File size: 34,866 Bytes
95f8934
 
 
 
 
 
 
 
 
 
 
24dd073
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
 
 
 
 
 
 
 
 
95f8934
 
 
 
 
 
 
 
 
db91874
95f8934
 
db91874
95f8934
db91874
95f8934
 
 
 
 
 
 
 
 
db91874
95f8934
 
db91874
 
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
 
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
95f8934
 
 
 
db91874
 
 
 
 
 
 
 
 
 
95f8934
 
 
 
 
 
 
 
 
db91874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f8934
db91874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f8934
db91874
 
95f8934
 
 
 
 
 
 
 
db91874
95f8934
db91874
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
db91874
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
 
 
 
 
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
 
 
 
 
 
 
 
 
 
 
 
 
95f8934
db91874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
95f8934
 
 
 
 
 
 
 
db91874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f8934
db91874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
 
 
 
 
 
 
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db91874
95f8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24dd073
95f8934
 
db91874
 
 
 
95f8934
 
 
 
 
 
db91874
95f8934
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "torch>=2.0.0",
#     "datasets>=2.14.0",
#     "accelerate>=0.24.0",
#     "huggingface-hub",
#     "pillow>=12.0.0",
#     "jiwer>=3.0.0",
#     "tqdm>=4.65.0",
#     "transformers @ git+https://github.com/baptiste-aubertin/transformers.git@main",
#     "trackio",
# ]
# ///

"""
Fine-tune LightOnOCR on OCR datasets.

LightOnOCR is an end-to-end trainable vision-language model specifically designed for OCR tasks.
This script enables fine-tuning on custom datasets for improved performance on specific domains,
languages, or document types.

Examples:
    # Basic fine-tuning on IAM handwriting dataset
    uv run lightonocr-finetune.py \
        --dataset-id HuggingFaceM4/FineVision \
        --subset iam \
        --output-dir ./lightonocr-iam \
        --epochs 2

    # Fine-tune with frozen language model to save memory
    uv run lightonocr-finetune.py \
        --dataset-id HuggingFaceM4/FineVision \
        --subset olmOCR-mix-0225-documents \
        --output-dir ./lightonocr-docs \
        --freeze-language \
        --batch-size 8
    
    # Stream large datasets to reduce memory usage
    uv run lightonocr-finetune.py \
        --dataset-id HuggingFaceM4/FineVision \
        --subset olmOCR-mix-0225-books \
        --output-dir ./lightonocr-books \
        --streaming \
        --shuffle-buffer-size 10000 \
        --max-train-samples 5000  # Will auto-calculate max-steps

    # Push to Hub with evaluation metrics
    uv run lightonocr-finetune.py \
        --dataset-id HuggingFaceM4/FineVision \
        --subset iam \
        --hub-model-id username/lightonocr-iam \
        --push-to-hub \
        --eval-samples 100

    # Run on HF Jobs with GPU and streaming
    hf jobs run --gpu l4x1 \
        uv run lightonocr-finetune.py \
        --dataset-id custom/large-ocr-dataset \
        --output-dir ./custom-ocr \
        --streaming \
        --epochs 3
"""

import argparse
import logging
import os
import sys
from datetime import datetime
from pathlib import Path
from typing import Dict, Optional

import torch
from datasets import load_dataset
from huggingface_hub import login
from jiwer import cer, wer
from tqdm import tqdm
from transformers import (
    AutoProcessor,
    LightOnOCRForConditionalGeneration,
    Trainer,
    TrainingArguments,
)

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

os.environ["HF_XET_HIGH_PERFORMANCE"] = "1"

# Constants for the assistant pattern in chat template
ASSISTANT_START_PATTERN = [151645, 1699, 151644, 77091, 1699]
DEFAULT_MAX_LENGTH = 1024
DEFAULT_LONGEST_EDGE = 700


class OCRDataCollator:
    """Data collator for OCR fine-tuning."""

