Datasets:
Tasks:
Image Segmentation
Sub-tasks:
instance-segmentation
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
scene-parsing
License:
Convert dataset to Parquet
#4
by
nikita-savelyev-intel
- opened
- README.md +40 -22
- instance_segmentation/test-00000-of-00001.parquet +3 -0
- instance_segmentation/train-00000-of-00002.parquet +3 -0
- instance_segmentation/train-00001-of-00002.parquet +3 -0
- instance_segmentation/validation-00000-of-00001.parquet +3 -0
- scene_parse_150.py +0 -306
- scene_parsing/test-00000-of-00001.parquet +3 -0
- scene_parsing/train-00000-of-00002.parquet +3 -0
- scene_parsing/train-00001-of-00002.parquet +3 -0
- scene_parsing/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
|
@@ -23,6 +23,24 @@ pretty_name: MIT Scene Parsing Benchmark
|
|
| 23 |
tags:
|
| 24 |
- scene-parsing
|
| 25 |
dataset_info:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
- config_name: scene_parsing
|
| 27 |
features:
|
| 28 |
- name: image
|
|
@@ -1090,34 +1108,34 @@ dataset_info:
|
|
| 1090 |
'1054': chuck_wagon
|
| 1091 |
splits:
|
| 1092 |
- name: train
|
| 1093 |
-
num_bytes:
|
| 1094 |
num_examples: 20210
|
| 1095 |
- name: test
|
| 1096 |
-
num_bytes:
|
| 1097 |
num_examples: 3352
|
| 1098 |
- name: validation
|
| 1099 |
-
num_bytes:
|
| 1100 |
num_examples: 2000
|
| 1101 |
-
download_size:
|
| 1102 |
-
dataset_size:
|
|
|
|
| 1103 |
- config_name: instance_segmentation
|
| 1104 |
-
|
| 1105 |
-
-
|
| 1106 |
-
|
| 1107 |
-
-
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
| 1111 |
-
|
| 1112 |
-
|
| 1113 |
-
-
|
| 1114 |
-
|
| 1115 |
-
|
| 1116 |
-
|
| 1117 |
-
|
| 1118 |
-
|
| 1119 |
-
|
| 1120 |
-
dataset_size: 1162607766
|
| 1121 |
---
|
| 1122 |
|
| 1123 |
# Dataset Card for MIT Scene Parsing Benchmark
|
|
|
|
| 23 |
tags:
|
| 24 |
- scene-parsing
|
| 25 |
dataset_info:
|
| 26 |
+
- config_name: instance_segmentation
|
| 27 |
+
features:
|
| 28 |
+
- name: image
|
| 29 |
+
dtype: image
|
| 30 |
+
- name: annotation
|
| 31 |
+
dtype: image
|
| 32 |
+
splits:
|
| 33 |
+
- name: train
|
| 34 |
+
num_bytes: 860630916.0
|
| 35 |
+
num_examples: 20210
|
| 36 |
+
- name: test
|
| 37 |
+
num_bytes: 212259688.24
|
| 38 |
+
num_examples: 3352
|
| 39 |
+
- name: validation
|
| 40 |
+
num_bytes: 87306278.0
|
| 41 |
+
num_examples: 2000
|
| 42 |
+
download_size: 1153798177
|
| 43 |
+
dataset_size: 1160196882.24
|
| 44 |
- config_name: scene_parsing
|
| 45 |
features:
|
| 46 |
- name: image
|
|
|
|
| 1108 |
'1054': chuck_wagon
|
| 1109 |
splits:
|
| 1110 |
- name: train
|
| 1111 |
+
num_bytes: 869069754.47
|
| 1112 |
num_examples: 20210
|
| 1113 |
- name: test
|
| 1114 |
+
num_bytes: 213332406.248
|
| 1115 |
num_examples: 3352
|
| 1116 |
- name: validation
|
| 1117 |
+
num_bytes: 89630486.0
|
| 1118 |
num_examples: 2000
|
| 1119 |
+
download_size: 1180732438
|
| 1120 |
+
dataset_size: 1172032646.718
|
| 1121 |
+
configs:
|
| 1122 |
- config_name: instance_segmentation
|
| 1123 |
+
data_files:
|
| 1124 |
+
- split: train
|
| 1125 |
+
path: instance_segmentation/train-*
