DrugFlow / src /model /lightning.py
mority's picture
Upload 53 files
6e7d4ba verified
import warnings
import tempfile
from typing import Optional, Union
from time import time
from pathlib import Path
from functools import partial
from itertools import accumulate
from argparse import Namespace
import numpy as np
import pandas as pd
from rdkit import Chem
import torch
from torch.utils.data import DataLoader, SubsetRandomSampler
from torch.distributions.categorical import Categorical
import pytorch_lightning as pl
from torch_scatter import scatter_mean
import src.utils as utils
from src.constants import atom_encoder, atom_decoder, aa_encoder, aa_decoder, \
bond_encoder, bond_decoder, residue_encoder, residue_bond_encoder, \
residue_decoder, residue_bond_decoder, aa_atom_index, aa_atom_mask
from src.data.dataset import ProcessedLigandPocketDataset, ClusteredDataset, get_wds
from src.data import data_utils
from src.data.data_utils import AppendVirtualNodesInCoM, center_data, Residues, TensorDict, randomize_tensors
from src.model.flows import CoordICFM, TorusICFM, CoordICFMPredictFinal, TorusICFMPredictFinal, SO3ICFM
from src.model.markov_bridge import UniformPriorMarkovBridge, MarginalPriorMarkovBridge
from src.model.dynamics import Dynamics
from src.model.dynamics_hetero import DynamicsHetero
from src.model.diffusion_utils import DistributionNodes
from src.model.loss_utils import TimestepWeights, clash_loss
from src.analysis.visualization_utils import pocket_to_rdkit, mols_to_pdbfile
from src.analysis.metrics import MoleculeValidity, CategoricalDistribution, MolecularProperties
from src.data.molecule_builder import build_molecule
from src.data.postprocessing import process_all
from src.sbdd_metrics.metrics import FullEvaluator
from src.sbdd_metrics.evaluation import VALIDITY_METRIC_NAME, aggregated_metrics, collection_metrics
from tqdm import tqdm
# derive additional constants
aa_atom_mask_tensor = torch.tensor([aa_atom_mask[aa] for aa in aa_decoder])
aa_atom_decoder = {aa: {v: k for k, v in aa_atom_index[aa].items()} for aa in aa_decoder}
aa_atom_type_tensor = torch.tensor([[atom_encoder.get(aa_atom_decoder[aa].get(i, '-')[0], -42)
for i in range(14)] for aa in aa_decoder])
def set_default(namespace, key, default_val):
val = vars(namespace).get(key, default_val)
setattr(namespace, key, val)
class DrugFlow(pl.LightningModule):
def __init__(
self,
pocket_representation: str,
train_params: Namespace,
loss_params: Namespace,
eval_params: Namespace,
predictor_params: Namespace,
simulation_params: Namespace,
virtual_nodes: Union[list, None],
flexible: bool,
flexible_bb: bool = False,
debug: bool = False,
overfit: bool = False,
):
super(DrugFlow, self).__init__()
self.save_hyperparameters()
# Set default parameters
set_default(train_params, "sharded_dataset", False)
set_default(train_params, "sample_from_clusters", False)
set_default(train_params, "lr_step_size", None)
set_default(train_params, "lr_gamma", None)
set_default(train_params, "gnina", None)
set_default(loss_params, "lambda_x", 1.0)
set_default(loss_params, "lambda_clash", None)
set_default(loss_params, "reduce", "mean")
set_default(loss_params, "regularize_uncertainty", None)
set_default(eval_params, "n_loss_per_sample", 1)
set_default(eval_params, "n_sampling_steps", simulation_params.n_steps)
set_default(predictor_params, "transform_sc_pred", False)
set_default(predictor_params, "add_chi_as_feature", False)
set_default(predictor_params, "augment_residue_sc", False)
set_default(predictor_params, "augment_ligand_sc", False)
set_default(predictor_params, "add_all_atom_diff", False)
set_default(predictor_params, "angle_act_fn", None)
set_default(simulation_params, "predict_confidence", False)
set_default(simulation_params, "predict_final", False)
set_default(simulation_params, "scheduler_chi", None)
# Check for invalid configurations
assert pocket_representation in {'side_chain_bead', 'CA+'}
self.pocket_representation = pocket_representation
assert flexible or not predictor_params.augment_residue_sc
self.augment_residue_sc = predictor_params.augment_residue_sc \
if 'augment_residue_sc' in predictor_params else False
self.augment_ligand_sc = predictor_params.augment_ligand_sc \
if 'augment_ligand_sc' in predictor_params else False
assert not (flexible_bb and predictor_params.normal_modes), \
"Normal mode eigenvectors are only meaningful for fixed backbones"
assert (not flexible_bb) or flexible, \
"Currently atom vectors aren't updated if flexible=False"
assert not (simulation_params.predict_confidence and
(not predictor_params.heterogeneous_graph or simulation_params.predict_final))
# Set parameters
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.virtual_nodes = virtual_nodes
self.flexible = flexible
self.flexible_bb = flexible_bb
self.debug = debug
self.overfit = overfit
self.predict_confidence = simulation_params.predict_confidence
if self.virtual_nodes:
self.add_virtual_min = virtual_nodes[0]
self.add_virtual_max = virtual_nodes[1]
# Training parameters
self.datadir = train_params.datadir
self.receptor_dir = train_params.datadir
self.batch_size = train_params.batch_size
self.lr = train_params.lr
self.lr_step_size = train_params.lr_step_size
self.lr_gamma = train_params.lr_gamma
self.num_workers = train_params.num_workers
self.sample_from_clusters = train_params.sample_from_clusters
self.sharded_dataset = train_params.sharded_dataset
self.clip_grad = train_params.clip_grad
if self.clip_grad:
self.gradnorm_queue = utils.Queue()