    def __init__(
        self,
        processor,
        max_length=DEFAULT_MAX_LENGTH,
        longest_edge=DEFAULT_LONGEST_EDGE,
    ):
        self.processor = processor
        self.max_length = max_length
        self.longest_edge = longest_edge

    def __call__(self, examples):
        batch_messages = []
        batch_images = []

        for example in examples:
            example_images = example["images"]
            example_texts = example["texts"]

            # Validate single image/text per example
            if len(example_images) != 1 or len(example_texts) != 1:
                logger.warning(
                    f"Skipping example with {len(example_images)} images and {len(example_texts)} texts"
                )
                continue

            image = example_images[0].convert("RGB")
            batch_images.append(image)

            # Extract assistant text from conversation
            conversation = example_texts[0]
            assistant_text = conversation.get("assistant", "").strip()

            messages = [
                {"role": "user", "content": [{"type": "image"}]},
                {
                    "role": "assistant",
                    "content": [{"type": "text", "text": assistant_text}],
                },
            ]
            batch_messages.append(messages)

        if not batch_images:
            return None

        # Apply chat template
        texts = [
            self.processor.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=False
            )
            for messages in batch_messages
        ]

        # Process inputs
        inputs = self.processor(
            text=texts,
            images=batch_images,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=self.max_length,
            size={"longest_edge": self.longest_edge},
        )

        # Create labels (mask prompt, train only on assistant response)
        labels = inputs["input_ids"].clone()
        pad_token_id = self.processor.tokenizer.pad_token_id

        for i in range(len(labels)):
            full_ids = inputs["input_ids"][i].tolist()

            # Find where assistant content starts
            assistant_content_start = None

            # Try the standard pattern: <|im_end|>\n<|im_start|>assistant\n
            for idx in range(len(full_ids) - len(ASSISTANT_START_PATTERN)):
                if (
                    full_ids[idx : idx + len(ASSISTANT_START_PATTERN)]
                    == ASSISTANT_START_PATTERN
                ):
                    assistant_content_start = idx + len(ASSISTANT_START_PATTERN)
                    break

            if assistant_content_start is None:
                # Some samples may not have the exact pattern - this is expected
                # The model will train on samples where the pattern is found
                labels[i, :] = -100
            else:
                # Mask everything first
                labels[i, :] = -100

                # Unmask from assistant content start to end
                for idx in range(assistant_content_start, len(full_ids)):
                    if full_ids[idx] == pad_token_id:
                        break
                    labels[i, idx] = inputs["input_ids"][i, idx]

            # Mask padding tokens
            labels[i, inputs["input_ids"][i] == pad_token_id] = -100

        inputs["labels"] = labels

        # Convert to proper dtype
        inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)

        return inputs


def evaluate_model(
    model,
    processor,
    dataset,
    num_samples: int = 50,
    batch_size: int = 8,
    device: str = "cuda",
    description: str = "Model",
    is_streaming: bool = False,
) -> Dict[str, float]:
    """
    Evaluate model on dataset and compute OCR metrics.

    Args:
        model: The model to evaluate
        processor: The processor for the model
        dataset: Dataset to evaluate on (can be streaming or regular)
        num_samples: Number of samples to evaluate
        batch_size: Batch size for evaluation
        device: Device to run evaluation on
        description: Description for logging
        is_streaming: Whether the dataset is a streaming dataset

    Returns:
        Dictionary with CER, WER, and perfect match count
    """
    model.eval()
    predictions = []
    ground_truths = []

    logger.info(f"Evaluating {description} on {num_samples} samples...")

    # Handle streaming datasets differently
    if is_streaming:
        # For streaming datasets, we take the first num_samples
        samples_processed = 0
        batch_samples = []

        for sample in tqdm(dataset, total=num_samples, desc="Evaluating"):
            if samples_processed >= num_samples:
                break

            batch_samples.append(sample)
            samples_processed += 1

            # Process when we have a full batch or reached the end
            if len(batch_samples) == batch_size or samples_processed == num_samples:
                batch_images = [[s["images"][0]] for s in batch_samples]
                batch_ground_truths = [
                    s["texts"][0]["assistant"].strip() for s in batch_samples
                ]

