|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Fine-tune LightOnOCR on OCR datasets. |
|
|
|
|
|
LightOnOCR is an end-to-end trainable vision-language model specifically designed for OCR tasks. |
|
|
This script enables fine-tuning on custom datasets for improved performance on specific domains, |
|
|
languages, or document types. |
|
|
|
|
|
Examples: |
|
|
# Basic fine-tuning on IAM handwriting dataset |
|
|
uv run lightonocr-finetune.py \ |
|
|
--dataset-id HuggingFaceM4/FineVision \ |
|
|
--subset iam \ |
|
|
--output-dir ./lightonocr-iam \ |
|
|
--epochs 2 |
|
|
|
|
|
# Fine-tune with frozen language model to save memory |
|
|
uv run lightonocr-finetune.py \ |
|
|
--dataset-id HuggingFaceM4/FineVision \ |
|
|
--subset olmOCR-mix-0225-documents \ |
|
|
--output-dir ./lightonocr-docs \ |
|
|
--freeze-language \ |
|
|
--batch-size 8 |
|
|
|
|
|
# Stream large datasets to reduce memory usage |
|
|
uv run lightonocr-finetune.py \ |
|
|
--dataset-id HuggingFaceM4/FineVision \ |
|
|
--subset olmOCR-mix-0225-books \ |
|
|
--output-dir ./lightonocr-books \ |
|
|
--streaming \ |
|
|
--shuffle-buffer-size 10000 \ |
|
|
--max-train-samples 5000 # Will auto-calculate max-steps |
|
|
|
|
|
# Push to Hub with evaluation metrics |
|
|
uv run lightonocr-finetune.py \ |
|
|
--dataset-id HuggingFaceM4/FineVision \ |
|
|
--subset iam \ |
|
|
--hub-model-id username/lightonocr-iam \ |
|
|
--push-to-hub \ |
|
|
--eval-samples 100 |
|
|
|
|
|
# Run on HF Jobs with GPU and streaming |
|
|
hf jobs run --gpu l4x1 \ |
|
|
uv run lightonocr-finetune.py \ |
|
|
--dataset-id custom/large-ocr-dataset \ |
|
|
--output-dir ./custom-ocr \ |
|
|
--streaming \ |
|
|
--epochs 3 |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import logging |
|
|
import os |
|
|
import sys |
|
|
from datetime import datetime |
|
|
from pathlib import Path |
|
|
from typing import Dict, Optional |
|
|
|
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
from huggingface_hub import login |
|
|
from jiwer import cer, wer |
|
|
from tqdm import tqdm |
|
|
from transformers import ( |
|
|
AutoProcessor, |
|
|
LightOnOCRForConditionalGeneration, |
|
|
Trainer, |
|
|
TrainingArguments, |
|
|
) |
|
|
|
|
|
logging.basicConfig( |
|
|
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" |
|
|
) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
os.environ["HF_XET_HIGH_PERFORMANCE"] = "1" |
|
|
|
|
|
|
|
|
ASSISTANT_START_PATTERN = [151645, 1699, 151644, 77091, 1699] |
|
|
DEFAULT_MAX_LENGTH = 1024 |
|
|
DEFAULT_LONGEST_EDGE = 700 |
|
|
|
|
|
|
|
|
class OCRDataCollator: |
|
|
"""Data collator for OCR fine-tuning.""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
processor, |
|
|
max_length=DEFAULT_MAX_LENGTH, |
|
|
longest_edge=DEFAULT_LONGEST_EDGE, |
|
|
): |
|
|
self.processor = processor |
|
|
self.max_length = max_length |
|
|
self.longest_edge = longest_edge |
|
|
|
|
|
def __call__(self, examples): |
|
|
batch_messages = [] |
|
|
batch_images = [] |
|
|
|
|
|
for example in examples: |
|
|
example_images = example["images"] |
|
|
example_texts = example["texts"] |
|
|
|
|
|
|
|
|
if len(example_images) != 1 or len(example_texts) != 1: |
|
|
logger.warning( |
|
|
f"Skipping example with {len(example_images)} images and {len(example_texts)} texts" |
|
|
) |
|
|
continue |
|
|
|
|
|
image = example_images[0].convert("RGB") |
|
|
batch_images.append(image) |
|
|
|
|
|
|
|
|
conversation = example_texts[0] |
|
|
assistant_text = conversation.get("assistant", "").strip() |
|
|
|
|
|
messages = [ |
|
|
{"role": "user", "content": [{"type": "image"}]}, |
|
|
{ |
|
|
"role": "assistant", |
|
|
"content": [{"type": "text", "text": assistant_text}], |
|
|
}, |
|
|
] |
|
|
batch_messages.append(messages) |
|
|
|
|
|
if not batch_images: |
|
|
return None |
|
|
|
|
|
|
|
|
texts = [ |
|
|
self.processor.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=False |
|
|
) |
|
|
