [sp, 32] ldp x29, x30, [sp], 176 ret .L624: ldp x27, x28, [sp, 80] str x26, [x22, 16] b .L677 .L676: movi v31.4s, 0x1 umov w24, v30.s[3] add v30.4s, v30.4s, v31.4s umov w19, v30.s[3] .L46: mov x0, 24 bl malloc ldr w6, [x26, 8] str w6, [x0] str x0, [sp, 104] cmp w24, 1 bne .L44 str xzr, [x0, 8] .L69: mov x27, 0 b .L138 .L659: tst x19, 3 beq .L678 fmov w0, s26 and w19, w19, -4 add w1, w19, w0 add w0, w19, w0 sub w3, w0, #1 mov w20, w0 lsl x1, x1, 2 ldr w2, [x25, x1] cmp w2, w4 blt .L206 .L219: mov x0, 24 str w3, [sp, 104] bl malloc mov x28, x0 ldr w5, [x25, 4] ldr w3, [sp, 104] str w5, [x0] cmp w3, 1 bne .L217 str xzr, [x0, 8] .L243: mov x23, 0 b .L272 .L636: fmov w22, s30 subs w28, w0, #1 bne .L18 str xzr, [x21, 8] b .L338 .L641: tst x2, 3 beq .L679 fmov w1, s26 and w0, w2, -4 fmov w2, s26 add w1, w0, w1 add w0, w0, w2 lsl x1, x1, 2 sub w9, w0, #1 mov w4, w0 ldr w2, [x27, x1] cmp w6, w2 bgt .L62 .L73: mov x0, 24 str x3, [sp, 112] str w4, [sp, 120] str w9, [sp, 128] bl malloc ldr w11, [x26, 12] mov x6, x0 ldr w9, [sp, 128] str w11, [x0] ldr x3, [sp, 112] cmp w9, 1 ldr w4, [sp, 120] bne .L71 str xzr, [x0, 8] .L96: mov x9, 0 b .L125 .L662: tst x0, 3 beq .L680 fmov w1, s26 and w0, w0, -4 add w2, w0, w1 add w1, w0, w1 sub w4, w1, #1 mov w24, w1 lsl x0, x2, 2 ldr w2, [x23, x0] cmp w5, w2 bgt .L236 .L247: add x6, x25, 12 mov x0, 24 str x6, [sp, 104] str w3, [sp, 112] str w4, [sp, 120] bl malloc ldr w7, [x25, 8] mov x5, x0 ldr w4, [sp, 120] str w7, [x0] ldr x6, [sp, 104] cmp w4, 1 ldr w3, [sp, 112] bne .L245 mov x8, x6 mov w19, w4 mov w1, 0 b .L260 .L652: tst x19, 3 beq .L681 fmov w0, s26 and w19, w19, -4 fmov w1, s26 add w0, w19, w0 add w1, w19, w1 lsl x0, x0, 2 sub w4, w1, #1 mov w24, w1 ldr w3, [x27, x0] cmp w5, w3 bgt .L154 .L166: add x6, x27, 8 mov x0, 24 str x6, [sp, 104] str w2, [sp, 112] str w4, [sp, 120] bl malloc ldr w7, [x27, 4] mov x5, x0 ldr w4, [sp, 120] str w7, [x0] ldr x6, [sp, 104] cmp w4, 1 ldr w2, [sp, 112] bne .L164 mov x8, x6 mov w19, w4 mov w1, 0 b .L179 .L668: tst x20, 3 beq .L682 fmov w0, s26 and w20, w20, -4 fmov w1, s26 add w0, w20, w0 add w1, w20, w1 lsl x0, x0, 2 sub w25, w1, #1 mov w20, w1 ldr w2, [x23, x0] cmp w2, w3 blt .L287 .L299: add x3, x23, 8 mov x0, 24 str x3, [sp, 104] bl malloc mov x28, x0 ldr w4, [x23, 4] cmp w25, 1 str w4, [x0] ldr x3, [sp, 104] bne .L297 mov x5, x3 mov w19, w25 mov w1, 0 b .L312 .L639: fmov w19, s30 subs w24, w0, #1 bne .L46 .L36: sub w2, w22, #2 str xzr, [x23, 8] b .L340 .L512: mov w19, w1 .L278: sub w1, w19, #1 b .L274 .L540: mov w19, w1 .L317: sub w1, w19, #1 b .L312 .L560: mov w20, w1 .L328: ldp x27, x28, [sp, 80] sub w1, w20, #1 b .L324 .L414: mov w6, w1 .L144: sub w1, w6, #1 b .L140 .L440: mov w19, w1 .L184: sub w1, w19, #1 b .L179 .L493: mov w19, w1 .L265: sub w1, w19, #1 b .L260 .L459: mov w27, w1 .L196: sub w1, w27, #1 b .L192 .L467: movi v26.2s, 0x1 b .L208 .L352: movi v26.2s, 0x1 b .L37 .L190: mov x24, 0 b .L162 .L660: fmov w20, s30 subs w3, w0, #1 bne .L219 .L207: mov w27, w2 str xzr, [x22, 8] b .L336 .L665: fmov w1, s26 and w19, w0, -4 add w19, w19, w1 tst x0, 3 bne .L261 movi v31.4s, 0x1 umov w1, v30.s[3] add v30.4s, v30.4s, v31.4s umov w19, v30.s[3] b .L264 .L666: fmov w1, s26 and w2, w3, -4 add w19, w2, w1 tst x3, 3 bne .L279 movi v31.4s, 0x1 umov w1, v30.s[3] add v30.4s, v30.4s, v31.4s umov w19, v30.s[3] b .L277 .L650: fmov w1, s26 and w2, w4, -4 add w6, w2, w1 tst x4, 3 bne .L145 movi v31.4s, 0x1 umov w1, v30.s[3] add v30.4s, v30.4s, v31.4s umov w6, v30.s[3] b .L143 .L644: tst x2, 3 beq .L683 fmov w1, s26 and w0, w2, -4 fmov w2, s26 add w1, w0, w1 add w0, w0, w2 lsl x1, x1, 2 sub w10, w0, #1 mov w8, w0 ldr w2, [x3, x1] cmp w11, w2 bgt .L89 .L100: add x12, x26, 20 mov x0, 24 stp x12, x3, [sp, 112] str x7, [sp, 128] str w4, [sp, 136] str x6, [sp, 144] str w9, [sp, 152] stp w8, w10, [sp, 164] bl malloc ldp w8, w10, [sp, 164] mov x11, x0 ldr w13, [x26, 16] ldp x12, x3, [sp, 112] str w13, [x0] ldr x7, [sp, 128] cmp w10, 1 ldr x6, [sp, 144] ldr w4, [sp, 136] ldr w9, [sp, 152] bne .L98 mov x14, x12 mov w2, w10 mov w1, 0 b .L113 .L657: fmov w1, s26 and w2, w3, -4 add w27, w2, w1 tst x3, 3 bne .L197 movi v31.4s, 0x1 umov w1, v30.s[3] add v30.4s, v30.4s, v31.4s umov w27, v30.s[3] b .L195 .L655: fmov w1, s26 and w19, w0, -4 add w19, w19, w1 tst x0, 3 bne .L180 movi v31.4s, 0x1 umov w1, v30.s[3] add v30.4s, v30.4s, v31.4s umov w19, v30.s[3] b .L183 .L671: fmov w1, s26 and w19, w0, -4 add w19, w19, w1 tst x0, 3 bne .L313 movi v31.4s, 0x1 umov w1, v30.s[3] add v30.4s, v30.4s, v31.4s umov w19, v30.s[3] b .L316 .L674: fmov w1, s26 and w20, w3, -4 add w20, w20, w1 tst x3, 3 bne .L329 movi v31.4s, 0x1 umov w1, v30.s[3] add v30.4s, v30.4s, v31.4s umov w20, v30.s[3] b .L327 .L626: ldp x27, x28, [sp, 80] str x25, [x26, 16] b .L214 .L642: fmov w4, s30 subs w9, w0, #1 bne .L73 .L63: ldr x0, [sp, 104] sub w24, w19, #2 str xzr, [x0, 8] b .L341 .L663: fmov w24, s30 subs w4, w1, #1 bne .L247 .L237: sub w24, w20, #2 str xzr, [x28, 8] b .L337 .L395: mov w2, w1 .L131: sub w1, w2, #1 b .L127 .L380: mov w2, w1 .L118: sub w1, w2, #1 b .L113 .L359: movi v26.2s, 0x1 b .L64 .L521: movi v26.2s, 0x1 b .L289 .L422: movi v26.2s, 0x1 b .L156 .L475: movi v26.2s, 0x1 b .L238 .L675: movi v31.4s, 0x1 umov w28, v30.s[3] add v30.4s, v30.4s, v31.4s umov w22, v30.s[3] b .L18 .L649: fmov w1, s26 and w11, w10, -4 add w11, w11, w1 tst x10, 3 bne .L132 movi v31.4s, 0x1 umov w1, v30.s[3] add v30.4s, v30.4s, v31.4s umov w2, v30.s[3] b .L130 .L669: fmov w20, s30 subs w25, w1, #1 bne .L299 str xzr, [x26, 8] b .L335 .L653: fmov w24, s30 subs w4, w1, #1 bne .L166 .L155: mov w19, w3 str xzr, [x28, 8] b .L339 .L647: fmov w0, s26 and w15, w2, -4 add w15, w15, w0 tst x2, 3 bne .L114 movi v31.4s, 0x1 umov w1, v30.s[3] add v30.4s, v30.4s, v31.4s umov w2, v30.s[3] b .L117 .L634: ldr w3, [x26, 4] sub w27, w20, #1 mov x2, 4 mov w0, 1 cmp w1, w3 bgt .L5 str xzr, [x21, 8] b .L338 .L645: fmov w8, s30 subs w10, w0, #1 bne .L100 .L90: sub w8, w4, #2 str xzr, [x6, 8] b .L342 .L350: mov