# Add large value that will be flushed.
self.gradnorm_queue.add(3000)
# Evaluation parameters
self.outdir = eval_params.outdir
self.eval_batch_size = eval_params.eval_batch_size
self.eval_epochs = eval_params.eval_epochs
# assert eval_params.visualize_sample_epoch % self.eval_epochs == 0
self.visualize_sample_epoch = eval_params.visualize_sample_epoch
self.visualize_chain_epoch = eval_params.visualize_chain_epoch
self.sample_with_ground_truth_size = eval_params.sample_with_ground_truth_size
self.n_loss_per_sample = eval_params.n_loss_per_sample
self.n_eval_samples = eval_params.n_eval_samples
self.n_visualize_samples = eval_params.n_visualize_samples
self.keep_frames = eval_params.keep_frames
self.gnina = train_params.gnina
# Feature encoders/decoders
self.atom_encoder = atom_encoder
self.atom_decoder = atom_decoder
self.bond_encoder = bond_encoder
self.bond_decoder = bond_decoder
self.aa_encoder = aa_encoder
self.aa_decoder = aa_decoder
self.residue_encoder = residue_encoder
self.residue_decoder = residue_decoder
self.residue_bond_encoder = residue_bond_encoder
self.residue_bond_decoder = residue_bond_decoder
self.atom_nf = len(self.atom_decoder)
self.residue_nf = len(self.aa_decoder)
if self.pocket_representation == 'side_chain_bead':
self.residue_nf += len(self.residue_encoder)
if self.pocket_representation == 'CA+':
self.aa_atom_index = aa_atom_index
self.n_atom_aa = max([x for aa in aa_atom_index.values() for x in aa.values()]) + 1
self.residue_nf = (self.residue_nf, self.n_atom_aa) # (s, V)
self.bond_nf = len(self.bond_decoder)
self.pocket_bond_nf = len(self.residue_bond_decoder)
self.x_dim = 3
# Set up the neural network
self.dynamics = self.init_model(predictor_params)
# Initialize objects for each variable type
if simulation_params.predict_final:
self.module_x = CoordICFMPredictFinal(None)
self.module_chi = TorusICFMPredictFinal(None, 5) if self.flexible else None
if self.flexible_bb:
raise NotImplementedError()
else:
self.module_x = CoordICFM(None)
# self.module_chi = AngleICFM(None, 5) if self.flexible else None
scheduler_args = None if simulation_params.scheduler_chi is None else vars(simulation_params.scheduler_chi)
self.module_chi = TorusICFM(None, 5, scheduler_args) if self.flexible else None
self.module_trans = CoordICFM(None) if self.flexible_bb else None
self.module_rot = SO3ICFM(None) if self.flexible_bb else None
if simulation_params.prior_h == 'uniform':
self.module_h = UniformPriorMarkovBridge(self.atom_nf, loss_type=loss_params.discrete_loss)
elif simulation_params.prior_h == 'marginal':
self.register_buffer('prior_h', self.get_categorical_prop('atom')) # add to module
self.module_h = MarginalPriorMarkovBridge(self.atom_nf, self.prior_h, loss_type=loss_params.discrete_loss)
if simulation_params.prior_e == 'uniform':
self.module_e = UniformPriorMarkovBridge(self.bond_nf, loss_type=loss_params.discrete_loss)
elif simulation_params.prior_e == 'marginal':
self.register_buffer('prior_e', self.get_categorical_prop('bond')) # add to module
self.module_e = MarginalPriorMarkovBridge(self.bond_nf, self.prior_e, loss_type=loss_params.discrete_loss)
# Loss parameters
self.loss_reduce = loss_params.reduce
self.lambda_x = loss_params.lambda_x
self.lambda_h = loss_params.lambda_h
self.lambda_e = loss_params.lambda_e
self.lambda_chi = loss_params.lambda_chi if self.flexible else None
self.lambda_trans = loss_params.lambda_trans if self.flexible_bb else None
self.lambda_rot = loss_params.lambda_rot if self.flexible_bb else None
self.lambda_clash = loss_params.lambda_clash
self.regularize_uncertainty = loss_params.regularize_uncertainty
if loss_params.timestep_weights is not None:
weight_type = loss_params.timestep_weights.split('_')[0]
kwargs = loss_params.timestep_weights.split('_')[1:]
kwargs = {x.split('=')[0]: float(x.split('=')[1]) for x in kwargs}
self.timestep_weights = TimestepWeights(weight_type, **kwargs)
else:
self.timestep_weights = None
# Sampling
self.T_sampling = eval_params.n_sampling_steps
self.train_step_size = 1 / simulation_params.n_steps
self.size_distribution = None # initialized only if needed
# Metrics, initialized only if needed
self.train_smiles = None
self.ligand_metrics = None
self.molecule_properties = None
self.evaluator = None
self.ligand_atom_type_distribution = None
self.ligand_bond_type_distribution = None
# containers for metric aggregation
self.training_step_outputs = []
self.validation_step_outputs = []
def on_load_checkpoint(self, checkpoint):
"""
This hook is only used for backward compatibility with checkpoints that
did not save prior_h and prior_e in state_dict in the past
"""
if hasattr(self, "prior_h") and "prior_h" not in checkpoint["state_dict"]:
checkpoint["state_dict"]["prior_h"] = self.get_categorical_prop('atom')
if hasattr(self, "prior_e") and "prior_e" not in checkpoint["state_dict"]:
checkpoint["state_dict"]["prior_e"] = self.get_categorical_prop('bond')
if "prior_e" in checkpoint["state_dict"] and not hasattr(self, "prior_e"):
# NOTE: a very exotic case that happened to one model. Potentially can be removed in the future
self.register_buffer("prior_e", self.get_categorical_prop('bond'))
def init_model(self, predictor_params):
model_type = predictor_params.backbone
if 'heterogeneous_graph' in predictor_params and predictor_params.heterogeneous_graph:
return DynamicsHetero(
atom_nf=self.atom_nf,
residue_nf=self.residue_nf,
bond_dict=self.bond_encoder,
pocket_bond_dict=self.residue_bond_encoder,
model=model_type,
num_rbf_time=predictor_params.__dict__.get('num_rbf_time'),
model_params=getattr(predictor_params, model_type + '_params'),
edge_cutoff_ligand=predictor_params.edge_cutoff_ligand,
edge_cutoff_pocket=predictor_params.edge_cutoff_pocket,
edge_cutoff_interaction=predictor_params.edge_cutoff_interaction,
predict_angles=self.flexible,
predict_frames=self.flexible_bb,
add_cycle_counts=predictor_params.cycle_counts,
add_spectral_feat=predictor_params.spectral_feat,
add_nma_feat=predictor_params.normal_modes,
reflection_equiv=predictor_params.reflection_equivariant,
d_max=predictor_params.d_max,
num_rbf_dist=predictor_params.num_rbf,
self_conditioning=predictor_params.self_conditioning,
augment_residue_sc=self.augment_residue_sc,
augment_ligand_sc=self.augment_ligand_sc,
add_chi_as_feature=predictor_params.add_chi_as_feature,
angle_act_fn=predictor_params.angle_act_fn,
add_all_atom_diff=predictor_params.add_all_atom_diff,
predict_confidence=self.predict_confidence,
)
else:
if predictor_params.__dict__.get('num_rbf_time') is not None:
raise NotImplementedError("RBF time embedding not yet implemented")
return Dynamics(
atom_nf=self.atom_nf,
residue_nf=self.residue_nf,
joint_nf=predictor_params.joint_nf,
bond_dict=self.bond_encoder,
pocket_bond_dict=self.residue_bond_encoder,
edge_nf=predictor_params.edge_nf,
hidden_nf=predictor_params.hidden_nf,
model=model_type,
model_params=getattr(predictor_params, model_type + '_params'),
edge_cutoff_ligand=predictor_params.edge_cutoff_ligand,
edge_cutoff_pocket=predictor_params.edge_cutoff_pocket,
edge_cutoff_interaction=predictor_params.edge_cutoff_interaction,
predict_angles=self.flexible,
predict_frames=self.flexible_bb,
add_cycle_counts=predictor_params.cycle_counts,
add_spectral_feat=predictor_params.spectral_feat,
add_nma_feat=predictor_params.normal_modes,
self_conditioning=predictor_params.self_conditioning,
augment_residue_sc=self.augment_residue_sc,
augment_ligand_sc=self.augment_ligand_sc,
add_chi_as_feature=predictor_params.add_chi_as_feature,
angle_act_fn=predictor_params.angle_act_fn,
)
def _load_histogram(self, type):
"""
Load empirical categorical distributions of atom or bond types from disk.
Returns None if the required file is not found.