for messages in batch_messages |
|
|
] |
|
|
|
|
|
|
|
|
inputs = self.processor( |
|
|
text=texts, |
|
|
images=batch_images, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
truncation=True, |
|
|
max_length=self.max_length, |
|
|
size={"longest_edge": self.longest_edge}, |
|
|
) |
|
|
|
|
|
|
|
|
labels = inputs["input_ids"].clone() |
|
|
pad_token_id = self.processor.tokenizer.pad_token_id |
|
|
|
|
|
for i in range(len(labels)): |
|
|
full_ids = inputs["input_ids"][i].tolist() |
|
|
|
|
|
|
|
|
assistant_content_start = None |
|
|
|
|
|
|
|
|
for idx in range(len(full_ids) - len(ASSISTANT_START_PATTERN)): |
|
|
if ( |
|
|
full_ids[idx : idx + len(ASSISTANT_START_PATTERN)] |
|
|
== ASSISTANT_START_PATTERN |
|
|
): |
|
|
assistant_content_start = idx + len(ASSISTANT_START_PATTERN) |
|
|
break |
|
|
|
|
|
if assistant_content_start is None: |
|
|
|
|
|
|
|
|
labels[i, :] = -100 |
|
|
else: |
|
|
|
|
|
labels[i, :] = -100 |
|
|
|
|
|
|
|
|
for idx in range(assistant_content_start, len(full_ids)): |
|
|
if full_ids[idx] == pad_token_id: |
|
|
break |
|
|
labels[i, idx] = inputs["input_ids"][i, idx] |
|
|
|
|
|
|
|
|
labels[i, inputs["input_ids"][i] == pad_token_id] = -100 |
|
|
|
|
|
inputs["labels"] = labels |
|
|
|
|
|
|
|
|
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16) |
|
|
|
|
|
return inputs |
|
|
|
|
|
|
|
|
def evaluate_model( |
|
|
model, |
|
|
processor, |
|
|
dataset, |
|
|
num_samples: int = 50, |
|
|
batch_size: int = 8, |
|
|
device: str = "cuda", |
|
|
description: str = "Model", |
|
|
is_streaming: bool = False, |
|
|
) -> Dict[str, float]: |
|
|
""" |
|
|
Evaluate model on dataset and compute OCR metrics. |
|
|
|
|
|
Args: |
|
|
model: The model to evaluate |
|
|
processor: The processor for the model |
|
|
dataset: Dataset to evaluate on (can be streaming or regular) |
|
|
num_samples: Number of samples to evaluate |
|
|
batch_size: Batch size for evaluation |
|
|
device: Device to run evaluation on |
|
|
description: Description for logging |
|
|
is_streaming: Whether the dataset is a streaming dataset |
|
|
|
|
|
Returns: |
|
|
Dictionary with CER, WER, and perfect match count |
|
|
""" |
|
|
model.eval() |
|
|
predictions = [] |
|
|
ground_truths = [] |
|
|
|
|
|
logger.info(f"Evaluating {description} on {num_samples} samples...") |
|
|
|
|
|
|
|
|
if is_streaming: |
|
|
|
|
|
samples_processed = 0 |
|
|
batch_samples = [] |
|
|
|
|
|
for sample in tqdm(dataset, total=num_samples, desc="Evaluating"): |
|
|
if samples_processed >= num_samples: |
|
|
break |
|
|
|
|
|
batch_samples.append(sample) |
|
|
samples_processed += 1 |
|
|
|
|
|
|
|
|
if len(batch_samples) == batch_size or samples_processed == num_samples: |
|
|
batch_images = [[s["images"][0]] for s in batch_samples] |
|
|
batch_ground_truths = [ |
|
|
s["texts"][0]["assistant"].strip() for s in batch_samples |
|
|
] |
|
|
|
|
|
|
|
|
messages = [{"role": "user", "content": [{"type": "image"}]}] |
|
|
text = processor.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=True |
|
|
) |
|
|
texts = [text] * len(batch_images) |
|
|
|
|
|
inputs = processor( |
|
|
text=texts, |
|
|
images=batch_images, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
truncation=True, |
|
|
max_length=DEFAULT_MAX_LENGTH, |
|
|
size={"longest_edge": DEFAULT_LONGEST_EDGE}, |
|
|
).to(device) |
|
|
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model.generate( |
|
|
**inputs, max_new_tokens=512, do_sample=True |
|
|
) |
|
|
|
|
|
input_length = inputs["input_ids"].shape[1] |
|
|
generated_ids = outputs[:, input_length:] |
|
|
batch_predictions = processor.batch_decode( |
|
|
generated_ids, skip_special_tokens=True |
|
|
) |
|
|
batch_predictions = [p.strip() for p in batch_predictions] |
|
|
|
|
|
predictions.extend(batch_predictions) |
|
|
ground_truths.extend(batch_ground_truths) |
|
|
batch_samples = [] |
|
|
else: |
|
|
|
|
|
