|
|
from pathlib import Path |
|
|
from time import time |
|
|
import argparse |
|
|
import shutil |
|
|
import random |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
import seaborn as sns |
|
|
|
|
|
from tqdm import tqdm |
|
|
import numpy as np |
|
|
|
|
|
from Bio.PDB import PDBParser |
|
|
from Bio.PDB.Polypeptide import three_to_one, is_aa |
|
|
from rdkit import Chem |
|
|
from scipy.ndimage import gaussian_filter |
|
|
|
|
|
import torch |
|
|
|
|
|
from analysis.molecule_builder import build_molecule |
|
|
from analysis.metrics import rdmol_to_smiles |
|
|
import constants |
|
|
from constants import covalent_radii, dataset_params |
|
|
|
|
|
|
|
|
def process_ligand_and_pocket(pdbfile, sdffile, |
|
|
atom_dict, dist_cutoff, ca_only): |
|
|
pdb_struct = PDBParser(QUIET=True).get_structure('', pdbfile) |
|
|
|
|
|
try: |
|
|
ligand = Chem.SDMolSupplier(str(sdffile))[0] |
|
|
except: |
|
|
raise Exception(f'cannot read sdf mol ({sdffile})') |
|
|
|
|
|
|
|
|
|
|
|
lig_atoms = [a.GetSymbol() for a in ligand.GetAtoms() |
|
|
if (a.GetSymbol().capitalize() in atom_dict or a.element != 'H')] |
|
|
lig_coords = np.array([list(ligand.GetConformer(0).GetAtomPosition(idx)) |
|
|
for idx in range(ligand.GetNumAtoms())]) |
|
|
|
|
|
try: |
|
|
lig_one_hot = np.stack([ |
|
|
np.eye(1, len(atom_dict), atom_dict[a.capitalize()]).squeeze() |
|
|
for a in lig_atoms |
|
|
]) |
|
|
except KeyError as e: |
|
|
raise KeyError( |
|
|
f'{e} not in atom dict ({sdffile})') |
|
|
|
|
|
|
|
|
pocket_residues = [] |
|
|
for residue in pdb_struct[0].get_residues(): |
|
|
res_coords = np.array([a.get_coord() for a in residue.get_atoms()]) |
|
|
if is_aa(residue.get_resname(), standard=True) and \ |
|
|
(((res_coords[:, None, :] - lig_coords[None, :, :]) ** 2).sum( |
|
|
-1) ** 0.5).min() < dist_cutoff: |
|
|
pocket_residues.append(residue) |
|
|
|
|
|
pocket_ids = [f'{res.parent.id}:{res.id[1]}' for res in pocket_residues] |
|
|
ligand_data = { |
|
|
'lig_coords': lig_coords, |
|
|
'lig_one_hot': lig_one_hot, |
|
|
} |
|
|
if ca_only: |
|
|
try: |
|
|
pocket_one_hot = [] |
|
|
full_coords = [] |
|
|
for res in pocket_residues: |
|
|
for atom in res.get_atoms(): |
|
|
if atom.name == 'CA': |
|
|
pocket_one_hot.append(np.eye(1, len(amino_acid_dict), |
|
|
amino_acid_dict[three_to_one(res.get_resname())]).squeeze()) |
|
|
full_coords.append(atom.coord) |
|
|
pocket_one_hot = np.stack(pocket_one_hot) |
|
|
full_coords = np.stack(full_coords) |
|
|
except KeyError as e: |
|
|
raise KeyError( |
|
|
f'{e} not in amino acid dict ({pdbfile}, {sdffile})') |
|
|
pocket_data = { |
|
|
'pocket_coords': full_coords, |
|
|
'pocket_one_hot': pocket_one_hot, |
|
|
'pocket_ids': pocket_ids |
|
|
} |
|
|
else: |
|
|
full_atoms = np.concatenate( |
|
|
[np.array([atom.element for atom in res.get_atoms()]) |
|
|
for res in pocket_residues], axis=0) |
|
|
full_coords = np.concatenate( |
|
|
[np.array([atom.coord for atom in res.get_atoms()]) |
|
|
for res in pocket_residues], axis=0) |
