DiffSBDD / lightning_modules.py
mority's picture
Upload 48 files
4742cab verified
import math
from argparse import Namespace
from typing import Optional
from time import time
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import wandb
from torch_scatter import scatter_add, scatter_mean
from Bio.PDB import PDBParser
from Bio.PDB.Polypeptide import three_to_one
from constants import dataset_params, FLOAT_TYPE, INT_TYPE
from equivariant_diffusion.dynamics import EGNNDynamics
from equivariant_diffusion.en_diffusion import EnVariationalDiffusion
from equivariant_diffusion.conditional_model import ConditionalDDPM, \
SimpleConditionalDDPM
from dataset import ProcessedLigandPocketDataset
import utils
from analysis.visualization import save_xyz_file, visualize, visualize_chain
from analysis.metrics import BasicMolecularMetrics, CategoricalDistribution, \
MoleculeProperties
from analysis.molecule_builder import build_molecule, process_molecule
from analysis.docking import smina_score
class LigandPocketDDPM(pl.LightningModule):
def __init__(
self,
outdir,
dataset,
datadir,
batch_size,
lr,
egnn_params: Namespace,
diffusion_params,
num_workers,
augment_noise,
augment_rotation,
clip_grad,
eval_epochs,
eval_params,
visualize_sample_epoch,
visualize_chain_epoch,
auxiliary_loss,
loss_params,
mode,
node_histogram,
pocket_representation='CA',
virtual_nodes=False
):
super(LigandPocketDDPM, self).__init__()
self.save_hyperparameters()
ddpm_models = {'joint': EnVariationalDiffusion,
'pocket_conditioning': ConditionalDDPM,
'pocket_conditioning_simple': SimpleConditionalDDPM}
assert mode in ddpm_models
self.mode = mode
assert pocket_representation in {'CA', 'full-atom'}
self.pocket_representation = pocket_representation
self.dataset_name = dataset
self.datadir = datadir
self.outdir = outdir
self.batch_size = batch_size
self.eval_batch_size = eval_params.eval_batch_size \
if 'eval_batch_size' in eval_params else batch_size
self.lr = lr
self.loss_type = diffusion_params.diffusion_loss_type
self.eval_epochs = eval_epochs
self.visualize_sample_epoch = visualize_sample_epoch
self.visualize_chain_epoch = visualize_chain_epoch
self.eval_params = eval_params
self.num_workers = num_workers
self.augment_noise = augment_noise
self.augment_rotation = augment_rotation
self.dataset_info = dataset_params[dataset]
self.T = diffusion_params.diffusion_steps
self.clip_grad = clip_grad
if clip_grad:
self.gradnorm_queue = utils.Queue()
# Add large value that will be flushed.
self.gradnorm_queue.add(3000)
self.lig_type_encoder = self.dataset_info['atom_encoder']
self.lig_type_decoder = self.dataset_info['atom_decoder']
self.pocket_type_encoder = self.dataset_info['aa_encoder'] \
if self.pocket_representation == 'CA' \
else self.dataset_info['atom_encoder']
self.pocket_type_decoder = self.dataset_info['aa_decoder'] \
if self.pocket_representation == 'CA' \
else self.dataset_info['atom_decoder']
smiles_list = None if eval_params.smiles_file is None \
else np.load(eval_params.smiles_file)
self.ligand_metrics = BasicMolecularMetrics(self.dataset_info,
smiles_list)
self.molecule_properties = MoleculeProperties()
self.ligand_type_distribution = CategoricalDistribution(
self.dataset_info['atom_hist'], self.lig_type_encoder)
if self.pocket_representation == 'CA':
self.pocket_type_distribution = CategoricalDistribution(
self.dataset_info['aa_hist'], self.pocket_type_encoder)
else:
self.pocket_type_distribution = None
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.virtual_nodes = virtual_nodes
self.data_transform = None
self.max_num_nodes = len(node_histogram) - 1
if virtual_nodes:
# symbol = 'virtual'
symbol = 'Ne' # visualize as Neon atoms
self.lig_type_encoder[symbol] = len(self.lig_type_encoder)
self.virtual_atom = self.lig_type_encoder[symbol]
self.lig_type_decoder.append(symbol)
self.data_transform = utils.AppendVirtualNodes(
self.max_num_nodes, self.lig_type_encoder, symbol)