for start_idx in tqdm(range(0, min(num_samples, len(dataset)), batch_size)): |
|
|
end_idx = min(start_idx + batch_size, num_samples, len(dataset)) |
|
|
batch_samples = [dataset[i] for i in range(start_idx, end_idx)] |
|
|
|
|
|
batch_images = [[s["images"][0]] for s in batch_samples] |
|
|
batch_ground_truths = [ |
|
|
s["texts"][0]["assistant"].strip() for s in batch_samples |
|
|
] |
|
|
|
|
|
|
|
|
messages = [{"role": "user", "content": [{"type": "image"}]}] |
|
|
text = processor.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=True |
|
|
) |
|
|
texts = [text] * len(batch_images) |
|
|
|
|
|
inputs = processor( |
|
|
text=texts, |
|
|
images=batch_images, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
truncation=True, |
|
|
max_length=DEFAULT_MAX_LENGTH, |
|
|
size={"longest_edge": DEFAULT_LONGEST_EDGE}, |
|
|
).to(device) |
|
|
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True) |
|
|
|
|
|
input_length = inputs["input_ids"].shape[1] |
|
|
generated_ids = outputs[:, input_length:] |
|
|
batch_predictions = processor.batch_decode( |
|
|
generated_ids, skip_special_tokens=True |
|
|
) |
|
|
batch_predictions = [p.strip() for p in batch_predictions] |
|
|
|
|
|
predictions.extend(batch_predictions) |
|
|
ground_truths.extend(batch_ground_truths) |
|
|
|
|
|
|
|
|
cer_score = cer(ground_truths, predictions) * 100 |
|
|
wer_score = wer(ground_truths, predictions) * 100 |
|
|
perfect_matches = sum( |
|
|
1 for pred, gt in zip(predictions, ground_truths) if pred == gt |
|
|
) |
|
|
|
|
|
actual_samples = len(predictions) |
|
|
logger.info( |
|
|
f"CER: {cer_score:.2f}% | WER: {wer_score:.2f}% | Perfect: {perfect_matches}/{actual_samples}" |
|
|
) |
|
|
|
|
|
|
|
|
for i in range(min(3, len(predictions))): |
|
|
match = "✅" if predictions[i] == ground_truths[i] else "❌" |
|
|
logger.info( |
|
|
f"{match} Sample {i + 1}: '{predictions[i][:50]}...' vs '{ground_truths[i][:50]}...'" |
|
|
) |
|
|
|
|
|
return { |
|
|
"cer": cer_score, |
|
|
"wer": wer_score, |
|
|
"perfect_matches": perfect_matches, |
|
|
"total_samples": actual_samples, |
|
|
} |
|
|
|
|
|
|
|
|
def create_model_card_content( |
|
|
model_id: str, |
|
|
dataset_id: str, |
|
|
subset: Optional[str], |
|
|
base_metrics: Dict[str, float], |
|
|
finetuned_metrics: Dict[str, float], |
|
|
training_args: TrainingArguments, |
|
|
freeze_config: Dict[str, bool], |
|
|
) -> str: |
|
|
"""Generate model card content with training details and metrics.""" |
|
|
|
|
|
|
|
|
cer_improvement = base_metrics["cer"] - finetuned_metrics["cer"] |
|
|
wer_improvement = base_metrics["wer"] - finetuned_metrics["wer"] |
|
|
perfect_improvement = ( |
|
|
finetuned_metrics["perfect_matches"] - base_metrics["perfect_matches"] |
|
|
) |
|
|
|
|
|
|
|
|
frozen_components = [comp for comp, is_frozen in freeze_config.items() if is_frozen] |
|
|
frozen_str = ( |
|
|
", ".join(frozen_components) if frozen_components else "None (full fine-tuning)" |
|
|
) |
|
|
|
|
|
dataset_str = f"{dataset_id}/{subset}" if subset else dataset_id |
|
|
|
|
|
content = f"""--- |
|
|
license: mit |
|
|
tags: |
|
|
- vision |
|
|
- ocr |
|
|
- document-understanding |
|
|
- transformers |
|
|
base_model: lightonai/LightOnOCR-1B-1025 |
|
|
datasets: |
|
|
- {dataset_id} |
|
|
metrics: |
|
|
- cer |
|
|
- wer |
|
|
library_name: transformers |
|
|
--- |
|
|
|
|
|
# {model_id.split("/")[-1]} |
|
|
|
|
|
This model is a fine-tuned version of [LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025) on the {dataset_str} dataset. |
|
|
|
|
|
## Model Description |
|
|
|
|
|
LightOnOCR is an end-to-end trainable vision-language model specifically designed for OCR tasks. This fine-tuned version has been optimized for improved performance on the target dataset. |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Dataset |
|
|
- **Source**: {dataset_str} |
|
|
- **Training samples**: {training_args.num_train_epochs * (training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps)} |
