File size: 7,681 Bytes
d66cd5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"]
# ///
"""
Prompt Comparison Test: Direct vs Reasoning
Tests if "code only" prompt improves fine-tuned model scores on HumanEval subset
"""
import os
import re
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from datasets import load_dataset
from tqdm import tqdm
from huggingface_hub import HfApi
print("=" * 60)
print("PROMPT COMPARISON TEST")
print("Direct Code vs Reasoning Prompt")
print("=" * 60)
# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small"
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 512
NUM_SAMPLES = 50 # Subset for quick test
# GPU
print(f"\nGPU available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
# 4-bit config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
def load_dataset_subset():
print("\nLoading HumanEval...")
ds = load_dataset("openai/openai_humaneval", split="test")
ds = ds.select(range(min(NUM_SAMPLES, len(ds))))
print(f"Using {len(ds)} problems")
return ds
def load_model():
print(f"\nLoading {BASE_MODEL} + {FINETUNED_ADAPTER}...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
model = PeftModel.from_pretrained(model, FINETUNED_ADAPTER)
model = model.merge_and_unload()
model.eval()
print("Model loaded and merged")
return model, tokenizer
def extract_code(text):
"""Extract Python code from output"""
# Try ```python blocks
m = re.findall(r'```python\s*(.*?)\s*```', text, re.DOTALL)
if m:
return m[-1].strip()
# Try ``` blocks
m = re.findall(r'```\s*(.*?)\s*```', text, re.DOTALL)
if m:
return m[-1].strip()
return text.strip()
def extract_body(code):
"""Extract function body if full function returned"""
if code.strip().startswith("def "):
lines = code.split('\n')
body = []
in_func = False
for line in lines:
if line.strip().startswith("def "):
in_func = True
continue
if in_func:
body.append(line)
if body:
return '\n'.join(body)
return code
def generate_direct(model, tokenizer, prompt):
"""Direct code prompt - no reasoning"""
p = f"<s>[INST] Complete this Python function. Output ONLY the code, no explanations:\n\n{prompt}[/INST]"
inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
with torch.no_grad():
out = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
do_sample=TEMPERATURE > 0,
pad_token_id=tokenizer.pad_token_id,
)
raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
code = extract_code(raw)
code = extract_body(code)
# Stop at boundaries
for stop in ["\ndef ", "\nclass ", "\nif __name__"]:
if stop in code:
code = code[:code.index(stop)]
return code
def generate_reasoning(model, tokenizer, prompt):
"""Reasoning prompt - original approach"""
p = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{prompt}[/INST]"
inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
with torch.no_grad():
out = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS * 2,
temperature=TEMPERATURE,
do_sample=TEMPERATURE > 0,
pad_token_id=tokenizer.pad_token_id,
)
raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
code = extract_code(raw)
code = extract_body(code)
return code
def check_syntax(code):
try:
compile(code, '<string>', 'exec')
return True
except:
return False
def evaluate(samples, dataset):
passed = 0
total = len(samples)
ds_dict = {p["task_id"]: p for p in dataset}
for s in samples:
task_id = s["task_id"]
completion = s["completion"]
problem = ds_dict.get(task_id)
if not problem:
continue
full = problem["prompt"] + completion
if not check_syntax(full):
continue
try:
g = {}
exec(full, g)
entry = problem.get("entry_point", task_id.split("/")[-1])
if entry in g:
passed += 1
except:
pass
return {"pass@1": passed / total if total > 0 else 0, "passed": passed, "total": total}
def main():
dataset = load_dataset_subset()
model, tokenizer = load_model()
# Test 1: Direct prompt
print("\n" + "=" * 60)
print("TEST 1: DIRECT CODE PROMPT")
print("=" * 60)
direct = []
for p in tqdm(dataset, desc="Direct"):
try:
c = generate_direct(model, tokenizer, p["prompt"])
except:
c = "# error"
direct.append({"task_id": p["task_id"], "completion": c})
r_direct = evaluate(direct, dataset)
print(f"Direct: {r_direct['pass@1']*100:.1f}% ({r_direct['passed']}/{r_direct['total']})")
# Test 2: Reasoning prompt
print("\n" + "=" * 60)
print("TEST 2: REASONING PROMPT")
print("=" * 60)
reasoning = []
for p in tqdm(dataset, desc="Reasoning"):
try:
c = generate_reasoning(model, tokenizer, p["prompt"])
except:
c = "# error"
reasoning.append({"task_id": p["task_id"], "completion": c})
r_reason = evaluate(reasoning, dataset)
print(f"Reasoning: {r_reason['pass@1']*100:.1f}% ({r_reason['passed']}/{r_reason['total']})")
# Summary
print("\n" + "=" * 60)
print("RESULTS SUMMARY")
print("=" * 60)
print(f"\n{'Prompt':<20} {'pass@1':>10}")
print("-" * 35)
print(f"{'Direct Code':<20} {r_direct['pass@1']*100:>9.1f}%")
print(f"{'Reasoning':<20} {r_reason['pass@1']*100:>9.1f}%")
diff = (r_direct['pass@1'] - r_reason['pass@1']) * 100
print(f"\n{'Improvement:':<20} {'+' if diff >= 0 else ''}{diff:.1f}%")
# Save
results = {
"experiment": "Prompt Comparison",
"samples": NUM_SAMPLES,
"direct": r_direct,
"reasoning": r_reason,
"improvement": diff
}
with open("prompt_comparison.json", "w") as f:
json.dump(results, f, indent=2)
try:
api = HfApi()
api.upload_file(
path_or_fileobj="prompt_comparison.json",
path_in_repo="prompt_comparison.json",
repo_id=OUTPUT_REPO,
repo_type="model",
)
print(f"\nUploaded to {OUTPUT_REPO}")
except Exception as e:
print(f"Upload failed: {e}")
print("\nDONE")
if __name__ == "__main__":
main()
|