w28, w0 b .L18 .L366: movi v26.2s, 0x1 b .L91 .L542: movi v26.2s, 0x1 b .L318 .L442: movi v26.2s, 0x1 b .L185 .L495: movi v26.2s, 0x1 b .L266 .L461: movi v26.2s, 0x1 b .L198 .L416: movi v26.2s, 0x1 b .L146 .L562: movi v26.2s, 0x1 b .L330 .L514: movi v26.2s, 0x1 b .L280 .L678: movi v31.4s, 0x1 umov w3, v30.s[3] add v30.4s, v30.4s, v31.4s umov w20, v30.s[3] b .L219 .L54: mov w24, w2 b .L46 .L637: ldr w2, [x26, 8] mov x1, 4 mov w0, 1 cmp w2, w3 blt .L35 b .L36 .L658: ldr w2, [x25, 4] mov x1, 4 mov w0, 1 cmp w2, w4 blt .L206 sub w2, w27, #1 b .L207 .L19: mov x0, 24 bl malloc ldr w3, [x26, 4] mov w28, w22 mov x23, x0 mov w22, w19 str w3, [x0] b .L16 .L20: mov w28, w22 mov w22, w19 b .L18 .L3: str xzr, [x0, 8] beq .L203 mov x0, 24 bl malloc ldr w1, [x26, 4] mov x22, x0 sub w19, w20, #2 str w1, [x0] str xzr, [x0, 8] .L215: mov x0, 24 bl malloc mov x26, x0 add x23, x25, 4 ldr w0, [x25, 4] sub w19, w19, #1 str w0, [x26] str xzr, [x26, 8] .L295: mov x0, 24 bl malloc mov x25, x0 ldr w2, [x23, 4] add x23, x23, 8 mov w1, 0 mov x0, x23 mov w20, 1 str w2, [x25] b .L324 .L21: mov x0, 24 bl malloc ldr w3, [x26, 4] mov x23, x0 mov w28, w19 str w3, [x0] b .L16 .L357: mov w24, w0 b .L46 .L26: mov w28, w19 b .L18 .L382: movi v26.2s, 0x1 b .L119 .L473: mov w3, w0 b .L219 .L397: movi v26.2s, 0x1 b .L133 .L682: movi v31.4s, 0x1 umov w25, v30.s[3] add v30.4s, v30.4s, v31.4s umov w20, v30.s[3] b .L299 .L680: movi v31.4s, 0x1 umov w4, v30.s[3] add v30.4s, v30.4s, v31.4s umov w24, v30.s[3] b .L247 .L679: movi v31.4s, 0x1 umov w9, v30.s[3] add v30.4s, v30.4s, v31.4s umov w4, v30.s[3] b .L73 .L681: movi v31.4s, 0x1 umov w4, v30.s[3] add v30.4s, v30.4s, v31.4s umov w24, v30.s[3] b .L166 .L640: ldr w2, [x26, 12] mov x1, 4 mov w0, 1 cmp w2, w6 blt .L62 b .L63 .L651: ldr w3, [x27, 4] mov x0, 4 mov w1, 1 cmp w5, w3 bgt .L154 .L629: sub w3, w2, #1 b .L155 .L667: ldr w2, [x23, 4] mov x0, 4 mov w1, 1 cmp w2, w3 blt .L287 .L628: sub w19, w27, #1 str xzr, [x26, 8] b .L335 .L661: ldr w2, [x25, 8] mov x0, 4 mov w1, 1 cmp w5, w2 bgt .L236 b .L237 .L47: mov x0, 24 str w2, [sp, 112] bl malloc str x0, [sp, 104] ldr w6, [x26, 8] mov w24, w19 ldr w19, [sp, 112] str w6, [x0] b .L44 .L220: mov x0, 24 bl malloc ldr w5, [x25, 4] mov w3, w20 mov x28, x0 mov w20, w19 str w5, [x0] b .L217 .L221: mov w3, w20 mov w20, w19 b .L219 .L48: mov w24, w19 mov w19, w2 b .L46 .L222: mov x0, 24 bl malloc ldr w5, [x25, 4] mov x28, x0 mov w3, w19 str w5, [x0] b .L217 .L49: mov x0, 24 str w2, [sp, 112] bl malloc str x0, [sp, 104] ldr w6, [x26, 8] ldr w24, [sp, 112] str w6, [x0] b .L44 .L427: mov w4, w1 b .L166 .L364: mov w9, w0 b .L73 .L527: mov w25, w1 b .L299 .L227: mov w3, w19 b .L219 .L480: mov w4, w1 b .L247 .L8: str xzr, [x21, 8] mov x0, 24 sub w27, w20, #1 bl malloc mov x22, x0 ldr w4, [x26, 4] str w4, [x0] b .L32 .L683: movi v31.4s, 0x1 umov w10, v30.s[3] add v30.4s, v30.4s, v31.4s umov w8, v30.s[3] b .L100 .L643: ldr w2, [x26, 16] mov x1, 4 mov w0, 1 cmp w2, w11 blt .L89 b .L90 .L346: movi v26.2s, 0x2 b .L7 .L513: mov w19, 1 b .L279 .L460: mov w27, 1 b .L197 .L415: mov w6, 1 b .L145 .L561: mov w20, 1 b .L329 .L10: mov x0, 24 bl malloc ldr w1, [x26, 4] mov w22, 2 str x0, [x21, 8] str w1, [x0] stp xzr, xzr, [x0, 8] b .L31 .L167: add x6, x27, 8 mov x0, 24 str x6, [sp, 104] str w2, [sp, 112] bl malloc mov x5, x0 ldr w7, [x27, 4] mov w4, w24 ldr x6, [sp, 104] mov w24, w19 ldr w2, [sp, 112] str w7, [x0] b .L164 .L347: movi v26.2s, 0x3 b .L7 .L248: add x6, x25, 12 mov x0, 24 str x6, [sp, 104] str w3, [sp, 112] bl malloc mov x5, x0 ldr w7, [x25, 8] mov w4, w24 ldr x6, [sp, 104] mov w24, w19 ldr w3, [sp, 112] str w7, [x0] b .L245 .L74: mov x0, 24 str x3, [sp, 112] str w4, [sp, 120] str w2, [sp, 128] bl malloc ldr w11, [x26, 12] mov x6, x0 ldr x3, [sp, 112] ldr w9, [sp, 120] ldr w4, [sp, 128] str w11, [x0] b .L71 .L300: add x3, x23, 8 mov x0, 24 str x3, [sp, 104] mov w25, w20 mov w20, w19 bl malloc mov x28, x0 ldr w4, [x23, 4] ldr x3, [sp, 104] str w4, [x0] b .L297 .L11: mov x0, 24 bl malloc ldr w3, [x26, 4] mov x23, x0 mov w22, w19 mov w28, 2 str w3, [x0] b .L16 .L249: mov w4, w24 mov w24, w19 b .L247 .L168: mov w4, w24 mov w24, w19 b .L166 .L75: mov w9, w4 mov w4, w2 b .L73 .L301: mov w25, w20 mov w20, w19 b .L299 .L302: add x3, x23, 8 mov x0, 24 str x3, [sp, 104] mov w25, w19 bl malloc mov x28, x0 ldr w4, [x23, 4] ldr x3, [sp, 104] str w4, [x0] b .L297 .L76: mov x0, 24 str x3, [sp, 112] str w4, [sp, 120] str w2, [sp, 128] bl malloc ldr w11, [x26, 12] mov x6, x0 ldr x3, [sp, 112] ldr w9, [sp, 128] ldr w4, [sp, 120] str w11, [x0] b .L71 .L152: str xzr, [x0, 8] subs w19, w2, #1 beq .L190 mov x0, 24 bl malloc mov x24, x0 ldr w2, [x27, 4] add x3, x27, 8 mov w1, 0 mov x0, x3 mov w27, 1 str w2, [x24] b .L192 .L250: add x6, x25, 12 mov x0, 24 str x6, [sp, 104] str w3, [sp, 112] bl malloc mov x5, x0 ldr w7, [x25, 8] mov w4, w19 ldr x6, [sp, 104] ldr w3, [sp, 112] str w7, [x0] b .L245 .L169: add x6, x27, 8 mov x0, 24 str x6, [sp, 104] str w2, [sp, 112] bl malloc mov x5, x0 ldr w7, [x27, 4] mov w4, w19 ldr x6, [sp, 104] ldr w2, [sp, 112] str w7, [x0] b .L164 .L174: mov w4, w19 b .L166 .L307: mov w25, w19 b .L299 .L81: mov w9, w2 b .L73 .L255: mov w4, w19 b .L247 .L371: mov w10, w0 b .L100 .L209: str xzr, [x22, 8] mov x0, 24 sub w27, w27, #1 bl malloc mov x26, x0 ldr w3, [x25, 4] str w3, [x0] b .L233 .L468: movi v26.2s, 0x2 b .L208 .L353: movi v26.2s, 0x2 b .L37 .L396: mov w11, 1 b .L132 .L39: mov x0, 24 bl malloc ldr w1, [x26, 8] mov w2, w24 str x0, [x23, 8] mov w19, 2 str w1, [x0] stp xzr, xzr, [x0, 8] b .L59 .L27: mov x0, 24 bl malloc ldr w3, [x26, 4] mov w22, w28 mov x23, x0 mov w28, w24 str w3, [x0] b .L16 .L211: mov x0, 24 bl malloc ldr w1, [x25, 4] mov w27, w20 str x0, [x22, 8] mov w20, 2 str w1, [x0] stp xzr, xzr, [x0, 8] b .L232 .L101: add x12, x26, 20 mov x0, 24 stp x12, x3, [sp, 112] str x7, [sp, 128] str w4, [sp, 136] str x6, [sp, 144] str w9, [sp, 152] stp w8, w2, [sp, 164] bl malloc ldr w13, [x26, 16] mov x11, x0 ldp w10, w8, [sp, 164] .L627: ldr