|
|
- **Validation samples**: Used for model selection |
|
|
|
|
|
### Training Configuration |
|
|
- **Epochs**: {training_args.num_train_epochs} |
|
|
- **Batch size**: {training_args.per_device_train_batch_size} (effective: {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}) |
|
|
- **Learning rate**: {training_args.learning_rate} |
|
|
- **Frozen components**: {frozen_str} |
|
|
- **Hardware**: GPU with mixed precision (bf16) |
|
|
|
|
|
## Evaluation Results |
|
|
|
|
|
### Performance Comparison |
|
|
|
|
|
| Metric | Base Model | Fine-tuned | Improvement | |
|
|
|--------|------------|------------|-------------| |
|
|
| **CER (%)** | {base_metrics["cer"]:.2f} | {finetuned_metrics["cer"]:.2f} | {cer_improvement:+.2f} | |
|
|
| **WER (%)** | {base_metrics["wer"]:.2f} | {finetuned_metrics["wer"]:.2f} | {wer_improvement:+.2f} | |
|
|
| **Perfect Matches** | {base_metrics["perfect_matches"]}/{base_metrics["total_samples"]} | {finetuned_metrics["perfect_matches"]}/{finetuned_metrics["total_samples"]} | {perfect_improvement:+d} | |
|
|
|
|
|
*Lower is better for CER and WER. Evaluation performed on {finetuned_metrics["total_samples"]} test samples.* |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from transformers import AutoProcessor, LightOnOCRForConditionalGeneration |
|
|
from PIL import Image |
|
|
import torch |
|
|
|
|
|
# Load model and processor |
|
|
model = LightOnOCRForConditionalGeneration.from_pretrained( |
|
|
"{model_id}", |
|
|
torch_dtype=torch.bfloat16, |
|
|
device_map="auto" |
|
|
) |
|
|
processor = AutoProcessor.from_pretrained("{model_id}") |
|
|
|
|
|
# Prepare image |
|
|
image = Image.open("your_image.jpg").convert("RGB") |
|
|
|
|
|
# Create prompt |
|
|
messages = [ |
|
|
{{"role": "user", "content": [{{"type": "image"}}]}} |
|
|
] |
|
|
|
|
|
# Process and generate |
|
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
inputs = processor( |
|
|
text=[text], |
|
|
images=[[image]], |
|
|
return_tensors="pt", |
|
|
max_length=1024 |
|
|
).to(model.device) |
|
|
|
|
|
outputs = model.generate(**inputs, max_new_tokens=512) |
|
|
generated_text = processor.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) |
|
|
print(generated_text) |
|
|
``` |
|
|
|
|
|
## Training Script |
|
|
|
|
|
This model was trained using the UV Scripts training pipeline. To reproduce or further fine-tune: |
|
|
|
|
|
```bash |
|
|
uv run https://huggingface.co/datasets/uv-scripts/transformers-training/raw/main/lightonocr-finetune.py \\ |
|
|
--dataset-id {dataset_id} \\ |
|
|
{"--subset " + subset if subset else ""} \\ |
|
|
--output-dir ./model \\ |
|
|
--epochs {training_args.num_train_epochs} |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this model, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{{lightonocr2024, |
|
|
title={{LightOnOCR: End-to-End Trainable OCR Model}}, |
|
|
author={{LightOn AI}}, |
|
|
year={{2024}}, |
|
|
url={{https://huggingface.co/blog/lightonai/lightonocr}} |
|
|
}} |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
This model is released under the MIT license. |
|
|
|
|
|
--- |
|
|
|
|
|
*Generated on {datetime.now().strftime("%Y-%m-%d")} using [UV Scripts](https://huggingface.co/uv-scripts)* |
|
|
""" |
|
|
|
|
|
return content |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser( |
|
|
description="Fine-tune LightOnOCR on OCR datasets", |
|
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--dataset-id", |
|
|
type=str, |
|
|
default="HuggingFaceM4/FineVision", |
|
|
help="HuggingFace dataset ID", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--subset", |
|
|
type=str, |
|
|
default="iam", |
|
|
choices=["iam", "olmOCR-mix-0225-books", "olmOCR-mix-0225-documents"], |
|
|
help="Dataset subset to use (for FineVision)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--train-split", |
|
|
type=str, |
|
|
