Update README.md
#2
by
mazharsaif
- opened
README.md
CHANGED
|
@@ -73,19 +73,19 @@ For more information, please take a look at the [official paper](https://arxiv.o
|
|
| 73 |
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
| 74 |
|
| 75 |
```python
|
| 76 |
-
from transformers import Wav2Vec2Processor,
|
| 77 |
from datasets import load_dataset
|
| 78 |
import torch
|
| 79 |
|
| 80 |
# load model and processor
|
| 81 |
processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h")
|
| 82 |
-
model =
|
| 83 |
|
| 84 |
# load dummy dataset and read soundfiles
|
| 85 |
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
| 86 |
|
| 87 |
# tokenize
|
| 88 |
-
input_values = processor(ds[0]["audio"]["array"]
|
| 89 |
|
| 90 |
# retrieve logits
|
| 91 |
logits = model(input_values).logits
|
|
@@ -100,14 +100,14 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|
| 100 |
This code snippet shows how to evaluate **facebook/data2vec-audio-base-960h** on LibriSpeech's "clean" and "other" test data.
|
| 101 |
|
| 102 |
```python
|
| 103 |
-
from transformers import Wav2Vec2Processor,
|
| 104 |
from datasets import load_dataset
|
| 105 |
import torch
|
| 106 |
from jiwer import wer
|
| 107 |
|
| 108 |
# load model and processor
|
| 109 |
processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h").to("cuda")
|
| 110 |
-
model =
|
| 111 |
|
| 112 |
|
| 113 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
|
|
|
| 73 |
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
| 74 |
|
| 75 |
```python
|
| 76 |
+
from transformers import Wav2Vec2Processor, Data2VecAudioForCTC
|
| 77 |
from datasets import load_dataset
|
| 78 |
import torch
|
| 79 |
|
| 80 |
# load model and processor
|
| 81 |
processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h")
|
| 82 |
+
model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h")
|
| 83 |
|
| 84 |
# load dummy dataset and read soundfiles
|
| 85 |
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
| 86 |
|
| 87 |
# tokenize
|
| 88 |
+
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
|
| 89 |
|
| 90 |
# retrieve logits
|
| 91 |
logits = model(input_values).logits
|
|
|
|
| 100 |
This code snippet shows how to evaluate **facebook/data2vec-audio-base-960h** on LibriSpeech's "clean" and "other" test data.
|
| 101 |
|
| 102 |
```python
|
| 103 |
+
from transformers import Wav2Vec2Processor, Data2VecAudioForCTC
|
| 104 |
from datasets import load_dataset
|
| 105 |
import torch
|
| 106 |
from jiwer import wer
|
| 107 |
|
| 108 |
# load model and processor
|
| 109 |
processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h").to("cuda")
|
| 110 |
+
model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h")
|
| 111 |
|
| 112 |
|
| 113 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|