Datasets:
l1d_size
int64 16
128
| l1i_size
int64 16
128
| l2_size
int64 128
1.02k
| l1d_assoc
int64 1
8
| l1i_assoc
int64 1
8
| l2_assoc
int64 1
16
| workload
stringclasses 6
values | ipc
float64 0.22
4.09
| l2_miss_rate
float64 0
1
| sim_duration_s
float64 10.4
1.73k
| error
int64 0
0
| error_msg
null |
|---|---|---|---|---|---|---|---|---|---|---|---|
64
| 32
| 256
| 1
| 2
| 16
|
matrix_mul
| 0.808749
| 0.073967
| 735.24
| 0
| null |
128
| 32
| 256
| 8
| 1
| 16
|
matrix_mul
| 0.839999
| 0.06191
| 741.52
| 0
| null |
16
| 32
| 256
| 1
| 8
| 16
|
matrix_mul
| 0.798548
| 0.078226
| 742.48
| 0
| null |
16
| 32
| 256
| 4
| 2
| 4
|
matrix_mul
| 0.951992
| 0.025958
| 750.97
| 0
| null |
64
| 16
| 256
| 8
| 4
| 16
|
matrix_mul
| 0.798833
| 0.078449
| 753.25
| 0
| null |
16
| 16
| 256
| 8
| 8
| 16
|
matrix_mul
| 0.799269
| 0.078548
| 754.79
| 0
| null |
128
| 16
| 256
| 2
| 2
| 4
|
matrix_mul
| 0.958637
| 0.023921
| 757.73
| 0
| null |
64
| 32
| 256
| 2
| 2
| 16
|
matrix_mul
| 0.806867
| 0.074966
| 759.17
| 0
| null |
32
| 128
| 256
| 1
| 4
| 4
|
matrix_mul
| 0.951586
| 0.025954
| 764.76
| 0
| null |
32
| 64
| 256
| 8
| 8
| 4
|
matrix_mul
| 0.951336
| 0.026027
| 764.95
| 0
| null |
128
| 64
| 256
| 4
| 1
| 16
|
matrix_mul
| 0.913307
| 0.03658
| 765.49
| 0
| null |
16
| 16
| 256
| 2
| 1
| 16
|
matrix_mul
| 0.799071
| 0.078453
| 766.26
| 0
| null |
16
| 128
| 256
| 2
| 8
| 2
|
matrix_mul
| 0.989469
| 0.017639
| 768.62
| 0
| null |
128
| 128
| 256
| 2
| 1
| 1
|
matrix_mul
| 1.012201
| 0.013094
| 776.01
| 0
| null |
32
| 64
| 256
| 4
| 2
| 16
|
matrix_mul
| 0.798951
| 0.078509
| 778.91
| 0
| null |
128
| 64
| 256
| 8
| 2
| 2
|
matrix_mul
| 0.996459
| 0.0158
| 780.77
| 0
| null |
64
| 32
| 512
| 1
| 1
| 2
|
matrix_mul
| 0.997535
| 0.01127
| 781.02
| 0
| null |
32
| 64
| 256
| 1
| 2
| 2
|
matrix_mul
| 0.988515
| 0.017687
| 785.44
| 0
| null |
64
| 16
| 512
| 8
| 1
| 2
|
matrix_mul
| 1.001263
| 0.010823
| 786.18
| 0
| null |
128
| 32
| 256
| 4
| 1
| 16
|
matrix_mul
| 0.913305
| 0.03658
| 790.89
| 0
| null |
32
| 32
| 512
| 1
| 2
| 2
|
matrix_mul
| 0.99583
| 0.011622
| 796.64
| 0
| null |
64
| 64
| 512
| 1
| 8
| 2
|
matrix_mul
| 0.997544
| 0.01127
| 799.54
| 0
| null |
16
| 64
| 512
| 2
| 2
| 16
|
matrix_mul
| 1.023844
| 0.001495
| 806.39
| 0
| null |
32
| 64
| 1,024
| 8
| 1
| 16
|
matrix_mul
| 1.026971
| 0.000762
| 808.16
| 0
| null |
32
| 16
| 512
| 1
| 4
| 16
|
matrix_mul
| 1.022005
| 0.001493
| 809.95
| 0
| null |
32
| 32
| 512
| 2
| 4
| 4
|
matrix_mul
| 1.023543
| 0.001487
| 811.4
| 0
| null |
32
| 128
| 512
| 4
| 8
| 16
|
matrix_mul
| 1.024319
| 0.001495
| 814.08
| 0
| null |
32
| 64
| 512
| 2
| 2
| 16
|
matrix_mul
| 1.024286
| 0.001495
| 815.83
| 0
| null |
16
| 32
| 512
| 8
| 4
| 8
|
matrix_mul
| 1.023834
| 0.00149
| 822.43
| 0
| null |
32
| 128
| 1,024
| 2
| 2
| 8
|
matrix_mul
| 1.027
| 0.000762
| 823.1
| 0
| null |
16
| 16
| 512
| 8
| 1
| 4
|
matrix_mul
