nvidia/Alpamayo-R1-10B 4bit Model.
μ΄λͺ¨λΈμ μμ¨μ£Όν μ€ μμ§λ λ°μ΄ν°λ‘ μ΄λ²€νΈλ₯Ό μμΈ‘νλ μ©λλ‘ νμ©ν μ μμ΅λλ€. μμ¨μ£Όνμ νλκ² μλλΌ μμ¨μ£Όν μ€ νΉμ μν©μ΄ λ°μν κ²μ μλ €μ£Όλ κΈ°λ₯μ ν©λλ€.
model download ./Alpamayo-R1-10B-4bit
GPU 12G/16G Memory Run able
12G Memory is num_frames is 1 ~ 8, over OOM
Transformers is 4.57.5 ( 5.0.0rc not run)
nvidia/Alpamayo-R1-10B μ΄ λμ©λ λ©λͺ¨λ¦¬λ₯Ό μꡬνκ³ 4bit λ‘ λ‘λ©νμ¬ μ μ₯ν λͺ¨λΈμ
λλ€.
12G μμλ μ€νκ°λ₯ν΄μ‘μ΅λλ€λ§ μ£Όμ΄μ§λ νλ μμλ 1~8μ λ, κ·Έ μ΄μμ΄λ©΄ OOMμ΄ λ¨μ΄μ§λλ€.
νΈλμ€ν¬λ¨Έ λ²μ 5.0.0rcμμλ λμνμ§ μμ΅λλ€.
git clone https://github.com/NVlabs/alpamayo νκ³
cd alpamayo
pip install . λ‘ μ€μΉν΄μΌ ν©λλ€λ§
pyproject.tomlμ μμ νλκ² μ’μ΅λλ€.
python 3.13μ μ¬μ©νλ©΄ requires-python = "==3.13.*"
transformers μ torchλ₯Ό λΌμΈμ μ κ±°νκ³ μ€μΉνλ©΄ μ€μΉλ λ²μ μ΄ κ΅μ²΄λμ§ μμ΅λλ€.
import torch
import numpy as np
from alpamayo_r1.models.alpamayo_r1 import AlpamayoR1
from alpamayo_r1.load_physical_aiavdataset import load_physical_aiavdataset
from alpamayo_r1 import helper
model_path = "Alpamayo-R1-10B-4bit"
model = AlpamayoR1.from_pretrained(model_path, dtype=torch.bfloat16).to("cuda")
processor = helper.get_processor(model.tokenizer)
clip_id = "030c760c-ae38-49aa-9ad8-f5650a545d26"
print(f"Loading dataset for clip_id: {clip_id}...")
#need set access token or huggingface-cli login...
data = load_physical_aiavdataset(clip_id, t0_us=15_100_000,num_frames=1)
print("Dataset loaded.")
messages = helper.create_message(data["image_frames"].flatten(0, 1))
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=False,
continue_final_message=True,
return_dict=True,
return_tensors="pt",
)
model_inputs = {
"tokenized_data": inputs,
"ego_history_xyz": data["ego_history_xyz"],
"ego_history_rot": data["ego_history_rot"],
}
model_inputs = helper.to_device(model_inputs, "cuda")
torch.cuda.manual_seed_all(42)
with torch.autocast("cuda", dtype=torch.bfloat16):
pred_xyz, pred_rot, extra = model.sample_trajectories_from_data_with_vlm_rollout(
data=model_inputs,
top_p=0.98,
temperature=0.6,
num_traj_samples=1, # Feel free to raise this for more output trajectories and CoC traces.
max_generation_length=256,
return_extra=True,
)
print("Chain-of-Causation (per trajectory):\n", extra["cot"][0])
gt_xy = data["ego_future_xyz"].cpu()[0, 0, :, :2].T.numpy()
pred_xy = pred_xyz.cpu().numpy()[0, 0, :, :, :2].transpose(0, 2, 1)
diff = np.linalg.norm(pred_xy - gt_xy[None, ...], axis=1).mean(-1)
min_ade = diff.min()
print("minADE:", min_ade, "meters")
print(
"Note: VLA-reasoning models produce nondeterministic outputs due to trajectory sampling, "
"hardware differences, etc. With num_traj_samples=1 (set for GPU memory compatibility), "
"variance in minADE is expected. For visual sanity checks, see notebooks/inference.ipynb"
)
Chain-of-Causation (per trajectory):
[['Nudge to the left to pass the stopped truck encroaching into the lane.']]
minADE: 1.7749525 meters
Note: VLA-reasoning models produce nondeterministic outputs due to trajectory sampling, hardware differences, etc. With num_traj_samples=1 (set for GPU memory compatibility), variance in minADE is expected. For visual sanity checks, see notebooks/inference.ipynb
λλ 1μ₯μ μ΄λ―Έμ§λ‘ νλ νλ κ²μ ν μ€νΈ νλ €κ³ μλμ κ°μ μμ λ₯Ό λ§λ€μλ€. λ°μ΄ν° λ‘λ© μμ΄ κΈ°λ³Έ μ΄κΈ°νλ₯Ό νμ¬ μμμ μμ μμνλ κ²μμ μμνλ€. ꡬλνκΈ° μν΄μ μ΅μ 12G μ΄μμΈ GPUμΉ΄λλ₯Ό μ¬μ©ν΄μΌ νκ³ , μλ΅μλ λ κ½€ μ§μ°μ΄ κ±Έλ € μ€μ μλμ°¨μ μ μ©νκΈ°μ 무리μΈκ² κ°λ€.