|
|
try: |
|
|
pocket_one_hot = [] |
|
|
for a in full_atoms: |
|
|
if a in amino_acid_dict: |
|
|
atom = np.eye(1, len(amino_acid_dict), |
|
|
amino_acid_dict[a.capitalize()]).squeeze() |
|
|
elif a != 'H': |
|
|
atom = np.eye(1, len(amino_acid_dict), |
|
|
len(amino_acid_dict)).squeeze() |
|
|
pocket_one_hot.append(atom) |
|
|
pocket_one_hot = np.stack(pocket_one_hot) |
|
|
except KeyError as e: |
|
|
raise KeyError( |
|
|
f'{e} not in atom dict ({pdbfile})') |
|
|
pocket_data = { |
|
|
'pocket_coords': full_coords, |
|
|
'pocket_one_hot': pocket_one_hot, |
|
|
'pocket_ids': pocket_ids |
|
|
} |
|
|
return ligand_data, pocket_data |
|
|
|
|
|
|
|
|
def compute_smiles(positions, one_hot, mask): |
|
|
print("Computing SMILES ...") |
|
|
|
|
|
atom_types = np.argmax(one_hot, axis=-1) |
|
|
|
|
|
sections = np.where(np.diff(mask))[0] + 1 |
|
|
positions = [torch.from_numpy(x) for x in np.split(positions, sections)] |
|
|
atom_types = [torch.from_numpy(x) for x in np.split(atom_types, sections)] |
|
|
|
|
|
mols_smiles = [] |
|
|
|
|
|
pbar = tqdm(enumerate(zip(positions, atom_types)), |
|
|
total=len(np.unique(mask))) |
|
|
for i, (pos, atom_type) in pbar: |
|
|
mol = build_molecule(pos, atom_type, dataset_info) |
|
|
|
|
|
|
|
|
try: |
|
|
Chem.SanitizeMol(mol) |
|
|
except ValueError: |
|
|
continue |
|
|
|
|
|
mol = rdmol_to_smiles(mol) |
|
|
if mol is not None: |
|
|
mols_smiles.append(mol) |
|
|
pbar.set_description(f'{len(mols_smiles)}/{i + 1} successful') |
|
|
|
|
|
return mols_smiles |
|
|
|
|
|
|
|
|
def get_n_nodes(lig_mask, pocket_mask, smooth_sigma=None): |
|
|
|
|
|
idx_lig, n_nodes_lig = np.unique(lig_mask, return_counts=True) |
|
|
idx_pocket, n_nodes_pocket = np.unique(pocket_mask, return_counts=True) |
|
|
assert np.all(idx_lig == idx_pocket) |
|
|
|
|
|
joint_histogram = np.zeros((np.max(n_nodes_lig) + 1, |
|
|
np.max(n_nodes_pocket) + 1)) |
|
|
|
|
|
for nlig, npocket in zip(n_nodes_lig, n_nodes_pocket): |
|
|
joint_histogram[nlig, npocket] += 1 |
|
|
|
|
|
print(f'Original histogram: {np.count_nonzero(joint_histogram)}/' |
|
|
f'{joint_histogram.shape[0] * joint_histogram.shape[1]} bins filled') |
|
|
|
|
|
|
|
|
if smooth_sigma is not None: |
|
|
filtered_histogram = gaussian_filter( |
|
|
joint_histogram, sigma=smooth_sigma, order=0, mode='constant', |
|
|
cval=0.0, truncate=4.0) |
|
|
|
|
|
print(f'Smoothed histogram: {np.count_nonzero(filtered_histogram)}/' |
|
|
f'{filtered_histogram.shape[0] * filtered_histogram.shape[1]} bins filled') |
|
|
|
|
|
joint_histogram = filtered_histogram |
|
|
|
|
|
return joint_histogram |
|
|
|
|
|
|
|
|
def get_bond_length_arrays(atom_mapping): |
|
|
bond_arrays = [] |
|
|
for i in range(3): |
|
|
bond_dict = getattr(constants, f'bonds{i + 1}') |
|
|
bond_array = np.zeros((len(atom_mapping), len(atom_mapping))) |
|
|
for a1 in atom_mapping.keys(): |
|
|
for a2 in atom_mapping.keys(): |
|
|
if a1 in bond_dict and a2 in bond_dict[a1]: |
|
|
bond_len = bond_dict[a1][a2] |
|
|
else: |
|
|