# Update dataset_info dictionary. This is necessary for using the
# visualization functions.
self.dataset_info['atom_encoder'] = self.lig_type_encoder
self.dataset_info['atom_decoder'] = self.lig_type_decoder
self.atom_nf = len(self.lig_type_decoder)
self.aa_nf = len(self.pocket_type_decoder)
self.x_dims = 3
net_dynamics = EGNNDynamics(
atom_nf=self.atom_nf,
residue_nf=self.aa_nf,
n_dims=self.x_dims,
joint_nf=egnn_params.joint_nf,
device=egnn_params.device if torch.cuda.is_available() else 'cpu',
hidden_nf=egnn_params.hidden_nf,
act_fn=torch.nn.SiLU(),
n_layers=egnn_params.n_layers,
attention=egnn_params.attention,
tanh=egnn_params.tanh,
norm_constant=egnn_params.norm_constant,
inv_sublayers=egnn_params.inv_sublayers,
sin_embedding=egnn_params.sin_embedding,
normalization_factor=egnn_params.normalization_factor,
aggregation_method=egnn_params.aggregation_method,
edge_cutoff_ligand=egnn_params.__dict__.get('edge_cutoff_ligand'),
edge_cutoff_pocket=egnn_params.__dict__.get('edge_cutoff_pocket'),
edge_cutoff_interaction=egnn_params.__dict__.get('edge_cutoff_interaction'),
update_pocket_coords=(self.mode == 'joint'),
reflection_equivariant=egnn_params.reflection_equivariant,
edge_embedding_dim=egnn_params.__dict__.get('edge_embedding_dim'),
)
self.ddpm = ddpm_models[self.mode](
dynamics=net_dynamics,
atom_nf=self.atom_nf,
residue_nf=self.aa_nf,
n_dims=self.x_dims,
timesteps=diffusion_params.diffusion_steps,
noise_schedule=diffusion_params.diffusion_noise_schedule,
noise_precision=diffusion_params.diffusion_noise_precision,
loss_type=diffusion_params.diffusion_loss_type,
norm_values=diffusion_params.normalize_factors,
size_histogram=node_histogram,
virtual_node_idx=self.lig_type_encoder[symbol] if virtual_nodes else None
)
self.auxiliary_loss = auxiliary_loss
self.lj_rm = self.dataset_info['lennard_jones_rm']
if self.auxiliary_loss:
self.clamp_lj = loss_params.clamp_lj
self.auxiliary_weight_schedule = WeightSchedule(
T=diffusion_params.diffusion_steps,
max_weight=loss_params.max_weight, mode=loss_params.schedule)
def configure_optimizers(self):
return torch.optim.AdamW(self.ddpm.parameters(), lr=self.lr,
amsgrad=True, weight_decay=1e-12)
def setup(self, stage: Optional[str] = None):
if stage == 'fit':
self.train_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'train.npz'), transform=self.data_transform)
self.val_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'val.npz'), transform=self.data_transform)
elif stage == 'test':
self.test_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'test.npz'), transform=self.data_transform)
else:
raise NotImplementedError
def train_dataloader(self):
return DataLoader(self.train_dataset, self.batch_size, shuffle=True,
num_workers=self.num_workers,
collate_fn=self.train_dataset.collate_fn,
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, self.batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.val_dataset.collate_fn,
pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, self.batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.test_dataset.collate_fn,
pin_memory=True)
def get_ligand_and_pocket(self, data):
ligand = {
'x': data['lig_coords'].to(self.device, FLOAT_TYPE),