|
| 1126 |
+
- split: test
|
| 1127 |
+
path: instance_segmentation/test-*
|
| 1128 |
+
- split: validation
|
| 1129 |
+
path: instance_segmentation/validation-*
|
| 1130 |
+
- config_name: scene_parsing
|
| 1131 |
+
data_files:
|
| 1132 |
+
- split: train
|
| 1133 |
+
path: scene_parsing/train-*
|
| 1134 |
+
- split: test
|
| 1135 |
+
path: scene_parsing/test-*
|
| 1136 |
+
- split: validation
|
| 1137 |
+
path: scene_parsing/validation-*
|
| 1138 |
+
default: true
|
|
|
|
| 1139 |
---
|
| 1140 |
|
| 1141 |
# Dataset Card for MIT Scene Parsing Benchmark
|
instance_segmentation/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a27a9632b1823c23b8c956d73601313a1f37010b00bc99be6bddbc199e4f57dc
|
| 3 |
+
size 212261523
|
instance_segmentation/train-00000-of-00002.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f40f92b08663bf0b2e9d830f58496a21fb352086ab48bdc9746a16898d66bdd4
|
| 3 |
+
size 426103500
|
instance_segmentation/train-00001-of-00002.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:654cdfafa885d8b880761bf2492248540e4736d814e1f74948b111ff39209dce
|
| 3 |
+
size 428695764
|
instance_segmentation/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0cd98f4462f8ab84d2e8cdd702f8656e1904b05ab16b8b076014d870fd77ced5
|
| 3 |
+
size 86737390
|
scene_parse_150.py
DELETED
|
@@ -1,306 +0,0 @@
|
|
| 1 |
-
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
"""MIT Scene Parsing Benchmark."""
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
import os
|
| 18 |
-
|
| 19 |
-
import pandas as pd
|
| 20 |
-
|
| 21 |
-
import datasets
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
_CITATION = """\
|
| 25 |
-
@inproceedings{zhou2017scene,
|
| 26 |
-
title={Scene Parsing through ADE20K Dataset},
|
| 27 |
-
author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
|
| 28 |
-
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
|
| 29 |
-
year={2017}
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
@article{zhou2016semantic,
|
| 33 |
-
title={Semantic understanding of scenes through the ade20k dataset},
|
| 34 |
-
author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
|
| 35 |
-
journal={arXiv preprint arXiv:1608.05442},
|
| 36 |
-
year={2016}
|
| 37 |
-
}
|
| 38 |
-
"""
|
| 39 |
-
|
| 40 |
-
_DESCRIPTION = """\
|
| 41 |
-
Scene parsing is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bed.
|
| 42 |
-
MIT Scene Parsing Benchmark (SceneParse150) provides a standard training and evaluation platform for the algorithms of scene parsing.
|
| 43 |
-
The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts.
|
| 44 |
-
Specifically, the benchmark is divided into 20K images for training, 2K images for validation, and another batch of held-out images for testing.
|
| 45 |
-
There are totally 150 semantic categories included for evaluation, which include stuffs like sky, road, grass, and discrete objects like person, car, bed.
|
| 46 |
-
Note that there are non-uniform distribution of objects occuring in the images, mimicking a more natural object occurrence in daily scene.
