mmBERT Fact-Check Classifier (LoRA Adapter)
A multilingual binary classifier that determines whether a query requires external fact-checking or can be answered without verification.
Model Description
This model classifies prompts into two categories:
- FACT_CHECK_NEEDED: Information-seeking questions requiring external verification
- NO_FACT_CHECK_NEEDED: Creative, opinion, coding, math - no verification needed
Supports 1800+ languages through mmBERT's multilingual pretraining.
Performance
| Metric | Score |
|---|---|
| Accuracy | 96.2% |
| F1 | 96.2% |
| Precision | 96.2% |
| Recall | 96.2% |
| Training Time | 151 seconds (MI300X GPU) |
Training Details
- Base Model: jhu-clsp/mmBERT-base
- LoRA Rank: 32
- LoRA Alpha: 64
- Trainable Parameters: 6.8M / 314M (2.2%)
- Epochs: 10
- Batch Size: 64
- Learning Rate: 2e-5
Training Data Sources
FACT_CHECK_NEEDED:
- SQuAD, TriviaQA, HotpotQA, TruthfulQA, CoQA
- HaluEval QA, RAG dataset questions
NO_FACT_CHECK_NEEDED:
- Dolly (creative_writing, brainstorming)
- WritingPrompts, Alpaca (coding, math, opinion)
Usage
from peft import PeftModel
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load model
base_model = AutoModelForSequenceClassification.from_pretrained(
"jhu-clsp/mmBERT-base", num_labels=2
)
model = PeftModel.from_pretrained(base_model, "llm-semantic-router/mmbert-fact-check-lora")
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/mmBERT-base")
# Classify
queries = [
"When was the Eiffel Tower built?", # FACT_CHECK_NEEDED
"Write a poem about the ocean", # NO_FACT_CHECK_NEEDED
]
for query in queries:
inputs = tokenizer(query, return_tensors="pt", truncation=True)
outputs = model(**inputs)
label = "FACT_CHECK_NEEDED" if outputs.logits.argmax(-1).item() == 1 else "NO_FACT_CHECK_NEEDED"
print(f"{query} -> {label}")
Use Cases
- LLM Guardrails: Route factual queries to RAG systems
- Hallucination Prevention: Flag queries needing external verification
- Cost Optimization: Skip expensive retrieval for creative/coding tasks
Part of vLLM Semantic Router
This model is part of the vLLM Semantic Router project.
License
Apache 2.0
- Downloads last month
- 5
Model tree for llm-semantic-router/mmbert-fact-check-lora
Base model
jhu-clsp/mmBERT-base