File size: 3,909 Bytes
2233261
 
 
 
 
 
 
 
 
 
7b544e5
 
 
 
17e6f0b
 
7b544e5
 
 
 
17e6f0b
 
7b544e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e6f0b
 
7b544e5
 
17e6f0b
7b544e5
 
 
 
 
 
 
 
 
17e6f0b
7b544e5
17e6f0b
7b544e5
 
 
 
17e6f0b
 
7b544e5
 
17e6f0b
7b544e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c401cd9
17e6f0b
 
7b544e5
 
 
 
 
 
 
 
2233261
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: mit
task_categories:
- text-retrieval
- text-to-image
language:
- en
tags:
- cultural heritage
---
# REEVLAUATE Image-Text Pair Dataset

## Overview

This is an image-text pair dataset constructed for the **Knowledge-Enhanced Multimodal Retrieval System**, built upon the **REEVLAUATE KG ArtKB**. 
The dataset is designed for training and evaluating the CLIP model for the retrieval system.

## Data Source

The ArtKB knowledge base combines data from two primary sources:
- **Wikidata**
- **Pilot Museums**

## Dataset Structure

The dataset is organized into three splits:
- **Train**: Training set
- **Validation**: Validation set
- **Test**: Test set

Each split contains:
- **Images**: Visual content stored in subdirectories (`000/`, `001/`, ..., `999/`)
- **Texts**: Text descriptions paired with images, stored in corresponding subdirectories
- **metadata.parquet**: A Parquet file containing structured data for all samples in the split

## Data Format

### Directory Structure

```
hf_reevaluate_upload/
β”œβ”€β”€ train/
β”‚   β”œβ”€β”€ images/
β”‚   β”‚   β”œβ”€β”€ 000/
β”‚   β”‚   β”œβ”€β”€ 001/
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ texts/
β”‚   β”‚   β”œβ”€β”€ 000/
β”‚   β”‚   β”œβ”€β”€ 001/
β”‚   β”‚   └── ...
β”‚   └── metadata.parquet
β”œβ”€β”€ validation/
β”‚   β”œβ”€β”€ images/
β”‚   β”œβ”€β”€ texts/
β”‚   └── metadata.parquet
└── test/
    β”œβ”€β”€ images/
    β”œβ”€β”€ texts/
    └── metadata.parquet
```

### Parquet Schema

Each sample in the Parquet files contains the following columns:

| Column | Type | Description |
|--------|------|-------------|
| `image` | string | Relative path to the image file |
| `uuid` | string | Unique identifier for the artwork |
| `query_text` | string | User query-like text |
| `target_text` | list[string] | Description text corresponding to the specific image including visual content and metadata information |
## Text Generation Methods

### 1. Metadata Portion
The **metadata** descriptions are constructed by combining multiple metadata fields from the ArtKB knowledge base using different templates. Each template produces a different textual representation of the same metadata information. This results in 5 distinct variants that capture the same facts in different phrasings.

**Example fields used:**
- Creator/Artist name
- Creation date
- Materials and techniques
- Dimensions
- Current location/Museum
- Object type and classification
- ...

### 2. Content Portion
The **content** descriptions are generated automatically using the **Salesforce/BLIP2-OPT-2.7B** vision-language model. These descriptions capture visual characteristics of the artwork observed directly from the image, such as composition, colors, subjects, and visual elements.

**Model**: `Salesforce/blip2-opt-2.7b`

### 3. Description Texts 
The **description text** descriptions are created by concatenating content portion with metadata protion:

```
[Content Portion] + [Metadata Portion]
```

## Usage

The dataset can be loaded and used with the Hugging Face `datasets` library:

```python
from datasets import load_dataset

# Load the entire dataset
dataset = load_dataset('xuemduan/reevaluate-image-text-pairs')

# Access specific splits
train_set = load_dataset('xuemduan/reevaluate-image-text-pairs', split='train')
val_set = load_dataset('xuemduan/reevaluate-image-text-pairs', split='validation')
test_set = load_dataset('xuemduan/reevaluate-image-text-pairs', split='test')

# Iterate through samples
for sample in train_set:
    image_path = sample['image']
    uuid = sample['uuid']
    object_type = sample['object_type']  
    query_texts = sample['query_text']  
    description_text = sample['target_txt']  
```

## Citation

If you use this dataset in your research, please cite this dataset.

## Contact

For questions or issues related to this dataset, please email xuemin.duan@kuleuven.be