|
|
import numpy as np |
|
|
|
|
|
from constants import CA_C_DIST, N_CA_DIST, N_CA_C_ANGLE |
|
|
|
|
|
|
|
|
def rotation_matrix(angle, axis): |
|
|
""" |
|
|
Args: |
|
|
angle: (n,) |
|
|
axis: 0=x, 1=y, 2=z |
|
|
Returns: |
|
|
(n, 3, 3) |
|
|
""" |
|
|
n = len(angle) |
|
|
R = np.eye(3)[None, :, :].repeat(n, axis=0) |
|
|
|
|
|
axis = 2 - axis |
|
|
start = axis // 2 |
|
|
step = axis % 2 + 1 |
|
|
s = slice(start, start + step + 1, step) |
|
|
|
|
|
R[:, s, s] = np.array( |
|
|
[[np.cos(angle), (-1) ** (axis + 1) * np.sin(angle)], |
|
|
[(-1) ** axis * np.sin(angle), np.cos(angle)]] |
|
|
).transpose(2, 0, 1) |
|
|
return R |
|
|
|
|
|
|
|
|
def get_bb_transform(n_xyz, ca_xyz, c_xyz): |
|
|
""" |
|
|
Compute translation and rotation of the canoncical backbone frame (triangle N-Ca-C) from a position with |
|
|
Ca at the origin, N on the x-axis and C in the xy-plane to the global position of the backbone frame |
|
|
|
|
|
Args: |
|
|
n_xyz: (n, 3) |
|
|
ca_xyz: (n, 3) |
|
|
c_xyz: (n, 3) |
|
|
|
|
|
Returns: |
|
|
quaternion represented as array of shape (n, 4) |
|
|
translation vector which is an array of shape (n, 3) |
|
|
""" |
|
|
|
|
|
translation = ca_xyz |
|
|
n_xyz = n_xyz - translation |
|
|
c_xyz = c_xyz - translation |
|
|
|
|
|
|
|
|
|
|
|
theta_y = np.arctan2(n_xyz[:, 2], -n_xyz[:, 0]) |
|
|
Ry = rotation_matrix(theta_y, 1) |
|
|
n_xyz = np.einsum('noi,ni->no', Ry.transpose(0, 2, 1), n_xyz) |
|
|
|
|
|
|
|
|
theta_z = np.arctan2(n_xyz[:, 1], n_xyz[:, 0]) |
|
|
Rz = rotation_matrix(theta_z, 2) |
|
|
|
|
|
|
|
|
|
|
|
c_xyz = np.einsum('noj,nji,ni->no', Rz.transpose(0, 2, 1), |
|
|
Ry.transpose(0, 2, 1), c_xyz) |
|
|
theta_x = np.arctan2(c_xyz[:, 2], c_xyz[:, 1]) |
|
|
Rx = rotation_matrix(theta_x, 0) |
|
|
|
|
|
|
|
|
R = np.einsum('nok,nkj,nji->noi', Ry, Rz, Rx) |
|
|
|
|
|
|
|
|
|
|
|
quaternion = rotation_matrix_to_quaternion(R) |
|
|
|
|
|
return quaternion, translation |
|
|
|
|
|
|
|
|
def get_bb_coords_from_transform(ca_coords, quaternion): |
|
|
""" |
|
|
Args: |
|
|
ca_coords: (n, 3) |
|
|
quaternion: (n, 4) |
|
|
Returns: |
|
|
backbone coords (n*3, 3), order is [N, CA, C] |
|
|
backbone atom types as a list of length n*3 |
|
|
""" |
|
|
R = quaternion_to_rotation_matrix(quaternion) |
|
|
bb_coords = np.tile(np.array( |
|
|
[[N_CA_DIST, 0, 0], |
|
|
[0, 0, 0], |
|
|
[CA_C_DIST * np.cos(N_CA_C_ANGLE), CA_C_DIST * np.sin(N_CA_C_ANGLE), 0]]), |
|
|
[len(ca_coords), 1]) |
|
|
bb_coords = np.einsum('noi,ni->no', R.repeat(3, axis=0), bb_coords) + ca_coords.repeat(3, axis=0) |
|
|
bb_atom_types = [t for _ in range(len(ca_coords)) for t in ['N', 'C', 'C']] |
|
|
|
|
|
return bb_coords, bb_atom_types |
|
|
|
|
|
|
|
|
def quaternion_to_rotation_matrix(q): |
|
|
""" |
|
|
x_rot = R x |
|
|
|
|
|
Args: |
|
|
q: (n, 4) |
|
|
Returns: |
|
|
R: (n, 3, 3) |
|
|
""" |
|
|
|
|
|
q = q / (q ** 2).sum(1, keepdims=True) ** 0.5 |
|
|
|
|
|
|
|
|
w, x, y, z = q[:, 0], q[:, 1], q[:, 2], q[:, 3] |
|
|
R = np.stack([ |
|
|
np.stack([1 - 2 * y ** 2 - 2 * z ** 2, 2 * x * y - 2 * z * w, |
|
|
2 * x * z + 2 * y * w], axis=1), |
|
|
np.stack([2 * x * y + 2 * z * w, 1 - 2 * x ** 2 - 2 * z ** 2, |
|
|
2 * y * z - 2 * x * w], axis=1), |
|
|
np.stack([2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, |
|
|
1 - 2 * x ** 2 - 2 * y ** 2], axis=1) |
|
|
], axis=1) |
|
|
|
|
|
return R |
|
|
|
|
|
|
|
|
def rotation_matrix_to_quaternion(R): |
|
|
""" |
|
|
https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion |
|
|
Args: |
|
|
R: (n, 3, 3) |
|
|
Returns: |
|
|
q: (n, 4) |
|
|
""" |
|
|
|
|
|
t = R[:, 0, 0] + R[:, 1, 1] + R[:, 2, 2] |
|
|
r = np.sqrt(1 + t) |
|
|
w = 0.5 * r |
|
|
x = np.sign(R[:, 2, 1] - R[:, 1, 2]) * np.abs( |
|
|
0.5 * np.sqrt(1 + R[:, 0, 0] - R[:, 1, 1] - R[:, 2, 2])) |
|
|
y = np.sign(R[:, 0, 2] - R[:, 2, 0]) * np.abs( |
|
|
0.5 * np.sqrt(1 - R[:, 0, 0] + R[:, 1, 1] - R[:, 2, 2])) |
|
|
z = np.sign(R[:, 1, 0] - R[:, 0, 1]) * np.abs( |
|
|
0.5 * np.sqrt(1 - R[:, 0, 0] - R[:, 1, 1] + R[:, 2, 2])) |
|
|
|
|
|
return np.stack((w, x, y, z), axis=1) |
|
|
|