                # Prepare inputs
                messages = [{"role": "user", "content": [{"type": "image"}]}]
                text = processor.apply_chat_template(
                    messages, tokenize=False, add_generation_prompt=True
                )
                texts = [text] * len(batch_images)

                inputs = processor(
                    text=texts,
                    images=batch_images,
                    return_tensors="pt",
                    padding=True,
                    truncation=True,
                    max_length=DEFAULT_MAX_LENGTH,
                    size={"longest_edge": DEFAULT_LONGEST_EDGE},
                ).to(device)
                inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)

                # Generate predictions
                with torch.no_grad():
                    outputs = model.generate(
                        **inputs, max_new_tokens=512, do_sample=True
                    )

                input_length = inputs["input_ids"].shape[1]
                generated_ids = outputs[:, input_length:]
                batch_predictions = processor.batch_decode(
                    generated_ids, skip_special_tokens=True
                )
                batch_predictions = [p.strip() for p in batch_predictions]

                predictions.extend(batch_predictions)
                ground_truths.extend(batch_ground_truths)
                batch_samples = []
    else:
        # Original non-streaming evaluation
        for start_idx in tqdm(range(0, min(num_samples, len(dataset)), batch_size)):
            end_idx = min(start_idx + batch_size, num_samples, len(dataset))
            batch_samples = [dataset[i] for i in range(start_idx, end_idx)]

            batch_images = [[s["images"][0]] for s in batch_samples]
            batch_ground_truths = [
                s["texts"][0]["assistant"].strip() for s in batch_samples
            ]

            # Prepare inputs
            messages = [{"role": "user", "content": [{"type": "image"}]}]
            text = processor.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )
            texts = [text] * len(batch_images)

            inputs = processor(
                text=texts,
                images=batch_images,
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=DEFAULT_MAX_LENGTH,
                size={"longest_edge": DEFAULT_LONGEST_EDGE},
            ).to(device)
            inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)

            # Generate predictions
            with torch.no_grad():
                outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True)

            input_length = inputs["input_ids"].shape[1]
            generated_ids = outputs[:, input_length:]
            batch_predictions = processor.batch_decode(
                generated_ids, skip_special_tokens=True
            )
            batch_predictions = [p.strip() for p in batch_predictions]

            predictions.extend(batch_predictions)
            ground_truths.extend(batch_ground_truths)

    # Compute metrics
    cer_score = cer(ground_truths, predictions) * 100
    wer_score = wer(ground_truths, predictions) * 100
    perfect_matches = sum(
        1 for pred, gt in zip(predictions, ground_truths) if pred == gt
    )

    actual_samples = len(predictions)
    logger.info(
        f"CER: {cer_score:.2f}% | WER: {wer_score:.2f}% | Perfect: {perfect_matches}/{actual_samples}"
    )

    # Show a few examples
    for i in range(min(3, len(predictions))):
        match = "✅" if predictions[i] == ground_truths[i] else "❌"
        logger.info(
            f"{match} Sample {i + 1}: '{predictions[i][:50]}...' vs '{ground_truths[i][:50]}...'"
        )

    return {
        "cer": cer_score,
        "wer": wer_score,
        "perfect_matches": perfect_matches,
        "total_samples": actual_samples,
    }


def create_model_card_content(
    model_id: str,
    dataset_id: str,
    subset: Optional[str],
    base_metrics: Dict[str, float],
    finetuned_metrics: Dict[str, float],
    training_args: TrainingArguments,
    freeze_config: Dict[str, bool],
) -> str:
    """Generate model card content with training details and metrics."""

    # Calculate improvements
    cer_improvement = base_metrics["cer"] - finetuned_metrics["cer"]
    wer_improvement = base_metrics["wer"] - finetuned_metrics["wer"]
    perfect_improvement = (
        finetuned_metrics["perfect_matches"] - base_metrics["perfect_matches"]
    )

    # Determine which components were frozen
    frozen_components = [comp for comp, is_frozen in freeze_config.items() if is_frozen]
    frozen_str = (
        ", ".join(frozen_components) if frozen_components else "None (full fine-tuning)"
    )

    dataset_str = f"{dataset_id}/{subset}" if subset else dataset_id

    content = f"""---
license: mit
tags:
- vision
- ocr
- document-understanding
- transformers
base_model: lightonai/LightOnOCR-1B-1025
datasets:
- {dataset_id}
metrics:
- cer
- wer
library_name: transformers
---

# {model_id.split("/")[-1]}

This model is a fine-tuned version of [LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025) on the {dataset_str} dataset.