"""
assert type in {"atom", "bond"}
filename = 'ligand_type_histogram.npy' if type == 'atom' else 'ligand_bond_type_histogram.npy'
encoder = self.atom_encoder if type == 'atom' else self.bond_encoder
hist_file = Path(self.datadir, filename)
if not hist_file.exists():
return None
hist = np.load(hist_file, allow_pickle=True).item()
return CategoricalDistribution(hist, encoder)
def get_categorical_prop(self, type):
hist = self._load_histogram(type)
encoder = self.atom_encoder if type == 'atom' else self.bond_encoder
# Note: default value ensures that code will crash if prior is not
# read from disk or loaded from checkpoint later on
return torch.zeros(len(encoder)) * float("nan") if hist is None else torch.tensor(hist.p)
def configure_optimizers(self):
optimizers = [
torch.optim.AdamW(self.parameters(), lr=self.lr, amsgrad=True, weight_decay=1e-12),
]
if self.lr_step_size is None or self.lr_gamma is None:
lr_schedulers = []
else:
lr_schedulers = [
torch.optim.lr_scheduler.StepLR(optimizers[0], step_size=self.lr_step_size, gamma=self.lr_gamma),
]
return optimizers, lr_schedulers
def setup(self, stage: Optional[str] = None):
self.setup_sampling()
if stage == 'fit':
self.train_dataset = self.get_dataset(stage='train')
self.val_dataset = self.get_dataset(stage='val')
self.setup_metrics()
elif stage == 'val':
self.val_dataset = self.get_dataset(stage='val')
self.setup_metrics()
elif stage == 'test':
self.test_dataset = self.get_dataset(stage='test')
self.setup_metrics()
elif stage == 'generation':
pass
else:
raise NotImplementedError
def get_dataset(self, stage, pocket_transform=None):
# when sampling we don't append virtual nodes as we might need access to the ground truth size
if self.virtual_nodes and stage == "train":
ligand_transform = AppendVirtualNodesInCoM(
atom_encoder, bond_encoder, add_min=self.add_virtual_min, add_max=self.add_virtual_max)
else:
ligand_transform = None
# we want to know if something goes wrong on the validation or test set
catch_errors = stage == "train"
if self.sharded_dataset:
return get_wds(
data_path=self.datadir,
stage='val' if self.debug else stage,
ligand_transform=ligand_transform,
pocket_transform=pocket_transform,
)
if self.sample_from_clusters and stage == "train": # val/test should be deterministic
return ClusteredDataset(
pt_path=Path(self.datadir, 'val.pt' if self.debug else f'{stage}.pt'),
ligand_transform=ligand_transform,
pocket_transform=pocket_transform,
catch_errors=catch_errors
)
return ProcessedLigandPocketDataset(
pt_path=Path(self.datadir, 'val.pt' if self.debug else f'{stage}.pt'),
ligand_transform=ligand_transform,
pocket_transform=pocket_transform,
catch_errors=catch_errors
)
def setup_sampling(self):
# distribution of nodes
histogram_file = Path(self.datadir, 'size_distribution.npy') # TODO: store this in model checkpoint so that we can sample without this file
size_histogram = np.load(histogram_file).tolist()
self.size_distribution = DistributionNodes(size_histogram)
def setup_metrics(self):
# For metrics
smiles_file = Path(self.datadir, 'train_smiles.npy')
self.train_smiles = None if not smiles_file.exists() else np.load(smiles_file)
self.ligand_metrics = MoleculeValidity()
self.molecule_properties = MolecularProperties()
self.evaluator = FullEvaluator(gnina=self.gnina, exclude_evaluators=['geometry', 'ring_count'])
self.ligand_atom_type_distribution = self._load_histogram('atom')
self.ligand_bond_type_distribution = self._load_histogram('bond')
def train_dataloader(self):
shuffle = None if self.overfit else False if self.sharded_dataset else True
return DataLoader(self.train_dataset, self.batch_size, shuffle=shuffle,
sampler=SubsetRandomSampler([0]) if self.overfit else None,
num_workers=self.num_workers,
collate_fn=self.train_dataset.collate_fn,
# collate_fn=partial(self.train_dataset.collate_fn, ligand_transform=batch_transform),
pin_memory=True)
def val_dataloader(self):
if self.overfit:
return self.train_dataloader()
return DataLoader(self.val_dataset, self.eval_batch_size,
shuffle=False, num_workers=self.num_workers,
collate_fn=self.val_dataset.collate_fn,
pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, self.eval_batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.test_dataset.collate_fn,
pin_memory=True)
def log_metrics(self, metrics_dict, split, batch_size=None, **kwargs):
for m, value in metrics_dict.items():
self.log(f'{m}/{split}', value, batch_size=batch_size, **kwargs)
def aggregate_metrics(self, step_outputs, prefix):
if 'timestep' in step_outputs[0]:
timesteps = torch.cat([x['timestep'] for x in step_outputs]).squeeze()
if 'loss_per_sample' in step_outputs[0]:
losses = torch.cat([x['loss_per_sample'] for x in step_outputs])
pearson_corr = torch.corrcoef(torch.stack([timesteps, losses], dim=0))[0, 1]
self.log(f'corr_loss_timestep/{prefix}', pearson_corr, prog_bar=False)
if 'eps_hat_norm' in step_outputs[0]:
eps_norm = torch.cat([x['eps_hat_norm'] for x in step_outputs])
pearson_corr = torch.corrcoef(torch.stack([timesteps, eps_norm], dim=0))[0, 1]
self.log(f'corr_eps_timestep/{prefix}', pearson_corr, prog_bar=False)
def on_train_epoch_end(self):
self.aggregate_metrics(self.training_step_outputs, 'train')
self.training_step_outputs.clear()
# TODO: doesn't work in multi-GPU mode
# def on_before_batch_transfer(self, batch, dataloader_idx):
# """
# Performs operations on data before it is transferred to the GPU.
# Hence, supports multiple dataloaders for speedup.
# """
# batch['pocket'] = Residues(**batch['pocket'])
# return batch
# # TODO: try if this is compatible with DDP
# def on_after_batch_transfer(self, batch, dataloader_idx):
# """
# Performs operations on data after it is transferred to the GPU.
# """
# batch['pocket'] = Residues(**batch['pocket'])
# batch['ligand'] = TensorDict(**batch['ligand'])
# return batch
def get_sc_transform_fn(self, zt_chi, zt_x, t, z0_chi, ligand_mask, pocket):
sc_transform = {}
if self.augment_residue_sc:
def pred_all_atom(pred_chi, pred_trans=None, pred_rot=None):
temp_pocket = pocket.deepcopy()
if pred_trans is not None and pred_rot is not None:
zt_trans = pocket['x']
zt_rot = pocket['axis_angle']
z1_trans_pred = self.module_trans.get_z1_given_zt_and_pred(
zt_trans, pred_trans, None, t, pocket['mask'])
z1_rot_pred = self.module_rot.get_z1_given_zt_and_pred(
zt_rot, pred_rot, None, t, pocket['mask'])
temp_pocket.set_frame(z1_trans_pred, z1_rot_pred)
z1_chi_pred = self.module_chi.get_z1_given_zt_and_pred(
zt_chi[..., :5], pred_chi, z0_chi, t, pocket['mask'])
temp_pocket.set_chi(z1_chi_pred)
