speaker-segmentation-darija2

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3338
  • Model Preparation Time: 0.0061
  • Der: 0.1220
  • False Alarm: 0.0235
  • Missed Detection: 0.0296
  • Confusion: 0.0688

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.7164 1.0 683 0.8500 0.0061 0.2406 0.0365 0.0432 0.1609
0.6075 2.0 1366 0.6868 0.0061 0.2182 0.0361 0.0408 0.1413
0.5213 3.0 2049 0.5659 0.0061 0.1947 0.0329 0.0395 0.1224
0.4664 4.0 2732 0.5040 0.0061 0.1821 0.0306 0.0372 0.1143
0.411 5.0 3415 0.4678 0.0061 0.1738 0.0297 0.0355 0.1086
0.4205 6.0 4098 0.4503 0.0061 0.1682 0.0286 0.0348 0.1048
0.4133 7.0 4781 0.4330 0.0061 0.1629 0.0285 0.0336 0.1009
0.3936 8.0 5464 0.4191 0.0061 0.1579 0.0278 0.0329 0.0972
0.3799 9.0 6147 0.4080 0.0061 0.1529 0.0276 0.0323 0.0931
0.3557 10.0 6830 0.4007 0.0061 0.1500 0.0269 0.0317 0.0914
0.3564 11.0 7513 0.3915 0.0061 0.1465 0.0258 0.0319 0.0888
0.3658 12.0 8196 0.3853 0.0061 0.1433 0.0258 0.0314 0.0861
0.3606 13.0 8879 0.3784 0.0061 0.1408 0.0255 0.0311 0.0842
0.3685 14.0 9562 0.3739 0.0061 0.1390 0.0255 0.0308 0.0827
0.3364 15.0 10245 0.3706 0.0061 0.1378 0.0253 0.0306 0.0818
0.3436 16.0 10928 0.3698 0.0061 0.1369 0.0248 0.0307 0.0814
0.3339 17.0 11611 0.3636 0.0061 0.1353 0.0249 0.0304 0.0799
0.3416 18.0 12294 0.3615 0.0061 0.1343 0.0246 0.0304 0.0792
0.3396 19.0 12977 0.3593 0.0061 0.1337 0.0243 0.0305 0.0789
0.344 20.0 13660 0.3572 0.0061 0.1330 0.0243 0.0305 0.0782
0.3372 21.0 14343 0.3541 0.0061 0.1320 0.0245 0.0302 0.0773
0.3271 22.0 15026 0.3549 0.0061 0.1313 0.0242 0.0302 0.0768
0.3206 23.0 15709 0.3516 0.0061 0.1310 0.0243 0.0301 0.0766
0.3359 24.0 16392 0.3524 0.0061 0.1308 0.0242 0.0301 0.0765
0.322 25.0 17075 0.3512 0.0061 0.1304 0.0241 0.0301 0.0762
0.3169 26.0 17758 0.3507 0.0061 0.1301 0.0243 0.0300 0.0758
0.3351 27.0 18441 0.3508 0.0061 0.1300 0.0243 0.0299 0.0758
0.3221 28.0 19124 0.3501 0.0061 0.1300 0.0243 0.0299 0.0758
0.324 29.0 19807 0.3499 0.0061 0.1300 0.0243 0.0299 0.0758
0.3271 30.0 20490 0.3499 0.0061 0.1300 0.0243 0.0299 0.0758

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.5.1+cu121
  • Datasets 4.4.2
  • Tokenizers 0.22.2
Downloads last month
111
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support