YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Backdoor Detection Checkpoints

Fine-tuned Qwen 2.5 Coder 14B models for backdoor detection experiments.

Models

1. ca_v3_run_20251215/

  • Base model: Qwen/Qwen2.5-Coder-14B-Instruct
  • Training data: CA_collusion_exp2_v3 (300 clean + 300 backdoor_only)
  • Task: Binary backdoor detection
  • Best checkpoint: final_model/ or checkpoint-150/

2. exp1_original_data_rerun_20251215/

  • Base model: Qwen/Qwen2.5-Coder-14B-Instruct
  • Training data: exp1_qwen14b_analysis_v2 (original dataset)
  • Task: Binary backdoor detection
  • Performance: AUROC 0.947
  • Best checkpoint: checkpoint-75/

3. exp2_signalc_20251215/

  • Base model: Qwen/Qwen2.5-Coder-14B-Instruct
  • Training data: 300 clean + 250 backdoor_only + 50 signal_c
  • Task: Backdoor detection with collusion signal resistance
  • Goal: Train model to detect backdoors even when signal_c marker is present
  • Best checkpoint: final_model/ or checkpoint-150/

LoRA Configuration

All models use LoRA fine-tuning:

  • lora_r: 32
  • lora_alpha: 64
  • target_modules: [q_proj, v_proj, k_proj, o_proj]
  • lora_dropout: 0.05

Usage

from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer

model = AutoPeftModelForCausalLM.from_pretrained(
    "path/to/checkpoint",
    torch_dtype="bfloat16",
    device_map="cuda"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-14B-Instruct")

Date

December 15, 2025

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support