x7, [sp, 128] ldr x6, [sp, 144] ldp x12, x3, [sp, 112] ldr w4, [sp, 136] ldr w9, [sp, 152] str w13, [x11] b .L98 .L469: movi v26.2s, 0x3 b .L208 .L488: mov w19, w9 b .L264 .L435: mov w19, w9 b .L183 .L454: mov w27, w5 b .L195 .L28: mov w22, w28 mov w28, w24 b .L18 .L354: movi v26.2s, 0x3 b .L37 .L535: mov w19, w6 b .L316 .L507: mov w19, w5 b .L277 .L555: mov w20, w3 b .L327 .L409: mov w6, w8 b .L143 .L410: mov w6, w8 sub w1, w6, #1 b .L140 .L536: mov w19, w6 sub w1, w19, #1 b .L312 .L556: mov w20, w3 b .L328 .L508: mov w19, w5 sub w1, w19, #1 b .L274 .L40: mov x0, 24 bl malloc ldr w6, [x26, 8] mov w24, 2 str x0, [sp, 104] str w6, [x0] b .L44 .L394: mov w3, w1 mov w1, w2 mov w2, w3 b .L130 .L436: mov w19, w9 sub w1, w19, #1 b .L179 .L212: mov x0, 24 bl malloc ldr w5, [x25, 4] mov x28, x0 mov w20, w19 mov w3, 2 str w5, [x0] b .L217 .L489: mov w19, w9 sub w1, w19, #1 b .L260 .L102: mov w10, w8 mov w8, w2 b .L100 .L455: mov w27, w5 sub w1, w27, #1 b .L192 .L379: mov w0, w1 mov w1, w2 mov w2, w0 b .L117 .L494: mov w19, 1 b .L261 .L441: mov w19, 1 b .L180 .L541: mov w19, 1 b .L313 .L103: add x12, x26, 20 mov x0, 24 stp x12, x3, [sp, 112] str x7, [sp, 128] str w4, [sp, 136] str x6, [sp, 144] str w9, [sp, 152] stp w8, w2, [sp, 164] bl malloc ldr w13, [x26, 16] mov x11, x0 ldr x7, [sp, 128] ldr x6, [sp, 144] ldr w10, [sp, 168] ldp x12, x3, [sp, 112] ldr w4, [sp, 136] ldr w9, [sp, 152] ldr w8, [sp, 164] str w13, [x0] b .L98 .L108: mov w10, w2 b .L100 .L360: movi v26.2s, 0x2 b .L64 .L423: movi v26.2s, 0x2 b .L156 .L522: movi v26.2s, 0x2 b .L289 .L476: movi v26.2s, 0x2 b .L238 .L240: add x8, x25, 12 mov x0, 24 str x8, [sp, 104] mov w24, 2 str w3, [sp, 112] bl malloc mov x5, x0 ldr x8, [sp, 104] mov w4, 1 ldr w0, [x25, 8] mov w19, w4 ldr w3, [sp, 112] mov x6, x8 mov w1, 0 str w0, [x5] b .L260 .L477: movi v26.2s, 0x3 b .L238 .L55: mov x0, 24 str w7, [sp, 112] bl malloc str x0, [sp, 104] ldr w6, [x26, 8] mov w19, w24 ldr w24, [sp, 112] str w6, [x0] b .L44 .L361: movi v26.2s, 0x3 b .L64 .L66: mov x0, 24 str w4, [sp, 112] bl malloc ldr w24, [sp, 112] ldr x2, [sp, 104] mov w4, 2 ldr w1, [x26, 12] str w1, [x0] str x0, [x2, 8] stp xzr, xzr, [x0, 8] b .L86 .L228: mov x0, 24 str w3, [sp, 104] bl malloc ldr w20, [sp, 104] ldr w5, [x25, 4] mov x28, x0 mov w3, w24 str w5, [x0] b .L217 .L158: add x8, x27, 8 mov x0, 24 str x8, [sp, 104] mov w24, 2 str w2, [sp, 112] bl malloc mov x5, x0 ldr x8, [sp, 104] mov w4, 1 ldr w0, [x27, 4] mov w19, w4 ldr w2, [sp, 112] mov x6, x8 mov w1, 0 str w0, [x5] b .L179 .L424: movi v26.2s, 0x3 b .L156 .L204: str xzr, [x0, 8] subs w19, w27, #1 mov x26, 0 ldp x27, x28, [sp, 80] bne .L215 str x26, [x22, 16] b .L677 .L523: movi v26.2s, 0x3 b .L289 .L291: add x5, x23, 8 mov x0, 24 str x5, [sp, 104] mov w25, 1 mov w20, 2 mov w19, w25 bl malloc mov x28, x0 ldr x5, [sp, 104] mov w1, 0 ldr w0, [x23, 4] mov x3, x5 str w0, [x28] b .L312 .L229: mov w20, w3 mov w3, w24 b .L219 .L67: mov x0, 24 str x3, [sp, 112] str w1, [sp, 120] bl malloc ldr w11, [x26, 12] mov x6, x0 ldr x3, [sp, 112] mov w9, 2 ldr w4, [sp, 120] str w11, [x0] b .L71 .L292: add x3, x23, 8 mov x0, 24 str x3, [sp, 104] mov w25, 2 mov w19, 1 bl malloc mov x28, x0 ldr w4, [x23, 4] ldr x3, [sp, 104] str w4, [x0] b .L313 .L159: add x6, x27, 8 mov x0, 24 str x6, [sp, 104] mov w24, w19 str w2, [sp, 112] mov w19, 1 bl malloc mov x5, x0 ldr w7, [x27, 4] mov w4, 2 ldr x6, [sp, 104] str w7, [x0] ldr w2, [sp, 112] b .L180 .L241: add x6, x25, 12 mov x0, 24 str x6, [sp, 104] mov w19, 1 str w3, [sp, 112] bl malloc mov x5, x0 ldr w7, [x25, 8] mov w4, 2 ldr x6, [sp, 104] str w7, [x0] ldr w3, [sp, 112] b .L261 .L56: mov w19, w24 mov w24, w7 b .L46 .L403: mov w2, w1 mov w1, w6 mov w6, w2 b .L143 .L501: mov w2, w19 mov w19, w1 mov w1, w2 b .L277 .L381: mov w15, 1 b .L114 .L529: mov w0, w19 mov w19, w1 mov w1, w0 b .L316 .L429: mov w0, w19 mov w19, w1 mov w1, w0 b .L183 .L482: mov w0, w19 mov w19, w1 mov w1, w0 b .L264 .L448: mov w2, w27 mov w27, w1 mov w1, w2 b .L195 .L549: mov w2, w20 mov w20, w1 mov w1, w2 b .L327 .L515: mov w19, 1 mov x3, x0 sub w1, w19, #1 b .L274 .L462: mov w27, 1 mov x3, x0 sub w1, w27, #1 b .L192 .L543: mov w19, 1 mov x5, x3 sub w1, w19, #1 b .L312 .L563: mov x23, x0 mov w20, 1 b .L328 .L443: mov w19, 1 mov x8, x6 sub w1, w19, #1 b .L179 .L417: mov w6, 1 mov x4, x0 sub w1, w6, #1 b .L140 .L496: mov w19, 1 mov x8, x6 sub w1, w19, #1 b .L260 .L497: movi v26.2s, 0x2 b .L266 .L664: mov w19, 2 add x8, x25, 16 sub w1, w19, #1 b .L260 .L463: movi v26.2s, 0x2 b .L198 .L93: add x14, x26, 20 mov x0, 24 stp x14, x3, [sp, 112] str w4, [sp, 128] str x6, [sp, 136] str w9, [sp, 144] bl malloc ldp x14, x3, [sp, 112] mov x11, x0 ldr w0, [x26, 16] mov w10, 1 ldr x6, [sp, 136] mov w2, w10 ldr w4, [sp, 128] mov w8, 2 ldr w9, [sp, 144] mov x12, x14 mov w1, 0 str w0, [x11] b .L113 .L444: movi v26.2s, 0x2 b .L185 .L418: movi v26.2s, 0x2 b .L146 .L670: mov w19, 2 add x5, x23, 12 sub w1, w19, #1 b .L312 .L544: movi v26.2s, 0x2 b .L318 .L367: movi v26.2s, 0x2 b .L91 .L516: movi v26.2s, 0x2 b .L280 .L673: add x23, x24, 8 mov w20, 2 b .L328 .L564: movi v26.2s, 0x2 b .L330 .L654: mov w19, 2 add x8, x27, 12 sub w1, w19, #1 b .L179 .L309: mov w20, w25 mov w25, w5 b .L299 .L308: add x3, x23, 8 mov x0, 24 str x3, [sp, 104] mov w20, w25 str w5, [sp, 112] bl malloc ldr w25, [sp, 112] ldr w4, [x23, 4] mov x28, x0 ldr x3, [sp, 104] str w4, [x0] b .L297 .L517: movi v26.2s, 0x3 b .L280 .L445: movi v26.2s, 0x3 b .L185 .L176: mov w24, w4 mov w4, w8 b .L166 .L285: str xzr, [x0, 8] subs w19, w27, #1 mov x25, 0 ldp x27, x28, [sp, 80] bne .L295 str x25, [x26, 16] b .L214 .L256: add x6, x25, 12 mov x0, 24 str x6, [sp, 104] str w3, [sp, 112] str w4, [sp, 120] str w8, [sp, 128] bl malloc ldr w7, [x25, 8] mov x5, x0 ldr x6, [sp, 104] ldr w24, [sp, 120] ldr w4, [sp, 128] ldr w3, [sp, 112] str w7, [x0] b .L245 .L419: movi v26.2s, 0x3 b .L146 .L553: mov w20, w1 mov w1, w3 b .L327 .L505: mov w19, w1 mov w1, w5 b .L277 .L257: mov w24, w4 mov w4, w8 b .L247 .L175: add x6, x27, 