## Model Description

LightOnOCR is an end-to-end trainable vision-language model specifically designed for OCR tasks. This fine-tuned version has been optimized for improved performance on the target dataset.

## Training Details

### Dataset
- **Source**: {dataset_str}
- **Training samples**: {training_args.num_train_epochs * (training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps)}
- **Validation samples**: Used for model selection

### Training Configuration
- **Epochs**: {training_args.num_train_epochs}
- **Batch size**: {training_args.per_device_train_batch_size} (effective: {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps})
- **Learning rate**: {training_args.learning_rate}
- **Frozen components**: {frozen_str}
- **Hardware**: GPU with mixed precision (bf16)

## Evaluation Results

### Performance Comparison

| Metric | Base Model | Fine-tuned | Improvement |
|--------|------------|------------|-------------|
| **CER (%)** | {base_metrics["cer"]:.2f} | {finetuned_metrics["cer"]:.2f} | {cer_improvement:+.2f} |
| **WER (%)** | {base_metrics["wer"]:.2f} | {finetuned_metrics["wer"]:.2f} | {wer_improvement:+.2f} |
| **Perfect Matches** | {base_metrics["perfect_matches"]}/{base_metrics["total_samples"]} | {finetuned_metrics["perfect_matches"]}/{finetuned_metrics["total_samples"]} | {perfect_improvement:+d} |

*Lower is better for CER and WER. Evaluation performed on {finetuned_metrics["total_samples"]} test samples.*

## Usage

```python
from transformers import AutoProcessor, LightOnOCRForConditionalGeneration
from PIL import Image
import torch

# Load model and processor
model = LightOnOCRForConditionalGeneration.from_pretrained(
    "{model_id}",
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
processor = AutoProcessor.from_pretrained("{model_id}")

# Prepare image
image = Image.open("your_image.jpg").convert("RGB")

# Create prompt
messages = [
    {{"role": "user", "content": [{{"type": "image"}}]}}
]

# Process and generate
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
    text=[text],
    images=[[image]],
    return_tensors="pt",
    max_length=1024
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=512)
generated_text = processor.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(generated_text)
```

## Training Script

This model was trained using the UV Scripts training pipeline. To reproduce or further fine-tune:

```bash
uv run https://huggingface.co/datasets/uv-scripts/transformers-training/raw/main/lightonocr-finetune.py \\
    --dataset-id {dataset_id} \\
    {"--subset " + subset if subset else ""} \\
    --output-dir ./model \\
    --epochs {training_args.num_train_epochs}
```

## Citation

If you use this model, please cite:

```bibtex
@misc{{lightonocr2024,
  title={{LightOnOCR: End-to-End Trainable OCR Model}},
  author={{LightOn AI}},
  year={{2024}},
  url={{https://huggingface.co/blog/lightonai/lightonocr}}
}}
```

## License

This model is released under the MIT license.

---

*Generated on {datetime.now().strftime("%Y-%m-%d")} using [UV Scripts](https://huggingface.co/uv-scripts)*
"""

    return content


def main():
    parser = argparse.ArgumentParser(
        description="Fine-tune LightOnOCR on OCR datasets",
        formatter_class=argparse.RawDescriptionHelpFormatter,
    )

    # Dataset arguments
    parser.add_argument(
        "--dataset-id",
        type=str,
        default="HuggingFaceM4/FineVision",
        help="HuggingFace dataset ID",
    )
    parser.add_argument(
        "--subset",
        type=str,
        default="iam",
        choices=["iam", "olmOCR-mix-0225-books", "olmOCR-mix-0225-documents"],
        help="Dataset subset to use (for FineVision)",
    )
    parser.add_argument(
        "--train-split",
        type=str,
        default="train[:85%]",
        help="Training split specification",
    )
    parser.add_argument(
        "--val-split",
        type=str,
        default="train[85%:95%]",
        help="Validation split specification",
    )
    parser.add_argument(
        "--test-split", type=str, default="train[95%:]", help="Test split specification"
    )

