ZHZisZZ's picture
Update README.md
195da20 verified
---
license: apache-2.0
---
<center> <div style="text-align: center;"> <img src="https://raw.githubusercontent.com/ZHZisZZ/dllm/main/assets/logo.gif" width="400" />
</div> </center>
# ModernBERT-large-chat-v0.1
ModernBERT-large-chat-v0.1 is a diffusion-based language model adapted from [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-base) using [MDLM](https://arxiv.org/abs/2406.07524) (masked diffusion), trained with the [dLLM](https://github.com/ZHZisZZ/dllm) framework.
## Model Overview
ModernBERT-large-chat-v0.1 has the following features:
- **Method**: [Masked Diffusion Language Modeling (MDLM)](https://arxiv.org/abs/2406.07524)
- **Framework**: [dLLM](https://github.com/ZHZisZZ/dllm)
- **Base Model**: [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large)
- **Datasets**: [tulu-3-sft-mixture](https://huggingface.co/datasets/allenai/tulu-3-sft-mixture), [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk)
For training details, see the [W&B report](https://wandb.ai/asap-zzhou/dllm/reports/dLLM-BERT--VmlldzoxNDg0MzExNg).
## Installation
```shell
pip install torch transformers accelerate
```
## Quick Start
```python
import torch
import numpy as np
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForMaskedLM
def add_gumbel_noise(logits, temperature):
if temperature == 0:
return logits
logits = logits.to(torch.float64)
noise = torch.rand_like(logits, dtype=torch.float64)
gumbel_noise = (- torch.log(noise)) ** temperature
return logits.exp() / gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
mask_num = mask_index.sum(dim=1, keepdim=True)
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
for i in range(mask_num.size(0)):
num_transfer_tokens[i, :remainder[i]] += 1
return num_transfer_tokens
@ torch.no_grad()
def generate(model, prompt, steps=128, gen_length=128, block_length=64, temperature=0.0, cfg_scale=0., remasking='random'):
mask_id = tokenizer.mask_token_id
x = torch.full((1, prompt.shape[1] + gen_length), mask_id, dtype=torch.long).to(model.device)
x[:, :prompt.shape[1]] = prompt.clone()
prompt_index = (x != mask_id)
assert gen_length % block_length == 0
num_blocks = gen_length // block_length
assert steps % num_blocks == 0
steps = steps // num_blocks
for num_block in range(num_blocks):
block_mask_index = (x[:, prompt.shape[1] + num_block * block_length: prompt.shape[1] + (num_block + 1) * block_length:] == mask_id)
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
for i in range(steps):
mask_index = (x == mask_id)
if cfg_scale > 0.:
un_x = x.clone()
un_x[prompt_index] = mask_id
x_ = torch.cat([x, un_x], dim=0)
logits = model(x_).logits
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
else:
logits = model(x).logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
if remasking == 'low_confidence':
p = F.softmax(logits, dim=-1)
x0_p = torch.squeeze(
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
elif remasking == 'random':
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
raise NotImplementedError(remasking)
x0_p[:, prompt.shape[1] + (num_block + 1) * block_length:] = -np.inf
x0 = torch.where(mask_index, x0, x)
confidence = torch.where(mask_index, x0_p, -np.inf)
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
_, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
transfer_index[j, select_index] = True
x[transfer_index] = x0[transfer_index]
return x
device = 'cuda'
model = AutoModelForMaskedLM.from_pretrained('dllm-collection/ModernBERT-large-chat-v0.1', dtype=torch.bfloat16).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained('dllm-collection/ModernBERT-large-chat-v0.1')
prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?"
m = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": prompt}
]
prompt = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
input_ids = tokenizer(prompt)['input_ids']
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
text = generate(model, input_ids, steps=128, gen_length=128, block_length=64, temperature=0.0, cfg_scale=0.0, remasking='random')
print(tokenizer.batch_decode(text[:, input_ids.shape[1]:], skip_special_tokens=False)[0])
```
## Generation Parameters
| Parameter | Description | Default |
| ---------------- | ---------------------------------------------------------------------------------------------- | -------- |
| `max_new_tokens` | Number of tokens to generate | 128 |
| `steps` | Number of diffusion denoising iterations | 128 |
| `temperature` | Sampling temperature; set to `0.0` for deterministic generation | 0.0 |
| `block_length` | Token block size used during iterative denoising | 64 |
| `cfg_scale` | Classifier-free guidance scale controlling instruction adherence (higher = more deterministic) | 0.0 |
| `remasking` | Strategy for re-masking during each denoising step (`random`, `none`, or `confidence`) | `random` |
## Command-Line Interface
Follow the Github repo's demo script [examples/bert/chat.py](https://github.com/ZHZisZZ/dllm/blob/main/examples/bert/chat.py) for visualized generation:
```shell
python -u examples/bert/chat.py \
--model_name_or_path dllm-collection/ModernBERT-large-chat-v0.1 \
--chat True
```
## Evaluation
|                     | LAMBADA | GSM8K | CEval | BBH | MATH | MMLU | Winogrande | HellaSwag | CMMLU |
|:------------------------------------|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| ModernBERT-base-chat-v0.1 | 49.3 | 5.9 | 25.0 | 17.9 | 3.1 | 26.1 | 49.7 | 41.0 | 24.3 |
| ModernBERT-large-chat-v0.1 | 46.3 | 17.1 | 24.6 | 25.1 | 3.8 | 33.5 | 53.1 | 45.0 | 27.5 |
<!-- <p align="left" style="color: #808080; font-size: 0.9em;">
Table 1. Evaluation results of
ModernBERT-base-chat-v0.1 and
ModernBERT-large-chat-v0.1.
All results are evaluated using
<a href="https://github.com/ZHZisZZ/dllm/tree/main" style="color: #808080; text-decoration: underline;">
dLLM
</a>'s eval script
<a href="https://github.com/ZHZisZZ/dllm/blob/main/examples/bert/eval.sh" style="color: #808080; text-decoration: underline;">
examples/bert/eval.sh
</a>.
</p> -->
To automatically evaluate ModernBERT-large-chat-v0.1 on all benchmarks, run:
```shell
bash examples/bert/eval.sh \
--model_name_or_path "dllm-collection/ModernBERT-large-chat-v0.1"
```
## Citation
If you use ModernBERT-large-chat-v0.1 or dLLM, please cite:
```bibtex
@misc{dllm,
author = {Zhanhui Zhou and Lingjie Chen and Hanghang Tong and Dawn Song},
title = {dLLM: Simple Diffusion Language Modeling},
year = {2025},
howpublished = {\url{https://github.com/ZHZisZZ/dllm}},
}