default="train[:85%]", |
|
|
help="Training split specification", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--val-split", |
|
|
type=str, |
|
|
default="train[85%:95%]", |
|
|
help="Validation split specification", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--test-split", type=str, default="train[95%:]", help="Test split specification" |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--streaming", |
|
|
action="store_true", |
|
|
help="Use dataset streaming to reduce memory usage (Note: uses full training set, ignores train-split percentages)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--shuffle-buffer-size", |
|
|
type=int, |
|
|
default=10000, |
|
|
help="Buffer size for shuffling when using streaming (default: 10000)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-train-samples", |
|
|
type=int, |
|
|
help="Maximum number of training samples when streaming (useful for quick experiments)", |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--model-id", |
|
|
type=str, |
|
|
default="lightonai/LightOnOCR-1B-1025", |
|
|
help="Base model ID", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--freeze-vision", action="store_true", help="Freeze vision encoder" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--freeze-language", action="store_true", help="Freeze language model" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--freeze-projection", |
|
|
action="store_true", |
|
|
help="Freeze vision projection layer", |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--output-dir", type=str, required=True, help="Directory to save the model" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--epochs", type=int, default=2, help="Number of training epochs" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--batch-size", type=int, default=4, help="Training batch size per device" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--gradient-accumulation", |
|
|
type=int, |
|
|
default=4, |
|
|
help="Gradient accumulation steps", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--learning-rate", type=float, default=6e-5, help="Learning rate" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--warmup-steps", type=int, default=10, help="Number of warmup steps" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--eval-steps", type=int, default=50, help="Evaluation interval (in steps)" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--save-steps", |
|
|
type=int, |
|
|
default=500, |
|
|
help="Save checkpoint interval (in steps)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-length", type=int, default=1024, help="Maximum sequence length" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--longest-edge", type=int, default=700, help="Longest edge for image resizing" |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--eval-samples", type=int, default=100, help="Number of samples for evaluation" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--eval-batch-size", type=int, default=8, help="Batch size for evaluation" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--skip-base-eval", action="store_true", help="Skip base model evaluation" |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--hub-model-id", type=str, help="HuggingFace Hub model ID for pushing" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--push-to-hub", action="store_true", help="Push model to HuggingFace Hub" |
|
|
) |
|
|
parser.add_argument("--hf-token", type=str, help="HuggingFace API token") |
|
|
parser.add_argument( |
|
|
"--private", action="store_true", help="Make the model private on Hub" |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--max-samples", type=int, help="Limit number of training samples (for testing)" |
|
|
) |
|
|
parser.add_argument("--seed", type=int, default=42, help="Random seed") |
|
|
parser.add_argument( |
|
|
"--max-steps", |
|
|
type=int, |
|
|
