Dataset Viewer
Auto-converted to Parquet Duplicate
SMILES
stringlengths
14
75
Ki
float64
-4.9
0.5
O=c1[nH]cnc2c1sc1c(Cl)ccc(Cl)c12
-1.976808
Nc1ncnc2onc(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)c12
-2.400002
O=c1[nH]cnc2c(-c3ccccc3)c(C(F)(F)F)sc12
-3.299999
O=C1Nc2ccccc2Nc2cc(-c3ccncc3F)ccc21
-1.40002
Cc1cc(N2CCOCC2)cc2[nH]c(-c3c(NCC(O)c4cccc(Cl)c4)cc[nH]c3=O)nc12
-1.700011
NC(=O)c1sc(-n2cnc3ccccc32)cc1OCc1ccccc1C(F)(F)F
-3
CC(=O)Nc1c(C(N)=O)sc2ccc(Cl)c(Cl)c12
-1.899985
NC(COc1cncc(-c2ccc3c(c2)C(=Cc2ccc[nH]2)C(=O)N3)c1)Cc1ccccc1
0.500038
Cc1cccc(NC(=O)Nc2ccc(-c3csc4nc(N)nc(N)c34)cc2)c1
-3.6
COc1cccc(C(=O)Nc2cnc3[nH]cc(-c4ccccc4)c3c2)c1
-2.300008
CCCC(=O)Nc1n[nH]c2ccc(-c3nnn(Cc4ccccc4)c3-c3ccccc3)cc12
-0.800029
COc1nc(N)c(C#N)c(-c2ccc(Cl)cc2Cl)c1C#N
-3.9
NC1CCCCC1Nc1nccc(-c2c[nH]c3ncccc23)n1
-0.800029
NC(COCc1ccccc1)COc1cncc(C=Cc2ccncc2)c1
-2.600003
O=c1[nH][nH]c2cccc(-c3ccccc3)c12
-3
CCCc1ccc2nccc(NC(=O)Nc3cccc(C(F)(F)F)n3)c2c1
-2.200002
O=C(O)c1ccccc1Nc1ccnc(Nc2ccc3cn[nH]c3c2)n1
-2
O=C1NC(=O)C(c2cnc3ccccn23)=C1c1cn2c3c(cc(F)cc13)CN(C(=O)N1CCCCC1)CC2
-2.800002
COCCNc1nccc(-c2c(-c3ccc(F)cc3)nc3cnccn23)n1
-2.300008
O=C(Nc1cc(-c2c[nH]c3ncccc23)cc(Cl)n1)c1ccccc1
-1.40002
c1ccc(Nc2ncnc3ccccc23)cc1
-3
CN(C)CCCOc1cc(-c2ccncc2)cc2[nH]nc(N)c12
-1.899985
OC(COc1cncc(C=Cc2ccncc2)c1)Cc1c[nH]c2ccccc12
-1.200029
CSc1c[nH]c2ncnc(NCCCO)c12
-1.599992
CC(C)(CNc1cc(-c2c[nH]c3ncccc23)cc(Cl)n1)CNS(C)(=O)=O
-0.700011
O=C(Nc1cnccn1)Nc1ccnc2c(F)cccc12
-2.400002
CCC1C(=O)N(C)c2cnc(Nc3ccc(C(=O)NC4CCN(C)CC4)cc3OC)nc2N1C1CCCC1
-3.400001
COc1ccccc1C(=O)Nc1n[nH]c2ccc(-c3cn(Cc4ccccc4)nn3)cc12
-0.599992
Fc1ccc(-c2ccc3nccn3n2)cn1
-2.900001
O=C(NCc1ccccc1)Nc1ncc([N+](=O)[O-])s1
-3.9
CN1c2ccc(N)cc2C(c2ccccc2)c2cc(N)ccc21
-1.40002
O=C(NCc1ccc(Cl)c(Cl)c1)Nc1ccc2[nH]ncc2c1
-2.300008
CNC(=O)c1cc2c(-c3ccccc3F)n[nH]c2s1
-2.099991
COc1cc2c(N3CCN(C(=O)Nc4ccc(OC(C)C)cc4)CC3)ncnc2cc1OCCCN1CCCCC1
-2.600003
OCCNc1cc2cc(-c3cccnc3)ccc2cn1
-0.499962
O=C1NCc2c1cccc2-c1cccs1
-3.6
Nc1n[nH]c2ncc(Br)cc12
-3.400001
Cc1ccc(F)c(NC(=O)Nc2ccc(-c3cccc4[nH]nc(N)c34)cc2)c1
-1.899985
CCCCN(CCC#N)C(=O)c1ccc2nc(-c3n[nH]c4ccccc34)[nH]c2c1
-1.40002