| 1.023571
| 0.001487
| 823.34
| 0
| null |
16
| 64
| 1,024
| 2
| 8
| 4
|
matrix_mul
| 1.026585
| 0.000762
| 823.93
| 0
| null |
32
| 128
| 1,024
| 2
| 1
| 16
|
matrix_mul
| 1.026999
| 0.000762
| 826.19
| 0
| null |
64
| 64
| 512
| 2
| 8
| 1
|
matrix_mul
| 0.999538
| 0.007853
| 826.42
| 0
| null |
128
| 16
| 512
| 4
| 8
| 8
|
matrix_mul
| 1.023981
| 0.00149
| 828.16
| 0
| null |
128
| 128
| 512
| 4
| 2
| 8
|
matrix_mul
| 1.023986
| 0.00149
| 830.81
| 0
| null |
32
| 128
| 1,024
| 1
| 1
| 8
|
matrix_mul
| 1.021397
| 0.00076
| 832.23
| 0
| null |
16
| 32
| 512
| 1
| 4
| 16
|
matrix_mul
| 1.019604
| 0.001488
| 832.29
| 0
| null |
64
| 16
| 512
| 4
| 4
| 8
|
matrix_mul
| 1.023912
| 0.00149
| 835
| 0
| null |
32
| 32
| 1,024
| 8
| 8
| 16
|
matrix_mul
| 1.026975
| 0.000762
| 838.52
| 0
| null |
64
| 128
| 512
| 2
| 1
| 16
|
matrix_mul
| 1.024346
| 0.001495
| 838.61
| 0
| null |
16
| 64
| 1,024
| 4
| 1
| 1
|
matrix_mul
| 1.026953
| 0.000762
| 839.26
| 0
| null |
16
| 128
| 512
| 1
| 1
| 16
|
matrix_mul
| 1.019603
| 0.001488
| 845.16
| 0
| null |
64
| 64
| 512
| 8
| 4
| 1
|
matrix_mul
| 1.000344
| 0.00765
| 853.6
| 0
| null |
128
| 32
| 1,024
| 1
| 8
| 16
|
matrix_mul
| 1.025141
| 0.000761
| 854.91
| 0
| null |
32
| 16
| 1,024
| 4
| 8
| 4
|
matrix_mul
| 1.027013
| 0.000762
| 872.82
| 0
| null |
128
| 128
| 1,024
| 8
| 8
| 4
|
matrix_mul
| 1.027204
| 0.000762
| 873.12
| 0
| null |
16
| 16
| 256
| 2
| 2
| 1
|
matrix_mul
| 1.009722
| 0.013591
| 751.96
| 0
| null |
16
| 128
| 256
| 4
| 1
| 1
|
matrix_mul
| 1.010226
| 0.013546
| 759.78
| 0
| null |
64
| 128
| 128
| 8
| 1
| 1
|
matrix_mul
| 0.222332
| 0.999984
| 1,533.89
| 0
| null |
16
| 128
| 256
| 8
| 2
| 16
|
matrix_mul
| 0.799272
| 0.078548
| 736
| 0
| null |
16
| 32
| 128
| 1
| 8
| 8
|
matrix_mul
| 0.222168
| 0.996172
| 1,559.46
| 0
| null |
128
| 32
| 128
| 2
| 1
| 4
|
matrix_mul
| 0.222352
| 0.999972
| 1,568.68
| 0
| null |
16
| 64
| 128
| 4
| 4
| 16
|
matrix_mul
| 0.222338
| 0.999802
| 1,569.77
| 0
| null |
32
| 16
| 128
| 4
| 4
| 4
|
matrix_mul
| 0.22234
| 0.999865
| 1,577.16
| 0
| null |
32
| 64
| 128
| 8
| 4
| 8
|
matrix_mul
| 0.222339
| 0.99985
| 1,583.44
| 0
| null |
16
| 128
| 1,024
| 8
| 8
| 8
|
matrix_mul
| 1.027007
| 0.000762
| 819.2
| 0
| null |
32
| 16
| 1,024
| 1
| 1
| 8
|
matrix_mul
| 1.02139
| 0.00076
| 807.58
| 0
| null |
16
| 64
| 128
| 2
| 2
| 4
|
matrix_mul
| 0.222338
| 0.999836
| 1,588.95
| 0
| null |
16
| 128
| 256
| 2
| 2
| 4
|
matrix_mul
| 0.951183
| 0.026079
| 765.07
| 0
| null |
64
| 16
| 512
| 1
| 8
| 4
|
matrix_mul
| 1.022248
| 0.001485
| 831.58
| 0
| null |
128
| 32
| 1,024
| 8
| 4
| 8
|
matrix_mul
| 1.027204
| 0.000762
| 833.49
| 0
| null |
32
| 16
| 512
| 4
| 4
| 1
|
matrix_mul
| 0.998478
| 0.008132
| 814.69
| 0
| null |
128
| 16
| 256
| 4
| 8
| 8
|
matrix_mul
| 0.915793
| 0.036982
| 776.42
| 0
| null |
16
| 32
| 512
| 8
| 2
| 4
|
matrix_mul
| 1.023584
| 0.001487
| 836.25
| 0