|
| 47 |
-
"""
|
| 48 |
-
|
| 49 |
-
_HOMEPAGE = "http://sceneparsing.csail.mit.edu/"
|
| 50 |
-
|
| 51 |
-
_LICENSE = "BSD 3-Clause License"
|
| 52 |
-
|
| 53 |
-
_URLS = {
|
| 54 |
-
"scene_parsing": {
|
| 55 |
-
"train/val": "http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip",
|
| 56 |
-
"test": "http://data.csail.mit.edu/places/ADEchallenge/release_test.zip",
|
| 57 |
-
},
|
| 58 |
-
"instance_segmentation": {
|
| 59 |
-
"images": "http://sceneparsing.csail.mit.edu/data/ChallengeData2017/images.tar",
|
| 60 |
-
"annotations": "http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar",
|
| 61 |
-
"test": "http://sceneparsing.csail.mit.edu/data/ChallengeData2017/release_test.tar",
|
| 62 |
-
},
|
| 63 |
-
}
|
| 64 |
-
|
| 65 |
-
_SCENE_CATEGORIES = """\
|
| 66 |
-
airport_terminal art_gallery badlands ball_pit bathroom beach bedroom booth_indoor botanical_garden bridge bullring
|
| 67 |
-
bus_interior butte canyon casino_outdoor castle church_outdoor closet coast conference_room construction_site corral
|
| 68 |
-
corridor crosswalk day_care_center sand elevator_interior escalator_indoor forest_road gangplank gas_station
|
| 69 |
-
golf_course gymnasium_indoor harbor hayfield heath hoodoo house hunting_lodge_outdoor ice_shelf joss_house kiosk_indoor
|
| 70 |
-
kitchen landfill library_indoor lido_deck_outdoor living_room locker_room market_outdoor mountain_snowy office orchard
|
| 71 |
-
arbor bookshelf mews nook preserve traffic_island palace palace_hall pantry patio phone_booth establishment
|
| 72 |
-
poolroom_home quonset_hut_outdoor rice_paddy sandbox shopfront skyscraper stone_circle subway_interior platform
|
| 73 |
-
supermarket swimming_pool_outdoor television_studio indoor_procenium train_railway coral_reef viaduct wave wind_farm
|
| 74 |
-
bottle_storage abbey access_road air_base airfield airlock airplane_cabin airport entrance airport_ticket_counter
|
| 75 |
-
alcove alley amphitheater amusement_arcade amusement_park anechoic_chamber apartment_building_outdoor apse_indoor
|
| 76 |
-
apse_outdoor aquarium aquatic_theater aqueduct arcade arch archaelogical_excavation archive basketball football hockey
|
| 77 |
-
performance rodeo soccer armory army_base arrival_gate_indoor arrival_gate_outdoor art_school art_studio artists_loft
|
| 78 |
-
assembly_line athletic_field_indoor athletic_field_outdoor atrium_home atrium_public attic auditorium auto_factory
|
| 79 |
-
auto_mechanics_indoor auto_mechanics_outdoor auto_racing_paddock auto_showroom backstage backstairs
|
| 80 |
-
badminton_court_indoor badminton_court_outdoor baggage_claim shop exterior balcony_interior ballroom bamboo_forest
|
| 81 |
-
bank_indoor bank_outdoor bank_vault banquet_hall baptistry_indoor baptistry_outdoor bar barbershop barn barndoor
|
| 82 |
-
barnyard barrack baseball_field basement basilica basketball_court_indoor basketball_court_outdoor bathhouse
|
| 83 |
-
batters_box batting_cage_indoor batting_cage_outdoor battlement bayou bazaar_indoor bazaar_outdoor beach_house
|
| 84 |
-
beauty_salon bedchamber beer_garden beer_hall belfry bell_foundry berth berth_deck betting_shop bicycle_racks bindery
|
| 85 |
-
biology_laboratory bistro_indoor bistro_outdoor bleachers_indoor bleachers_outdoor boardwalk boat_deck boathouse bog
|
| 86 |
-
bomb_shelter_indoor bookbindery bookstore bow_window_indoor bow_window_outdoor bowling_alley box_seat boxing_ring
|
| 87 |
-
breakroom brewery_indoor brewery_outdoor brickyard_indoor brickyard_outdoor building_complex building_facade bullpen
|
| 88 |
-
burial_chamber bus_depot_indoor bus_depot_outdoor bus_shelter bus_station_indoor bus_station_outdoor butchers_shop
|
| 89 |
-
cabana cabin_indoor cabin_outdoor cafeteria call_center campsite campus natural urban candy_store canteen
|
| 90 |
-
car_dealership backseat frontseat caravansary cardroom cargo_container_interior airplane boat freestanding
