squirelmail's picture
Update README.md
ec69c72 verified
---
license: apache-2.0
task_categories:
- image-to-text
language:
- en
pretty_name: dataset-BotDetect-CAPTCHA-Generator
size_categories:
- 100M<n<1B
---
πŸ“¦ CAPTCHA Datasets (style0–style59)
====================================
This repository contains CAPTCHA datasets for training CRNN+CTC models. Each archive `dataset_*.tar.gz` includes **60 styles** (from [BotDetect Captcha](https://captcha.com/)), structured as folders `style0` through `style59`. Each style contains _N_ images depending on the archive name.
* * *
πŸ—‚οΈ Available Archives
----------------------
* `dataset_500.tar.gz` β†’ 500 images per style (β‰ˆ 30,000 total)
* `dataset_1000.tar.gz` β†’ 1,000 images per style (β‰ˆ 60,000 total)
* `dataset_5000.tar.gz` β†’ 5,000 images per style (β‰ˆ 300,000 total)
* `dataset_10000.tar.gz` β†’ 10,000 images per style (β‰ˆ 600,000 total)
* `dataset_20000.tar.gz` β†’ 20,000 images per style (β‰ˆ 1,200,000 total)
* `dataset_1000_rand.tar.gz` β†’ randomized variant with 1,000 images per style
**Naming convention:** `dataset_{N}.tar.gz` means each `styleX` folder holds exactly `N` PNG images.
* * *
πŸ“ Directory Layout
-------------------
/path/to/dataset
β”œβ”€β”€ style0/
β”‚ β”œβ”€β”€ A1B2C.png
β”‚ β”œβ”€β”€ 9Z7QK.png
β”‚ └── ...
β”œβ”€β”€ style1/
β”‚ β”œβ”€β”€ K9NO2.png
β”‚ └── ...
└── ...
└── style59/
* **Filename** = ground-truth label (5 uppercase alphanumeric chars), e.g. `K9NO2.png`.
* **Image size** = `50Γ—250` pixels (H=50, W=250), grayscale PNG.
* **Label rule** = regex `^[A-Z0-9]{5}$` (exactly 5 chars, uppercase & digits).
* * *
🧰 Extraction
-------------
# example: extract into /workspace/dataset_1000
mkdir -p /workspace/dataset_1000
tar -xvzf dataset_1000.tar.gz -C /workspace/dataset_1000
* * *
βœ… Quick File Counts
-------------------
# total PNG files (depth 2 to only count inside style folders)
find /workspace/dataset_1000 -maxdepth 2 -type f -name '*.png' | wc -l
# per-style counts without a for-loop (prints "count styleX")
find /workspace/dataset_1000 -mindepth 2 -maxdepth 2 -type f -name '*.png' \
| awk -F/ '{print $(NF-2)}' | sort | uniq -c | sort -k2
Expected totals:
* `dataset_500` β†’ 500 Γ— 60 = 30,000 files
* `dataset_1000` β†’ 60,000 files
* `dataset_5000` β†’ 300,000 files
* `dataset_10000` β†’ 600,000 files
* `dataset_20000` β†’ 1,200,000 files
* * *
πŸ§ͺ Label Validation
-------------------
# list filenames that violate the strict 5-char uppercase/digit rule
find /workspace/dataset_1000 -type f -name '*.png' \
| awk -F/ '{print $NF}' | sed 's/\.png$//' \
| grep -vE '^[A-Z0-9]{5}$' | head
CSV report via Python (pandas):
import os, re
import pandas as pd
from glob import glob
root = "/workspace/dataset_1000"
rows = []
for s in range(60):
for p in glob(os.path.join(root, f"style{s}", "*.png")):
rows.append({"style": f"style{s}", "filepath": p, "label": os.path.basename(p)[:-4]})
df = pd.DataFrame(rows)
bad = df[~df["label"].str.match(r"^[A-Z0-9]{5}$", na=True)]
print("Invalid labels:", len(bad))
if len(bad):
bad.to_csv("invalid_labels.csv", index=False)
* * *
🧩 Example: Load to DataFrame
-----------------------------
import os
from glob import glob
import pandas as pd
def load_dataset(root_dir):
data = []
for style_id in range(60):
folder = os.path.join(root_dir, f"style{style_id}")
for path in glob(os.path.join(folder, "*.png")):
label = os.path.splitext(os.path.basename(path))[0]
data.append((path, label, f"style{style_id}"))
df = pd.DataFrame(data, columns=["filepath", "label", "style"])
# enforce strict label rule
df = df[df["label"].str.match(r"^[A-Z0-9]{5}$")]
return df
df = load_dataset("/workspace/dataset_1000")
print(df.head(), len(df))
* * *
πŸ”€ Merge Datasets (no loop)
---------------------------
**Add new files without overwriting existing ones**:
rsync -av \
--ignore-existing \
--include='style[0-5][0-9]/' \
--include='style[0-5][0-9]/*.png' \
--exclude='*' \
/workspace/dataset_10000/ /workspace/dataset_20000/
**Overwrite only if source is newer**:
rsync -av --update \
--include='style[0-5][0-9]/' \
--include='style[0-5][0-9]/*.png' \
--exclude='*' \
/workspace/dataset_10000/ /workspace/dataset_20000/
* * *
πŸ”’ Checksums
------------
Optional: keep SHA256 for integrity.
sha256sum dataset_1000.tar.gz > dataset_1000.tar.gz.sha256
sha256sum -c dataset_1000.tar.gz.sha256
* * *
πŸ“ Notes
--------
* All images prepared for CRNN+CTC models with input `(H, W) = (50, 250)`, grayscale.
* Character distribution: digits 0–9 and letters A–Z (uppercase).
* Each style emulates a distinct visual variant (font/noise/warp) from BotDetect.
* * *
πŸ“ž Contact
----------
For questions, dataset issues, or custom subsets, please open an issue in this repository.