lora

This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the flock_task17_train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0124

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 2
  • total_eval_batch_size: 2
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
0.1096 0.0513 2 0.1662
0.2943 0.1026 4 0.1425
0.0325 0.1538 6 0.1153
0.3053 0.2051 8 0.0859
0.254 0.2564 10 0.0618
0.0264 0.3077 12 0.0434
0.1261 0.3590 14 0.0319
0.023 0.4103 16 0.0274
0.0062 0.4615 18 0.0281
0.0117 0.5128 20 0.0197
0.008 0.5641 22 0.0190
0.0125 0.6154 24 0.0163
0.0384 0.6667 26 0.0167
0.0283 0.7179 28 0.0150
0.0602 0.7692 30 0.0120
0.0253 0.8205 32 0.0113
0.0119 0.8718 34 0.0114
0.0005 0.9231 36 0.0121
0.0008 0.9744 38 0.0133
0.0281 1.0256 40 0.0121
0.0101 1.0769 42 0.0115
0.0257 1.1282 44 0.0114
0.0207 1.1795 46 0.0114
0.0013 1.2308 48 0.0113
0.0316 1.2821 50 0.0116
0.0016 1.3333 52 0.0117
0.0001 1.3846 54 0.0120
0.0001 1.4359 56 0.0122
0.0088 1.4872 58 0.0123
0.0308 1.5385 60 0.0124
0.0031 1.5897 62 0.0122
0.0334 1.6410 64 0.0127
0.0215 1.6923 66 0.0126
0.0406 1.7436 68 0.0121
0.0157 1.7949 70 0.0117
0.0084 1.8462 72 0.0115
0.0121 1.8974 74 0.0115
0.0025 1.9487 76 0.0116
0.0006 2.0 78 0.0115
0.0104 2.0513 80 0.0117
0.0001 2.1026 82 0.0119
0.0094 2.1538 84 0.0120
0.0013 2.2051 86 0.0124
0.0074 2.2564 88 0.0125
0.0002 2.3077 90 0.0125
0.0051 2.3590 92 0.0128
0.0009 2.4103 94 0.0126
0.0002 2.4615 96 0.0126
0.0003 2.5128 98 0.0128
0.0007 2.5641 100 0.0127
0.008 2.6154 102 0.0129
0.0009 2.6667 104 0.0128
0.0074 2.7179 106 0.0128
0.0003 2.7692 108 0.0126
0.0002 2.8205 110 0.0128
0.0007 2.8718 112 0.0128
0.0003 2.9231 114 0.0126
0.0012 2.9744 116 0.0126
0.0029 3.0256 118 0.0126
0.0003 3.0769 120 0.0124
0.0002 3.1282 122 0.0126
0.0004 3.1795 124 0.0126
0.0001 3.2308 126 0.0125
0.0013 3.2821 128 0.0125
0.0001 3.3333 130 0.0125
0.0003 3.3846 132 0.0126
0.0001 3.4359 134 0.0126
0.0002 3.4872 136 0.0126
0.003 3.5385 138 0.0126
0.0002 3.5897 140 0.0123
0.0003 3.6410 142 0.0125
0.0001 3.6923 144 0.0127
0.0002 3.7436 146 0.0124
0.0003 3.7949 148 0.0126
0.0001 3.8462 150 0.0123
0.0005 3.8974 152 0.0127
0.0006 3.9487 154 0.0125
0.0002 4.0 156 0.0124

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.4
  • Pytorch 2.9.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
52
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jerseyjerry/task-17-Qwen-Qwen2.5-3B-Instruct

Base model

Qwen/Qwen2.5-3B
Adapter
(614)
this model