Cc1cccc(-c2ccc3c(c2)C(=O)NC3)c1
-3
C=CCn1c(=O)c2cnc(Nc3ccc(N4CCN(C)CC4)cc3)nc2n1-c1cccc(C(C)(C)O)n1
-3
NS(=O)(=O)c1cccc(Nc2ncc3ccn(-c4ccccc4)c3n2)c1
-0.700011
CCOC(=O)Cc1nc2c3cc(Br)ccc3[nH]c(=O)n2n1
-2.900001
CCc1ccc2nccc(NC(=O)Nc3cccc(C(F)(F)F)n3)c2c1
-2.400002
Nc1ncnc2c1C(=O)Nc1ccccc1N2
-2.300008
Clc1cc2nn[nH]c2cc1Cl
-3.5
O=c1[nH]cnc2c1oc1ccc(Cl)cc12
-2.800002
COc1ccc2c(c1)C(=Cc1c[nH]cn1)C(=O)N2
-2.400002
NC1CCC(Nc2cc(Cl)nc(-c3c[nH]c4ncccc34)n2)CC1
-1.40002
c1ccc2c(c1)Cc1c[nH]nc1-2
-4.3
Cc1ccnc(Nc2cc(C)nc(-c3ccccc3)n2)c1
-1.800029
Cn1c(=O)n(-c2ccc(C(C)(C)C#N)cc2)c2c3cc(-c4cnc5ccccc5c4)ccc3ncc21
-1.499962
CS(=O)(=O)NCCNc1cc(-c2c[nH]c3ncccc23)cc(Cl)n1
-0.599992
CCN1CCN(c2ccc(Nc3ncc(Cl)c(Nc4ccc5[nH]ncc5c4)n3)cc2)CC1
-1.40002
O=C1NCCc2[nH]c(-c3ccnc(C=Cc4ccccc4)c3)cc21
-0.800029
NC(=O)c1cc(Cl)cc2[nH]c(-c3ccc(C4CCCNC4)cc3F)nc12
-3.5
O=C(O)c1csc2c1NCCNC2=O
-3.6
Cc1ccnc2[nH]c3cc(C(C)C)ccc3c(=O)c12
-2.099991
CCCCNc1n[s+](O)nc1Nc1ccc(F)cc1
-3.6
NC(=O)c1cc2c(-c3ccc(Br)cc3)cncc2s1
-2.200002
Cc1cc(NC(=O)CCNC(=O)Nc2nc(C)c(-c3ccc(-n4cccn4)cc3)s2)no1
-2.300008
COc1ccc(CN(C)C)cc1Nc1nccc(-c2c(-c3cccc(NC(=O)Cc4ccccc4)c3)nc3sccn23)n1
-2.400002
O=c1cc(-c2ccc(F)cc2)[nH]c2c(-c3ccc(F)cc3)cnn12
-2.200002
COc1cc(C=C2SC(=O)NC2=O)ccc1O
-2
CC(O)Cn1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1
-3.8
O=c1[nH]cc(I)c2nc(-c3ccccc3)cn12
-2.700002
NCCOc1cncc(C=Cc2ccncc2)c1
-2.200002
Nc1ncnc2scc(-c3ccc(NC(=O)Nc4cc(C(F)(F)F)ccc4F)cc3)c12
-3.100002
CN(C(=O)C1CCCCC1)c1ccc2c(c1)nc(NC(=O)c1ccc(C#N)cc1)n2C
-2.800002
COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)c(F)c2)c1
-3.199999
CCCCNc1cc(-c2c[nH]c3ncccc23)ncn1
-1.299943
CCN1CCN(c2ccc(Nc3ncc(C#N)c(Nc4ccc5[nH]ncc5c4)n3)cc2)CC1
-1.252853
N#Cc1ccc2nc(N)n(-c3nc4c(s3)CCCC4)c2c1
-3.100002
Nc1n[nH]c2ccc(-c3nnn(Cc4ccccc4)c3I)cc12
-1.100026
COCOc1cccc(OCOC)c1-c1ccc(NS(C)(=O)=O)cc1C(=O)OC
-2.700002
NC(=O)C1CCCN(C(=O)c2cc(-c3ccc4[nH]ncc4c3)on2)C1
-2.600003
O=C1c2cc([N+](=O)[O-])ccc2-n2c1nc1cccc(Br)c1c2=O
-3.100002
COc1cc2c(cc1Nc1nc(Nc3cccc(F)c3C(N)=O)c3cc[nH]c3n1)N(C(=O)CN(C)C)CC2
-1.299943
Nc1n[nH]c2cccc(-c3ccc(F)cc3)c12
-1.599992
COc1ccc(C2=NNc3cccc4c(OC)ccc2c34)cc1OC