| null |
128
| 128
| 256
| 1
| 4
| 1
|
matrix_mul
| 1.008775
| 0.013722
| 768.94
| 0
| null |
64
| 16
| 512
| 4
| 8
| 8
|
matrix_mul
| 1.0239
| 0.00149
| 812.42
| 0
| null |
128
| 32
| 512
| 2
| 4
| 16
|
matrix_mul
| 1.024407
| 0.001495
| 818.86
| 0
| null |
128
| 128
| 1,024
| 1
| 8
| 4
|
matrix_mul
| 1.025141
| 0.000761
| 829.8
| 0
| null |
128
| 16
| 128
| 4
| 1
| 1
|
matrix_mul
| 0.222357
| 0.999997
| 1,606.49
| 0
| null |
128
| 64
| 512
| 2
| 4
| 1
|
matrix_mul
| 1.00209
| 0.007169
| 825.55
| 0
| null |
16
| 128
| 256
| 2
| 4
| 16
|
matrix_mul
| 0.799081
| 0.078453
| 735.13
| 0
| null |
128
| 64
| 256
| 1
| 8
| 4
|
matrix_mul
| 0.96831
| 0.021847
| 757.68
| 0
| null |
64
| 32
| 256
| 2
| 1
| 8
|
matrix_mul
| 0.898266
| 0.042823
| 785.7
| 0
| null |
64
| 16
| 128
| 8
| 8
| 16
|
matrix_mul
| 0.222343
| 0.999939
| 1,617.52
| 0
| null |
32
| 32
| 1,024
| 1
| 4
| 1
|
matrix_mul
| 1.021399
| 0.00076
| 803.31
| 0
| null |
64
| 128
| 256
| 8
| 2
| 8
|
matrix_mul
| 0.898558
| 0.042667
| 809.67
| 0
| null |
16
| 128
| 1,024
| 2
| 1
| 4
|
matrix_mul
| 1.026584
| 0.000762
| 861.85
| 0
| null |
32
| 16
| 1,024
| 2
| 1
| 2
|
matrix_mul
| 1.026967
| 0.000763
| 801.1
| 0
| null |
128
| 128
| 1,024
| 1
| 4
| 1
|
matrix_mul
| 1.025141
| 0.000761
| 846.28
| 0
| null |
32
| 128
| 512
| 2
| 4
| 4
|
matrix_mul
| 1.023543
| 0.001487
| 827.9
| 0
| null |
128
| 16
| 512
| 4
| 2
| 4
|
matrix_mul
| 1.023746
| 0.001488
| 835.96
| 0
| null |
64
| 128
| 512
| 1
| 4
| 8
|
matrix_mul
| 1.022544
| 0.001487
| 826.81
| 0
| null |
32
| 32
| 1,024
| 4
| 1
| 8
|
matrix_mul
| 1.027009
| 0.000762
| 836.69
| 0
| null |
64
| 16
| 1,024
| 8
| 8
| 1
|
matrix_mul
| 1.027073
| 0.000762
| 855.82
| 0
| null |
32
| 32
| 1,024
| 8
| 1
| 4
|
matrix_mul
| 1.026969
| 0.000762
| 882.95
| 0
| null |
32
| 64
| 1,024
| 4
| 4
| 8
|
matrix_mul
| 1.027015
| 0.000762
| 866.74
| 0
| null |
128
| 32
| 512
| 8
| 2
| 16
|
matrix_mul
| 1.024499
| 0.001496
| 833.24
| 0
| null |
128
| 16
| 256
| 4
| 1
| 16
|
matrix_mul
| 0.9133
| 0.03658
| 775.84
| 0
| null |
64
| 32
| 256
| 4
| 8
| 2
|
matrix_mul
| 0.990027
| 0.017614
| 753.7
| 0
| null |
16
| 16
| 128
| 4
| 4
| 16
|
matrix_mul
| 0.222334
| 0.999801
| 1,572.25
| 0
| null |
32
| 32
| 256
| 2
| 1
| 4
|
matrix_mul
| 0.951439
| 0.026034
| 781.95
| 0
| null |
64
| 128
| 128
| 1
| 4
| 2
|
matrix_mul
| 0.222205
| 0.999293
| 1,562.95
| 0
| null |
128
| 32
| 128
| 2
| 8
| 1
|
matrix_mul
| 0.222344
| 1
| 1,589.83
| 0
| null |
64
| 128
| 128
| 4
| 2
| 8
|
matrix_mul
| 0.222343
| 0.999924
| 1,579.4
| 0
| null |
16
| 64
| 1,024
| 2
| 4
| 8
|
matrix_mul
| 1.026585
| 0.000762
| 830.99
| 0
| null |
16
| 128
| 128
| 1
| 1
| 1
|
matrix_mul
| 0.222012
| 0.997256
| 1,601.37
| 0
| null |
16
| 16
| 256
| 1
| 4
| 16
|
matrix_mul
| 0.798505
| 0.078226
| 746.17
| 0
| null |
32
| 128
| 128
| 4
| 8
| 2
|
matrix_mul
| 0.222335
| 0.999926
| 1,512.17
| 0
| null |
128
| 128
| 256
| 1
| 4
| 8
|