    # Streaming arguments
    parser.add_argument(
        "--streaming",
        action="store_true",
        help="Use dataset streaming to reduce memory usage (Note: uses full training set, ignores train-split percentages)",
    )
    parser.add_argument(
        "--shuffle-buffer-size",
        type=int,
        default=10000,
        help="Buffer size for shuffling when using streaming (default: 10000)",
    )
    parser.add_argument(
        "--max-train-samples",
        type=int,
        help="Maximum number of training samples when streaming (useful for quick experiments)",
    )

    # Model arguments
    parser.add_argument(
        "--model-id",
        type=str,
        default="lightonai/LightOnOCR-1B-1025",
        help="Base model ID",
    )
    parser.add_argument(
        "--freeze-vision", action="store_true", help="Freeze vision encoder"
    )
    parser.add_argument(
        "--freeze-language", action="store_true", help="Freeze language model"
    )
    parser.add_argument(
        "--freeze-projection",
        action="store_true",
        help="Freeze vision projection layer",
    )

    # Training arguments
    parser.add_argument(
        "--output-dir", type=str, required=True, help="Directory to save the model"
    )
    parser.add_argument(
        "--epochs", type=int, default=2, help="Number of training epochs"
    )
    parser.add_argument(
        "--batch-size", type=int, default=4, help="Training batch size per device"
    )
    parser.add_argument(
        "--gradient-accumulation",
        type=int,
        default=4,
        help="Gradient accumulation steps",
    )
    parser.add_argument(
        "--learning-rate", type=float, default=6e-5, help="Learning rate"
    )
    parser.add_argument(
        "--warmup-steps", type=int, default=10, help="Number of warmup steps"
    )
    parser.add_argument(
        "--eval-steps", type=int, default=50, help="Evaluation interval (in steps)"
    )
    parser.add_argument(
        "--save-steps",
        type=int,
        default=500,
        help="Save checkpoint interval (in steps)",
    )
    parser.add_argument(
        "--max-length", type=int, default=1024, help="Maximum sequence length"
    )
    parser.add_argument(
        "--longest-edge", type=int, default=700, help="Longest edge for image resizing"
    )

    # Evaluation arguments
    parser.add_argument(
        "--eval-samples", type=int, default=100, help="Number of samples for evaluation"
    )
    parser.add_argument(
        "--eval-batch-size", type=int, default=8, help="Batch size for evaluation"
    )
    parser.add_argument(
        "--skip-base-eval", action="store_true", help="Skip base model evaluation"
    )

    # Hub arguments
    parser.add_argument(
        "--hub-model-id", type=str, help="HuggingFace Hub model ID for pushing"
    )
    parser.add_argument(
        "--push-to-hub", action="store_true", help="Push model to HuggingFace Hub"
    )
    parser.add_argument("--hf-token", type=str, help="HuggingFace API token")
    parser.add_argument(
        "--private", action="store_true", help="Make the model private on Hub"
    )

    # Other arguments
    parser.add_argument(
        "--max-samples", type=int, help="Limit number of training samples (for testing)"
    )
    parser.add_argument("--seed", type=int, default=42, help="Random seed")
    parser.add_argument(
        "--max-steps",
        type=int,
        help="Maximum number of training steps (auto-calculated for streaming if not specified)"
    )

    args = parser.parse_args()

    # Check GPU availability
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.info("To run on HF Jobs with GPU:")
        logger.info(
            f"hf jobs run --gpu l4x1 uv run {__file__} --dataset-id {args.dataset_id} --output-dir {args.output_dir}"
        )
        sys.exit(1)

    device = "cuda"
    logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")

    # Set environment variables for better performance
    os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
    torch.set_float32_matmul_precision("high")