-1.800029
CN(C)CCCOc1cc2c(c(-c3ccc(Nc4nc5ccccc5o4)cc3)c1)CNC2=O
-2.900001
Cc1cc(NC(=O)Cc2ccc(-c3cccc4[nH]nc(N)c34)cc2)ccc1F
-1.899985
CNC(=O)COc1ccc(Nc2nc(Nc3ccc(C)c(S(N)(=O)=O)c3)ncc2F)cc1
-2.500003
CC(=O)Nc1cccc(CNc2c(Nc3ccc4[nH]ncc4c3)c(=O)c2=O)c1
-1.800029
Cc1nnc(-c2ccccc2)c(C#N)n1
-4.9
CN(C)c1ccc(CNC(=O)c2cc3c(-c4ccccc4)n[nH]c3s2)cc1
-3.6
CC(C)(CN)CNc1cc(-c2c[nH]c3ncccc23)cc(Cl)n1
-0.700011
O=C1NC(=O)C(c2cnc3ccccn23)=C1c1cn2c3c(cccc13)CN(C(=O)N1CCOCC1)CC2
-2.500003
NC(COc1cncc(-c2ccc3[nH]c(=O)oc3c2)c1)Cc1c[nH]c2ccccc12
-0.700011
Oc1cnc2ccc(-c3ccncc3)cc2c1
-1.40002
N#Cc1cccc(C(=O)Nc2n[nH]c3ccc(-c4cn(Cc5ccccc5)nn4)cc23)c1
-0.599992
CC(Nc1nccc(-c2c(-c3ccc(F)cc3)nc3occn23)n1)c1ccccc1
-3.6
O=c1[nH]c2cc(Cl)cc(Cl)c2c(-c2cc(Cl)ccc2O)c1O
-2.600003
Cc1n[nH]c2cccc(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)c12
-3
O=C(Nc1cccc2[nH]ncc12)NC1CCc2c1cccc2N1CCCC1
-2.900001
CN(C)C1CCCC(Nc2nc(Cl)cc(-c3c[nH]c4ncccc34)n2)C1
-1.100026
O=C1NCc2c(Br)cccc21
-3.8
COCCN(C)C(=O)c1c(-c2ccc3[nH]ncc3c2)nnn1Cc1ccccc1
-2.900001
CC(C)(C)Oc1cc(-c2ccncc2)cc2[nH]nc(N)c12
-1.100026
CC1=NN(c2cccc(Br)c2)C(=O)C1=Cc1c(C)c(C#N)c2nc3ccccc3n2c1O
-2.800002
End of preview. Expand in Data Studio

MoleculeACE ChEMBL4203 Ki

ChEMBL4203 dataset, originally part of ChEMBL database [1], processed in MoleculeACE [2] for activity cliff evaluation. It is intended to be use through scikit-fingerprints library.

The task is to predict the inhibitor constant (Ki) of molecules against the Dual specificity protein kinase clk4 target.

Characteristic Description
Tasks 1
Task type regression
Total samples 731
Recommended split activity_cliff
Recommended metric RMSE

References

[1] B. Zdrazil et al., “The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods,” Nucleic Acids Research, vol. 52, no. D1, Nov. 2023, doi: https://doi.org/10.1093/nar/gkad1004. ‌

[2] D. van Tilborg, A. Alenicheva, and F. Grisoni, “Exposing the Limitations of Molecular Machine Learning with Activity Cliffs,” Journal of Chemical Information and Modeling, vol. 62, no. 23, pp. 5938–5951, Dec. 2022, doi: https://doi.org/10.1021/acs.jcim.2c01073. ‌

Downloads last month
99