matrix_mul
| 0.96485
| 0.023112
| 746.92
| 0
| null |
AIDE-Chip 15K gem5 Simulation Dataset
AIDE-Chip-15K-gem5-Sims is a structured dataset of approximately 15,000 validated RISC-V gem5 simulations covering cache hierarchy design-space exploration (DSE) for single-core processors.
The dataset was generated using gem5's Syscall Emulation (SE) mode and six representative workloads, spanning compute-bound, memory-bound, and irregular access patterns. Each sample maps cache configuration parameters to IPC and L2 miss rate, enabling training of fast, physically consistent surrogate models.
This dataset accompanies the paper:
Udayshankar Ravikumar . Fast, Explainable Surrogate Models for gem5 Cache Design Space Exploration. Authorea. January 14, 2026. https://doi.org/10.22541/au.176843174.46109183/v1
Supported Tasks
- Cache performance regression (IPC)
- Cache miss-rate regression (L2 miss rate)
Workloads
| Workload | Description |
|---|---|
crc32 |
Streaming, low locality |
dijkstra |
Pointer-chasing, irregular |
fft |
Strided, cache-sensitive |
matrix_mul |
Dense compute, high reuse |
qsort |
Branchy, mixed locality |
sha |
Compute-bound, near-zero miss rate |
The C code of the workloads can be found at: https://github.com/Uralstech/AIDE-Chip-Surrogates/tree/main/15k-Sims/benchmarks
Dataset Structure
The dataset is released as sharded CSV files for scalability.
Each row contains:
| Column | Description |
|---|---|
| l1d_size, l1i_size, l2_size | Cache sizes (KB) |
| l1d_assoc, l1i_assoc, l2_assoc | Associativities |
| workload | Benchmark name |
| ipc | Instructions per cycle |
| l2_miss_rate | L2 miss rate |
| sim_duration_s | gem5 simulation wall time |
| error | Simulation success flag |
| error_msg | Simulation error message |
Generation Details
- Simulator: gem5 (SE mode)
- Execution platform:
- 4× AWS c6g + 4× AWS c7g
- 64 vCPUs each
- Sampling strategy:
- Constrained grid over cache sizes & associativities
- Validity constraints enforced
- Randomized execution order
- Recommended dataset split:
- 70% train / 15% validation / 15% test (per workload)
The script used to generate the configuration set can be found at: https://github.com/Uralstech/AIDE-Chip-Surrogates/blob/main/15k-Sims/config-gen/generate_configs.py
Intended Use
This dataset is intended for:
- Research on surrogate modeling for architecture simulation
- Cache design-space exploration
- Explainable ML for systems
- Educational and academic use
Not intended for commercial use (see License).
Patent Notice
This dataset accompanies research describing surrogate-based techniques for microarchitectural design-space exploration.
The author has filed a pending patent application that may cover broader system-level methods beyond the specific data provided here.
This notice is informational only and does not alter the dataset’s Creative Commons (CC BY-NC-SA 4.0) license.
- Downloads last month
- 25