|
| 91 |
-
carport_indoor carport_outdoor carrousel casino_indoor catacomb cathedral_indoor cathedral_outdoor catwalk
|
| 92 |
-
cavern_indoor cavern_outdoor cemetery chalet chaparral chapel checkout_counter cheese_factory chemical_plant
|
| 93 |
-
chemistry_lab chicken_coop_indoor chicken_coop_outdoor chicken_farm_indoor chicken_farm_outdoor childs_room
|
| 94 |
-
choir_loft_interior church_indoor circus_tent_indoor circus_tent_outdoor city classroom clean_room cliff booth room
|
| 95 |
-
clock_tower_indoor cloister_indoor cloister_outdoor clothing_store coast_road cockpit coffee_shop computer_room
|
| 96 |
-
conference_center conference_hall confessional control_room control_tower_indoor control_tower_outdoor
|
| 97 |
-
convenience_store_indoor convenience_store_outdoor corn_field cottage cottage_garden courthouse courtroom courtyard
|
| 98 |
-
covered_bridge_interior crawl_space creek crevasse library cybercafe dacha dairy_indoor dairy_outdoor dam dance_school
|
| 99 |
-
darkroom delicatessen dentists_office department_store departure_lounge vegetation desert_road diner_indoor
|
| 100 |
-
diner_outdoor dinette_home vehicle dining_car dining_hall dining_room dirt_track discotheque distillery ditch dock
|
| 101 |
-
dolmen donjon doorway_indoor doorway_outdoor dorm_room downtown drainage_ditch dress_shop dressing_room drill_rig
|
| 102 |
-
driveway driving_range_indoor driving_range_outdoor drugstore dry_dock dugout earth_fissure editing_room
|
| 103 |
-
electrical_substation elevated_catwalk door freight_elevator elevator_lobby elevator_shaft embankment embassy
|
| 104 |
-
engine_room entrance_hall escalator_outdoor escarpment estuary excavation exhibition_hall fabric_store factory_indoor
|
| 105 |
-
factory_outdoor fairway farm fastfood_restaurant fence cargo_deck ferryboat_indoor passenger_deck cultivated wild
|
| 106 |
-
field_road fire_escape fire_station firing_range_indoor firing_range_outdoor fish_farm fishmarket fishpond
|
| 107 |
-
fitting_room_interior fjord flea_market_indoor flea_market_outdoor floating_dry_dock flood florist_shop_indoor
|
| 108 |
-
florist_shop_outdoor fly_bridge food_court football_field broadleaf needleleaf forest_fire forest_path formal_garden
|
| 109 |
-
fort fortress foundry_indoor foundry_outdoor fountain freeway funeral_chapel funeral_home furnace_room galley game_room
|
| 110 |
-
garage_indoor garage_outdoor garbage_dump gasworks gate gatehouse gazebo_interior general_store_indoor
|
| 111 |
-
general_store_outdoor geodesic_dome_indoor geodesic_dome_outdoor ghost_town gift_shop glacier glade gorge granary
|
| 112 |
-
great_hall greengrocery greenhouse_indoor greenhouse_outdoor grotto guardhouse gulch gun_deck_indoor gun_deck_outdoor
|
| 113 |
-
gun_store hacienda hallway handball_court hangar_indoor hangar_outdoor hardware_store hat_shop hatchery hayloft hearth
|
| 114 |
-
hedge_maze hedgerow heliport herb_garden highway hill home_office home_theater hospital hospital_room hot_spring
|
| 115 |
-
hot_tub_indoor hot_tub_outdoor hotel_outdoor hotel_breakfast_area hotel_room hunting_lodge_indoor hut ice_cream_parlor
|
| 116 |
-
ice_floe ice_skating_rink_indoor ice_skating_rink_outdoor iceberg igloo imaret incinerator_indoor incinerator_outdoor
|
| 117 |
-
industrial_area industrial_park inn_indoor inn_outdoor irrigation_ditch islet jacuzzi_indoor jacuzzi_outdoor
|
| 118 |
-
jail_indoor jail_outdoor jail_cell japanese_garden jetty jewelry_shop junk_pile junkyard jury_box kasbah kennel_indoor
|
| 119 |
-
kennel_outdoor kindergarden_classroom kiosk_outdoor kitchenette lab_classroom labyrinth_indoor labyrinth_outdoor lagoon
|
| 120 |
-
artificial landing landing_deck laundromat lava_flow lavatory lawn lean-to lecture_room legislative_chamber levee
|
| 121 |
-
library_outdoor lido_deck_indoor lift_bridge lighthouse limousine_interior liquor_store_indoor liquor_store_outdoor
