Datasets:

Modalities:
Image
ArXiv:
Libraries:
Datasets
License:

Add task category and improve dataset card metadata

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +29 -10
README.md CHANGED
@@ -1,17 +1,24 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
3
  ---
4
 
5
- ### Dataset Download
6
 
7
- I created a convenient PNG-formatted version of the ACDC dataset.
8
- This version was converted from the files provided in the SSL4MIS repository:
9
- [SSL4MIS ACDC Version](https://github.com/HiLab-git/SSL4MIS/tree/master/data/ACDC)
10
-
11
- If you use the dataset in your research, please make sure to cite the **original ACDC paper**.
12
 
13
  ### Dataset Structure
14
 
 
 
15
  ```bash
16
  XXX/
17
 
@@ -32,9 +39,21 @@ XXX/
32
  └── mask/ # Test masks (optional)
33
  ```
34
 
35
- This dataset is introduced and used in the following paper:
 
 
 
36
 
37
- **VQ-Seg: Vector-Quantized Token Perturbation for Semi-Supervised Medical Image Segmentation**
38
- arXiv: https://arxiv.org/abs/2601.10124
 
 
 
 
 
 
 
 
 
39
 
40
- check: https://github.com/script-Yang/VQ-Seg
 
1
  ---
2
  license: apache-2.0
3
+ task_categories:
4
+ - image-segmentation
5
+ tags:
6
+ - medical
7
+ - biology
8
  ---
9
 
10
+ # ACDC-PNG Dataset
11
 
12
+ [Paper](https://arxiv.org/abs/2601.10124) | [Code](https://github.com/script-Yang/VQ-Seg)
13
+
14
+ This repository contains a convenient PNG-formatted version of the ACDC dataset, primarily intended for semi-supervised medical image segmentation tasks. This version was converted from the files provided in the [SSL4MIS repository](https://github.com/HiLab-git/SSL4MIS/tree/master/data/ACDC).
15
+
16
+ It is used and introduced in the paper: **VQ-Seg: Vector-Quantized Token Perturbation for Semi-Supervised Medical Image Segmentation**.
17
 
18
  ### Dataset Structure
19
 
20
+ The data is organized as follows:
21
+
22
  ```bash
23
  XXX/
24
 
 
39
  └── mask/ # Test masks (optional)
40
  ```
41
 
42
+ - **train-label**: Paired image–mask samples used for supervised segmentation training.
43
+ - **train-unlabel**: Images without ground-truth annotations, utilized for semi-supervised learning.
44
+ - **val**: Used to monitor and validate model performance during training.
45
+ - **test**: Used for final evaluation and benchmarking.
46
 
47
+ ### Citation
48
+
49
+ If you use this dataset or the VQ-Seg method in your research, please cite the following:
50
+
51
+ ```bibtex
52
+ @inproceedings{yangvq,
53
+ title={VQ-Seg: Vector-Quantized Token Perturbation for Semi-Supervised Medical Image Segmentation},
54
+ author={Yang, Sicheng and Xing, Zhaohu and Zhu, Lei},
55
+ booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems}
56
+ }
57
+ ```
58
 
59
+ Please also make sure to cite the **original ACDC paper**.