'one_hot': data['lig_one_hot'].to(self.device, FLOAT_TYPE),
'size': data['num_lig_atoms'].to(self.device, INT_TYPE),
'mask': data['lig_mask'].to(self.device, INT_TYPE),
}
if self.virtual_nodes:
ligand['num_virtual_atoms'] = data['num_virtual_atoms'].to(
self.device, INT_TYPE)
pocket = {
'x': data['pocket_coords'].to(self.device, FLOAT_TYPE),
'one_hot': data['pocket_one_hot'].to(self.device, FLOAT_TYPE),
'size': data['num_pocket_nodes'].to(self.device, INT_TYPE),
'mask': data['pocket_mask'].to(self.device, INT_TYPE)
}
return ligand, pocket
def forward(self, data):
ligand, pocket = self.get_ligand_and_pocket(data)
# Note: \mathcal{L} terms in the paper represent log-likelihoods while
# our loss terms are a negative(!) log-likelihoods
delta_log_px, error_t_lig, error_t_pocket, SNR_weight, \
loss_0_x_ligand, loss_0_x_pocket, loss_0_h, neg_log_const_0, \
kl_prior, log_pN, t_int, xh_lig_hat, info = \
self.ddpm(ligand, pocket, return_info=True)
if self.loss_type == 'l2' and self.training:
actual_ligand_size = ligand['size'] - ligand['num_virtual_atoms'] if self.virtual_nodes else ligand['size']
# normalize loss_t
denom_lig = self.x_dims * actual_ligand_size + \
self.ddpm.atom_nf * ligand['size']
error_t_lig = error_t_lig / denom_lig
denom_pocket = (self.x_dims + self.ddpm.residue_nf) * pocket['size']
error_t_pocket = error_t_pocket / denom_pocket
loss_t = 0.5 * (error_t_lig + error_t_pocket)
# normalize loss_0
loss_0_x_ligand = loss_0_x_ligand / (self.x_dims * actual_ligand_size)
loss_0_x_pocket = loss_0_x_pocket / (self.x_dims * pocket['size'])
loss_0 = loss_0_x_ligand + loss_0_x_pocket + loss_0_h
# VLB objective or evaluation step
else:
# Note: SNR_weight should be negative
loss_t = -self.T * 0.5 * SNR_weight * (error_t_lig + error_t_pocket)
loss_0 = loss_0_x_ligand + loss_0_x_pocket + loss_0_h
loss_0 = loss_0 + neg_log_const_0
nll = loss_t + loss_0 + kl_prior
# Correct for normalization on x.
if not (self.loss_type == 'l2' and self.training):
nll = nll - delta_log_px
# always the same number of nodes if virtual nodes are added
if not self.virtual_nodes:
# Transform conditional nll into joint nll
# Note:
# loss = -log p(x,h|N) and log p(x,h,N) = log p(x,h|N) + log p(N)
# Therefore, log p(x,h|N) = -loss + log p(N)
# => loss_new = -log p(x,h,N) = loss - log p(N)
nll = nll - log_pN
# Add auxiliary loss term
if self.auxiliary_loss and self.loss_type == 'l2' and self.training:
x_lig_hat = xh_lig_hat[:, :self.x_dims]
h_lig_hat = xh_lig_hat[:, self.x_dims:]
weighted_lj_potential = \
self.auxiliary_weight_schedule(t_int.long()) * \
self.lj_potential(x_lig_hat, h_lig_hat, ligand['mask'])
nll = nll + weighted_lj_potential
info['weighted_lj'] = weighted_lj_potential.mean(0)
info['error_t_lig'] = error_t_lig.mean(0)
info['error_t_pocket'] = error_t_pocket.mean(0)
info['SNR_weight'] = SNR_weight.mean(0)
info['loss_0'] = loss_0.mean(0)
info['kl_prior'] = kl_prior.mean(0)
info['delta_log_px'] = delta_log_px.mean(0)
info['neg_log_const_0'] = neg_log_const_0.mean(0)
info['log_pN'] = log_pN.mean(0)
return nll, info
def lj_potential(self, atom_x, atom_one_hot, batch_mask):
adj = batch_mask[:, None] == batch_mask[None, :]