    # Login to HuggingFace if needed
    if args.push_to_hub:
        token = args.hf_token or os.environ.get("HF_TOKEN")
        if token:
            login(token=token)
        else:
            logger.error("HF_TOKEN required for push_to_hub")
            sys.exit(1)

    # Load dataset
    logger.info(f"Loading dataset: {args.dataset_id}/{args.subset}")

    if args.streaming:
        logger.info("Using streaming mode for dataset loading")
        # For streaming, we can only use "train" split, not percentage-based splits
        # Load the full training set in streaming mode
        train_ds = load_dataset(
            args.dataset_id, args.subset, split="train", streaming=True
        )

        # For validation and test, we need to load a subset of the data
        # We'll use the last 15% of the data for validation and test
        # Load the full dataset for splitting into val/test
        full_ds = load_dataset(args.dataset_id, args.subset, split="train")
        total_size = len(full_ds)

        # Calculate split indices
        train_end = int(0.85 * total_size)
        val_end = int(0.95 * total_size)

        # Create validation and test splits
        val_ds = full_ds.select(range(train_end, val_end))
        test_ds = full_ds.select(range(val_end, total_size))

        # Clean up the full dataset to save memory
        del full_ds

        # Apply shuffling with buffer for streaming dataset
        train_ds = train_ds.shuffle(
            seed=args.seed, buffer_size=args.shuffle_buffer_size
        )

        # Limit samples if requested (for streaming)
        if args.max_samples or args.max_train_samples:
            max_samples = args.max_samples or args.max_train_samples
            train_ds = train_ds.take(max_samples)
            logger.info(f"Limited training to {max_samples} samples (streaming mode)")

        logger.info(
            f"Dataset loaded - Training: streaming (full train set), Val: {len(val_ds)}, Test: {len(test_ds)}"
        )
        logger.info(
            "Note: When streaming, using full training set. Use --max-train-samples to limit."
        )
    else:
        # Original non-streaming loading
        train_ds = load_dataset(args.dataset_id, args.subset, split=args.train_split)
        val_ds = load_dataset(args.dataset_id, args.subset, split=args.val_split)
        test_ds = load_dataset(args.dataset_id, args.subset, split=args.test_split)

        # Limit samples if requested (non-streaming)
        if args.max_samples:
            train_ds = train_ds.select(range(min(args.max_samples, len(train_ds))))
            logger.info(f"Limited training to {len(train_ds)} samples")

        logger.info(
            f"Dataset sizes - Train: {len(train_ds)}, Val: {len(val_ds)}, Test: {len(test_ds)}"
        )

    # Load processor
    logger.info(f"Loading processor from {args.model_id}")
    processor = AutoProcessor.from_pretrained(args.model_id)
    processor.tokenizer.padding_side = "left"

    # Load model
    logger.info(f"Loading model from {args.model_id}")
    model = LightOnOCRForConditionalGeneration.from_pretrained(
        args.model_id,
        torch_dtype=torch.bfloat16,
        attn_implementation="sdpa",
        device_map="auto",
    ).to(device)

    # Freeze components as requested
    freeze_config = {
        "vision_encoder": args.freeze_vision,
        "language_model": args.freeze_language,
        "vision_projection": args.freeze_projection,
    }

    if args.freeze_vision:
        for param in model.model.vision_encoder.parameters():
            param.requires_grad = False
        logger.info("Vision encoder frozen")

    if args.freeze_language:
        for param in model.model.language_model.parameters():
            param.requires_grad = False
        logger.info("Language model frozen")

    if args.freeze_projection:
        for param in model.model.vision_projection.parameters():
            param.requires_grad = False
        logger.info("Vision projection frozen")

    # Count trainable parameters
    total_params = sum(p.numel() for p in model.parameters())
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    logger.info(f"Total parameters: {total_params:,}")
    logger.info(
        f"Trainable parameters: {trainable_params:,} ({100 * trainable_params / total_params:.2f}%)"
    )