help="Maximum number of training steps (auto-calculated for streaming if not specified)" |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
if not torch.cuda.is_available(): |
|
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
|
logger.info("To run on HF Jobs with GPU:") |
|
|
logger.info( |
|
|
f"hf jobs run --gpu l4x1 uv run {__file__} --dataset-id {args.dataset_id} --output-dir {args.output_dir}" |
|
|
) |
|
|
sys.exit(1) |
|
|
|
|
|
device = "cuda" |
|
|
logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}") |
|
|
|
|
|
|
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" |
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
torch.set_float32_matmul_precision("high") |
|
|
|
|
|
|
|
|
if args.push_to_hub: |
|
|
token = args.hf_token or os.environ.get("HF_TOKEN") |
|
|
if token: |
|
|
login(token=token) |
|
|
else: |
|
|
logger.error("HF_TOKEN required for push_to_hub") |
|
|
sys.exit(1) |
|
|
|
|
|
|
|
|
logger.info(f"Loading dataset: {args.dataset_id}/{args.subset}") |
|
|
|
|
|
if args.streaming: |
|
|
logger.info("Using streaming mode for dataset loading") |
|
|
|
|
|
|
|
|
train_ds = load_dataset( |
|
|
args.dataset_id, args.subset, split="train", streaming=True |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
full_ds = load_dataset(args.dataset_id, args.subset, split="train") |
|
|
total_size = len(full_ds) |
|
|
|
|
|
|
|
|
train_end = int(0.85 * total_size) |
|
|
val_end = int(0.95 * total_size) |
|
|
|
|
|
|
|
|
val_ds = full_ds.select(range(train_end, val_end)) |
|
|
test_ds = full_ds.select(range(val_end, total_size)) |
|
|
|
|
|
|
|
|
del full_ds |
|
|
|
|
|
|
|
|
train_ds = train_ds.shuffle( |
|
|
seed=args.seed, buffer_size=args.shuffle_buffer_size |
|
|
) |
|
|
|
|
|
|
|
|
if args.max_samples or args.max_train_samples: |
|
|
max_samples = args.max_samples or args.max_train_samples |
|
|
train_ds = train_ds.take(max_samples) |
|
|
logger.info(f"Limited training to {max_samples} samples (streaming mode)") |
|
|
|
|
|
logger.info( |
|
|
f"Dataset loaded - Training: streaming (full train set), Val: {len(val_ds)}, Test: {len(test_ds)}" |
|
|
) |
|
|
logger.info( |
|
|
"Note: When streaming, using full training set. Use --max-train-samples to limit." |
|
|
) |
|
|
else: |
|
|
|
|
|
train_ds = load_dataset(args.dataset_id, args.subset, split=args.train_split) |
|
|
val_ds = load_dataset(args.dataset_id, args.subset, split=args.val_split) |
|
|
test_ds = load_dataset(args.dataset_id, args.subset, split=args.test_split) |
|
|
|
|
|
|
|
|
if args.max_samples: |
|
|
train_ds = train_ds.select(range(min(args.max_samples, len(train_ds)))) |
|
|
logger.info(f"Limited training to {len(train_ds)} samples") |
|
|
|
|
|
logger.info( |
|
|
f"Dataset sizes - Train: {len(train_ds)}, Val: {len(val_ds)}, Test: {len(test_ds)}" |
|
|
) |
|
|
|
|
|
|
|
|
logger.info(f"Loading processor from {args.model_id}") |
|
|
processor = AutoProcessor.from_pretrained(args.model_id) |
|
|
processor.tokenizer.padding_side = "left" |
|
|
|
|
|
|
|
|
logger.info(f"Loading model from {args.model_id}") |
|
|
model = LightOnOCRForConditionalGeneration.from_pretrained( |
|
|
args.model_id, |
|
|
torch_dtype=torch.bfloat16, |
|
|
attn_implementation="sdpa", |
|
|
device_map="auto", |
|
|
).to(device) |
|
|
|
|
|
|
|
|
freeze_config = { |
|
|
"vision_encoder": args.freeze_vision, |
|
|
"language_model": args.freeze_language, |
|
|
"vision_projection": args.freeze_projection, |
|
|
} |
|
|
|
|
|
if args.freeze_vision: |
|
|
for param in model.model.vision_encoder.parameters(): |
|
|
param.requires_grad = False |
|
|
logger.info("Vision encoder frozen") |
|
|
|
|
|
if args.freeze_language: |
|
|
for param in model.model.language_model.parameters(): |
|
|
param.requires_grad = False |
|
|
logger.info("Language model frozen") |
|
|
|
|
|
if args.freeze_projection: |
|
|
for param in model.model.vision_projection.parameters(): |
|
|
param.requires_grad = False |