adj = adj ^ torch.diag(torch.diag(adj)) # remove self-edges
edges = torch.where(adj)
# Compute pair-wise potentials
r = torch.sum((atom_x[edges[0]] - atom_x[edges[1]])**2, dim=1).sqrt()
# Get optimal radii
lennard_jones_radii = torch.tensor(self.lj_rm, device=r.device)
# unit conversion pm -> A
lennard_jones_radii = lennard_jones_radii / 100.0
# normalization
lennard_jones_radii = lennard_jones_radii / self.ddpm.norm_values[0]
atom_type_idx = atom_one_hot.argmax(1)
rm = lennard_jones_radii[atom_type_idx[edges[0]],
atom_type_idx[edges[1]]]
sigma = 2 ** (-1 / 6) * rm
out = 4 * ((sigma / r) ** 12 - (sigma / r) ** 6)
if self.clamp_lj is not None:
out = torch.clamp(out, min=None, max=self.clamp_lj)
# Compute potential per atom
out = scatter_add(out, edges[0], dim=0, dim_size=len(atom_x))
# Sum potentials of all atoms
return scatter_add(out, batch_mask, dim=0)
def log_metrics(self, metrics_dict, split, batch_size=None, **kwargs):
for m, value in metrics_dict.items():
self.log(f'{m}/{split}', value, batch_size=batch_size, **kwargs)
def training_step(self, data, *args):
if self.augment_noise > 0:
raise NotImplementedError
# Add noise eps ~ N(0, augment_noise) around points.
eps = sample_center_gravity_zero_gaussian(x.size(), x.device)
x = x + eps * args.augment_noise
if self.augment_rotation:
raise NotImplementedError
x = utils.random_rotation(x).detach()
try:
nll, info = self.forward(data)
except RuntimeError as e:
# this is not supported for multi-GPU
if self.trainer.num_devices < 2 and 'out of memory' in str(e):
print('WARNING: ran out of memory, skipping to the next batch')
return None
else:
raise e
loss = nll.mean(0)
info['loss'] = loss
self.log_metrics(info, 'train', batch_size=len(data['num_lig_atoms']))
return info
def _shared_eval(self, data, prefix, *args):
nll, info = self.forward(data)
loss = nll.mean(0)
info['loss'] = loss
self.log_metrics(info, prefix, batch_size=len(data['num_lig_atoms']),
sync_dist=True)
return info
def validation_step(self, data, *args):
self._shared_eval(data, 'val', *args)
def test_step(self, data, *args):
self._shared_eval(data, 'test', *args)
def validation_epoch_end(self, validation_step_outputs):
# Perform validation on single GPU
if not self.trainer.is_global_zero:
return
suffix = '' if self.mode == 'joint' else '_given_pocket'
if (self.current_epoch + 1) % self.eval_epochs == 0:
tic = time()
sampling_results = getattr(self, 'sample_and_analyze' + suffix)(
self.eval_params.n_eval_samples, self.val_dataset,
batch_size=self.eval_batch_size)
self.log_metrics(sampling_results, 'val')
print(f'Evaluation took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_sample_epoch == 0:
tic = time()
getattr(self, 'sample_and_save' + suffix)(
self.eval_params.n_visualize_samples)
print(f'Sample visualization took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_chain_epoch == 0:
tic = time()
getattr(self, 'sample_chain_and_save' + suffix)(
self.eval_params.keep_frames)
print(f'Chain visualization took {time() - tic:.2f} seconds')
@torch.no_grad()
def sample_and_analyze(self, n_samples, dataset=None, batch_size=None):
print(f'Analyzing sampled molecules at epoch {self.current_epoch}...')