|
| 122 |
-
loading_dock lobby lock_chamber loft lookout_station_indoor lookout_station_outdoor lumberyard_indoor
|
| 123 |
-
lumberyard_outdoor machine_shop manhole mansion manufactured_home market_indoor marsh martial_arts_gym mastaba
|
| 124 |
-
maternity_ward mausoleum medina menhir mesa mess_hall mezzanine military_hospital military_hut military_tent mine
|
| 125 |
-
mineshaft mini_golf_course_indoor mini_golf_course_outdoor mission dry water mobile_home monastery_indoor
|
| 126 |
-
monastery_outdoor moon_bounce moor morgue mosque_indoor mosque_outdoor motel mountain mountain_path mountain_road
|
| 127 |
-
movie_theater_indoor movie_theater_outdoor mudflat museum_indoor museum_outdoor music_store music_studio misc
|
| 128 |
-
natural_history_museum naval_base newsroom newsstand_indoor newsstand_outdoor nightclub nuclear_power_plant_indoor
|
| 129 |
-
nuclear_power_plant_outdoor nunnery nursery nursing_home oasis oast_house observatory_indoor observatory_outdoor
|
| 130 |
-
observatory_post ocean office_building office_cubicles oil_refinery_indoor oil_refinery_outdoor oilrig operating_room
|
| 131 |
-
optician organ_loft_interior orlop_deck ossuary outcropping outhouse_indoor outhouse_outdoor overpass oyster_bar
|
| 132 |
-
oyster_farm acropolis aircraft_carrier_object amphitheater_indoor archipelago questionable assembly_hall assembly_plant
|
| 133 |
-
awning_deck back_porch backdrop backroom backstage_outdoor backstairs_indoor backwoods ballet balustrade barbeque
|
| 134 |
-
basin_outdoor bath_indoor bath_outdoor bathhouse_outdoor battlefield bay booth_outdoor bottomland breakfast_table
|
| 135 |
-
bric-a-brac brooklet bubble_chamber buffet bulkhead bunk_bed bypass byroad cabin_cruiser cargo_helicopter cellar
|
| 136 |
-
chair_lift cocktail_lounge corner country_house country_road customhouse dance_floor deck-house_boat_deck_house
|
| 137 |
-
deck-house_deck_house dining_area diving_board embrasure entranceway_indoor entranceway_outdoor entryway_outdoor
|
| 138 |
-
estaminet farm_building farmhouse feed_bunk field_house field_tent_indoor field_tent_outdoor fire_trench fireplace
|
| 139 |
-
flashflood flatlet floating_dock flood_plain flowerbed flume_indoor flying_buttress foothill forecourt foreshore
|
| 140 |
-
front_porch garden gas_well glen grape_arbor grove guardroom guesthouse gymnasium_outdoor head_shop hen_yard hillock
|
| 141 |
-
housing_estate housing_project howdah inlet insane_asylum outside juke_joint jungle kraal laboratorywet landing_strip
|
| 142 |
-
layby lean-to_tent loge loggia_outdoor lower_deck luggage_van mansard meadow meat_house megalith mens_store_outdoor
|
| 143 |
-
mental_institution_indoor mental_institution_outdoor military_headquarters millpond millrace natural_spring
|
| 144 |
-
nursing_home_outdoor observation_station open-hearth_furnace operating_table outbuilding palestra parkway patio_indoor
|
| 145 |
-
pavement pawnshop_outdoor pinetum piste_road pizzeria_outdoor powder_room pumping_station reception_room rest_stop
|
| 146 |
-
retaining_wall rift_valley road rock_garden rotisserie safari_park salon saloon sanatorium science_laboratory scrubland
|
| 147 |
-
scullery seaside semidesert shelter shelter_deck shelter_tent shore shrubbery sidewalk snack_bar snowbank stage_set
|
| 148 |
-
stall stateroom store streetcar_track student_center study_hall sugar_refinery sunroom supply_chamber t-bar_lift
|
| 149 |
-
tannery teahouse threshing_floor ticket_window_indoor tidal_basin tidal_river tiltyard tollgate tomb tract_housing
|
| 150 |
-
trellis truck_stop upper_balcony vestibule vinery walkway war_room washroom water_fountain water_gate waterscape
|
| 151 |
-
waterway wetland widows_walk_indoor windstorm packaging_plant pagoda paper_mill park parking_garage_indoor
|
| 152 |
-
parking_garage_outdoor parking_lot parlor particle_accelerator party_tent_indoor party_tent_outdoor pasture pavilion
