gokuls's picture
End of training
d2e9557
metadata
base_model: gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_1
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: hbertv1-emotion-logit_KD-tiny_ffn_1
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.899

hbertv1-emotion-logit_KD-tiny_ffn_1

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_1 on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4844
  • Accuracy: 0.899

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.1687 1.0 250 2.7070 0.543
2.3056 2.0 500 1.8664 0.6295
1.5184 3.0 750 1.1853 0.7675
1.063 4.0 1000 0.9176 0.8295
0.8313 5.0 1250 0.7328 0.8515
0.6624 6.0 1500 0.6705 0.866
0.5695 7.0 1750 0.5983 0.8835
0.4801 8.0 2000 0.5658 0.8825
0.4243 9.0 2250 0.5285 0.8885
0.3828 10.0 2500 0.5358 0.884
0.3447 11.0 2750 0.4861 0.8895
0.3245 12.0 3000 0.4948 0.8905
0.3036 13.0 3250 0.4905 0.889
0.2803 14.0 3500 0.5018 0.8925
0.2739 15.0 3750 0.5126 0.8915
0.2501 16.0 4000 0.4974 0.8955
0.2382 17.0 4250 0.4936 0.891
0.2241 18.0 4500 0.4798 0.896
0.2106 19.0 4750 0.5011 0.8915
0.2068 20.0 5000 0.4844 0.899
0.1982 21.0 5250 0.4988 0.8915
0.1857 22.0 5500 0.4857 0.894
0.1762 23.0 5750 0.4855 0.893
0.1798 24.0 6000 0.4832 0.893
0.1605 25.0 6250 0.4979 0.896

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0