8 mov x0, 24 str x6, [sp, 104] str w2, [sp, 112] str w4, [sp, 120] str w8, [sp, 128] bl malloc ldr w7, [x27, 4] mov x5, x0 ldr x6, [sp, 104] ldr w24, [sp, 120] ldr w4, [sp, 128] ldr w2, [sp, 112] str w7, [x0] b .L164 .L545: movi v26.2s, 0x3 b .L318 .L83: mov w4, w9 mov w9, w8 b .L73 .L82: mov x0, 24 str x3, [sp, 112] str w9, [sp, 120] str w8, [sp, 128] bl malloc ldr w11, [x26, 12] mov x6, x0 ldr x3, [sp, 112] ldr w4, [sp, 120] ldr w9, [sp, 128] str w11, [x0] b .L71 .L486: mov w19, w1 mov w1, w9 b .L264 .L368: movi v26.2s, 0x3 b .L91 .L464: movi v26.2s, 0x3 b .L198 .L565: movi v26.2s, 0x3 b .L330 .L407: mov w6, w1 mov w1, w8 b .L143 .L533: mov w19, w1 mov w1, w6 b .L316 .L498: movi v26.2s, 0x3 b .L266 .L433: mov w19, w1 mov w1, w9 b .L183 .L452: mov w27, w1 mov w1, w5 b .L195 .L94: add x12, x26, 20 mov x0, 24 stp x12, x3, [sp, 112] str x7, [sp, 128] str w4, [sp, 136] str x6, [sp, 144] str w2, [sp, 152] str w9, [sp, 164] bl malloc ldr w13, [x26, 16] mov x11, x0 ldr x7, [sp, 128] mov w10, 2 ldr x6, [sp, 144] mov w15, 1 ldr w8, [sp, 152] ldp x12, x3, [sp, 112] str w13, [x0] ldr w4, [sp, 136] ldr w9, [sp, 164] b .L114 .L374: mov w1, w15 b .L117 .L373: mov w2, w15 sub w1, w2, #1 b .L113 .L389: mov w1, w11 b .L130 .L388: mov w2, w11 sub w1, w2, #1 b .L127 .L437: mov w1, w9 mov w19, w10 b .L183 .L399: movi v26.2s, 0x2 b .L133 .L537: mov w1, w6 mov w19, w7 b .L316 .L509: mov w1, w5 mov w19, w6 b .L277 .L411: mov w6, w9 mov w1, w8 b .L143 .L557: mov w1, w3 mov w20, w5 b .L327 .L384: movi v26.2s, 0x2 b .L119 .L490: mov w1, w9 mov w19, w10 b .L264 .L398: mov w2, 1 mov x12, x0 sub w1, w2, #1 b .L127 .L383: mov w2, 1 mov x14, x12 sub w1, w2, #1 b .L113 .L456: mov w1, w5 mov w27, w6 b .L195 .L458: mov w27, w1 mov w1, w6 b .L195 .L457: mov w27, w6 sub w1, w27, #1 b .L192 .L110: mov w8, w10 mov w10, w14 b .L100 .L439: mov w19, w1 mov w1, w10 b .L183 .L438: mov w19, w10 sub w1, w19, #1 b .L179 .L648: mov w2, 2 add x12, x7, 8 sub w1, w2, #1 b .L127 .L538: mov w19, w7 sub w1, w19, #1 b .L312 .L539: mov w19, w1 mov w1, w7 b .L316 .L400: movi v26.2s, 0x3 b .L133 .L109: add x12, x26, 20 mov x0, 24 stp x12, x3, [sp, 112] str x7, [sp, 128] str w4, [sp, 136] str x6, [sp, 144] str w9, [sp, 152] stp w10, w14, [sp, 164] bl malloc ldr w13, [x26, 16] mov x11, x0 ldp w8, w10, [sp, 164] b .L627 .L511: mov w19, w1 mov w1, w6 b .L277 .L510: mov w19, w6 sub w1, w19, #1 b .L274 .L559: mov w20, w1 mov w1, w5 b .L327 .L412: mov w6, w9 sub w1, w6, #1 b .L140 .L492: mov w19, w1 mov w1, w10 b .L264 .L491: mov w19, w10 sub w1, w19, #1 b .L260 .L558: mov w20, w5 b .L328 .L646: mov w2, 2 add x14, x26, 24 sub w1, w2, #1 b .L113 .L385: movi v26.2s, 0x3 b .L119 .L413: mov w6, w1 mov w1, w9 b .L143 .L656: mov x3, x0 mov w1, 0 mov w27, 1 b .L192 .L672: ldp x27, x28, [sp, 80] mov x23, x0 mov w1, 0 mov w20, 1 b .L324 .LC0: .word 0 .word 1 .word 2 .word 3
13,988
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
aarch64
-O0
armv8-a clang 21.1.0
bstFromPreorder: sub sp, sp, #64 stp x29, x30, [sp, #48] add x29, sp, #48 stur x0, [x29, #-16] stur w1, [x29, #-20] ldur w8, [x29, #-20] cbnz w8, .LBB0_2 b .LBB0_1 .LBB0_1: stur xzr, [x29, #-8] b .LBB0_8 .LBB0_2: mov x0, #24 bl malloc str x0, [sp, #16] ldur x8, [x29, #-16] ldr w8, [x8] ldr x9, [sp, #16] str w8, [x9] mov w8, #1 str w8, [sp, #12] b .LBB0_3 .LBB0_3: ldr w9, [sp, #12] ldur w10, [x29, #-20] mov w8, #0 subs w9, w9, w10 str w8, [sp, #8] b.ge .LBB0_5 b .LBB0_4 .LBB0_4: ldur x8, [x29, #-16] ldrsw x9, [sp, #12] ldr w8, [x8, x9, lsl #2] ldr x9, [sp, #16] ldr w9, [x9] subs w8, w8, w9 cset w8, lt str w8, [sp, #8] b .LBB0_5 .LBB0_5: ldr w8, [sp, #8] tbz w8, #0, .LBB0_7 b .LBB0_6 .LBB0_6: ldr w8, [sp, #12] add w8, w8, #1 str w8, [sp, #12] b .LBB0_3 .LBB0_7: ldur x8, [x29, #-16] add x0, x8, #4 ldr w8, [sp, #12] subs w1, w8, #1 bl bstFromPreorder ldr x8, [sp, #16] str x0, [x8, #8] ldur x8, [x29, #-16] ldrsw x9, [sp, #12] add x0, x8, x9, lsl #2 ldur w8, [x29, #-20] ldr w9, [sp, #12] subs w1, w8, w9 bl bstFromPreorder ldr x8, [sp, #16] str x0, [x8, #16] ldr x8, [sp, #16] stur x8, [x29, #-8] b .LBB0_8 .LBB0_8: ldur x0, [x29, #-8] ldp x29, x30, [sp, #48] add sp, sp, #64 ret
13,989
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
aarch64
-O1
armv8-a clang 21.1.0
bstFromPreorder: stp x29, x30, [sp, #-48]! stp x22, x21, [sp, #16] stp x20, x19, [sp, #32] mov x29, sp cbz w1, .LBB0_6 mov x21, x0 mov w0, #24 mov w20, w1 bl malloc ldr w8, [x21] mov x19, x0 cmp w20, #2 str w8, [x0] b.lt .LBB0_7 mov w9, w20 mov w22, #1 .LBB0_3: ldr w10, [x21, x22, lsl #2] cmp w10, w8 b.ge .LBB0_8 add x22, x22, #1 cmp x9, x22 b.ne .LBB0_3 mov w22, w9 b .LBB0_8 .LBB0_6: mov x19, xzr b .LBB0_9 .LBB0_7: mov w22, #1 .LBB0_8: sub w1, w22, #1 add x0, x21, #4 bl bstFromPreorder add x8, x21, w22, uxtw #2 str x0, [x19, #8] sub w1, w20, w22 mov x0, x8 bl bstFromPreorder str x0, [x19, #16] .LBB0_9: mov x0, x19 ldp x20, x19, [sp, #32] ldp x22, x21, [sp, #16] ldp x29, x30, [sp], #48 ret
13,990
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
aarch64
-O2
armv8-a clang 21.1.0
bstFromPreorder: stp x29, x30, [sp, #-48]! stp x22, x21, [sp, #16] stp x20, x19, [sp, #32] mov x29, sp cbz w1, .LBB0_6 mov x21, x0 mov w0, #24 mov w20, w1 bl malloc ldr w8, [x21] mov x19, x0 cmp w20, #2 str w8, [x0] b.lt .LBB0_7 mov w9, w20 mov w22, #1 .LBB0_3: ldr w10, [x21, x22, lsl #2] cmp w10, w8 b.ge .LBB0_8 add x22, x22, #1 cmp x9, x22 b.ne .LBB0_3 mov w22, w9 b .LBB0_8 .LBB0_6: mov x19, xzr b .LBB0_9 .LBB0_7: mov w22, #1 .LBB0_8: sub w1, w22, #1 add x0, x21, #4 bl bstFromPreorder add x8, x21, w22, uxtw #2 str x0, [x19, #8] sub w1, w20, w22 mov x0, x8 bl bstFromPreorder str x0, [x19, #16] .LBB0_9: mov x0, x19 ldp x20, x19, [sp, #32] ldp x22, x21, [sp, #16] ldp x29, x30, [sp], #48 ret
13,991
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
aarch64
-O3
armv8-a clang 21.1.0