|
| 153 |
-
pawnshop pedestrian_overpass_indoor penalty_box pet_shop pharmacy physics_laboratory piano_store picnic_area pier
|
| 154 |
-
pig_farm pilothouse_indoor pilothouse_outdoor pitchers_mound pizzeria planetarium_indoor planetarium_outdoor
|
| 155 |
-
plantation_house playground playroom plaza podium_indoor podium_outdoor police_station pond pontoon_bridge poop_deck
|
| 156 |
-
porch portico portrait_studio postern power_plant_outdoor print_shop priory promenade promenade_deck pub_indoor
|
| 157 |
-
pub_outdoor pulpit putting_green quadrangle quicksand quonset_hut_indoor racecourse raceway raft railroad_track
|
| 158 |
-
railway_yard rainforest ramp ranch ranch_house reading_room reception recreation_room rectory recycling_plant_indoor
|
| 159 |
-
refectory repair_shop residential_neighborhood resort rest_area restaurant restaurant_kitchen restaurant_patio
|
| 160 |
-
restroom_indoor restroom_outdoor revolving_door riding_arena river road_cut rock_arch roller_skating_rink_indoor
|
| 161 |
-
roller_skating_rink_outdoor rolling_mill roof roof_garden root_cellar rope_bridge roundabout roundhouse rubble ruin
|
| 162 |
-
runway sacristy salt_plain sand_trap sandbar sauna savanna sawmill schoolhouse schoolyard science_museum scriptorium
|
| 163 |
-
sea_cliff seawall security_check_point server_room sewer sewing_room shed shipping_room shipyard_outdoor shoe_shop
|
| 164 |
-
shopping_mall_indoor shopping_mall_outdoor shower shower_room shrine signal_box sinkhole ski_jump ski_lodge ski_resort
|
| 165 |
-
ski_slope sky skywalk_indoor skywalk_outdoor slum snowfield massage_room mineral_bath spillway sporting_goods_store
|
| 166 |
-
squash_court stable baseball stadium_outdoor stage_indoor stage_outdoor staircase starting_gate steam_plant_outdoor
|
| 167 |
-
steel_mill_indoor storage_room storm_cellar street strip_mall strip_mine student_residence submarine_interior sun_deck
|
| 168 |
-
sushi_bar swamp swimming_hole swimming_pool_indoor synagogue_indoor synagogue_outdoor taxistand taxiway tea_garden
|
| 169 |
-
tearoom teashop television_room east_asia mesoamerican south_asia western tennis_court_indoor tennis_court_outdoor
|
| 170 |
-
tent_outdoor terrace_farm indoor_round indoor_seats theater_outdoor thriftshop throne_room ticket_booth
|
| 171 |
-
tobacco_shop_indoor toll_plaza tollbooth topiary_garden tower town_house toyshop track_outdoor trading_floor
|
| 172 |
-
trailer_park train_interior train_station_outdoor station tree_farm tree_house trench trestle_bridge tundra rail_indoor
|
| 173 |
-
rail_outdoor road_indoor road_outdoor turkish_bath ocean_deep ocean_shallow utility_room valley van_interior
|
| 174 |
-
vegetable_garden velodrome_indoor velodrome_outdoor ventilation_shaft veranda vestry veterinarians_office videostore
|
| 175 |
-
village vineyard volcano volleyball_court_indoor volleyball_court_outdoor voting_booth waiting_room walk_in_freezer
|
| 176 |
-
warehouse_indoor warehouse_outdoor washhouse_indoor washhouse_outdoor watchtower water_mill water_park water_tower
|
| 177 |
-
water_treatment_plant_indoor water_treatment_plant_outdoor block cascade cataract fan plunge watering_hole weighbridge
|
| 178 |
-
wet_bar wharf wheat_field whispering_gallery widows_walk_interior windmill window_seat barrel_storage winery
|
| 179 |
-
witness_stand woodland workroom workshop wrestling_ring_indoor wrestling_ring_outdoor yard youth_hostel zen_garden
|
| 180 |
-
ziggurat zoo forklift hollow hutment pueblo vat perfume_shop steel_mill_outdoor orchestra_pit bridle_path lyceum
|
| 181 |
-
one-way_street parade_ground pump_room recycling_plant_outdoor chuck_wagon
|
| 182 |
-
"""
|
| 183 |
-
_SCENE_CATEGORIES = _SCENE_CATEGORIES.strip().split()
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
class SceneParse150(datasets.GeneratorBasedBuilder):
|
| 187 |
-
"""MIT Scene Parsing Benchmark dataset."""