#ZeroTime init Base Image(1 photo on load image)
import torch
import numpy as np
from PIL import Image
from alpamayo_r1.models.alpamayo_r1 import AlpamayoR1
from alpamayo_r1.load_physical_aiavdataset import load_physical_aiavdataset
from alpamayo_r1 import helper
num_history_steps = 16 # κ³Όκ±° μ€ν
μ
num_future_steps = 64 # λ―Έλ μ€ν
μ
# λλ―Έ μμΉ λ°μ΄ν° (xyz μ’ν)
ego_history_xyz = torch.zeros((1, 1, num_history_steps, 3)) # (batch, agent, steps, xyz)
ego_future_xyz = torch.zeros((1, 1, num_future_steps, 3))
# λλ―Έ νμ λ°μ΄ν° (3x3 νμ νλ ¬)
ego_history_rot = torch.eye(3).repeat(1, 1, num_history_steps, 1, 1) # (1,1,steps,3,3)
ego_future_rot = torch.eye(3).repeat(1, 1, num_future_steps, 1, 1)
print("ego_history_xyz:", ego_history_xyz.shape)
print("ego_future_xyz:", ego_future_xyz.shape)
print("ego_history_rot:", ego_history_rot.shape)
print("ego_future_rot:", ego_future_rot.shape)
N_cameras = 1
camera_indices = torch.arange(N_cameras, dtype=torch.long) # (N_cameras,) - long νμ
λͺ
μ
data={
"camera_indices": camera_indices, # (N_cameras,)
"ego_history_xyz": ego_history_xyz, # (1, 1, num_history_steps, 3)
"ego_history_rot": ego_history_rot, # (1, 1, num_history_steps, 3, 3)
"ego_future_xyz": ego_future_xyz, # (1, 1, num_future_steps, 3)
"ego_future_rot": ego_future_rot, # (1, 1, num_future_steps, 3, 3)
# "relative_timestamps": relative_timestamps, # (N_cameras, num_frames)
# "absolute_timestamps": absolute_timestamps # (N_cameras, num_frames)
}
img_path = "IMG_20260116_065921.jpg"
# μμΈ‘νκ³ μΆμ JPG νμΌ κ²½λ‘
image = Image.open(img_path).convert("RGB")
# helper.create_messageλ tensor μ
λ ₯μ κΈ°λνλ―λ‘ λ³ν
# PIL Imageλ₯Ό numpy arrayλ‘ λ³ν ν float32λ‘ λ³ν
image_array = np.array(image).astype(np.float32) / 255.0 # 0-1 λ²μλ‘ μ κ·ν
image_tensor = torch.from_numpy(image_array).unsqueeze(0) # [batch, H, W, C]
# λ©μμ§ μμ±
messages = helper.create_message(image_tensor)
# Example clip ID
model_path = "Alpamayo-R1-10B-4bit"
model = AlpamayoR1.from_pretrained(model_path, dtype=torch.bfloat16).to("cuda")
processor = helper.get_processor(model.tokenizer)
# μ€μ κ°
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=False,
continue_final_message=True,
return_dict=True,
return_tensors="pt",
)
model_inputs = {
"tokenized_data": inputs,
"ego_history_xyz": data["ego_history_xyz"],
"ego_history_rot": data["ego_history_rot"],
}
model_inputs = helper.to_device(model_inputs, "cuda")
torch.cuda.manual_seed_all(42)
with torch.autocast("cuda", dtype=torch.bfloat16):
pred_xyz, pred_rot, extra = model.sample_trajectories_from_data_with_vlm_rollout(
data=model_inputs,
top_p=0.98,
temperature=0.6,
num_traj_samples=1, # Feel free to raise this for more output trajectories and CoC traces.
max_generation_length=256,
return_extra=True,
)
# the size is [batch_size, num_traj_sets, num_traj_samples]
print("Chain-of-Causation (per trajectory):\n", extra["cot"][0])
gt_xy = data["ego_future_xyz"].cpu()[0, 0, :, :2].T.numpy()
pred_xy = pred_xyz.cpu().numpy()[0, 0, :, :, :2].transpose(0, 2, 1)
diff = np.linalg.norm(pred_xy - gt_xy[None, ...], axis=1).mean(-1)
min_ade = diff.min()
print("minADE:", min_ade, "meters")
print(
"Note: VLA-reasoning models produce nondeterministic outputs due to trajectory sampling, "
"hardware differences, etc. With num_traj_samples=1 (set for GPU memory compatibility), "
"variance in minADE is expected. For visual sanity checks, see notebooks/inference.ipynb"
)
Chain-of-Causation (per trajectory):
[['Keep lane to continue driving since the lane ahead is clear.']]
minADE: 0.55852604 meters
Note: VLA-reasoning models produce nondeterministic outputs due to trajectory sampling, hardware differences, etc. With num_traj_samples=1 (set for GPU memory compatibility), variance in minADE is expected. For visual sanity checks, see notebooks/inference.ipynb
- Downloads last month
- 205
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for dwko/Alpamayo-R1-10B-4bit
Base model
nvidia/Alpamayo-R1-10B