bond_len = 0 |
|
|
bond_array[atom_mapping[a1], atom_mapping[a2]] = bond_len |
|
|
|
|
|
assert np.all(bond_array == bond_array.T) |
|
|
bond_arrays.append(bond_array) |
|
|
|
|
|
return bond_arrays |
|
|
|
|
|
|
|
|
def get_lennard_jones_rm(atom_mapping): |
|
|
|
|
|
LJ_rm = np.zeros((len(atom_mapping), len(atom_mapping))) |
|
|
|
|
|
for a1 in atom_mapping.keys(): |
|
|
for a2 in atom_mapping.keys(): |
|
|
all_bond_lengths = [] |
|
|
for btype in ['bonds1', 'bonds2', 'bonds3']: |
|
|
bond_dict = getattr(constants, btype) |
|
|
if a1 in bond_dict and a2 in bond_dict[a1]: |
|
|
all_bond_lengths.append(bond_dict[a1][a2]) |
|
|
|
|
|
if len(all_bond_lengths) > 0: |
|
|
|
|
|
|
|
|
bond_len = min(all_bond_lengths) |
|
|
else: |
|
|
if a1 == 'others' or a2 == 'others': |
|
|
bond_len = 0 |
|
|
else: |
|
|
|
|
|
bond_len = covalent_radii[a1] + covalent_radii[a2] |
|
|
|
|
|
LJ_rm[atom_mapping[a1], atom_mapping[a2]] = bond_len |
|
|
|
|
|
assert np.all(LJ_rm == LJ_rm.T) |
|
|
return LJ_rm |
|
|
|
|
|
|
|
|
def get_type_histograms(lig_one_hot, pocket_one_hot, atom_encoder, aa_encoder): |
|
|
atom_decoder = list(atom_encoder.keys()) |
|
|
atom_counts = {k: 0 for k in atom_encoder.keys()} |
|
|
for a in [atom_decoder[x] for x in lig_one_hot.argmax(1)]: |
|
|
atom_counts[a] += 1 |
|
|
|
|
|
aa_decoder = list(aa_encoder.keys()) |
|
|
aa_counts = {k: 0 for k in aa_encoder.keys()} |
|
|
for r in [aa_decoder[x] for x in pocket_one_hot.argmax(1)]: |
|
|
aa_counts[r] += 1 |
|
|
|
|
|
return atom_counts, aa_counts |
|
|
|
|
|
|
|
|
def saveall(filename, pdb_and_mol_ids, lig_coords, lig_one_hot, lig_mask, |
|
|
pocket_coords, pocket_one_hot, pocket_mask): |
|
|
np.savez(filename, |
|
|
names=pdb_and_mol_ids, |
|
|
lig_coords=lig_coords, |
|
|
lig_one_hot=lig_one_hot, |
|
|
lig_mask=lig_mask, |
|
|
pocket_coords=pocket_coords, |
|
|
pocket_one_hot=pocket_one_hot, |
|
|
pocket_mask=pocket_mask |
|
|
) |
|
|
return True |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument('basedir', type=Path) |
|
|
parser.add_argument('--outdir', type=Path, default=None) |
|
|
parser.add_argument('--no_H', action='store_true') |
|
|
parser.add_argument('--ca_only', action='store_true') |
|
|
parser.add_argument('--dist_cutoff', type=float, default=8.0) |
|
|
parser.add_argument('--random_seed', type=int, default=42) |
|
|
args = parser.parse_args() |
|
|
|
|
|
datadir = args.basedir / 'crossdocked_pocket10/' |
|
|
|
|
|
if args.ca_only: |
|
|
dataset_info = dataset_params['crossdock'] |
|
|
else: |
|
|
dataset_info = dataset_params['crossdock_full'] |
|
|
amino_acid_dict = dataset_info['aa_encoder'] |
|
|
atom_dict = dataset_info['atom_encoder'] |
|
|
atom_decoder = dataset_info['atom_decoder'] |
|
|
|
|
|
|
|
|
if args.outdir is None: |
|
|
suffix = '_crossdock' if 'H' in atom_dict else '_crossdock_noH' |
|
|
suffix += '_ca_only_temp' if args.ca_only else '_full_temp' |
|
|
processed_dir = Path(args.basedir, f'processed{suffix}') |
|
|
else: |
|
|
processed_dir = args.outdir |