|
|
logger.info("Vision projection frozen") |
|
|
|
|
|
|
|
|
total_params = sum(p.numel() for p in model.parameters()) |
|
|
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
logger.info(f"Total parameters: {total_params:,}") |
|
|
logger.info( |
|
|
f"Trainable parameters: {trainable_params:,} ({100 * trainable_params / total_params:.2f}%)" |
|
|
) |
|
|
|
|
|
|
|
|
base_metrics = { |
|
|
"cer": 0.0, |
|
|
"wer": 0.0, |
|
|
"perfect_matches": 0, |
|
|
"total_samples": args.eval_samples, |
|
|
} |
|
|
if not args.skip_base_eval: |
|
|
logger.info("\n" + "=" * 80) |
|
|
logger.info("EVALUATING BASE MODEL") |
|
|
logger.info("=" * 80) |
|
|
base_metrics = evaluate_model( |
|
|
model, |
|
|
processor, |
|
|
test_ds, |
|
|
num_samples=args.eval_samples, |
|
|
batch_size=args.eval_batch_size, |
|
|
device=device, |
|
|
description="Base model", |
|
|
is_streaming=False, |
|
|
) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
data_collator = OCRDataCollator( |
|
|
processor, max_length=args.max_length, longest_edge=args.longest_edge |
|
|
) |
|
|
|
|
|
|
|
|
max_steps = None |
|
|
if args.streaming: |
|
|
if args.max_steps: |
|
|
max_steps = args.max_steps |
|
|
logger.info(f"Using user-specified max_steps: {max_steps}") |
|
|
else: |
|
|
|
|
|
if args.max_train_samples: |
|
|
|
|
|
steps_per_epoch = args.max_train_samples // (args.batch_size * args.gradient_accumulation) |
|
|
max_steps = steps_per_epoch * args.epochs |
|
|
logger.info(f"Calculated max_steps from max_train_samples: {max_steps}") |
|
|
else: |
|
|
|
|
|
|
|
|
|
|
|
max_steps = 1000 * args.epochs |
|
|
logger.warning( |
|
|
f"Streaming mode: Using default max_steps={max_steps}. " |
|
|
f"Consider setting --max-steps or --max-train-samples for precise control." |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
training_args_dict = { |
|
|
"output_dir": args.output_dir, |
|
|
"per_device_train_batch_size": args.batch_size, |
|
|
"per_device_eval_batch_size": args.eval_batch_size, |
|
|
"gradient_accumulation_steps": args.gradient_accumulation, |
|
|
"learning_rate": args.learning_rate, |
|
|
"weight_decay": 0.0, |
|
|
"logging_steps": 50, |
|
|
"eval_strategy": "steps", |
|
|
"eval_steps": args.eval_steps, |
|
|
"save_strategy": "steps", |
|
|
"save_steps": args.save_steps, |
|
|
"save_total_limit": 2, |
|
|
"load_best_model_at_end": True, |
|
|
"metric_for_best_model": "eval_loss", |
|
|
"bf16": True, |
|
|
"fp16": False, |
|
|
"remove_unused_columns": False, |
|
|
"dataloader_pin_memory": False, |
|
|
"gradient_checkpointing": True, |
|
|
"optim": "adamw_torch_fused" if torch.cuda.is_available() else "adamw_torch", |
|
|
"warmup_steps": args.warmup_steps, |
|
|
"lr_scheduler_type": "linear", |
|
|
"push_to_hub": args.push_to_hub, |
|
|
"hub_model_id": args.hub_model_id, |
|
|
"hub_private_repo": args.private, |
|
|
} |
|
|
|
|
|
|
|
|
if args.streaming: |
|
|
training_args_dict["max_steps"] = max_steps |
|
|
|
|
|
training_args_dict["num_train_epochs"] = args.epochs |
|
|
else: |
|
|
training_args_dict["num_train_epochs"] = args.epochs |
|
|
|
|
|
training_args = TrainingArguments(**training_args_dict) |
|
|
|
|
|
|
|
|
val_ds_small = val_ds.select(range(min(100, len(val_ds)))) |
|
|
|
|
|
|
|
|
trainer = Trainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
train_dataset=train_ds, |
|
|
eval_dataset=val_ds_small, |
|
|
data_collator=data_collator, |
|
|
) |
|
|
|
|
|
|
|
|
logger.info("\n" + "=" * 80) |
|
|
logger.info("STARTING TRAINING") |
|
|
logger.info("=" * 80) |
|
|
if args.streaming: |
|
|
logger.info( |
|
|
f"Training samples: streaming mode (max: {args.max_train_samples or 'unlimited'})" |
|
|
) |
|
|
logger.info(f"Max steps: {max_steps}") |
|
|
else: |
|
|
logger.info(f"Training samples: {len(train_ds)}") |
|
|
logger.info(f"Validation samples: {len(val_ds_small)}") |
|
|