all_coord = temp_pocket['v'] + temp_pocket['x'].unsqueeze(1)
return all_coord - pocket['x'].unsqueeze(1)
sc_transform['residues'] = pred_all_atom
if self.augment_ligand_sc:
# sc_transform['atoms'] = partial(self.module_x.get_z1_given_zt_and_pred, zt=zs_x, z0=None, t=t, batch_mask=lig_mask)
sc_transform['atoms'] = lambda pred: (self.module_x.get_z1_given_zt_and_pred(
zt_x, pred.squeeze(1), None, t, ligand_mask) - zt_x).unsqueeze(1)
return sc_transform
def compute_loss(self, ligand, pocket, return_info=False):
"""
Samples time steps and computes network predictions
"""
# TODO: move somewhere else (like collate_fn)
pocket = Residues(**pocket)
# Center sample
ligand, pocket = center_data(ligand, pocket)
if pocket['x'].numel() > 0:
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
else:
pocket_com = scatter_mean(ligand['x'], ligand['mask'], dim=0)
# # Normalize pocket coordinates
# pocket['x'] = self.module_x.normalize(pocket['x'])
# Sample a timestep t for each example in batch
t = torch.rand(ligand['size'].size(0), device=ligand['x'].device).unsqueeze(-1)
# Noise
z0_x = self.module_x.sample_z0(pocket_com, ligand['mask'])
z0_h = self.module_h.sample_z0(ligand['mask'])
z0_e = self.module_e.sample_z0(ligand['bond_mask'])
zt_x = self.module_x.sample_zt(z0_x, ligand['x'], t, ligand['mask'])
zt_h = self.module_h.sample_zt(z0_h, ligand['one_hot'], t, ligand['mask'])
zt_e = self.module_e.sample_zt(z0_e, ligand['bond_one_hot'], t, ligand['bond_mask'])
if self.flexible_bb:
z0_trans = self.module_trans.sample_z0(pocket_com, pocket['mask'])
z1_trans = pocket['x'].detach().clone()
zt_trans = self.module_trans.sample_zt(z0_trans, z1_trans, t, pocket['mask'])
z0_rot = self.module_rot.sample_z0(pocket['mask'])
z1_rot = pocket['axis_angle'].detach().clone()
zt_rot = self.module_rot.sample_zt(z0_rot, z1_rot, t, pocket['mask'])
# update pocket
pocket.set_frame(zt_trans, zt_rot)
z0_chi, zt_chi = None, None
if self.flexible:
# residues = [data_utils.residue_from_internal_coord(ic) for ic in pocket['residues']]
# residues = pocket['residues']
# z1_chi = torch.stack([data_utils.get_torsion_angles(r, device=self.device) for r in residues], dim=0)
z1_chi = pocket['chi'][:, :5].detach().clone()
z0_chi = self.module_chi.sample_z0(pocket['mask'])
zt_chi = self.module_chi.sample_zt(z0_chi, z1_chi, t, pocket['mask'])
# internal to external coordinates
pocket.set_chi(zt_chi)
if pocket['x'].numel() == 0:
pocket.set_empty_v()
# Predict denoising
sc_transform = self.get_sc_transform_fn(zt_chi, zt_x, t, z0_chi, ligand['mask'], pocket)
# sc_transform = None
pred_ligand, pred_residues = self.dynamics(
zt_x, zt_h, ligand['mask'], pocket, t,
bonds_ligand=(ligand['bonds'], zt_e), sc_transform=sc_transform
)
# Compute L2 loss
if self.predict_confidence:
loss_x = self.module_x.compute_loss(pred_ligand['vel'], z0_x, ligand['x'], t, ligand['mask'], reduce='none')
# compute confidence regularization
k = self.module_x.dim # pred.size(-1)
sigma = pred_ligand['uncertainty_vel']
loss_x = loss_x / (2 * sigma ** 2) + k * torch.log(sigma)
if self.regularize_uncertainty is not None:
loss_x = loss_x + self.regularize_uncertainty * (pred_ligand['uncertainty_vel'] - 1) ** 2
loss_x = self.module_x.reduce_loss(loss_x, ligand['mask'], reduce=self.loss_reduce)
else:
loss_x = self.module_x.compute_loss(pred_ligand['vel'], z0_x, ligand['x'], t, ligand['mask'], reduce=self.loss_reduce)
# Loss for categorical variables
t_next = torch.clamp(t + self.train_step_size, max=1.0)
loss_h = self.module_h.compute_loss(pred_ligand['logits_h'], zt_h, ligand['one_hot'], ligand['mask'], t, t_next, reduce=self.loss_reduce)
loss_e = self.module_e.compute_loss(pred_ligand['logits_e'], zt_e, ligand['bond_one_hot'], ligand['bond_mask'], t, t_next, reduce=self.loss_reduce)
loss = self.lambda_x * loss_x + self.lambda_h * loss_h + self.lambda_e * loss_e
if self.flexible:
loss_chi = self.module_chi.compute_loss(pred_residues['chi'], z0_chi, z1_chi, zt_chi, t, pocket['mask'], reduce=self.loss_reduce)
loss = loss + self.lambda_chi * loss_chi
if self.flexible_bb:
loss_trans = self.module_trans.compute_loss(pred_residues['trans'], z0_trans, z1_trans, t, pocket['mask'], reduce=self.loss_reduce)
loss_rot = self.module_rot.compute_loss(pred_residues['rot'], z0_rot, z1_rot, zt_rot, t, pocket['mask'], reduce=self.loss_reduce)
loss = loss + self.lambda_trans * loss_trans + self.lambda_rot * loss_rot
if self.lambda_clash is not None and self.lambda_clash > 0:
if self.flexible_bb:
pred_z1_trans = self.module_trans.get_z1_given_zt_and_pred(zt_trans, pred_residues['trans'], z0_trans, t, pocket['mask'])
pred_z1_rot = self.module_rot.get_z1_given_zt_and_pred(zt_rot, pred_residues['rot'], z0_rot, t, pocket['mask'])
pocket.set_frame(pred_z1_trans, pred_z1_rot)
if self.flexible:
# internal to external coordinates
pred_z1_chi = self.module_chi.get_z1_given_zt_and_pred(zt_chi, pred_residues['chi'], z0_chi, t, pocket['mask'])
pocket.set_chi(pred_z1_chi)
pocket_coord = pocket['x'].unsqueeze(1) + pocket['v']
pocket_types = aa_atom_type_tensor[pocket['one_hot'].argmax(dim=-1)]
pocket_mask = pocket['mask'].unsqueeze(-1).repeat((1, pocket['v'].size(1)))
# Extract only existing atoms
atom_mask = aa_atom_mask_tensor[pocket['one_hot'].argmax(dim=-1)]
pocket_coord = pocket_coord[atom_mask]
pocket_types = pocket_types[atom_mask]
pocket_mask = pocket_mask[atom_mask]
# pred_z1_x = pred_x + z0_x
pred_z1_x = self.module_x.get_z1_given_zt_and_pred(zt_x, pred_ligand['vel'], z0_x, t, ligand['mask'])
pred_z1_h = pred_ligand['logits_h'].argmax(dim=-1)
loss_clash = clash_loss(pred_z1_x, pred_z1_h, ligand['mask'],
pocket_coord, pocket_types, pocket_mask)
loss = loss + self.lambda_clash * loss_clash
if self.timestep_weights is not None:
w_t = self.timestep_weights(t).squeeze()
loss = w_t * loss
loss = loss.mean(0)
info = {
'loss_x': loss_x.mean().item(),
'loss_h': loss_h.mean().item(),
'loss_e': loss_e.mean().item(),
}
if self.flexible:
info['loss_chi'] = loss_chi.mean().item()
if self.flexible_bb:
info['loss_trans'] = loss_trans.mean().item()
info['loss_rot'] = loss_rot.mean().item()
if self.lambda_clash is not None:
info['loss_clash'] = loss_clash.mean().item()
if self.predict_confidence:
sigma_x_mol = scatter_mean(pred_ligand['uncertainty_vel'], ligand['mask'], dim=0)
info['pearson_sigma_x'] = torch.corrcoef(torch.stack([sigma_x_mol.detach(), t.squeeze()]))[0, 1].item()
info['mean_sigma_x'] = sigma_x_mol.mean().item()
entropy_h = Categorical(logits=pred_ligand['logits_h']).entropy()