|
|
|
|
|
processed_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
|
|
|
|
|
split_path = Path(args.basedir, 'split_by_name.pt') |
|
|
data_split = torch.load(split_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_split['val'] = random.sample(data_split['train'], 300) |
|
|
|
|
|
n_train_before = len(data_split['train']) |
|
|
n_val_before = len(data_split['val']) |
|
|
n_test_before = len(data_split['test']) |
|
|
|
|
|
failed_save = [] |
|
|
|
|
|
n_samples_after = {} |
|
|
for split in data_split.keys(): |
|
|
lig_coords = [] |
|
|
lig_one_hot = [] |
|
|
lig_mask = [] |
|
|
pocket_coords = [] |
|
|
pocket_one_hot = [] |
|
|
pocket_mask = [] |
|
|
pdb_and_mol_ids = [] |
|
|
count_protein = [] |
|
|
count_ligand = [] |
|
|
count_total = [] |
|
|
count = 0 |
|
|
|
|
|
pdb_sdf_dir = processed_dir / split |
|
|
pdb_sdf_dir.mkdir(exist_ok=True) |
|
|
|
|
|
tic = time() |
|
|
num_failed = 0 |
|
|
pbar = tqdm(data_split[split]) |
|
|
pbar.set_description(f'#failed: {num_failed}') |
|
|
for pocket_fn, ligand_fn in pbar: |
|
|
|
|
|
sdffile = datadir / f'{ligand_fn}' |
|
|
pdbfile = datadir / f'{pocket_fn}' |
|
|
|
|
|
try: |
|
|
struct_copy = PDBParser(QUIET=True).get_structure('', pdbfile) |
|
|
except: |
|
|
num_failed += 1 |
|
|
failed_save.append((pocket_fn, ligand_fn)) |
|
|
print(failed_save[-1]) |
|
|
pbar.set_description(f'#failed: {num_failed}') |
|
|
continue |
|
|
|
|
|
try: |
|
|
ligand_data, pocket_data = process_ligand_and_pocket( |
|
|
pdbfile, sdffile, |
|
|
atom_dict=atom_dict, dist_cutoff=args.dist_cutoff, |
|
|
ca_only=args.ca_only) |
|
|
except (KeyError, AssertionError, FileNotFoundError, IndexError, |
|
|
ValueError) as e: |
|
|
print(type(e).__name__, e, pocket_fn, ligand_fn) |
|
|
num_failed += 1 |
|
|
pbar.set_description(f'#failed: {num_failed}') |
|
|
continue |
|
|
|
|
|
pdb_and_mol_ids.append(f"{pocket_fn}_{ligand_fn}") |
|
|
lig_coords.append(ligand_data['lig_coords']) |
|
|
lig_one_hot.append(ligand_data['lig_one_hot']) |
|
|
lig_mask.append(count * np.ones(len(ligand_data['lig_coords']))) |
|
|
pocket_coords.append(pocket_data['pocket_coords']) |
|
|
pocket_one_hot.append(pocket_data['pocket_one_hot']) |
|
|
pocket_mask.append( |
|
|
count * np.ones(len(pocket_data['pocket_coords']))) |
|
|
count_protein.append(pocket_data['pocket_coords'].shape[0]) |
|
|
count_ligand.append(ligand_data['lig_coords'].shape[0]) |
|
|
count_total.append(pocket_data['pocket_coords'].shape[0] + |
|
|
ligand_data['lig_coords'].shape[0]) |
|
|
count += 1 |
|
|
|
|
|
if split in {'val', 'test'}: |
|
|
|
|
|
new_rec_name = Path(pdbfile).stem.replace('_', '-') |
|
|
pdb_file_out = Path(pdb_sdf_dir, f"{new_rec_name}.pdb") |
|
|
shutil.copy(pdbfile, pdb_file_out) |
|
|
|
|
|
|
|
|
new_lig_name = new_rec_name + '_' + Path(sdffile).stem.replace('_', '-') |
|
|
sdf_file_out = Path(pdb_sdf_dir, f'{new_lig_name}.sdf') |
|
|
shutil.copy(sdffile, sdf_file_out) |
|
|
|
|
|
|
|
|
with open(Path(pdb_sdf_dir, f'{new_lig_name}.txt'), 'w') as f: |