batch_size = self.batch_size if batch_size is None else batch_size
batch_size = min(batch_size, n_samples)
# each item in molecules is a tuple (position, atom_type_encoded)
molecules = []
atom_types = []
aa_types = []
for i in range(math.ceil(n_samples / batch_size)):
n_samples_batch = min(batch_size, n_samples - len(molecules))
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples_batch)
xh_lig, xh_pocket, lig_mask, _ = self.ddpm.sample(
n_samples_batch, num_nodes_lig, num_nodes_pocket,
device=self.device)
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
molecules.extend(list(
zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask))
))
atom_types.extend(atom_type.tolist())
aa_types.extend(
xh_pocket[:, self.x_dims:].argmax(1).detach().cpu().tolist())
return self.analyze_sample(molecules, atom_types, aa_types)
def analyze_sample(self, molecules, atom_types, aa_types, receptors=None):
# Distribution of node types
kl_div_atom = self.ligand_type_distribution.kl_divergence(atom_types) \
if self.ligand_type_distribution is not None else -1
kl_div_aa = self.pocket_type_distribution.kl_divergence(aa_types) \
if self.pocket_type_distribution is not None else -1
# Convert into rdmols
rdmols = [build_molecule(*graph, self.dataset_info) for graph in molecules]
# Other basic metrics
(validity, connectivity, uniqueness, novelty), (_, connected_mols) = \
self.ligand_metrics.evaluate_rdmols(rdmols)
qed, sa, logp, lipinski, diversity = \
self.molecule_properties.evaluate_mean(connected_mols)
out = {
'kl_div_atom_types': kl_div_atom,
'kl_div_residue_types': kl_div_aa,
'Validity': validity,
'Connectivity': connectivity,
'Uniqueness': uniqueness,
'Novelty': novelty,
'QED': qed,
'SA': sa,
'LogP': logp,
'Lipinski': lipinski,
'Diversity': diversity
}
# Simple docking score
if receptors is not None:
# out['smina_score'] = np.mean(smina_score(rdmols, receptors))
out['smina_score'] = np.mean(smina_score(connected_mols, receptors))
return out
def get_full_path(self, receptor_name):
pdb, suffix = receptor_name.split('.')
receptor_name = f'{pdb.upper()}-{suffix}.pdb'
return Path(self.datadir, 'val', receptor_name)
@torch.no_grad()
def sample_and_analyze_given_pocket(self, n_samples, dataset=None,
batch_size=None):
print(f'Analyzing sampled molecules given pockets at epoch '
f'{self.current_epoch}...')
batch_size = self.batch_size if batch_size is None else batch_size
batch_size = min(batch_size, n_samples)
# each item in molecules is a tuple (position, atom_type_encoded)
molecules = []
atom_types = []
aa_types = []
receptors = []
for i in range(math.ceil(n_samples / batch_size)):
n_samples_batch = min(batch_size, n_samples - len(molecules))
# Create a batch
batch = dataset.collate_fn(
[dataset[(i * batch_size + j) % len(dataset)]
for j in range(n_samples_batch)]
)
ligand, pocket = self.get_ligand_and_pocket(batch)
receptors.extend([self.get_full_path(x) for x in batch['receptors']])
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
xh_lig, xh_pocket, lig_mask, _ = self.ddpm.sample_given_pocket(
pocket, num_nodes_lig)
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
if self.virtual_nodes:
# Remove virtual nodes for analysis
vnode_mask = (atom_type == self.virtual_atom)
x = x[~vnode_mask, :]
atom_type = atom_type[~vnode_mask]
lig_mask = lig_mask[~vnode_mask]
molecules.extend(list(
zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask))
))
atom_types.extend(atom_type.tolist())
aa_types.extend(
xh_pocket[:, self.x_dims:].argmax(1).detach().cpu().tolist())
return self.analyze_sample(molecules, atom_types, aa_types,
receptors=receptors)
def sample_and_save(self, n_samples):
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples)
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample(n_samples, num_nodes_lig, num_nodes_pocket,
device=self.device)
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