|
| 188 |
-
|
| 189 |
-
VERSION = datasets.Version("1.0.0")
|
| 190 |
-
|
| 191 |
-
BUILDER_CONFIGS = [
|
| 192 |
-
datasets.BuilderConfig(name="scene_parsing", version=VERSION, description="The scene parsing variant."),
|
| 193 |
-
datasets.BuilderConfig(
|
| 194 |
-
name="instance_segmentation", version=VERSION, description="The instance segmentation variant."
|
| 195 |
-
),
|
| 196 |
-
]
|
| 197 |
-
|
| 198 |
-
DEFAULT_CONFIG_NAME = "scene_parsing"
|
| 199 |
-
|
| 200 |
-
def _info(self):
|
| 201 |
-
if self.config.name == "scene_parsing":
|
| 202 |
-
features = datasets.Features(
|
| 203 |
-
{
|
| 204 |
-
"image": datasets.Image(),
|
| 205 |
-
"annotation": datasets.Image(),
|
| 206 |
-
"scene_category": datasets.ClassLabel(names=_SCENE_CATEGORIES),
|
| 207 |
-
}
|
| 208 |
-
)
|
| 209 |
-
else:
|
| 210 |
-
features = datasets.Features(
|
| 211 |
-
{
|
| 212 |
-
"image": datasets.Image(),
|
| 213 |
-
"annotation": datasets.Image(),
|
| 214 |
-
}
|
| 215 |
-
)
|
| 216 |
-
return datasets.DatasetInfo(
|
| 217 |
-
description=_DESCRIPTION,
|
| 218 |
-
features=features,
|
| 219 |
-
homepage=_HOMEPAGE,
|
| 220 |
-
license=_LICENSE,
|
| 221 |
-
citation=_CITATION,
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
def _split_generators(self, dl_manager):
|
| 225 |
-
urls = _URLS[self.config.name]
|
| 226 |
-
|
| 227 |
-
if self.config.name == "scene_parsing":
|
| 228 |
-
data_dirs = dl_manager.download_and_extract(urls)
|
| 229 |
-
train_data = val_data = os.path.join(data_dirs["train/val"], "ADEChallengeData2016")
|
| 230 |
-
test_data = os.path.join(data_dirs["test"], "release_test")
|
| 231 |
-
else:
|
| 232 |
-
data_dirs = dl_manager.download(urls)
|
| 233 |
-
train_data = dl_manager.iter_archive(data_dirs["images"]), dl_manager.iter_archive(
|
| 234 |
-
data_dirs["annotations"]
|
| 235 |
-
)
|
| 236 |
-
val_data = dl_manager.iter_archive(data_dirs["images"]), dl_manager.iter_archive(data_dirs["annotations"])
|
| 237 |
-
test_data = dl_manager.iter_archive(data_dirs["test"])
|
| 238 |
-
return [
|
| 239 |
-
datasets.SplitGenerator(
|
| 240 |
-
name=datasets.Split.TRAIN,
|
| 241 |
-
gen_kwargs={
|
| 242 |
-
"data": train_data,
|
| 243 |
-
"split": "training",
|
| 244 |
-
},
|
| 245 |
-
),
|
| 246 |
-
datasets.SplitGenerator(
|
| 247 |
-
name=datasets.Split.TEST,
|
| 248 |
-
gen_kwargs={"data": test_data, "split": "testing"},
|
| 249 |
-
),
|
| 250 |
-
datasets.SplitGenerator(
|
| 251 |
-
name=datasets.Split.VALIDATION,
|
| 252 |
-
gen_kwargs={
|
| 253 |
-
"data": val_data,
|
| 254 |
-
"split": "validation",
|
| 255 |
-
},
|
| 256 |
-
),
|
| 257 |
-
]
|
| 258 |
-
|
| 259 |
-
def _generate_examples(self, data, split):
|
| 260 |
-
if self.config.name == "scene_parsing":
|
| 261 |
-
if split == "testing":
|
| 262 |
-
image_dir = os.path.join(data, split)
|
| 263 |
-