|
|
f.write(' '.join(pocket_data['pocket_ids'])) |
|
|
|
|
|
lig_coords = np.concatenate(lig_coords, axis=0) |
|
|
lig_one_hot = np.concatenate(lig_one_hot, axis=0) |
|
|
lig_mask = np.concatenate(lig_mask, axis=0) |
|
|
pocket_coords = np.concatenate(pocket_coords, axis=0) |
|
|
pocket_one_hot = np.concatenate(pocket_one_hot, axis=0) |
|
|
pocket_mask = np.concatenate(pocket_mask, axis=0) |
|
|
|
|
|
saveall(processed_dir / f'{split}.npz', pdb_and_mol_ids, lig_coords, |
|
|
lig_one_hot, lig_mask, pocket_coords, |
|
|
pocket_one_hot, pocket_mask) |
|
|
|
|
|
n_samples_after[split] = len(pdb_and_mol_ids) |
|
|
print(f"Processing {split} set took {(time() - tic) / 60.0:.2f} minutes") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with np.load(processed_dir / 'train.npz', allow_pickle=True) as data: |
|
|
lig_mask = data['lig_mask'] |
|
|
pocket_mask = data['pocket_mask'] |
|
|
lig_coords = data['lig_coords'] |
|
|
lig_one_hot = data['lig_one_hot'] |
|
|
pocket_one_hot = data['pocket_one_hot'] |
|
|
|
|
|
|
|
|
train_smiles = compute_smiles(lig_coords, lig_one_hot, lig_mask) |
|
|
np.save(processed_dir / 'train_smiles.npy', train_smiles) |
|
|
|
|
|
|
|
|
n_nodes = get_n_nodes(lig_mask, pocket_mask, smooth_sigma=1.0) |
|
|
np.save(Path(processed_dir, 'size_distribution.npy'), n_nodes) |
|
|
|
|
|
|
|
|
bonds1, bonds2, bonds3 = get_bond_length_arrays(atom_dict) |
|
|
|
|
|
|
|
|
rm_LJ = get_lennard_jones_rm(atom_dict) |
|
|
|
|
|
|
|
|
atom_hist, aa_hist = get_type_histograms(lig_one_hot, pocket_one_hot, |
|
|
atom_dict, amino_acid_dict) |
|
|
|
|
|
|
|
|
summary_string = '# SUMMARY\n\n' |
|
|
summary_string += '# Before processing\n' |
|
|
summary_string += f'num_samples train: {n_train_before}\n' |
|
|
summary_string += f'num_samples val: {n_val_before}\n' |
|
|
summary_string += f'num_samples test: {n_test_before}\n\n' |
|
|
summary_string += '# After processing\n' |
|
|
summary_string += f"num_samples train: {n_samples_after['train']}\n" |
|
|
summary_string += f"num_samples val: {n_samples_after['val']}\n" |
|
|
summary_string += f"num_samples test: {n_samples_after['test']}\n\n" |
|
|
summary_string += '# Info\n' |
|
|
summary_string += f"'atom_encoder': {atom_dict}\n" |
|
|
summary_string += f"'atom_decoder': {list(atom_dict.keys())}\n" |
|
|
summary_string += f"'aa_encoder': {amino_acid_dict}\n" |
|
|
summary_string += f"'aa_decoder': {list(amino_acid_dict.keys())}\n" |
|
|
summary_string += f"'bonds1': {bonds1.tolist()}\n" |
|
|
summary_string += f"'bonds2': {bonds2.tolist()}\n" |
|
|
summary_string += f"'bonds3': {bonds3.tolist()}\n" |
|
|
summary_string += f"'lennard_jones_rm': {rm_LJ.tolist()}\n" |
|
|
summary_string += f"'atom_hist': {atom_hist}\n" |
|
|
summary_string += f"'aa_hist': {aa_hist}\n" |
|
|
summary_string += f"'n_nodes': {n_nodes.tolist()}\n" |
|
|
|
|
|
|
|
|
with open(processed_dir / 'summary.txt', 'w') as f: |
|
|
f.write(summary_string) |
|
|
|
|
|
|
|
|
print(summary_string) |
|
|
|
|
|
print(failed_save) |
|
|
|