xh_pocket[:, :self.x_dims], self.lig_type_encoder)
else:
x_pocket, one_hot_pocket = \
xh_pocket[:, :self.x_dims], xh_pocket[:, self.x_dims:]
x = torch.cat((xh_lig[:, :self.x_dims], x_pocket), dim=0)
one_hot = torch.cat((xh_lig[:, self.x_dims:], one_hot_pocket), dim=0)
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
save_xyz_file(str(outdir) + '/', one_hot, x, self.lig_type_decoder,
name='molecule',
batch_mask=torch.cat((lig_mask, pocket_mask)))
# visualize(str(outdir), dataset_info=self.dataset_info, wandb=wandb)
visualize(str(outdir), dataset_info=self.dataset_info, wandb=None)
def sample_and_save_given_pocket(self, n_samples):
batch = self.val_dataset.collate_fn(
[self.val_dataset[i] for i in torch.randint(len(self.val_dataset),
size=(n_samples,))]
)
ligand, pocket = self.get_ligand_and_pocket(batch)
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample_given_pocket(pocket, num_nodes_lig)
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
xh_pocket[:, :self.x_dims], self.lig_type_encoder)
else:
x_pocket, one_hot_pocket = \
xh_pocket[:, :self.x_dims], xh_pocket[:, self.x_dims:]
x = torch.cat((xh_lig[:, :self.x_dims], x_pocket), dim=0)
one_hot = torch.cat((xh_lig[:, self.x_dims:], one_hot_pocket), dim=0)
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
save_xyz_file(str(outdir) + '/', one_hot, x, self.lig_type_decoder,
name='molecule',
batch_mask=torch.cat((lig_mask, pocket_mask)))
# visualize(str(outdir), dataset_info=self.dataset_info, wandb=wandb)
visualize(str(outdir), dataset_info=self.dataset_info, wandb=None)
def sample_chain_and_save(self, keep_frames):
n_samples = 1
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples)
chain_lig, chain_pocket, _, _ = self.ddpm.sample(
n_samples, num_nodes_lig, num_nodes_pocket,
return_frames=keep_frames, device=self.device)
chain_lig = utils.reverse_tensor(chain_lig)
chain_pocket = utils.reverse_tensor(chain_pocket)
# Repeat last frame to see final sample better.
chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)],
dim=0)
chain_pocket = torch.cat(
[chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# Prepare entire chain.
x_lig = chain_lig[:, :, :self.x_dims]
one_hot_lig = chain_lig[:, :, self.x_dims:]
one_hot_lig = F.one_hot(
torch.argmax(one_hot_lig, dim=2),
num_classes=len(self.lig_type_decoder))
x_pocket = chain_pocket[:, :, :self.x_dims]
one_hot_pocket = chain_pocket[:, :, self.x_dims:]
one_hot_pocket = F.one_hot(
torch.argmax(one_hot_pocket, dim=2),
num_classes=len(self.pocket_type_decoder))
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
x_pocket, self.lig_type_encoder)
x = torch.cat((x_lig, x_pocket), dim=1)
one_hot = torch.cat((one_hot_lig, one_hot_pocket), dim=1)
# flatten (treat frame (chain dimension) as batch for visualization)
x_flat = x.view(-1, x.size(-1))
one_hot_flat = one_hot.view(-1, one_hot.size(-1))
mask_flat = torch.arange(x.size(0)).repeat_interleave(x.size(1))
outdir = Path(self.outdir, f'epoch_{self.current_epoch}', 'chain')
save_xyz_file(str(outdir), one_hot_flat, x_flat, self.lig_type_decoder,
name='/chain', batch_mask=mask_flat)
visualize_chain(str(outdir), self.dataset_info, wandb=wandb)
def sample_chain_and_save_given_pocket(self, keep_frames):
n_samples = 1
batch = self.val_dataset.collate_fn([
self.val_dataset[torch.randint(len(self.val_dataset), size=(1,))]
])
ligand, pocket = self.get_ligand_and_pocket(batch)
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
chain_lig, chain_pocket, _, _ = self.ddpm.sample_given_pocket(
pocket, num_nodes_lig, return_frames=keep_frames)
chain_lig = utils.reverse_tensor(chain_lig)
chain_pocket = utils.reverse_tensor(chain_pocket)
# Repeat last frame to see final sample better.
chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)],
dim=0)
chain_pocket = torch.cat(
[chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# Prepare entire chain.