bstFromPreorder: stp x29, x30, [sp, #-48]! stp x22, x21, [sp, #16] stp x20, x19, [sp, #32] mov x29, sp cbz w1, .LBB0_6 mov x21, x0 mov w0, #24 mov w20, w1 bl malloc ldr w8, [x21] mov x19, x0 cmp w20, #2 str w8, [x0] b.lt .LBB0_7 mov w9, w20 mov w22, #1 .LBB0_3: ldr w10, [x21, x22, lsl #2] cmp w10, w8 b.ge .LBB0_8 add x22, x22, #1 cmp x9, x22 b.ne .LBB0_3 mov w22, w9 b .LBB0_8 .LBB0_6: mov x19, xzr mov x0, x19 ldp x20, x19, [sp, #32] ldp x22, x21, [sp, #16] ldp x29, x30, [sp], #48 ret .LBB0_7: mov w22, #1 .LBB0_8: sub w1, w22, #1 add x0, x21, #4 bl bstFromPreorder add x8, x21, w22, uxtw #2 str x0, [x19, #8] sub w1, w20, w22 mov x0, x8 bl bstFromPreorder str x0, [x19, #16] mov x0, x19 ldp x20, x19, [sp, #32] ldp x22, x21, [sp, #16] ldp x29, x30, [sp], #48 ret
13,992
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
mips64
-O0
mips64 clang 21.1.0
bstFromPreorder: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -80 sd $ra, 72($sp) sd $fp, 64($sp) sd $gp, 56($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(bstFromPreorder))) daddu $1, $1, $25 daddiu $1, $1, %lo(%neg(%gp_rel(bstFromPreorder))) sd $1, 8($fp) move $1, $5 sd $4, 40($fp) sw $1, 36($fp) lw $1, 36($fp) bnez $1, .LBB0_3 nop b .LBB0_2 nop .LBB0_2: daddiu $1, $zero, 0 sd $zero, 48($fp) b .LBB0_11 nop .LBB0_3: ld $gp, 8($fp) ld $25, %call16(malloc)($gp) daddiu $4, $zero, 24 jalr $25 nop sd $2, 24($fp) ld $1, 40($fp) lw $1, 0($1) ld $2, 24($fp) sw $1, 0($2) addiu $1, $zero, 1 sw $1, 20($fp) b .LBB0_4 nop .LBB0_4: lw $1, 20($fp) lw $3, 36($fp) addiu $2, $zero, 0 slt $1, $1, $3 sw $2, 4($fp) beqz $1, .LBB0_7 nop b .LBB0_6 nop .LBB0_6: ld $1, 40($fp) lw $2, 20($fp) dsll $2, $2, 2 daddu $1, $1, $2 lw $1, 0($1) ld $2, 24($fp) lw $2, 0($2) slt $1, $1, $2 sw $1, 4($fp) b .LBB0_7 nop .LBB0_7: lw $1, 4($fp) andi $1, $1, 1 beqz $1, .LBB0_10 nop b .LBB0_9 nop .LBB0_9: lw $1, 20($fp) addiu $1, $1, 1 sw $1, 20($fp) b .LBB0_4 nop .LBB0_10: ld $gp, 8($fp) ld $1, 40($fp) daddiu $4, $1, 4 lw $1, 20($fp) addiu $1, $1, -1 move $5, $1 ld $25, %call16(bstFromPreorder)($gp) jalr $25 nop ld $gp, 8($fp) ld $1, 24($fp) sd $2, 8($1) ld $1, 40($fp) lw $2, 20($fp) sll $3, $2, 0 dsll $3, $3, 2 daddu $4, $1, $3 lw $1, 36($fp) subu $1, $1, $2 move $5, $1 ld $25, %call16(bstFromPreorder)($gp) jalr $25 nop ld $1, 24($fp) sd $2, 16($1) ld $1, 24($fp) sd $1, 48($fp) b .LBB0_11 nop .LBB0_11: ld $2, 48($fp) move $sp, $fp ld $gp, 56($sp) ld $fp, 64($sp) ld $ra, 72($sp) daddiu $sp, $sp, 80 jr $ra nop
13,993
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
mips64
-O1
mips64 clang 21.1.0
bstFromPreorder: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -64 sd $ra, 56($sp) sd $fp, 48($sp) sd $gp, 40($sp) sd $19, 32($sp) sd $18, 24($sp) sd $17, 16($sp) sd $16, 8($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(bstFromPreorder))) move $18, $5 beqz $18, .LBB0_7 daddu $2, $1, $25 move $17, $4 daddiu $gp, $2, %lo(%neg(%gp_rel(bstFromPreorder))) ld $25, %call16(malloc)($gp) jalr $25 daddiu $4, $zero, 24 move $16, $2 lw $2, 0($17) sw $2, 0($16) slti $1, $18, 2 addiu $19, $zero, 1 bnez $1, .LBB0_6 daddiu $4, $17, 4 sll $1, $18, 0 daddiu $3, $1, -1 addiu $19, $zero, 1 move $5, $4 .LBB0_3: lw $1, 0($5) slt $1, $1, $2 beqz $1, .LBB0_6 nop daddiu $3, $3, -1 daddiu $5, $5, 4 bnez $3, .LBB0_3 addiu $19, $19, 1 move $19, $18 .LBB0_6: ld $25, %call16(bstFromPreorder)($gp) jalr $25 addiu $5, $19, -1 sd $2, 8($16) subu $5, $18, $19 sll $1, $19, 0 dsll $1, $1, 2 ld $25, %call16(bstFromPreorder)($gp) jalr $25 daddu $4, $17, $1 b .LBB0_8 sd $2, 16($16) .LBB0_7: daddiu $16, $zero, 0 .LBB0_8: move $2, $16 move $sp, $fp ld $16, 8($sp) ld $17, 16($sp) ld $18, 24($sp) ld $19, 32($sp) ld $gp, 40($sp) ld $fp, 48($sp) ld $ra, 56($sp) jr $ra daddiu $sp, $sp, 64
13,994
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
mips64
-O2
mips64 clang 21.1.0
bstFromPreorder: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -64 sd $ra, 56($sp) sd $fp, 48($sp) sd $gp, 40($sp) sd $19, 32($sp) sd $18, 24($sp) sd $17, 16($sp) sd $16, 8($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(bstFromPreorder))) move $18, $5 beqz $18, .LBB0_7 daddu $2, $1, $25 move $17, $4 daddiu $gp, $2, %lo(%neg(%gp_rel(bstFromPreorder))) ld $25, %call16(malloc)($gp) jalr $25 daddiu $4, $zero, 24 move $16, $2 lw $2, 0($17) sw $2, 0($16) slti $1, $18, 2 addiu $19, $zero, 1 bnez $1, .LBB0_6 daddiu $4, $17, 4 sll $1, $18, 0 daddiu $3, $1, -1 addiu $19, $zero, 1 move $5, $4 .LBB0_3: lw $1, 0($5) slt $1, $1, $2 beqz $1, .LBB0_6 nop daddiu $3, $3, -1 daddiu $5, $5, 4 bnez $3, .LBB0_3 addiu $19, $19, 1 move $19, $18 .LBB0_6: ld $25, %call16(bstFromPreorder)($gp) jalr $25 addiu $5, $19, -1 sd $2, 8($16) subu $5, $18, $19 sll $1, $19, 0 dsll $1, $1, 2 ld $25, %call16(bstFromPreorder)($gp) jalr $25 daddu $4, $17, $1 b .LBB0_8 sd $2, 16($16) .LBB0_7: daddiu $16, $zero, 0 .LBB0_8: move $2, $16 move $sp, $fp ld $16, 8($sp) ld $17, 16($sp) ld $18, 24($sp) ld $19, 32($sp) ld $gp, 40($sp) ld $fp, 48($sp) ld $ra, 56($sp) jr $ra daddiu $sp, $sp, 64
13,995
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
mips64
-O3
mips64 clang 21.1.0
bstFromPreorder: .Lfunc_begin0 = .Ltmp0 daddiu $sp, $sp, -64 sd $ra, 56($sp) sd $fp, 48($sp) sd $gp, 40($sp) sd $19, 32($sp) sd $18, 24($sp) sd $17, 16($sp) sd $16, 8($sp) move $fp, $sp lui $1, %hi(%neg(%gp_rel(bstFromPreorder))) move $18, $5 beqz $18, .LBB0_7 daddu $2, $1, $25 daddiu $gp, $2, %lo(%neg(%gp_rel(bstFromPreorder))) move $17, $4 ld $25, %call16(malloc)($gp) jalr $25 daddiu $4, $zero, 24 move $16, $2 lw $2, 0($17) slti $1, $18, 2 addiu $19, $zero, 1 daddiu $4, $17, 4 bnez $1, .LBB0_6 sw $2, 0($16) sll $1, $18, 0 addiu $19, $zero, 1 move $5, $4 daddiu $3, $1, -1 .LBB0_3: lw $1, 0($5) slt $1, $1, $2 beqz $1, .LBB0_6 nop daddiu $3, $3, -1 daddiu $5, $5, 4 bnez $3, .LBB0_3 addiu $19, $19, 1 move $19, $18 .LBB0_6: ld $25, %call16(bstFromPreorder)($gp) jalr $25 addiu $5, $19, -1 sll $1, $19, 0 ld $25, %call16(bstFromPreorder)($gp) subu $5, $18, $19 sd $2, 8($16) dsll $1, $1, 2 jalr $25 daddu $4, $17, $1 b .LBB0_8 sd $2, 16($16) .LBB0_7: daddiu $16, $zero, 0 .LBB0_8: move $2, $16 move $sp, $fp ld $16, 8($sp) ld $17, 16($sp) ld $18, 24($sp) ld $19, 32($sp) ld $gp, 40($sp) ld $fp, 48($sp) ld $ra, 56($sp) jr $ra daddiu $sp, $sp, 64