    # Evaluate base model
    base_metrics = {
        "cer": 0.0,
        "wer": 0.0,
        "perfect_matches": 0,
        "total_samples": args.eval_samples,
    }
    if not args.skip_base_eval:
        logger.info("\n" + "=" * 80)
        logger.info("EVALUATING BASE MODEL")
        logger.info("=" * 80)
        base_metrics = evaluate_model(
            model,
            processor,
            test_ds,
            num_samples=args.eval_samples,
            batch_size=args.eval_batch_size,
            device=device,
            description="Base model",
            is_streaming=False,  # Test dataset is never streamed
        )
        torch.cuda.empty_cache()

    # Prepare data collator
    data_collator = OCRDataCollator(
        processor, max_length=args.max_length, longest_edge=args.longest_edge
    )

    # Calculate max_steps for streaming datasets
    max_steps = None
    if args.streaming:
        if args.max_steps:
            max_steps = args.max_steps
            logger.info(f"Using user-specified max_steps: {max_steps}")
        else:
            # Estimate max_steps based on dataset size and batch configuration
            if args.max_train_samples:
                # Calculate based on limited samples
                steps_per_epoch = args.max_train_samples // (args.batch_size * args.gradient_accumulation)
                max_steps = steps_per_epoch * args.epochs
                logger.info(f"Calculated max_steps from max_train_samples: {max_steps}")
            else:
                # Use a default reasonable value
                # Approximate based on typical dataset sizes
                # Default to 1000 steps per epoch as a reasonable estimate
                max_steps = 1000 * args.epochs
                logger.warning(
                    f"Streaming mode: Using default max_steps={max_steps}. "
                    f"Consider setting --max-steps or --max-train-samples for precise control."
                )

    # Setup training arguments
    # When streaming, use max_steps instead of num_train_epochs
    training_args_dict = {
        "output_dir": args.output_dir,
        "per_device_train_batch_size": args.batch_size,
        "per_device_eval_batch_size": args.eval_batch_size,
        "gradient_accumulation_steps": args.gradient_accumulation,
        "learning_rate": args.learning_rate,
        "weight_decay": 0.0,
        "logging_steps": 50,
        "eval_strategy": "steps",
        "eval_steps": args.eval_steps,
        "save_strategy": "steps",
        "save_steps": args.save_steps,
        "save_total_limit": 2,
        "load_best_model_at_end": True,
        "metric_for_best_model": "eval_loss",
        "bf16": True,
        "fp16": False,
        "remove_unused_columns": False,
        "dataloader_pin_memory": False,
        "gradient_checkpointing": True,
        "optim": "adamw_torch_fused" if torch.cuda.is_available() else "adamw_torch",
        "warmup_steps": args.warmup_steps,
        "lr_scheduler_type": "linear",
        "push_to_hub": args.push_to_hub,
        "hub_model_id": args.hub_model_id,
        "hub_private_repo": args.private,
    }
    
    # Add either max_steps or num_train_epochs based on streaming mode
    if args.streaming:
        training_args_dict["max_steps"] = max_steps
        # Still set num_train_epochs for model card generation
        training_args_dict["num_train_epochs"] = args.epochs
    else:
        training_args_dict["num_train_epochs"] = args.epochs
    
    training_args = TrainingArguments(**training_args_dict)

    # Use smaller validation set for faster evaluation
    val_ds_small = val_ds.select(range(min(100, len(val_ds))))

    # Create trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_ds,
        eval_dataset=val_ds_small,
        data_collator=data_collator,
    )

    # Train
    logger.info("\n" + "=" * 80)
    logger.info("STARTING TRAINING")
    logger.info("=" * 80)
    if args.streaming:
        logger.info(
            f"Training samples: streaming mode (max: {args.max_train_samples or 'unlimited'})"
        )
        logger.info(f"Max steps: {max_steps}")
    else:
        logger.info(f"Training samples: {len(train_ds)}")
    logger.info(f"Validation samples: {len(val_ds_small)}")
    logger.info(f"Effective batch size: {args.batch_size * args.gradient_accumulation}")

    trainer.train()

    # Save model
    logger.info("Saving model and processor...")
    trainer.save_model(args.output_dir)
    processor.save_pretrained(args.output_dir)