entropy_h_mol = scatter_mean(entropy_h, ligand['mask'], dim=0)
info['pearson_entropy_h'] = torch.corrcoef(torch.stack([entropy_h_mol.detach(), t.squeeze()]))[0, 1].item()
info['mean_entropy_h'] = entropy_h_mol.mean().item()
entropy_e = Categorical(logits=pred_ligand['logits_e']).entropy()
entropy_e_mol = scatter_mean(entropy_e, ligand['bond_mask'], dim=0)
info['pearson_entropy_e'] = torch.corrcoef(torch.stack([entropy_e_mol.detach(), t.squeeze()]))[0, 1].item()
info['mean_entropy_e'] = entropy_e_mol.mean().item()
return (loss, info) if return_info else loss
def training_step(self, data, *args):
ligand, pocket = data['ligand'], data['pocket']
try:
loss, info = self.compute_loss(ligand, pocket, return_info=True)
except RuntimeError as e:
# this is not supported for multi-GPU
if self.trainer.num_devices < 2 and 'out of memory' in str(e):
print('WARNING: ran out of memory, skipping to the next batch')
return None
else:
raise e
log_dict = {k: v for k, v in info.items() if isinstance(v, float)
or torch.numel(v) <= 1}
# if self.learn_nu:
# log_dict['nu_x'] = self.noise_schedules['x'].nu.item()
# log_dict['nu_h'] = self.noise_schedules['h'].nu.item()
# log_dict['nu_e'] = self.noise_schedules['e'].nu.item()
self.log_metrics({'loss': loss, **log_dict}, 'train',
batch_size=len(ligand['size']))
out = {'loss': loss, **info}
self.training_step_outputs.append(out)
return out
def validation_step(self, data, *args):
# Compute the loss N times and average to get a better estimate
loss_list, info_list = [], []
self.dynamics.train() # TODO: this is currently necessary to make self-conditioning work
for _ in range(self.n_loss_per_sample):
loss, info = self.compute_loss(data['ligand'].copy(),
data['pocket'].copy(),
return_info=True)
loss_list.append(loss.item())
info_list.append(info)
self.dynamics.eval()
if len(loss_list) >= 1:
loss = np.mean(loss_list)
info = {k: np.mean([x[k] for x in info_list]) for k in info_list[0]}
self.log_metrics({'loss': loss, **info}, 'val', batch_size=len(data['ligand']['size']))
# Sample
rdmols, rdpockets, _ = self.sample(
data=data,
n_samples=self.n_eval_samples,
num_nodes="ground_truth" if self.sample_with_ground_truth_size else None,
)
out = {
'ligands': rdmols,
'pockets': rdpockets,
'receptor_files': [Path(self.receptor_dir, 'val', x) for x in data['pocket']['name']]
}
self.validation_step_outputs.append(out)
return out
# def test_step(self, data, *args):
# self._shared_eval(data, 'test', *args)
def on_validation_epoch_end(self):
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
rdmols = [m for x in self.validation_step_outputs for m in x['ligands']]
rdpockets = [p for x in self.validation_step_outputs for p in x['pockets']]
receptors = [r for x in self.validation_step_outputs for r in x['receptor_files']]
self.validation_step_outputs.clear()
ligand_atom_types = [atom_encoder[a.GetSymbol()] for m in rdmols for a in m.GetAtoms()]
ligand_bond_types = []
for m in rdmols:
bonds = m.GetBonds()
no_bonds = m.GetNumAtoms() * (m.GetNumAtoms() - 1) // 2 - m.GetNumBonds()
ligand_bond_types += [bond_encoder['NOBOND']] * no_bonds
for b in bonds:
ligand_bond_types.append(bond_encoder[b.GetBondType().name])
tic = time()
results = self.analyze_sample(
rdmols, ligand_atom_types, ligand_bond_types, receptors=(rdpockets if len(rdpockets) != 0 else None)
)
self.log_metrics(results, 'val')
print(f'Evaluation took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_sample_epoch == 0:
tic = time()
outdir.mkdir(exist_ok=True, parents=True)
# center for better visualization
rdmols = rdmols[:self.n_visualize_samples]
rdpockets = rdpockets[:self.n_visualize_samples]
for m, p in zip(rdmols, rdpockets):
center = m.GetConformer().GetPositions().mean(axis=0)
for i in range(m.GetNumAtoms()):
x, y, z = m.GetConformer().GetPositions()[i] - center
m.GetConformer().SetAtomPosition(i, (x, y, z))
for i in range(p.GetNumAtoms()):
x, y, z = p.GetConformer().GetPositions()[i] - center
p.GetConformer().SetAtomPosition(i, (x, y, z))
# save molecule
utils.write_sdf_file(Path(outdir, 'molecules.sdf'), rdmols)
# save pocket
utils.write_sdf_file(Path(outdir, 'pockets.sdf'), rdpockets)
print(f'Sample visualization took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_chain_epoch == 0:
tic = time()
outdir.mkdir(exist_ok=True, parents=True)
if self.sharded_dataset:
index = torch.randint(len(self.val_dataset), size=(1,)).item()
for i, x in enumerate(self.val_dataset):
if i == index:
break
batch = self.val_dataset.collate_fn([x])
else:
batch = self.val_dataset.collate_fn([self.val_dataset[torch.randint(len(self.val_dataset), size=(1,))]])
batch['pocket'] = Residues(**batch['pocket']).to(self.device)
pocket_copy = batch['pocket'].copy()
if len(batch['pocket']['x']) > 0:
ligand_chain, pocket_chain, info = self.sample_chain(batch['pocket'], self.keep_frames)
else:
num_nodes, _ = self.size_distribution.sample()
ligand_chain, pocket_chain, info = self.sample_chain(batch['pocket'], self.keep_frames, num_nodes=num_nodes)
# utils.write_sdf_file(Path(outdir, 'chain_pocket.sdf'), pocket_chain)
# utils.write_chain(Path(outdir, 'chain_pocket.xyz'), pocket_chain)
if self.flexible or self.flexible_bb:
# insert ground truth at the beginning so that it's used by PyMOL to determine the connectivity
ground_truth_pocket = pocket_to_rdkit(
pocket_copy, self.pocket_representation,
self.atom_encoder, self.atom_decoder,
self.aa_decoder, self.residue_decoder,
self.aa_atom_index
)[0]
ground_truth_ligand = build_molecule(
batch['ligand']['x'], batch['ligand']['one_hot'].argmax(1),
bonds=batch['ligand']['bonds'],
bond_types=batch['ligand']['bond_one_hot'].argmax(1),
atom_decoder=self.atom_decoder,
bond_decoder=self.bond_decoder
)
pocket_chain.insert(0, ground_truth_pocket)
ligand_chain.insert(0, ground_truth_ligand)
# pocket_chain.insert(0, pocket_chain[-1])
# ligand_chain.insert(0, ligand_chain[-1])
# save molecules
utils.write_sdf_file(Path(outdir, 'chain_ligand.sdf'), ligand_chain)
# save pocket
mols_to_pdbfile(pocket_chain, Path(outdir, 'chain_pocket.pdb'))
self.log_metrics(info, 'val')
print(f'Chain visualization took {time() - tic:.2f} seconds')
# NOTE: temporary fix of this Lightning bug:
# https://github.com/Lightning-AI/pytorch-lightning/discussions/18110
# Without it resume training has a strange behavior and fails
@property
def total_batch_idx(self) -> int:
"""Returns the current batch index (across epochs)"""
# use `ready` instead of `completed` in case this is accessed after `completed` has been increased
# but before the next `ready` increase
return max(0, self.batch_progress.total.ready - 1)
