dklpp's picture
End of training
6a7b45f verified
metadata
library_name: peft
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
  - base_model:adapter:meta-llama/Llama-3.1-8B-Instruct
  - lora
  - transformers
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: llama3_ft_section_classifier
    results: []

llama3_ft_section_classifier

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3342
  • Accuracy: 0.6232
  • Precision: 0.6126
  • Recall: 0.6232
  • F1: 0.6164

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
16.483 1.0 275 1.3758 0.5423 0.5769 0.5423 0.5311
9.7264 2.0 550 1.1577 0.6095 0.6215 0.6095 0.6065
8.2372 3.0 825 1.1713 0.6041 0.6264 0.6041 0.6061
6.1069 4.0 1100 1.2993 0.6123 0.6090 0.6123 0.6025
3.1467 5.0 1375 1.5804 0.6027 0.6255 0.6027 0.6085
1.3995 6.0 1650 1.9973 0.6077 0.6005 0.6077 0.5994
0.8489 7.0 1925 2.3380 0.6082 0.6070 0.6082 0.5990
0.4705 8.0 2200 2.5919 0.6245 0.6223 0.6245 0.6172
0.186 9.0 2475 2.8240 0.6223 0.6275 0.6223 0.6238
0.0636 10.0 2750 3.0796 0.6209 0.6273 0.6209 0.6190
0.0248 11.0 3025 3.2076 0.6259 0.6269 0.6259 0.6231
0.0009 12.0 3300 3.2148 0.6214 0.6133 0.6214 0.6158
0.0001 13.0 3575 3.2700 0.6209 0.6132 0.6209 0.6158
0.0 14.0 3850 3.2962 0.6223 0.6124 0.6223 0.6158
0.0 15.0 4125 3.3102 0.6223 0.6118 0.6223 0.6156
0.0 16.0 4400 3.3219 0.6236 0.6138 0.6236 0.6173
0.0 17.0 4675 3.3271 0.6232 0.6125 0.6232 0.6162
0.0 18.0 4950 3.3285 0.6218 0.6108 0.6218 0.6148
0.0 19.0 5225 3.3359 0.6232 0.6126 0.6232 0.6163
0.0 20.0 5500 3.3342 0.6232 0.6126 0.6232 0.6164

Framework versions

  • PEFT 0.17.1
  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1