lora
This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the flock_task17_train dataset. It achieves the following results on the evaluation set:
- Loss: 0.0124
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 2
- total_eval_batch_size: 2
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 4
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.1096 | 0.0513 | 2 | 0.1662 |
| 0.2943 | 0.1026 | 4 | 0.1425 |
| 0.0325 | 0.1538 | 6 | 0.1153 |
| 0.3053 | 0.2051 | 8 | 0.0859 |
| 0.254 | 0.2564 | 10 | 0.0618 |
| 0.0264 | 0.3077 | 12 | 0.0434 |
| 0.1261 | 0.3590 | 14 | 0.0319 |
| 0.023 | 0.4103 | 16 | 0.0274 |
| 0.0062 | 0.4615 | 18 | 0.0281 |
| 0.0117 | 0.5128 | 20 | 0.0197 |
| 0.008 | 0.5641 | 22 | 0.0190 |
| 0.0125 | 0.6154 | 24 | 0.0163 |
| 0.0384 | 0.6667 | 26 | 0.0167 |
| 0.0283 | 0.7179 | 28 | 0.0150 |
| 0.0602 | 0.7692 | 30 | 0.0120 |
| 0.0253 | 0.8205 | 32 | 0.0113 |
| 0.0119 | 0.8718 | 34 | 0.0114 |
| 0.0005 | 0.9231 | 36 | 0.0121 |
| 0.0008 | 0.9744 | 38 | 0.0133 |
| 0.0281 | 1.0256 | 40 | 0.0121 |
| 0.0101 | 1.0769 | 42 | 0.0115 |
| 0.0257 | 1.1282 | 44 | 0.0114 |
| 0.0207 | 1.1795 | 46 | 0.0114 |
| 0.0013 | 1.2308 | 48 | 0.0113 |
| 0.0316 | 1.2821 | 50 | 0.0116 |
| 0.0016 | 1.3333 | 52 | 0.0117 |
| 0.0001 | 1.3846 | 54 | 0.0120 |
| 0.0001 | 1.4359 | 56 | 0.0122 |
| 0.0088 | 1.4872 | 58 | 0.0123 |
| 0.0308 | 1.5385 | 60 | 0.0124 |
| 0.0031 | 1.5897 | 62 | 0.0122 |
| 0.0334 | 1.6410 | 64 | 0.0127 |
| 0.0215 | 1.6923 | 66 | 0.0126 |
| 0.0406 | 1.7436 | 68 | 0.0121 |
| 0.0157 | 1.7949 | 70 | 0.0117 |
| 0.0084 | 1.8462 | 72 | 0.0115 |
| 0.0121 | 1.8974 | 74 | 0.0115 |
| 0.0025 | 1.9487 | 76 | 0.0116 |
| 0.0006 | 2.0 | 78 | 0.0115 |
| 0.0104 | 2.0513 | 80 | 0.0117 |
| 0.0001 | 2.1026 | 82 | 0.0119 |
| 0.0094 | 2.1538 | 84 | 0.0120 |
| 0.0013 | 2.2051 | 86 | 0.0124 |
| 0.0074 | 2.2564 | 88 | 0.0125 |
| 0.0002 | 2.3077 | 90 | 0.0125 |
| 0.0051 | 2.3590 | 92 | 0.0128 |
| 0.0009 | 2.4103 | 94 | 0.0126 |
| 0.0002 | 2.4615 | 96 | 0.0126 |
| 0.0003 | 2.5128 | 98 | 0.0128 |
| 0.0007 | 2.5641 | 100 | 0.0127 |
| 0.008 | 2.6154 | 102 | 0.0129 |
| 0.0009 | 2.6667 | 104 | 0.0128 |
| 0.0074 | 2.7179 | 106 | 0.0128 |
| 0.0003 | 2.7692 | 108 | 0.0126 |
| 0.0002 | 2.8205 | 110 | 0.0128 |
| 0.0007 | 2.8718 | 112 | 0.0128 |
| 0.0003 | 2.9231 | 114 | 0.0126 |
| 0.0012 | 2.9744 | 116 | 0.0126 |
| 0.0029 | 3.0256 | 118 | 0.0126 |
| 0.0003 | 3.0769 | 120 | 0.0124 |
| 0.0002 | 3.1282 | 122 | 0.0126 |
| 0.0004 | 3.1795 | 124 | 0.0126 |
| 0.0001 | 3.2308 | 126 | 0.0125 |
| 0.0013 | 3.2821 | 128 | 0.0125 |
| 0.0001 | 3.3333 | 130 | 0.0125 |
| 0.0003 | 3.3846 | 132 | 0.0126 |
| 0.0001 | 3.4359 | 134 | 0.0126 |
| 0.0002 | 3.4872 | 136 | 0.0126 |
| 0.003 | 3.5385 | 138 | 0.0126 |
| 0.0002 | 3.5897 | 140 | 0.0123 |
| 0.0003 | 3.6410 | 142 | 0.0125 |
| 0.0001 | 3.6923 | 144 | 0.0127 |
| 0.0002 | 3.7436 | 146 | 0.0124 |
| 0.0003 | 3.7949 | 148 | 0.0126 |
| 0.0001 | 3.8462 | 150 | 0.0123 |
| 0.0005 | 3.8974 | 152 | 0.0127 |
| 0.0006 | 3.9487 | 154 | 0.0125 |
| 0.0002 | 4.0 | 156 | 0.0124 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.9.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 52
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support