Dataset Viewer
Auto-converted to Parquet Duplicate
complexity
int64
noise
float64
frequency
float64
sample_rate
int64
center_region_training
bool
dynamic_obstacles
bool
avoidance_training
bool
dataset_id
string
10
4.4
2.7
190
true
true
true
wave_bender_training_params

Website GitHub Hugging Face Follow on X

 _    _    __  _  _  ____  ____  ____  _  _  ____  ____  ____ 
( \/\/ )  /__\( \/ )( ___)(  _ \( ___)( \( )(  _ \( ___)(  _ \
 )    (  /(__)\\  /  )__)  ) _ < )__)  )  (  )(_) ))__)  )   /
(__/\__)(__)(__)\/  (____)(____/(____)(_)\_)(____/(____)(_)\_)

V2

UNDER DEVELOPMENT

This dataset was generated using the WAVEBENDER app by webXOS

LINK: https://huggingface.co/datasets/webxos/wavebender_dataset/tree/main/generator (Download this app to create your own similar datasets)

Generated synthetic dataset for drone autonomy ML training, including telemetry signals (acceleration, gyro, altitude, velocity, battery, GPS), SLAM (obstacle detection/mapping), and avoidance maneuvers in simulated 3D environments with configurable parameters (complexity, noise, frequency, dynamic obstacles). Synthetic drone datasets are generally used to overcome real-world data limitations for unmanned aerial vehicles (UAVs).

Key Features

  • Realistic 3D simulated environments
  • Configurable parameters: scene complexity, sensor noise, update frequency, dynamic/moving obstacles
  • Multi-modal data: raw telemetry + processed SLAM + maneuver labels

Included Signals

  • Telemetry

    • Acceleration (3-axis)
    • Gyroscope (3-axis)
    • Altitude (barometric / fusion)
    • Velocity vector
    • Battery level / voltage
    • GPS position & velocity
  • SLAM / Perception

    • Obstacle detection & mapping output
    • Distance to nearest obstacles
  • Labels / Actions

    • Avoidance maneuver executed (direction, type, intensity)

Status

Under active development — v2 expands variety, realism, and annotation quality over v1 (link below) https://huggingface.co/datasets/webxos/wavebender_dataset

Downloads last month
-