@property
def batch_idx(self) -> int:
"""Returns the current batch index (within this epoch)"""
# use `ready` instead of `completed` in case this is accessed after `completed` has been increased
# but before the next `ready` increase
return max(0, self.batch_progress.current.ready - 1)
# def analyze_sample(self, rdmols, atom_types, bond_types, aa_types=None, receptors=None):
# out = {}
# # Distribution of node types
# kl_div_atom = self.ligand_atom_type_distribution.kl_divergence(atom_types) \
# if self.ligand_atom_type_distribution is not None else -1
# out['kl_div_atom_types'] = kl_div_atom
# # Distribution of edge types
# kl_div_bond = self.ligand_bond_type_distribution.kl_divergence(bond_types) \
# if self.ligand_bond_type_distribution is not None else -1
# out['kl_div_bond_types'] = kl_div_bond
# if aa_types is not None:
# kl_div_aa = self.pocket_type_distribution.kl_divergence(aa_types) \
# if self.pocket_type_distribution is not None else -1
# out['kl_div_residue_types'] = kl_div_aa
# # Post-process sample
# processed_mols = [process_all(m) for m in rdmols]
# # Other basic metrics
# results = self.ligand_metrics(rdmols)
# out['n_samples'] = results['n_total']
# out['Validity'] = results['validity']
# out['Connectivity'] = results['connectivity']
# out['valid_and_connected'] = results['valid_and_connected']
# # connected_mols = [get_largest_fragment(m) for m in rdmols]
# connected_mols = [process_all(m, largest_frag=True, adjust_aromatic_Ns=False, relax_iter=0) for m in rdmols]
# connected_mols = [m for m in connected_mols if m is not None]
# out.update(self.molecule_properties(connected_mols))
# # Repeat after post-processing
# results = self.ligand_metrics(processed_mols)
# out['validity_processed'] = results['validity']
# out['connectivity_processed'] = results['connectivity']
# out['valid_and_connected_processed'] = results['valid_and_connected']
# processed_mols = [m for m in processed_mols if m is not None]
# for k, v in self.molecule_properties(processed_mols).items():
# out[f"{k}_processed"] = v
# # Simple docking score
# if receptors is not None and self.gnina is not None:
# assert len(receptors) == len(rdmols)
# docking_results = compute_gnina_scores(rdmols, receptors, gnina=self.gnina)
# out.update(docking_results)
# # Clash score
# if receptors is not None:
# assert len(receptors) == len(rdmols)
# clashes = {
# 'ligands': [legacy_clash_score(m) for m in rdmols],
# 'pockets': [legacy_clash_score(p) for p in receptors],
# 'between': [legacy_clash_score(m, p) for m, p in zip(rdmols, receptors)],
# 'v2_ligands': [clash_score(m) for m in rdmols],
# 'v2_pockets': [clash_score(p) for p in receptors],
# 'v2_between': [clash_score(m, p) for m, p in zip(rdmols, receptors)]
# }
# for k, v in clashes.items():
# out[f'mean_clash_score_{k}'] = np.mean(v)
# out[f'frac_no_clashes_{k}'] = np.mean(np.array(v) <= 0.0)
# return out
def analyze_sample(self, rdmols, atom_types, bond_types, aa_types=None, receptors=None):
out = {}
# Distribution of node types
kl_div_atom = self.ligand_atom_type_distribution.kl_divergence(atom_types) \
if self.ligand_atom_type_distribution is not None else -1
out['kl_div_atom_types'] = kl_div_atom
# Distribution of edge types
kl_div_bond = self.ligand_bond_type_distribution.kl_divergence(bond_types) \
if self.ligand_bond_type_distribution is not None else -1
out['kl_div_bond_types'] = kl_div_bond
if aa_types is not None:
kl_div_aa = self.pocket_type_distribution.kl_divergence(aa_types) \
if self.pocket_type_distribution is not None else -1
out['kl_div_residue_types'] = kl_div_aa
# Evaluation
results = []
if receptors is not None:
with tempfile.TemporaryDirectory() as tmpdir:
for mol, receptor in zip(tqdm(rdmols, desc='FullEvaluator'), receptors):
receptor_path = Path(tmpdir, 'receptor.pdb')
Chem.MolToPDBFile(receptor, str(receptor_path))
results.append(self.evaluator(mol, receptor_path))
else:
for mol in tqdm(rdmols, desc='FullEvaluator'):
self.evaluator = FullEvaluator(pb_conf='mol')
results.append(self.evaluator(mol))
results = pd.DataFrame(results)
agg_results = aggregated_metrics(results, self.evaluator.dtypes, VALIDITY_METRIC_NAME).fillna(0)
agg_results['metric'] = agg_results['metric'].str.replace('.', '/')
col_results = collection_metrics(results, self.train_smiles, VALIDITY_METRIC_NAME, exclude_evaluators='fcd')
col_results['metric'] = 'collection/' + col_results['metric']
all_results = pd.concat([agg_results, col_results])
out.update(**dict(all_results[['metric', 'value']].values))
return out
def sample_zt_given_zs(self, zs_ligand, zs_pocket, s, t, delta_eps_x=None, uncertainty=None):
sc_transform = self.get_sc_transform_fn(zs_pocket.get('chi'), zs_ligand['x'], s, None, zs_ligand['mask'], zs_pocket)
pred_ligand, pred_residues = self.dynamics(
zs_ligand['x'], zs_ligand['h'], zs_ligand['mask'], zs_pocket, s, bonds_ligand=(zs_ligand['bonds'], zs_ligand['e']),
sc_transform=sc_transform
)
if delta_eps_x is not None:
pred_ligand['vel'] = pred_ligand['vel'] + delta_eps_x
zt_ligand = zs_ligand.copy()
zt_ligand['x'] = self.module_x.sample_zt_given_zs(zs_ligand['x'], pred_ligand['vel'], s, t, zs_ligand['mask'])
zt_ligand['h'] = self.module_h.sample_zt_given_zs(zs_ligand['h'], pred_ligand['logits_h'], s, t, zs_ligand['mask'])
zt_ligand['e'] = self.module_e.sample_zt_given_zs(zs_ligand['e'], pred_ligand['logits_e'], s, t, zs_ligand['edge_mask'])
zt_pocket = zs_pocket.copy()
if self.flexible_bb:
zt_trans_pocket = self.module_trans.sample_zt_given_zs(zs_pocket['x'], pred_residues['trans'], s, t, zs_pocket['mask'])
zt_rot_pocket = self.module_rot.sample_zt_given_zs(zs_pocket['axis_angle'], pred_residues['rot'], s, t, zs_pocket['mask'])
# update pocket in-place
zt_pocket.set_frame(zt_trans_pocket, zt_rot_pocket)
if self.flexible:
zt_chi_pocket = self.module_chi.sample_zt_given_zs(zs_pocket['chi'][..., :5], pred_residues['chi'], s, t, zs_pocket['mask'])
# update pocket in-place
zt_pocket.set_chi(zt_chi_pocket)
if self.predict_confidence:
assert uncertainty is not None
dt = (t - s).view(-1)[zt_ligand['mask']]
uncertainty['sigma_x_squared'] += (dt * pred_ligand['uncertainty_vel']**2)
uncertainty['entropy_h'] += (dt * Categorical(logits=pred_ligand['logits_h']).entropy())
return zt_ligand, zt_pocket
def simulate(self, ligand, pocket, timesteps, t_start, t_end=1.0,
return_frames=1, guide_log_prob=None):
"""
Take a version of the ligand and pocket (at any time step t_start) and
simulate the generative process from t_start to t_end.