13,996
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
mips64
-O0
mips64 gcc 15.2.0
bstFromPreorder: daddiu $sp,$sp,-64 sd $31,56($sp) sd $fp,48($sp) sd $28,40($sp) move $fp,$sp lui $28,%hi(%neg(%gp_rel(bstFromPreorder))) daddu $28,$28,$25 daddiu $28,$28,%lo(%neg(%gp_rel(bstFromPreorder))) sd $4,16($fp) move $2,$5 sll $2,$2,0 sw $2,24($fp) lw $2,24($fp) bne $2,$0,.L2 nop move $2,$0 b .L3 nop .L2: li $4,24 # 0x18 ld $2,%call16(malloc)($28) mtlo $2 mflo $25 jalr $25 nop sd $2,8($fp) ld $2,16($fp) lw $3,0($2) ld $2,8($fp) sw $3,0($2) li $2,1 # 0x1 sw $2,0($fp) b .L4 nop .L6: lw $2,0($fp) addiu $2,$2,1 sw $2,0($fp) .L4: lw $3,0($fp) lw $2,24($fp) slt $2,$3,$2 beq $2,$0,.L5 nop lw $2,0($fp) dsll $2,$2,2 ld $3,16($fp) daddu $2,$3,$2 lw $3,0($2) ld $2,8($fp) lw $2,0($2) slt $2,$3,$2 bne $2,$0,.L6 nop .L5: ld $2,16($fp) daddiu $3,$2,4 lw $2,0($fp) addiu $2,$2,-1 move $5,$2 move $4,$3 ld $2,%got_disp(bstFromPreorder)($28) mtlo $2 mflo $25 jalr $25 nop move $3,$2 ld $2,8($fp) sd $3,8($2) lw $2,0($fp) dsll $2,$2,2 ld $3,16($fp) daddu $4,$3,$2 lw $3,24($fp) lw $2,0($fp) subu $2,$3,$2 move $5,$2 ld $2,%got_disp(bstFromPreorder)($28) mtlo $2 mflo $25 jalr $25 nop move $3,$2 ld $2,8($fp) sd $3,16($2) ld $2,8($fp) .L3: move $sp,$fp ld $31,56($sp) ld $fp,48($sp) ld $28,40($sp) daddiu $sp,$sp,64 jr $31 nop
13,997
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
mips64
-O1
mips64 gcc 15.2.0
bstFromPreorder: daddiu $sp,$sp,-64 sd $31,56($sp) sd $28,48($sp) sd $19,40($sp) sd $18,32($sp) sd $17,24($sp) sd $16,16($sp) lui $28,%hi(%neg(%gp_rel(bstFromPreorder))) daddu $28,$28,$25 beq $5,$0,.L6 daddiu $28,$28,%lo(%neg(%gp_rel(bstFromPreorder))) move $18,$4 move $17,$5 ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 move $19,$2 lw $5,0($18) sw $5,0($2) slt $2,$17,2 bne $2,$0,.L7 daddiu $6,$18,4 li $16,1 # 0x1 .L4: lw $3,0($6) slt $3,$3,$5 beql $3,$0,.L10 addiu $5,$16,-1 addiu $16,$16,1 bne $17,$16,.L4 daddiu $6,$6,4 move $16,$17 .L3: addiu $5,$16,-1 .L10: daddiu $4,$18,4 ld $25,%got_disp(bstFromPreorder)($28) 1: jalr $25 sd $25,0($sp) sd $2,8($19) dsll $4,$16,2 subu $5,$17,$16 ld $25,0($sp) jalr $25 daddu $4,$18,$4 sd $2,16($19) .L1: move $2,$19 ld $31,56($sp) ld $28,48($sp) ld $19,40($sp) ld $18,32($sp) ld $17,24($sp) ld $16,16($sp) jr $31 daddiu $sp,$sp,64 .L7: b .L3 li $16,1 # 0x1 .L6: b .L1 move $19,$0
13,998
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
mips64
-O2
mips64 gcc 15.2.0
bstFromPreorder: daddiu $sp,$sp,-64 sd $28,48($sp) lui $28,%hi(%neg(%gp_rel(bstFromPreorder))) daddu $28,$28,$25 sd $31,56($sp) sd $19,40($sp) sd $18,32($sp) sd $17,24($sp) sd $16,16($sp) beq $5,$0,.L7 daddiu $28,$28,%lo(%neg(%gp_rel(bstFromPreorder))) ld $25,%call16(malloc)($28) move $18,$4 li $4,24 # 0x18 1: jalr $25 move $19,$5 lw $5,0($18) move $17,$2 daddiu $4,$18,4 slt $2,$19,2 sw $5,0($17) move $3,$4 beq $2,$0,.L5 li $16,1 # 0x1 b .L12 move $5,$0 .L6: beq $19,$7,.L13 daddiu $3,$3,4 addiu $16,$16,1 .L5: lw $6,0($3) slt $6,$6,$5 bne $6,$0,.L6 addiu $7,$16,1 addiu $5,$16,-1 .L4: ld $25,%got_disp(bstFromPreorder)($28) .L14: 1: jalr $25 sd $3,0($sp) ld $4,0($sp) ld $25,%got_disp(bstFromPreorder)($28) subu $5,$19,$16 1: jalr $25 sd $2,8($17) ld $31,56($sp) sd $2,16($17) ld $28,48($sp) ld $19,40($sp) ld $18,32($sp) ld $16,16($sp) move $2,$17 ld $17,24($sp) jr $31 daddiu $sp,$sp,64 .L13: dsll $7,$7,32 dsrl $7,$7,32 dsll $7,$7,2 move $5,$16 daddu $3,$18,$7 b .L4 addiu $16,$16,1 .L7: ld $31,56($sp) move $17,$0 ld $28,48($sp) ld $19,40($sp) ld $18,32($sp) ld $16,16($sp) move $2,$17 ld $17,24($sp) jr $31 daddiu $sp,$sp,64 .L12: b .L14 ld $25,%got_disp(bstFromPreorder)($28)
13,999
1,008
Construct Binary Search Tree from Preorder Traversal
Medium
/* 1008. Construct Binary Search Tree from Preorder Traversal Return the root node of a binary search tree that matches the given preorder traversal. (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.) Example 1: Input: [8,5,1,7,10,12] Output: [8,5,10,1,7,null,12] Note: 1 <= preorder.length <= 100 The values of preorder are distinct. */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) { struct TreeNode *node; int mid; if (preorderSize == 0) return NULL; node = malloc(sizeof(struct TreeNode)); //assert(node); node->val = preorder[0]; mid = 1; while (mid < preorderSize && preorder[mid] < node->val) { mid ++; } node->left = bstFromPreorder(&preorder[1], mid - 1); node->right = bstFromPreorder(&preorder[mid], preorderSize - mid); return node; } /* Difficulty:Medium */
mips64
-O3
mips64 gcc 15.2.0
bstFromPreorder: daddiu $sp,$sp,-208 sd $28,184($sp) lui $28,%hi(%neg(%gp_rel(bstFromPreorder))) daddu $28,$28,$25 sd $31,200($sp) sd $fp,192($sp) sd $23,176($sp) sd $22,168($sp) sd $21,160($sp) sd $20,152($sp) sd $19,144($sp) sd $18,136($sp) sd $17,128($sp) sd $16,120($sp) beq $5,$0,.L119 daddiu $28,$28,%lo(%neg(%gp_rel(bstFromPreorder))) ld $25,%call16(malloc)($28) move $17,$4 li $4,24 # 0x18 1: jalr $25 move $16,$5 lw $5,0($17) move $18,$2 slt $2,$16,2 sw $5,0($18) bne $2,$0,.L3 daddiu $20,$17,4 move $3,$20 b .L4 li $fp,1 # 0x1 .L8: beql $16,$4,.L120 sd $16,16($sp) addiu $fp,$fp,1 .L4: lw $2,0($3) addiu $4,$fp,1 slt $2,$2,$5 bne $2,$0,.L8 daddiu $3,$3,4 addiu $2,$fp,-1 bne $2,$0,.L154 addiu $21,$16,-1 sd $0,8($18) .L108: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 lw $5,0($20) move $17,$2 slt $2,$21,2 bne $2,$0,.L63 sw $5,0($17) daddiu $2,$20,4 sd $2,8($sp) move $3,$2 li $fp,1 # 0x1 b .L64 move $6,$21 .L68: beq $6,$4,.L67 move $16,$fp addiu $fp,$fp,1 .L64: lw $2,0($3) addiu $4,$fp,1 slt $2,$2,$5 bne $2,$0,.L68 daddiu $3,$3,4 addiu $16,$fp,-1 bne $16,$0,.L115 ld $22,8($sp) sd $0,8($17) addiu $23,$21,-1 .L106: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 lw $5,0($22) move $16,$2 slt $2,$23,2 bne $2,$0,.L88 sw $5,0($16) daddiu $19,$22,4 move $3,$19 li $20,1 # 0x1 b .L89 move $7,$23 .L93: beq $7,$4,.L92 move $21,$20 addiu $20,$20,1 .L89: lw $2,0($3) addiu $4,$20,1 slt $2,$2,$5 bne $2,$0,.L93 daddiu $3,$3,4 addiu $21,$20,-1 bne $21,$0,.L113 move $fp,$19 ld $19,%got_disp(bstFromPreorder)($28) sd $0,8($16) addiu $21,$23,-1 .L105: ld $25,%call16(malloc)($28) li $4,24 # 0x18 1: jalr $25 li $23,1 # 0x1 lw $5,0($fp) move $20,$2 daddiu $4,$fp,4 slt $2,$21,2 sw $5,0($20) move $22,$4 beq $2,$0,.L103 move $6,$21 b .L155 move $5,$0 .L104: beq $6,$3,.L156 daddiu $22,$22,4 addiu $23,$23,1 .L103: lw $2,0($22) slt $2,$2,$5 bne $2,$0,.L104 addiu $3,$23,1 addiu $5,$23,-1 .L102: move $25,$19 .L175: 1: jalr $25 nop sd $2,8($20) subu $5,$21,$23 move $25,$19 1: jalr $25 move $4,$22 sd $2,16($20) sd $20,16($16) .L87: sd $16,16($17) .L6: sd $17,16($18) .L168: ld $31,200($sp) ld $fp,192($sp) ld $28,184($sp) ld $23,176($sp) ld $22,168($sp) ld $21,160($sp) ld $20,152($sp) ld $19,144($sp) ld $17,128($sp) ld $16,120($sp) move $2,$18 ld $18,136($sp) jr $31 daddiu $sp,$sp,208 .L120: .L7: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 lw $6,4($17) move $21,$2 li $2,1 # 0x1 beq $fp,$2,.L10 sw $6,0($21) daddiu $2,$17,8 sd $2,24($sp) move $4,$2 li $22,1 # 0x1 b .L11 move $7,$fp .L14: beql $7,$5,.L13 sd $22,0($sp) addiu $22,$22,1 .L11: lw $2,0($4) addiu $5,$22,1 slt $2,$2,$6 bne $2,$0,.L14 daddiu $4,$4,4 ld $3,24($sp) addiu $2,$22,-1 sd $2,0($sp) bne $2,$0,.L118 sd $3,8($sp) ld $2,16($sp) sd $0,8($21) addiu $23,$2,-2 .L110: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 ld $3,8($sp) move $20,$2 slt $2,$23,2 lw $6,0($3) bne $2,$0,.L46 sw $6,0($20) daddiu $2,$3,4 sd $2,0($sp) move $4,$2 li $22,1 # 0x1 b .L47 move $7,$23 .L51: beql $7,$5,.L50 sd $23,40($sp) addiu $22,$22,1 .L47: lw $2,0($4) addiu $5,$22,1 slt $2,$2,$6 bne $2,$0,.L51 daddiu $4,$4,4 addiu $2,$22,-1 beql $2,$0,.L52 addiu $2,$23,-1 sd $22,40($sp) move $22,$2 .L50: ld $19,8($sp) ld $25,%call16(malloc)($28) li $4,24 # 0x18 daddiu $fp,$19,8 1: jalr $25 sd $fp,32($sp) lw $7,4($19) move $3,$2 sd $2,24($sp) li $2,1 # 0x1 sw $7,0($3) li $6,1 # 0x1 bne $22,$2,.L55 move $8,$22 b .L157 ld $fp,32($sp) .L56: beq $8,$5,.L158 daddiu $fp,$fp,4 addiu $6,$6,1 .L55: lw $2,0($fp) slt $2,$2,$7 bne $2,$0,.L56 addiu $5,$6,1 addiu $5,$6,-1 .L54: ld $19,%got_disp(bstFromPreorder)($28) ld $4,32($sp) move $25,$19 1: jalr $25 sd $6,0($sp) ld $3,24($sp) ld $6,0($sp) move $4,$fp sd $2,8($3) move $25,$19 1: jalr $25 subu $5,$22,$6 ld $3,24($sp) sd $2,16($3) ld $2,40($sp) sd $3,8($20) subu $3,$23,$2 beq $23,$2,.L57 sd $3,24($sp) ld $3,8($sp) dsll $2,$2,32 dsrl $2,$2,32 dsll $2,$2,2 daddu $2,$3,$2 sd $2,0($sp) .L109: ld $25,%call16(malloc)($28) li $4,24 # 0x18 1: jalr $25 li $22,1 # 0x1 ld $3,0($sp) move $23,$2 ld $2,24($sp) lw $7,0($3) daddiu $4,$3,4 slt $3,$2,2 sw $7,0($23) move $fp,$4 move $8,$2 beq $3,$0,.L60 move $5,$0 b .L171 move $25,$19 .L61: beq $8,$5,.L159 daddiu $fp,$fp,4 addiu $22,$22,1 .L60: lw $3,0($fp) slt $3,$3,$7 bne $3,$0,.L61 addiu $5,$22,1 addiu $5,$22,-1 .L59: move $25,$19 .L171: 1: jalr $25 nop sd $2,8($23) ld $2,24($sp) move $4,$fp move $25,$19 1: jalr $25 subu $5,$2,$22 sd $2,16($23) .L49: sd $23,16($20) .L45: ld $2,16($sp) sd $20,16($21) sd $21,8($18) beq $16,$2,.L62 subu $21,$16,$2 dsll $20,$2,32 dsrl $20,$20,32 dsll $20,$20,2 b .L108 daddu $20,$17,$20 .L13: move $22,$fp .L118: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 lw $7,8($17) move $3,$2 sd $2,8($sp) sw $7,0($3) ld $3,0($sp) li $2,1 # 0x1 beq $3,$2,.L16 daddiu $2,$17,12 sd $2,56($sp) move $4,$2 li $23,1 # 0x1 b .L17 move $8,$3 .L20: beql $8,$5,.L19 sd $23,32($sp) addiu $23,$23,1 .L17: lw $2,0($4) addiu $5,$23,1 slt $2,$2,$7 bne $2,$0,.L20 daddiu $4,$4,4 addiu $2,$23,-1 ld $19,56($sp) bne $2,$0,.L117 sd $2,32($sp) ld $2,8($sp) sd $0,8($2) addiu $2,$22,-2 sd $2,0($sp) .L111: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 move $23,$2 ld $2,0($sp) lw $9,0($19) daddiu $4,$19,4 slt $5,$2,2 sw $9,0($23) move $6,$4 li $7,1 # 0x1 beq $5,$0,.L42 move $10,$2 b .L160 move $5,$0 .L43: beq $10,$8,.L161 daddiu $6,$6,4 addiu $7,$7,1 .L42: lw $5,0($6) slt $5,$5,$9 bne $5,$0,.L43 addiu $8,$7,1 addiu $5,$7,-1 .L41: ld $25,%got_disp(bstFromPreorder)($28) .L174: sd $6,32($sp) 1: jalr $25 sd $7,24($sp) sd $2,8($23) ld $7,24($sp) ld $2,0($sp) ld $4,32($sp) ld $25,%got_disp(bstFromPreorder)($28) 1: jalr $25 subu $5,$2,$7 sd $2,16($23) .L39: ld $2,8($sp) sd $23,16($2) sd $2,8($21) beq $fp,$22,.L12 subu $23,$fp,$22 sll $3,$22,0 dsll $3,$3,32 dsrl $3,$3,32 dsll $3,$3,2 daddu $2,$20,$3 b .L110 sd $2,8($sp) .L119: ld $31,200($sp) move $18,$0 ld $fp,192($sp) ld $28,184($sp) ld $23,176($sp) ld $22,168($sp) ld $21,160($sp) ld $20,152($sp) ld $19,144($sp) ld $17,128($sp) ld $16,120($sp) move $2,$18 ld $18,136($sp) jr $31 daddiu $sp,$sp,208 .L154: sd $fp,16($sp) b .L7 move $fp,$2 .L67: move $fp,$21 .L115: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 lw $5,4($20) move $3,$2 sd $2,0($sp) li $2,1 # 0x1 beq $16,$2,.L70 sw $5,0($3) daddiu $19,$20,8 move $3,$19 li $22,1 # 0x1 b .L71 move $7,$16 .L74: beq $7,$4,.L73 move $23,$22 addiu $22,$22,1 .L71: lw $2,0($3) addiu $4,$22,1 slt $2,$2,$5 bne $2,$0,.L74 daddiu $3,$3,4 addiu $23,$22,-1 bne $23,$0,.L114 sd $19,16($sp) ld $2,0($sp) ld $19,%got_disp(bstFromPreorder)($28) addiu $23,$fp,-2 sd $0,8($2) .L107: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 ld $3,16($sp) move $16,$2 li $6,1 # 0x1 lw $8,0($3) daddiu $4,$3,4 slt $3,$23,2 sw $8,0($2) move $22,$4 move $9,$23 beq $3,$0,.L84 move $5,$0 b .L172 move $25,$19 .L85: beq $9,$7,.L162 daddiu $22,$22,4 addiu $6,$6,1 .L84: lw $5,0($22) slt $5,$5,$8 bne $5,$0,.L85 addiu $7,$6,1 addiu $5,$6,-1 .L83: move $25,$19 .L172: 1: jalr $25 sd $6,8($sp) ld $6,8($sp) sd $2,8($16) move $4,$22 move $25,$19 1: jalr $25 subu $5,$23,$6 sd $2,16($16) .L81: ld $2,0($sp) subu $23,$21,$fp sd $16,16($2) beq $21,$fp,.L65 sd $2,8($17) sll $fp,$fp,0 dsll $fp,$fp,32 dsrl $fp,$fp,32 dsll $fp,$fp,2 b .L106 daddu $22,$20,$fp .L73: move $22,$16 .L114: ld $25,%call16(malloc)($28) li $4,24 # 0x18 daddiu $2,$20,12 1: jalr $25 sd $2,24($sp) lw $8,8($20) move $4,$2 sd $2,16($sp) li $2,1 # 0x1 sw $8,0($4) daddiu $3,$20,12 li $7,1 # 0x1 bne $23,$2,.L78 move $9,$23 b .L163 move $7,$23 .L79: beq $9,$5,.L164 daddiu $3,$3,4 addiu $7,$7,1 .L78: lw $2,0($3) slt $2,$2,$8 bne $2,$0,.L79 addiu $5,$7,1 addiu $5,$7,-1 .L77: ld $19,%got_disp(bstFromPreorder)($28) ld $4,24($sp) sd $7,40($sp) move $25,$19 1: jalr $25 sd $3,32($sp) ld $3,16($sp) ld $7,40($sp) ld $4,32($sp) sd $2,8($3) move $25,$19 1: jalr $25 subu $5,$23,$7 ld $3,16($sp) subu $23,$16,$22 sd $2,16($3) ld $2,0($sp) beq $16,$22,.L72 sd $3,8($2) sll $6,$22,0 ld $2,8($sp) dsll $6,$6,32 dsrl $6,$6,32 dsll $6,$6,2 daddu $2,$2,$6 b .L107 sd $2,16($sp) .L19: ld $23,0($sp) .L117: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 lw $7,12($17) move $3,$2 sd $2,40($sp) sw $7,0($3) ld $3,32($sp) li $2,1 # 0x1 beq $3,$2,.L22 daddiu $19,$17,16 move $4,$19 li $8,1 # 0x1 b .L23 move $9,$3 .L26: beql $9,$5,.L25 sd $8,48($sp) addiu $8,$8,1 .L23: lw $2,0($4) addiu $5,$8,1 slt $2,$2,$7 bne $2,$0,.L26 daddiu $4,$4,4 addiu $2,$8,-1 sd $2,48($sp) bne $2,$0,.L116 sd $19,64($sp) ld $2,40($sp) ld $19,%got_disp(bstFromPreorder)($28) sd $0,8($2) addiu $2,$23,-2 sd $2,48($sp) .L112: ld $25,%call16(malloc)($28) 1: jalr $25 li $4,24 # 0x18 ld $3,64($sp) move $5,$2 sd $2,32($sp) lw $9,0($3) daddiu $4,$3,4 ld $3,48($sp) sw $9,0($5) move $11,$4 slt $2,$3,2 li $7,1 # 0x1 move $10,$3 beq $2,$0,.L36 move $5,$0 b .L173 move $25,$19 .L37: beq $10,$8,.L165 daddiu $11,$11,4 addiu $7,$7,1 .L36: lw $2,0($11) slt $2,$2,$9 bne $2,$0,.L37 addiu $8,$7,1 addiu $5,$7,-1 .L35: move $25,$19 .L173: sd $11,64($sp) 1: jalr $25 sd $7,56($sp) ld $3,32($sp) ld $7,56($sp) ld $4,64($sp) sd $2,8($3) ld $2,48($sp) move $25,$19 1: jalr $25 subu $5,$2,$7 ld $3,32($sp) sd $2,16($3) .L33: ld $2,40($sp) sd $3,16($2) ld $3,8($sp) sd $2,8($3) ld $2,0($sp) subu $3,$2,$23 beq $2,$23,.L18 sd $3,0($sp) sll $6,$23,0 ld $2,24($sp) dsll $6,$6,32 dsrl $6,$6,32 dsll $6,$6,2 b .L111 daddu $19,$2,$6 .L92: move $20,$23 .L113: ld $25,%call16(malloc)($28) daddiu $2,$22,8 li $4,24 # 0x18 1: jalr $25 sd $2,0($sp) lw $8,4($22) move $fp,$2 li $2,1 # 0x1 sw $8,0($fp) daddiu $3,$22,8 li $7,1 # 0x1 bne $21,$2,.L97 move $9,$21 b .L166 move $7,$21 .L98: beq $9,$5,.L167 daddiu $3,$3,4 addiu $7,$7,1 .L97: lw $2,0($3) slt $2,$2,$8 bne $2,$0,.L98 addiu $5,$7,1 addiu $5,$7,-1 .L96: ld $19,%got_disp(bstFromPreorder)($28) ld $4,0($sp) sd $7,16($sp) move $25,$19 1: jalr $25 sd $3,8($sp) ld $7,16($sp) ld $4,8($sp) sd $2,8($fp) move $25,$19 1: jalr $25 subu $5,$21,$7 sd $2,16($fp) sd $fp,8($16) beq $23,$20,.L90 subu $21,$23,$20 sll $2,$20,0 dsll $2,$2,32 dsrl $2,$2,32 dsll $2,$2,2 b .L105 daddu $fp,$22,$2 .L62: move $17,$0 b .L168 sd $17,16($18) .L25: ld $8,32($sp) .L116: ld $25,%call16(malloc)($28) daddiu $2,$17,20 li $4,24 # 0x18 sd $8,80($sp) 1: jalr $25 sd $2,72($sp) lw $10,16($17) move $3,$2 sd $2,64($sp) sw $10,0($3) ld $3,48($sp) li $2,1 # 0x1 ld $8,80($sp) daddiu $7,$17,20 li $9,1 # 0x1 bne $3,$2,.L30 move $11,$3 b .L169 move $9,$3 .L31: beq $11,$5,.L170 daddiu $7,$7,4 addiu $9,$9,1 .L30: lw $2,0($7) slt $2,$2,$10 bne $2,$0,.L31 addiu $5,$9,1 addiu $5,$9,-1 .L29: ld $19,%got_disp(bstFromPreorder)($28) ld $4,72($sp) sd $8,88($sp) move $25,$19 sd $7,96($sp) 1: jalr $25 sd $9,80($sp) ld $3,64($sp) ld $9,80($sp) ld $4,96($sp) sd $2,8($3) ld $2,48($sp) move $25,$19 1: jalr $25 subu $5,$2,$9 ld $3,64($sp) ld $8,88($sp) sd $2,16($3) ld $2,40($sp) sd $3,8($2) ld $2,32($sp) subu $3,$2,$8 beq $2,$8,.L24 sd $3,48($sp) sll $2,$8,0 ld $3,56($sp) dsll $2,$2,32 dsrl $2,$2,32 dsll $2,$2,2 daddu $2,$3,$2 b .L112 sd $2,64($sp) .L158: ld $2,0($sp) dsll $4,$22,32 dsrl $4,$4,32 dsll $4,$4,2 move $5,$6 daddu $fp,$2,$4 b .L54 move $6,$22 .L164: sll $4,$23,0 dsll $4,$4,32 dsrl $4,$4,32 dsll $4,$4,2 move $5,$7 daddu $3,$19,$4 b .L77 move $7,$23 .L162: ld $3,16($sp) dsll $2,$23,32 dsrl $2,$2,32 dsll $2,$2,2 move $5,$6 daddu $22,$3,$2 b .L83 move $6,$23 .L161: ld $2,0($sp) move $5,$7 mtlo $2 dsll $2,$2,32 dsrl $2,$2,32 dsll $2,$2,2 mflo $7 b .L41 daddu $6,$19,$2 .L167: sll $4,$21,0 dsll $4,$4,32 dsrl $4,$4,32 dsll $4,$4,2 move $5,$7 daddu $3,$19,$4 b .L96 move $7,$21 .L159: ld $2,24($sp) ld $3,0($sp) move $5,$22 mtlo $2 dsll $2,$2,32 dsrl $2,$2,32 dsll $2,$2,2 mflo $22 b .L59 daddu $fp,$3,$2 .L156: dsll $22,$21,32 dsrl $22,$22,32 dsll $22,$22,2 move $5,$23 daddu $22,$fp,$22 b .L102 move $23,$21 .L57: b .L49 move $23,$0 .L52: ld $19,%got_disp(bstFromPreorder)($28) sd $0,8($20) b .L109 sd $2,24($sp) .L165: ld $2,48($sp) move $5,$7 dsll $11,$2,32 move $7,$2 ld $2,64($sp) dsrl $11,$11,32 dsll $11,$11,2 b .L35 daddu $11,$2,$11 .L170: lwu $4,52($sp) move $5,$9 ld $9,48($sp) dsll $4,$4,2 b .L29 daddu $7,$19,$4 .L3: addiu $2,$16,-1 beq $2,$0,.L62 sd $0,8($18) ld $25,%call16(malloc)($28) li $4,24 # 0x18 1: jalr $25 addiu $21,$16,-2 lw $3,4($17) sd $0,8($2) move $17,$2 sw $3,0($2) .L66: ld $25,%call16(malloc)($28) li $4,24 # 0x18 1: jalr $25 daddiu $22,$20,4 lw $3,4($20) move $16,$2 sd $0,8($2) sw $3,0($2) addiu $21,$21,-1 .L91: ld $25,%call16(malloc)($28) li $4,24 # 0x18 1: jalr $25 daddiu $22,$22,8 lw $3,-4($22) ld $19,%got_disp(bstFromPreorder)($28) move $20,$2 sw $3,0($2) move $4,$22 move $5,$0 b .L102 li $23,1 # 0x1 .L10: sd $0,8($21) .L12: b .L45 move $20,$0 .L16: ld $2,8($sp) sd $0,8($2) .L18: b .L39 move $23,$0 .L70: sd $0,8($3) .L72: b .L81 move $16,$0 .L46: addiu $2,$23,-1 sd $2,24($sp) beq $2,$0,.L57 sd $0,8($20) ld $25,%call16(malloc)($28) li $4,24 # 0x18 1: jalr $25 ld $19,%got_disp(bstFromPreorder)($28) ld $4,8($sp) move $23,$2 move $5,$0 lw $3,4($4) daddiu $fp,$4,8 move $4,$fp sw $3,0($2) b .L59 li $22,1 # 0x1 .L22: ld $2,40($sp) sd $0,8($2) .L24: sd $0,32($sp) b .L33 ld $3,32($sp) .L163: b .L77 move $5,$0 .L157: move $6,$22 b .L54 move $5,$0 .L166: b .L96 move $5,$0 .L160: b .L174 ld $25,%got_disp(bstFromPreorder)($28) .L63: addiu $21,$21,-1 bne $21,$0,.L66 sd $0,8($17) .L65: move $16,$0 b .L6 sd $16,16($17) .L169: b .L29 move $5,$0 .L88: addiu $21,$23,-1 bne $21,$0,.L91 sd $0,8($16) .L90: move $20,$0 b .L87 sd $20,16($16) .L155: b .L175 move $25,$19