YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Backdoor Detection Checkpoints
Fine-tuned Qwen 2.5 Coder 14B models for backdoor detection experiments.
Models
1. ca_v3_run_20251215/
- Base model: Qwen/Qwen2.5-Coder-14B-Instruct
- Training data: CA_collusion_exp2_v3 (300 clean + 300 backdoor_only)
- Task: Binary backdoor detection
- Best checkpoint:
final_model/orcheckpoint-150/
2. exp1_original_data_rerun_20251215/
- Base model: Qwen/Qwen2.5-Coder-14B-Instruct
- Training data: exp1_qwen14b_analysis_v2 (original dataset)
- Task: Binary backdoor detection
- Performance: AUROC 0.947
- Best checkpoint:
checkpoint-75/
3. exp2_signalc_20251215/
- Base model: Qwen/Qwen2.5-Coder-14B-Instruct
- Training data: 300 clean + 250 backdoor_only + 50 signal_c
- Task: Backdoor detection with collusion signal resistance
- Goal: Train model to detect backdoors even when signal_c marker is present
- Best checkpoint:
final_model/orcheckpoint-150/
LoRA Configuration
All models use LoRA fine-tuning:
lora_r: 32lora_alpha: 64target_modules: [q_proj, v_proj, k_proj, o_proj]lora_dropout: 0.05
Usage
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"path/to/checkpoint",
torch_dtype="bfloat16",
device_map="cuda"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-14B-Instruct")
Date
December 15, 2025
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support