SFT-Qwen2.5-Coder-3B_long_v1
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7569
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.9906 | 0.2807 | 20 | 0.9487 |
| 0.8528 | 0.5614 | 40 | 0.8620 |
| 0.8721 | 0.8421 | 60 | 0.8238 |
| 0.8059 | 1.1123 | 80 | 0.8018 |
| 0.8141 | 1.3930 | 100 | 0.7868 |
| 0.7353 | 1.6737 | 120 | 0.7767 |
| 0.6779 | 1.9544 | 140 | 0.7647 |
| 0.6273 | 2.2246 | 160 | 0.7629 |
| 0.6983 | 2.5053 | 180 | 0.7597 |
| 0.6958 | 2.7860 | 200 | 0.7569 |
Framework versions
- PEFT 0.18.0
- Transformers 4.57.1
- Pytorch 2.9.0+cu126
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 60