x_lig = chain_lig[:, :, :self.x_dims]
one_hot_lig = chain_lig[:, :, self.x_dims:]
one_hot_lig = F.one_hot(
torch.argmax(one_hot_lig, dim=2),
num_classes=len(self.lig_type_decoder))
x_pocket = chain_pocket[:, :, :3]
one_hot_pocket = chain_pocket[:, :, 3:]
one_hot_pocket = F.one_hot(
torch.argmax(one_hot_pocket, dim=2),
num_classes=len(self.pocket_type_decoder))
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
x_pocket, self.lig_type_encoder)
x = torch.cat((x_lig, x_pocket), dim=1)
one_hot = torch.cat((one_hot_lig, one_hot_pocket), dim=1)
# flatten (treat frame (chain dimension) as batch for visualization)
x_flat = x.view(-1, x.size(-1))
one_hot_flat = one_hot.view(-1, one_hot.size(-1))
mask_flat = torch.arange(x.size(0)).repeat_interleave(x.size(1))
outdir = Path(self.outdir, f'epoch_{self.current_epoch}', 'chain')
save_xyz_file(str(outdir), one_hot_flat, x_flat, self.lig_type_decoder,
name='/chain', batch_mask=mask_flat)
visualize_chain(str(outdir), self.dataset_info, wandb=wandb)
def prepare_pocket(self, biopython_residues, repeats=1):
if self.pocket_representation == 'CA':
pocket_coord = torch.tensor(np.array(
[res['CA'].get_coord() for res in biopython_residues]),
device=self.device, dtype=FLOAT_TYPE)
pocket_types = torch.tensor(
[self.pocket_type_encoder[three_to_one(res.get_resname())]
for res in biopython_residues], device=self.device)
else:
pocket_atoms = [a for res in biopython_residues
for a in res.get_atoms()
if (a.element.capitalize() in self.pocket_type_encoder or a.element != 'H')]
pocket_coord = torch.tensor(np.array(
[a.get_coord() for a in pocket_atoms]),
device=self.device, dtype=FLOAT_TYPE)
pocket_types = torch.tensor(
[self.pocket_type_encoder[a.element.capitalize()]
for a in pocket_atoms], device=self.device)
pocket_one_hot = F.one_hot(
pocket_types, num_classes=len(self.pocket_type_encoder)
)
pocket_size = torch.tensor([len(pocket_coord)] * repeats,
device=self.device, dtype=INT_TYPE)
pocket_mask = torch.repeat_interleave(
torch.arange(repeats, device=self.device, dtype=INT_TYPE),
len(pocket_coord)
)
pocket = {
'x': pocket_coord.repeat(repeats, 1),
'one_hot': pocket_one_hot.repeat(repeats, 1),
'size': pocket_size,
'mask': pocket_mask
}
return pocket
def generate_ligands(self, pdb_file, n_samples, pocket_ids=None,
ref_ligand=None, num_nodes_lig=None, sanitize=False,
largest_frag=False, relax_iter=0, timesteps=None,
n_nodes_bias=0, n_nodes_min=0, **kwargs):
"""
Generate ligands given a pocket
Args:
pdb_file: PDB filename
n_samples: number of samples
pocket_ids: list of pocket residues in <chain>:<resi> format
ref_ligand: alternative way of defining the pocket based on a
reference ligand given in <chain>:<resi> format if the ligand is
contained in the PDB file, or path to an SDF file that
contains the ligand
num_nodes_lig: number of ligand nodes for each sample (list of
integers), sampled randomly if 'None'
sanitize: whether to sanitize molecules or not
largest_frag: only return the largest fragment
relax_iter: number of force field optimization steps
timesteps: number of denoising steps, use training value if None
n_nodes_bias: added to the sampled (or provided) number of nodes
n_nodes_min: lower bound on the number of sampled nodes
kwargs: additional inpainting parameters
Returns:
list of molecules
"""
assert (pocket_ids is None) ^ (ref_ligand is None)
self.ddpm.eval()
# Load PDB
pdb_struct = PDBParser(QUIET=True).get_structure('', pdb_file)[0]
if pocket_ids is not None:
# define pocket with list of residues
residues = [
