File size: 3,012 Bytes
a92e744
1706e81
 
 
 
 
 
 
bdbe6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a92e744
 
1706e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: cc-by-2.0
task_categories:
- text-classification
language:
- en
size_categories:
- 100K<n<1M
dataset_info:
  features:
  - name: seq
    dtype: string
  - name: label
    dtype: string
  - name: Adj_Class
    dtype: string
  - name: Adj
    dtype: string
  - name: Nn
    dtype: string
  - name: Hy
    dtype: string
  splits:
  - name: train
    num_bytes: 26047744
    num_examples: 300132
  - name: test
    num_bytes: 874524
    num_examples: 10080
  download_size: 4721262
  dataset_size: 26922268
---

Preprocessed from https://huggingface.co/datasets/lorenzoscottb/PLANE-ood/

```python
df=pd.read_json('https://huggingface.co/datasets/lorenzoscottb/PLANE-ood/resolve/main/PLANE_trntst-OoV_inftype-all.json')
f = lambda df: pd.DataFrame(list(zip(*[df[c] for c in df.index])),columns=df.index)
ds=DatasetDict()
for split in ['train','test']:
    dfs=pd.concat([f(df[c]) for c in df.columns if split in c.lower()]).reset_index(drop=True)
    dfs['label']=dfs['label'].map(lambda x:{1:'entailment',0:'not-entailment'}[x])
    ds[split]=Dataset.from_pandas(dfs,preserve_index=False)
ds.push_to_hub('tasksource/PLANE-ood')
```


# PLANE Out-of-Distribution Sets

PLANE (phrase-level adjective-noun entailment) is a benchmark to test models on fine-grained compositional inference. 
The current dataset contains five sampled splits, used in the supervised experiments of [Bertolini et al., 22](https://aclanthology.org/2022.coling-1.359/). 


### Features

Each entrance has 6 features: `seq, label, Adj_Class, Adj, Nn, Hy`
- `seq`:test sequense
- `label`: ground truth (1:entialment, 0:no-entailment)
- `Adj_Class`: the class of the sequence adjectives
- `Adj`: the adjective of the sequence (I: intersective, S: subsective, O: intensional)
- `N`n: the noun
- `Hy`: the noun's hypericum

Each sample in `seq` can take one of three forms (or inference types, in paper):

- An *Adjective-Noun* is a *Noun* (e.g. A red car is a car)
- An *Adjective-Noun* is a *Hypernym(Noun)* (e.g. A red car is a vehicle)
- An *Adjective-Noun* is a *Adjective-Hypernym(Noun)* (e.g. A red car is a red vehicle)

Please note that, as specified in the paper, the ground truth is automatically assigned based on the linguistic rule that governs the interaction between each adjective class and inference type – see the paper for more detail. 

### Cite

If you use PLANE for your work, please cite the main COLING 2022 paper.
```
@inproceedings{bertolini-etal-2022-testing,
    title = "Testing Large Language Models on Compositionality and Inference with Phrase-Level Adjective-Noun Entailment",
    author = "Bertolini, Lorenzo  and
      Weeds, Julie  and
      Weir, David",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://aclanthology.org/2022.coling-1.359",
    pages = "4084--4100",
}

```