for idx, image_file in enumerate(os.listdir(image_dir)):
|
| 264 |
-
yield idx, {
|
| 265 |
-
"image": os.path.join(image_dir, image_file),
|
| 266 |
-
"annotation": None,
|
| 267 |
-
"scene_category": None,
|
| 268 |
-
}
|
| 269 |
-
else:
|
| 270 |
-
image_id2cat = pd.read_csv(
|
| 271 |
-
os.path.join(data, "sceneCategories.txt"), sep=" ", names=["image_id", "scene_category"]
|
| 272 |
-
)
|
| 273 |
-
image_id2cat = image_id2cat.set_index("image_id")
|
| 274 |
-
images_dir = os.path.join(data, "images", split)
|
| 275 |
-
annotations_dir = os.path.join(data, "annotations", split)
|
| 276 |
-
for idx, image_file in enumerate(os.listdir(images_dir)):
|
| 277 |
-
image_id = image_file.split(".")[0]
|
| 278 |
-
yield idx, {
|
| 279 |
-
"image": os.path.join(images_dir, image_file),
|
| 280 |
-
"annotation": os.path.join(annotations_dir, image_id + ".png"),
|
| 281 |
-
"scene_category": image_id2cat.loc[image_id, "scene_category"],
|
| 282 |
-
}
|
| 283 |
-
else:
|
| 284 |
-
if split == "testing":
|
| 285 |
-
for idx, (path, file) in enumerate(data):
|
| 286 |
-
if path.endswith(".jpg"):
|
| 287 |
-
yield idx, {
|
| 288 |
-
"image": {"path": path, "bytes": file.read()},
|
| 289 |
-
"annotation": None,
|
| 290 |
-
}
|
| 291 |
-
else:
|
| 292 |
-
images, annotations = data
|
| 293 |
-
image_id2annot = {}
|
| 294 |
-
# loads the annotations for the split into RAM (less than 100 MB) to support streaming
|
| 295 |
-
for path_annot, file_annot in annotations:
|
| 296 |
-
if split in path_annot and path_annot.endswith(".png"):
|
| 297 |
-
image_id = os.path.basename(path_annot).split(".")[0]
|
| 298 |
-
image_id2annot[image_id] = (path_annot, file_annot.read())
|
| 299 |
-
for idx, (path_img, file_img) in enumerate(images):
|
| 300 |
-
if split in path_img and path_img.endswith(".jpg"):
|
| 301 |
-
image_id = os.path.basename(path_img).split(".")[0]
|
| 302 |
-
path_annot, bytes_annot = image_id2annot[image_id]
|
| 303 |
-
yield idx, {
|
| 304 |
-
"image": {"path": path_img, "bytes": file_img.read()},
|
| 305 |
-
"annotation": {"path": path_annot, "bytes": bytes_annot},
|
| 306 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scene_parsing/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a96f4f9b4d01e07b5d70ddebb8b7f3ab56039756e9faf8d0113e568beeb42475
|
| 3 |
+
size 212308032
|
scene_parsing/train-00000-of-00002.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33a8ebb50a59923184c55fdc901c7f412c2f81c66105419513b9a7a20f147254
|
| 3 |
+
size 441756193
|
scene_parsing/train-00001-of-00002.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7936fa2dd0159b6c6a463bad541036e963017aead8c8bda25d3e23fb7773056
|
| 3 |
+
size 437551366
|
scene_parsing/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b17381f77619f47efcd0c6fca80e99448909a9aac4ff908bfa39f1516bf3a822
|
| 3 |
+
size 89116847
|