pdb_struct[x.split(':')[0]][(' ', int(x.split(':')[1]), ' ')]
for x in pocket_ids]
else:
# define pocket with reference ligand
residues = utils.get_pocket_from_ligand(pdb_struct, ref_ligand)
pocket = self.prepare_pocket(residues, repeats=n_samples)
# Pocket's center of mass
pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0)
# Create dummy ligands
if num_nodes_lig is None:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
# Add bias
num_nodes_lig = num_nodes_lig + n_nodes_bias
# Apply minimum ligand size
num_nodes_lig = torch.clamp(num_nodes_lig, min=n_nodes_min)
# Use inpainting
if type(self.ddpm) == EnVariationalDiffusion:
lig_mask = utils.num_nodes_to_batch_mask(
len(num_nodes_lig), num_nodes_lig, self.device)
ligand = {
'x': torch.zeros((len(lig_mask), self.x_dims),
device=self.device, dtype=FLOAT_TYPE),
'one_hot': torch.zeros((len(lig_mask), self.atom_nf),
device=self.device, dtype=FLOAT_TYPE),
'size': num_nodes_lig,
'mask': lig_mask
}
# Fix all pocket nodes but sample
lig_mask_fixed = torch.zeros(len(lig_mask), device=self.device)
pocket_mask_fixed = torch.ones(len(pocket['mask']),
device=self.device)
xh_lig, xh_pocket, lig_mask, pocket_mask = self.ddpm.inpaint(
ligand, pocket, lig_mask_fixed, pocket_mask_fixed,
timesteps=timesteps, **kwargs)
# Use conditional generation
elif type(self.ddpm) == ConditionalDDPM:
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample_given_pocket(pocket, num_nodes_lig,
timesteps=timesteps)
else:
raise NotImplementedError
# Move generated molecule back to the original pocket position
pocket_com_after = scatter_mean(
xh_pocket[:, :self.x_dims], pocket_mask, dim=0)
xh_pocket[:, :self.x_dims] += \
(pocket_com_before - pocket_com_after)[pocket_mask]
xh_lig[:, :self.x_dims] += \
(pocket_com_before - pocket_com_after)[lig_mask]
# Build mol objects
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
molecules = []
for mol_pc in zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask)):
mol = build_molecule(*mol_pc, self.dataset_info, add_coords=True)
mol = process_molecule(mol,
add_hydrogens=False,
sanitize=sanitize,
relax_iter=relax_iter,
largest_frag=largest_frag)
if mol is not None:
molecules.append(mol)
return molecules
def configure_gradient_clipping(self, optimizer, optimizer_idx,
gradient_clip_val, gradient_clip_algorithm):
if not self.clip_grad:
return
# Allow gradient norm to be 150% + 2 * stdev of the recent history.
max_grad_norm = 1.5 * self.gradnorm_queue.mean() + \
2 * self.gradnorm_queue.std()
# Get current grad_norm
params = [p for g in optimizer.param_groups for p in g['params']]
grad_norm = utils.get_grad_norm(params)
# Lightning will handle the gradient clipping
self.clip_gradients(optimizer, gradient_clip_val=max_grad_norm,
gradient_clip_algorithm='norm')
if float(grad_norm) > max_grad_norm:
self.gradnorm_queue.add(float(max_grad_norm))
else:
self.gradnorm_queue.add(float(grad_norm))
if float(grad_norm) > max_grad_norm:
print(f'Clipped gradient with value {grad_norm:.1f} '
f'while allowed {max_grad_norm:.1f}')
class WeightSchedule:
def __init__(self, T, max_weight, mode='linear'):
if mode == 'linear':
self.weights = torch.linspace(max_weight, 0, T + 1)
elif mode == 'constant':
self.weights = max_weight * torch.ones(T + 1)
else:
raise NotImplementedError(f'{mode} weight schedule is not '
f'available.')
def __call__(self, t_array):
""" all values in t_array are assumed to be integers in [0, T] """
return self.weights[t_array].to(t_array.device)