logger.info(f"Effective batch size: {args.batch_size * args.gradient_accumulation}") |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
|
|
|
logger.info("Saving model and processor...") |
|
|
trainer.save_model(args.output_dir) |
|
|
processor.save_pretrained(args.output_dir) |
|
|
|
|
|
|
|
|
logger.info("\n" + "=" * 80) |
|
|
logger.info("EVALUATING FINE-TUNED MODEL") |
|
|
logger.info("=" * 80) |
|
|
finetuned_metrics = evaluate_model( |
|
|
model, |
|
|
processor, |
|
|
test_ds, |
|
|
num_samples=args.eval_samples, |
|
|
batch_size=args.eval_batch_size, |
|
|
device=device, |
|
|
description="Fine-tuned model", |
|
|
is_streaming=False, |
|
|
) |
|
|
|
|
|
|
|
|
if not args.skip_base_eval: |
|
|
logger.info("\n" + "=" * 80) |
|
|
logger.info("PERFORMANCE COMPARISON") |
|
|
logger.info("=" * 80) |
|
|
logger.info( |
|
|
f"{'Metric':<20} {'Base':<12} {'Fine-tuned':<12} {'Improvement':<12}" |
|
|
) |
|
|
logger.info("-" * 56) |
|
|
logger.info( |
|
|
f"{'CER (%)':<20} {base_metrics['cer']:<12.2f} {finetuned_metrics['cer']:<12.2f} {base_metrics['cer'] - finetuned_metrics['cer']:+.2f}" |
|
|
) |
|
|
logger.info( |
|
|
f"{'WER (%)':<20} {base_metrics['wer']:<12.2f} {finetuned_metrics['wer']:<12.2f} {base_metrics['wer'] - finetuned_metrics['wer']:+.2f}" |
|
|
) |
|
|
logger.info( |
|
|
f"{'Perfect Matches':<20} {base_metrics['perfect_matches']:<12} {finetuned_metrics['perfect_matches']:<12} {finetuned_metrics['perfect_matches'] - base_metrics['perfect_matches']:+d}" |
|
|
) |
|
|
logger.info("=" * 80) |
|
|
|
|
|
|
|
|
if args.hub_model_id or args.push_to_hub: |
|
|
model_id = args.hub_model_id or f"{args.output_dir.split('/')[-1]}" |
|
|
logger.info("Creating model card with metrics...") |
|
|
|
|
|
model_card_content = create_model_card_content( |
|
|
model_id=model_id, |
|
|
dataset_id=args.dataset_id, |
|
|
subset=args.subset, |
|
|
base_metrics=base_metrics, |
|
|
finetuned_metrics=finetuned_metrics, |
|
|
training_args=training_args, |
|
|
freeze_config=freeze_config, |
|
|
) |
|
|
|
|
|
|
|
|
model_card_path = Path(args.output_dir) / "README.md" |
|
|
model_card_path.write_text(model_card_content) |
|
|
logger.info(f"Model card saved to {model_card_path}") |
|
|
|
|
|
if args.push_to_hub: |
|
|
logger.info(f"Pushing model to Hub: {args.hub_model_id}") |
|
|
trainer.push_to_hub() |
|
|
logger.info( |
|
|
f"✅ Model available at: https://huggingface.co/{args.hub_model_id}" |
|
|
) |
|
|
|
|
|
logger.info("\n✅ Training complete!") |
|
|
logger.info(f"Model saved to: {args.output_dir}") |
|
|
|
|
|
|
|
|
logger.info("\n" + "=" * 80) |
|
|
logger.info("To use the fine-tuned model:") |
|
|
logger.info("=" * 80) |
|
|
logger.info(f""" |
|
|
from transformers import AutoProcessor, LightOnOCRForConditionalGeneration |
|
|
from PIL import Image |
|
|
|
|
|
model = LightOnOCRForConditionalGeneration.from_pretrained("{args.output_dir}") |
|
|
processor = AutoProcessor.from_pretrained("{args.output_dir}") |
|
|
# ... rest of inference code |
|
|
""") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
if len(sys.argv) == 1: |
|
|
print("LightOnOCR Fine-tuning Script\n") |
|
|
print("Examples:") |
|
|
print(" # Basic fine-tuning:") |
|
|
print( |
|
|
" uv run lightonocr-finetune.py --dataset-id HuggingFaceM4/FineVision --subset iam --output-dir ./model\n" |
|
|
) |
|
|
print(" # With frozen components:") |
|
|
print |
|
|
" uv run lightonocr-finetune.py --freeze-language --output-dir ./model\n" |
|
|
) |
|
|
print(" # Stream large datasets (memory-efficient):") |
|
|
print( |
|
|
" uv run lightonocr-finetune.py --streaming --shuffle-buffer-size 10000 --output-dir ./model\n" |
|
|
) |
|
|
print(" # Push to Hub:") |
|
|
print( |
|
|
" uv run lightonocr-finetune.py --hub-model-id username/model --push-to-hub\n" |
|
|
) |
|
|
print(" # Run on HF Jobs:") |
|
|
print( |
|
|
" hf jobs run --gpu l4x1 uv run lightonocr-finetune.py --streaming --output-dir ./model" |
|
|
) |
|
|
sys.exit(0) |
|
|
|
|
|
main() |
|
|
|