IQuest-Coder-V1-40B-Loop-Instruct-4bit / configuration_iquestloopcoder.py
kernelpool's picture
Add files using upload-large-folder tool
55b0f5d verified
# Copyright 2024 IQuestLoopCoder Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
"""IQuestLoopCoder model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class IQuestLoopCoderConfig(PretrainedConfig):
r"""
Configuration class for IQuestLoopCoder model.
IQuestLoopCoder extends the standard LLaMA architecture with a loop mechanism:
- Loop 1: Standard attention, stores K1, V1
- Loop 2+: Mixed attention with gated combination of global (K1,V1) and local (K2,V2) KV
The gate is computed as: gate = sigmoid(W @ Q + bias)
Mixed output = gate * Attention(Q, K1, V1) + (1 - gate) * SlidingWindowAttention(Q, K2, V2)
Args:
vocab_size (`int`, *optional*, defaults to 76800):
Vocabulary size of the model.
hidden_size (`int`, *optional*, defaults to 5120):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 27648):
Dimension of the MLP representations (FFN hidden size).
num_hidden_layers (`int`, *optional*, defaults to 80):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 40):
Number of attention heads for each attention layer.
num_key_value_heads (`int`, *optional*, defaults to 8):
Number of key-value heads (for GQA). If None, defaults to num_attention_heads.
head_dim (`int`, *optional*, defaults to 128):
Dimension of each attention head (hidden_size // num_attention_heads).
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
Activation function in the MLP.
max_position_embeddings (`int`, *optional*, defaults to 8192):
Maximum sequence length.
initializer_range (`float`, *optional*, defaults to 0.02):
Standard deviation for weight initialization.
rms_norm_eps (`float`, *optional*, defaults to 1e-5):
Epsilon for RMS normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether to use past key/values for generation.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie input and output embeddings.
rope_theta (`float`, *optional*, defaults to 500000.0):
Base value for rotary position embeddings.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in attention layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
Dropout ratio for attention weights.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in MLP layers.
# Loop-specific parameters
loop_num (`int`, *optional*, defaults to 2):
Number of loops through the decoder.
loop_window_size (`int`, *optional*, defaults to 64):
Window size for sliding window attention in Loop 2+.
"""
model_type = "iquestloopcoder"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=76800,
hidden_size=5120,
intermediate_size=27648,
num_hidden_layers=80,
num_attention_heads=40,
num_key_value_heads=8,
head_dim=128,
hidden_act="silu",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=500000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
# Loop-specific parameters
loop_num=2,
loop_window_size=64,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
# GQA support
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
# Loop-specific
self.loop_num = loop_num
self.loop_window_size = loop_window_size
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)