    # Evaluate fine-tuned model
    logger.info("\n" + "=" * 80)
    logger.info("EVALUATING FINE-TUNED MODEL")
    logger.info("=" * 80)
    finetuned_metrics = evaluate_model(
        model,
        processor,
        test_ds,
        num_samples=args.eval_samples,
        batch_size=args.eval_batch_size,
        device=device,
        description="Fine-tuned model",
        is_streaming=False,  # Test dataset is never streamed
    )

    # Show comparison
    if not args.skip_base_eval:
        logger.info("\n" + "=" * 80)
        logger.info("PERFORMANCE COMPARISON")
        logger.info("=" * 80)
        logger.info(
            f"{'Metric':<20} {'Base':<12} {'Fine-tuned':<12} {'Improvement':<12}"
        )
        logger.info("-" * 56)
        logger.info(
            f"{'CER (%)':<20} {base_metrics['cer']:<12.2f} {finetuned_metrics['cer']:<12.2f} {base_metrics['cer'] - finetuned_metrics['cer']:+.2f}"
        )
        logger.info(
            f"{'WER (%)':<20} {base_metrics['wer']:<12.2f} {finetuned_metrics['wer']:<12.2f} {base_metrics['wer'] - finetuned_metrics['wer']:+.2f}"
        )
        logger.info(
            f"{'Perfect Matches':<20} {base_metrics['perfect_matches']:<12} {finetuned_metrics['perfect_matches']:<12} {finetuned_metrics['perfect_matches'] - base_metrics['perfect_matches']:+d}"
        )
        logger.info("=" * 80)

    # Create and save model card
    if args.hub_model_id or args.push_to_hub:
        model_id = args.hub_model_id or f"{args.output_dir.split('/')[-1]}"
        logger.info("Creating model card with metrics...")

        model_card_content = create_model_card_content(
            model_id=model_id,
            dataset_id=args.dataset_id,
            subset=args.subset,
            base_metrics=base_metrics,
            finetuned_metrics=finetuned_metrics,
            training_args=training_args,
            freeze_config=freeze_config,
        )

        # Save model card
        model_card_path = Path(args.output_dir) / "README.md"
        model_card_path.write_text(model_card_content)
        logger.info(f"Model card saved to {model_card_path}")

        if args.push_to_hub:
            logger.info(f"Pushing model to Hub: {args.hub_model_id}")
            trainer.push_to_hub()
            logger.info(
                f"✅ Model available at: https://huggingface.co/{args.hub_model_id}"
            )

    logger.info("\n✅ Training complete!")
    logger.info(f"Model saved to: {args.output_dir}")

    # Print example command for inference
    logger.info("\n" + "=" * 80)
    logger.info("To use the fine-tuned model:")
    logger.info("=" * 80)
    logger.info(f"""
from transformers import AutoProcessor, LightOnOCRForConditionalGeneration
from PIL import Image

model = LightOnOCRForConditionalGeneration.from_pretrained("{args.output_dir}")
processor = AutoProcessor.from_pretrained("{args.output_dir}")
# ... rest of inference code
""")


if __name__ == "__main__":
    if len(sys.argv) == 1:
        print("LightOnOCR Fine-tuning Script\n")
        print("Examples:")
        print("  # Basic fine-tuning:")
        print(
            "  uv run lightonocr-finetune.py --dataset-id HuggingFaceM4/FineVision --subset iam --output-dir ./model\n"
        )
        print("  # With frozen components:")
        print
            "  uv run lightonocr-finetune.py --freeze-language --output-dir ./model\n"
        )
        print("  # Stream large datasets (memory-efficient):")
        print(
            "  uv run lightonocr-finetune.py --streaming --shuffle-buffer-size 10000 --output-dir ./model\n"
        )
        print("  # Push to Hub:")
        print(
            "  uv run lightonocr-finetune.py --hub-model-id username/model --push-to-hub\n"
        )
        print("  # Run on HF Jobs:")
        print(
            "  hf jobs run --gpu l4x1 uv run lightonocr-finetune.py --streaming --output-dir ./model"
        )
        sys.exit(0)

    main()