"""
assert 0 < return_frames <= timesteps
assert timesteps % return_frames == 0
assert 0.0 <= t_start < 1.0
assert 0 < t_end <= 1.0
assert t_start < t_end
device = ligand['x'].device
n_samples = len(pocket['size'])
delta_t = (t_end - t_start) / timesteps
# Initialize output tensors
out_ligand = {
'x': torch.zeros((return_frames, len(ligand['mask']), self.x_dim), device=device),
'h': torch.zeros((return_frames, len(ligand['mask']), self.atom_nf), device=device),
'e': torch.zeros((return_frames, len(ligand['edge_mask']), self.bond_nf), device=device)
}
if self.predict_confidence:
out_ligand['sigma_x'] = torch.zeros((return_frames, len(ligand['mask'])), device=device)
out_ligand['entropy_h'] = torch.zeros((return_frames, len(ligand['mask'])), device=device)
out_pocket = {
'x': torch.zeros((return_frames, len(pocket['mask']), 3), device=device), # CA-coord
'v': torch.zeros((return_frames, len(pocket['mask']), self.n_atom_aa, 3), device=device) # difference vectors to all other atoms
}
cumulative_uncertainty = {
'sigma_x_squared': torch.zeros(len(ligand['mask']), device=device),
'entropy_h': torch.zeros(len(ligand['mask']), device=device)
} if self.predict_confidence else None
for i, t in enumerate(torch.linspace(t_start, t_end - delta_t, timesteps)):
t_array = torch.full((n_samples, 1), fill_value=t, device=device)
if guide_log_prob is not None:
raise NotImplementedError('Not yet implemented for flow matching model')
alpha_t = self.diffusion_x.schedule.alpha(self.gamma_x(t_array))
with torch.enable_grad():
zt_x_ligand.requires_grad = True
g = guide_log_prob(t_array, x=ligand['x'], h=ligand['h'], batch_mask=ligand['mask'],
bonds=ligand['bonds'], bond_types=ligand['e'])
# Compute gradient w.r.t. coordinates
grad_x_lig = torch.autograd.grad(g.sum(), inputs=ligand['x'])[0]
# clip gradients
g_max = 1.0
clip_mask = (grad_x_lig.norm(dim=-1) > g_max)
grad_x_lig[clip_mask] = \
grad_x_lig[clip_mask] / grad_x_lig[clip_mask].norm(
dim=-1, keepdim=True) * g_max
delta_eps_lig = -1 * (1 - alpha_t[lig_mask]).sqrt() * grad_x_lig
else:
delta_eps_lig = None
ligand, pocket = self.sample_zt_given_zs(
ligand, pocket, t_array, t_array + delta_t, delta_eps_lig, cumulative_uncertainty)
# save frame
if (i + 1) % (timesteps // return_frames) == 0:
idx = (i + 1) // (timesteps // return_frames)
idx = idx - 1
out_ligand['x'][idx] = ligand['x'].detach()
out_ligand['h'][idx] = ligand['h'].detach()
out_ligand['e'][idx] = ligand['e'].detach()
if pocket['x'].numel() > 0:
out_pocket['x'][idx] = pocket['x'].detach()
out_pocket['v'][idx] = pocket['v'][:, :self.n_atom_aa, :].detach()
if self.predict_confidence:
out_ligand['sigma_x'][idx] = cumulative_uncertainty['sigma_x_squared'].sqrt().detach()
out_ligand['entropy_h'][idx] = cumulative_uncertainty['entropy_h'].detach()
# remove frame dimension if only the final molecule is returned
out_ligand = {k: v.squeeze(0) for k, v in out_ligand.items()}
out_pocket = {k: v.squeeze(0) for k, v in out_pocket.items()}
return out_ligand, out_pocket
def init_ligand(self, num_nodes_lig, pocket):
device = pocket['x'].device
n_samples = len(pocket['size'])
lig_mask = utils.num_nodes_to_batch_mask(n_samples, num_nodes_lig, device)
# only consider upper triangular matrix for symmetry
lig_bonds = torch.stack(torch.where(torch.triu(
lig_mask[:, None] == lig_mask[None, :], diagonal=1)), dim=0)
lig_edge_mask = lig_mask[lig_bonds[0]]
# Sample from Normal distribution in the pocket center
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
z0_x = self.module_x.sample_z0(pocket_com, lig_mask)
z0_h = self.module_h.sample_z0(lig_mask)
z0_e = self.module_e.sample_z0(lig_edge_mask)
return TensorDict(**{
'x': z0_x, 'h': z0_h, 'e': z0_e, 'mask': lig_mask,
'bonds': lig_bonds, 'edge_mask': lig_edge_mask
})
def init_pocket(self, pocket):
if self.flexible_bb:
pocket_com = scatter_mean(pocket['x'], pocket['mask'], dim=0)
z0_trans = self.module_trans.sample_z0(pocket_com, pocket['mask'])
z0_rot = self.module_rot.sample_z0(pocket['mask'])
# update pocket in-place
pocket.set_frame(z0_trans, z0_rot)
if self.flexible:
z0_chi = self.module_chi.sample_z0(pocket['mask'])
# # DEBUG ##
# z0_chi = torch.stack([data_utils.get_torsion_angles(r, device=self.device) for r in pocket['residues']], dim=0)
# ####
# internal to external coordinates
pocket.set_chi(z0_chi)
if pocket['x'].numel() == 0:
pocket.set_empty_v()
return pocket
def parse_num_nodes_spec(self, batch, spec=None, size_model=None):
if spec == "2d_histogram" or spec is None: # default option
assert "pocket" in batch
num_nodes = self.size_distribution.sample_conditional(
n1=None, n2=batch['pocket']['size'])
# make sure there is at least one potential bond
num_nodes[num_nodes < 2] = 2
elif isinstance(spec, (int, torch.Tensor)):
num_nodes = spec
elif spec == "ground_truth":
assert "ligand" in batch
num_nodes = batch['ligand']['size']
elif spec == "nn_prediction":
assert size_model is not None
assert "pocket" in batch
predictions = size_model.forward(batch['pocket'])
predictions = torch.softmax(predictions, dim=-1)
predictions[:, :5] = 0.0
probabilities = predictions / predictions.sum(dim=1, keepdims=True)
num_nodes = torch.distributions.Categorical(probabilities).sample()
elif isinstance(spec, str) and spec.startswith("uniform"):
# expected format: uniform_low_high
assert "pocket" in batch
left, right = map(int, spec.split("_")[1:])
shape = batch['pocket']['size'].shape
num_nodes = torch.randint(left, right + 1, shape, dtype=torch.long)
else:
raise NotImplementedError(f"Invalid size specification {spec}")
if self.virtual_nodes:
num_nodes += self.add_virtual_max
return num_nodes
@torch.no_grad()
def sample(self, data, n_samples, num_nodes=None, timesteps=None,
guide_log_prob=None, size_model=None, **kwargs):
# TODO: move somewhere else (like collate_fn)
data['pocket'] = Residues(**data['pocket'])
timesteps = self.T_sampling if timesteps is None else timesteps
if len(data['pocket']['x']) > 0:
pocket = data_utils.repeat_items(data['pocket'], n_samples)
else:
pocket = Residues(**{key: value for key, value in data['pocket'].items()})
pocket['name'] = pocket['name'] * n_samples
pocket['size'] = pocket['size'].repeat(n_samples)
pocket['n_bonds'] = pocket['n_bonds'].repeat(n_samples)
_ligand = data_utils.repeat_items(data['ligand'], n_samples)
# _ligand = randomize_tensors(_ligand, exclude_keys=['size', 'name']) # avoid data leakage
batch = {"ligand": _ligand, "pocket": pocket}
num_nodes = self.parse_num_nodes_spec(batch, spec=num_nodes, size_model=size_model)
# Sample from prior
if pocket['x'].numel() > 0:
ligand = self.init_ligand(num_nodes, pocket)
else:
ligand = self.init_ligand(num_nodes, _ligand)
pocket = self.init_pocket(pocket)
# return prior samples
if timesteps == 0:
# Convert into rdmols
rdmols = [build_molecule(coords=m['x'],
atom_types=m['h'].argmax(1),
bonds=m['bonds'],
bond_types=m['e'].argmax(1),
atom_decoder=self.atom_decoder, bond_decoder=self.bond_decoder)
for m in data_utils.split_entity(ligand.detach().cpu(), edge_types={"e", "edge_mask"}, edge_mask=ligand["edge_mask"])]
rdpockets = pocket_to_rdkit(pocket, self.pocket_representation,
self.atom_encoder, self.atom_decoder,
self.aa_decoder, self.residue_decoder,
self.aa_atom_index)
return rdmols, rdpockets, _ligand['name']
out_tensors_ligand, out_tensors_pocket = self.simulate(
ligand, pocket, timesteps, 0.0, 1.0,
guide_log_prob=guide_log_prob
)
# Build mol objects
x = out_tensors_ligand['x'].detach().cpu()
ligand_type = out_tensors_ligand['h'].argmax(1).detach().cpu()
edge_type = out_tensors_ligand['e'].argmax(1).detach().cpu()
lig_mask = ligand['mask'].detach().cpu()
lig_bonds = ligand['bonds'].detach().cpu()
lig_edge_mask = ligand['edge_mask'].detach().cpu()
sizes = torch.unique(ligand['mask'], return_counts=True)[1].tolist()
offsets = list(accumulate(sizes[:-1], initial=0))
mol_kwargs = {
'coords': utils.batch_to_list(x, lig_mask),
'atom_types': utils.batch_to_list(ligand_type, lig_mask),
'bonds': utils.batch_to_list_for_indices(lig_bonds, lig_edge_mask, offsets),
'bond_types': utils.batch_to_list(edge_type, lig_edge_mask)
}
if self.predict_confidence:
sigma_x = out_tensors_ligand['sigma_x'].detach().cpu()
entropy_h = out_tensors_ligand['entropy_h'].detach().cpu()
mol_kwargs['atom_props'] = [
{'sigma_x': x[0], 'entropy_h': x[1]}
for x in zip(utils.batch_to_list(sigma_x, lig_mask),
utils.batch_to_list(entropy_h, lig_mask))
]
mol_kwargs = [{k: v[i] for k, v in mol_kwargs.items()}
for i in range(len(mol_kwargs['coords']))]
# Convert into rdmols
rdmols = [build_molecule(
**m, atom_decoder=self.atom_decoder, bond_decoder=self.bond_decoder)
for m in mol_kwargs
]
out_pocket = pocket.copy()
out_pocket['x'] = out_tensors_pocket['x']
out_pocket['v'] = out_tensors_pocket['v']
rdpockets = pocket_to_rdkit(out_pocket, self.pocket_representation,
self.atom_encoder, self.atom_decoder,
self.aa_decoder, self.residue_decoder,
self.aa_atom_index)
return rdmols, rdpockets, _ligand['name']
@torch.no_grad()
def sample_chain(self, pocket, keep_frames, num_nodes=None, timesteps=None,
guide_log_prob=None, **kwargs):
# TODO: move somewhere else (like collate_fn)
pocket = Residues(**pocket)
info = {}
timesteps = self.T_sampling if timesteps is None else timesteps
# n_samples = 1
# TODO: get batch_size differently
assert len(pocket['mask'].unique()) <= 1, "sample_chain only supports a single sample"
# # Pocket's initial center of mass
# pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0)
num_nodes = self.parse_num_nodes_spec(batch={"pocket": pocket}, spec=num_nodes)
# Sample from prior
if pocket['x'].numel() > 0:
ligand = self.init_ligand(num_nodes, pocket)
else:
dummy_pocket = Residues.empty(pocket['x'].device)
ligand = self.init_ligand(num_nodes, dummy_pocket)
pocket = self.init_pocket(pocket)
out_tensors_ligand, out_tensors_pocket = self.simulate(
ligand, pocket, timesteps, 0.0, 1.0, guide_log_prob=guide_log_prob, return_frames=keep_frames)
# chain_lig = utils.reverse_tensor(chain_lig)
# chain_pocket = utils.reverse_tensor(chain_pocket)
# chain_bond = utils.reverse_tensor(chain_bond)
info['traj_displacement_lig'] = torch.norm(out_tensors_ligand['x'][-1] - out_tensors_ligand['x'][0], dim=-1).mean()
info['traj_rms_lig'] = out_tensors_ligand['x'].std(dim=0).mean()
# # Repeat last frame to see final sample better.
# chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)], dim=0)
# chain_pocket = torch.cat([chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# chain_bond = torch.cat([chain_bond, chain_bond[-1:].repeat(10, 1, 1)], dim=0)
# Flatten
assert keep_frames == out_tensors_ligand['x'].size(0) == out_tensors_pocket['x'].size(0)
n_atoms = out_tensors_ligand['x'].size(1)
n_bonds = out_tensors_ligand['e'].size(1)
n_residues = out_tensors_pocket['x'].size(1)
device = out_tensors_ligand['x'].device
def flatten_tensor(chain):
if len(chain.size()) == 3: # l=0 values
return chain.view(-1, chain.size(-1))
elif len(chain.size()) == 4: # vectors
return chain.view(-1, chain.size(-2), chain.size(-1))
else:
warnings.warn(f"Could not flatten frame dimension of tensor with shape {list(chain.size())}")
return chain
out_tensors_ligand_flat = {k: flatten_tensor(chain) for k, chain in out_tensors_ligand.items()}
out_tensors_pocket_flat = {k: flatten_tensor(chain) for k, chain in out_tensors_pocket.items()}
# ligand_flat = chain_lig.view(-1, chain_lig.size(-1))
# ligand_mask_flat = torch.arange(chain_lig.size(0)).repeat_interleave(chain_lig.size(1)).to(chain_lig.device)
ligand_mask_flat = torch.arange(keep_frames).repeat_interleave(n_atoms).to(device)
# # pocket_flat = chain_pocket.view(-1, chain_pocket.size(-1))
# # pocket_v_flat = pocket['v'].repeat(100, 1, 1)
# pocket_flat = chain_pocket.view(-1, chain_pocket.size(-2), chain_pocket.size(-1))
# pocket_mask_flat = torch.arange(chain_pocket.size(0)).repeat_interleave(chain_pocket.size(1)).to(chain_pocket.device)
pocket_mask_flat = torch.arange(keep_frames).repeat_interleave(n_residues).to(device)
# bond_flat = chain_bond.view(-1, chain_bond.size(-1))
# bond_mask_flat = torch.arange(chain_bond.size(0)).repeat_interleave(chain_bond.size(1)).to(chain_bond.device)
bond_mask_flat = torch.arange(keep_frames).repeat_interleave(n_bonds).to(device)
edges_flat = ligand['bonds'].repeat(1, keep_frames)
# # Move generated molecule back to the original pocket position
# pocket_com_after = scatter_mean(pocket_flat[:, 0, :], pocket_mask_flat, dim=0)
# ligand_flat[:, :self.x_dim] += (pocket_com_before - pocket_com_after)[ligand_mask_flat]
#
# # Move pocket back as well (for visualization purposes)
# pocket_flat[:, 0, :] += (pocket_com_before - pocket_com_after)[pocket_mask_flat]
# Build ligands
x = out_tensors_ligand_flat['x'].detach().cpu()
ligand_type = out_tensors_ligand_flat['h'].argmax(1).detach().cpu()
ligand_mask_flat = ligand_mask_flat.detach().cpu()
bond_mask_flat = bond_mask_flat.detach().cpu()
edges_flat = edges_flat.detach().cpu()
edge_type = out_tensors_ligand_flat['e'].argmax(1).detach().cpu()
offsets = torch.zeros(keep_frames, dtype=int) # edges_flat is already zero-based
molecules = list(
zip(utils.batch_to_list(x, ligand_mask_flat),
utils.batch_to_list(ligand_type, ligand_mask_flat),
utils.batch_to_list_for_indices(edges_flat, bond_mask_flat, offsets),
utils.batch_to_list(edge_type, bond_mask_flat)
)
)
# Convert into rdmols
ligand_chain = [build_molecule(
*graph, atom_decoder=self.atom_decoder,
bond_decoder=self.bond_decoder) for graph in molecules
]
# Build pockets
# as long as the pocket does not change during sampling, we can ust
# write it once
out_pocket = {
'x': out_tensors_pocket_flat['x'],
'one_hot': pocket['one_hot'].repeat(keep_frames, 1),
'mask': pocket_mask_flat,
'v': out_tensors_pocket_flat['v'],
'atom_mask': pocket['atom_mask'].repeat(keep_frames, 1),
} if self.flexible else pocket
pocket_chain = pocket_to_rdkit(out_pocket, self.pocket_representation,
self.atom_encoder, self.atom_decoder,
self.aa_decoder, self.residue_decoder,
self.aa_atom_index)
return ligand_chain, pocket_chain, info
# def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
# def configure_gradient_clipping(self, optimizer, gradient_clip_val, gradient_clip_algorithm):
def configure_gradient_clipping(self, optimizer, *args, **kwargs):
if not self.clip_grad:
return
# Allow gradient norm to be 150% + 2 * stdev of the recent history.
max_grad_norm = 1.5 * self.gradnorm_queue.mean() + \
2 * self.gradnorm_queue.std()
# hard upper limit
max_grad_norm = min(max_grad_norm, 10.0)
# Get current grad_norm
params = [p for g in optimizer.param_groups for p in g['params']]
grad_norm = utils.get_grad_norm(params)
# Lightning will handle the gradient clipping
self.clip_gradients(optimizer, gradient_clip_val=max_grad_norm,
gradient_clip_algorithm='norm')
if float(grad_norm) > max_grad_norm:
print(f'Clipped gradient with value {grad_norm:.1f} '
f'while allowed {max_grad_norm:.1f}')
grad_norm = max_grad_norm
self.gradnorm_queue.add(float(grad_norm))