reverse_add_replicate_eval17_SGD_largelr
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0682
- Accuracy: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.SGD and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| No log | 0 | 0 | 2.6767 | 0.0 |
| 4.9353 | 0.0064 | 100 | 2.4615 | 0.0 |
| 4.7709 | 0.0128 | 200 | 2.3942 | 0.0 |
| 4.7347 | 0.0192 | 300 | 2.3708 | 0.0 |
| 4.6969 | 0.0256 | 400 | 2.3638 | 0.0 |
| 4.6897 | 0.032 | 500 | 2.3638 | 0.0 |
| 4.6699 | 0.0384 | 600 | 2.3546 | 0.0 |
| 4.6818 | 0.0448 | 700 | 2.3426 | 0.0 |
| 4.6744 | 0.0512 | 800 | 2.3378 | 0.0 |
| 4.6436 | 0.0576 | 900 | 2.3310 | 0.0 |
| 4.6145 | 0.064 | 1000 | 2.3249 | 0.0 |
| 4.5831 | 0.0704 | 1100 | 2.3182 | 0.0 |
| 4.5523 | 0.0768 | 1200 | 2.3065 | 0.0 |
| 4.5151 | 0.0832 | 1300 | 2.2944 | 0.0 |
| 4.4616 | 0.0896 | 1400 | 2.2827 | 0.0 |
| 4.4618 | 0.096 | 1500 | 2.2629 | 0.0 |
| 4.3922 | 0.1024 | 1600 | 2.2538 | 0.0 |
| 4.3751 | 0.1088 | 1700 | 2.2454 | 0.0 |
| 4.3695 | 0.1152 | 1800 | 2.2374 | 0.0 |
| 4.3369 | 0.1216 | 1900 | 2.2359 | 0.0 |
| 4.3101 | 0.128 | 2000 | 2.2223 | 0.0 |
| 4.3527 | 0.1344 | 2100 | 2.2710 | 0.0 |
| 4.2841 | 0.1408 | 2200 | 2.2447 | 0.0 |
| 4.2868 | 0.1472 | 2300 | 2.2472 | 0.0 |
| 4.3244 | 0.1536 | 2400 | 2.2025 | 0.0 |
| 4.2553 | 0.16 | 2500 | 2.2152 | 0.0 |
| 4.2581 | 0.1664 | 2600 | 2.1993 | 0.0 |
| 4.2062 | 0.1728 | 2700 | 2.1933 | 0.0 |
| 4.2716 | 0.1792 | 2800 | 2.2023 | 0.0 |
| 4.2505 | 0.1856 | 2900 | 2.2279 | 0.0 |
| 4.1869 | 0.192 | 3000 | 2.1867 | 0.0 |
| 4.2739 | 0.1984 | 3100 | 2.1963 | 0.0 |
| 4.159 | 0.2048 | 3200 | 2.2119 | 0.0 |
| 4.2733 | 0.2112 | 3300 | 2.2181 | 0.0 |
| 4.1322 | 0.2176 | 3400 | 2.1933 | 0.0 |
| 4.2175 | 0.224 | 3500 | 2.1887 | 0.0 |
| 4.192 | 0.2304 | 3600 | 2.1744 | 0.0 |
| 4.1938 | 0.2368 | 3700 | 2.1893 | 0.0 |
| 4.1599 | 0.2432 | 3800 | 2.1772 | 0.0 |
| 4.1543 | 0.2496 | 3900 | 2.1795 | 0.0 |
| 4.1987 | 0.256 | 4000 | 2.1793 | 0.0 |
| 4.1409 | 0.2624 | 4100 | 2.1693 | 0.0 |
| 4.0957 | 0.2688 | 4200 | 2.1904 | 0.0 |
| 4.1336 | 0.2752 | 4300 | 2.1607 | 0.0 |
| 4.1676 | 0.2816 | 4400 | 2.1702 | 0.0 |
| 4.1273 | 0.288 | 4500 | 2.1720 | 0.0 |
| 4.0858 | 0.2944 | 4600 | 2.1565 | 0.0 |
| 4.0708 | 0.3008 | 4700 | 2.1580 | 0.0 |
| 4.0653 | 0.3072 | 4800 | 2.1831 | 0.0 |
| 4.0605 | 0.3136 | 4900 | 2.1759 | 0.0 |
| 4.1233 | 0.32 | 5000 | 2.1536 | 0.0 |
| 4.1175 | 0.3264 | 5100 | 2.1749 | 0.0 |
| 4.0947 | 0.3328 | 5200 | 2.1421 | 0.0 |
| 4.0778 | 0.3392 | 5300 | 2.1630 | 0.0 |
| 4.0713 | 0.3456 | 5400 | 2.1826 | 0.0 |
| 4.1213 | 0.352 | 5500 | 2.1499 | 0.0 |
| 4.1032 | 0.3584 | 5600 | 2.1485 | 0.0 |
| 4.0049 | 0.3648 | 5700 | 2.1481 | 0.0 |
| 4.0291 | 0.3712 | 5800 | 2.1461 | 0.0 |
| 4.0493 | 0.3776 | 5900 | 2.1621 | 0.0 |
| 4.0856 | 0.384 | 6000 | 2.1467 | 0.0 |
| 4.0482 | 0.3904 | 6100 | 2.1413 | 0.0 |
| 4.0524 | 0.3968 | 6200 | 2.1569 | 0.0 |
| 4.0955 | 0.4032 | 6300 | 2.1328 | 0.0 |
| 4.0359 | 0.4096 | 6400 | 2.1355 | 0.0 |
| 4.0764 | 0.416 | 6500 | 2.1395 | 0.0 |
| 4.0424 | 0.4224 | 6600 | 2.1263 | 0.0 |
| 4.0698 | 0.4288 | 6700 | 2.1512 | 0.0 |
| 4.0552 | 0.4352 | 6800 | 2.1349 | 0.0 |
| 4.0153 | 0.4416 | 6900 | 2.1276 | 0.0 |
| 4.0583 | 0.448 | 7000 | 2.1508 | 0.0 |
| 4.0931 | 0.4544 | 7100 | 2.1278 | 0.0 |
| 4.0545 | 0.4608 | 7200 | 2.1324 | 0.0 |
| 4.0624 | 0.4672 | 7300 | 2.1318 | 0.0 |
| 4.0016 | 0.4736 | 7400 | 2.1249 | 0.0 |
| 4.0797 | 0.48 | 7500 | 2.1406 | 0.0 |
| 4.0604 | 0.4864 | 7600 | 2.1459 | 0.0 |
| 4.0558 | 0.4928 | 7700 | 2.1285 | 0.0 |
| 4.0323 | 0.4992 | 7800 | 2.1353 | 0.0 |
| 4.026 | 0.5056 | 7900 | 2.1333 | 0.0 |
| 4.0462 | 0.512 | 8000 | 2.1339 | 0.0 |
| 4.0375 | 0.5184 | 8100 | 2.1292 | 0.0 |
| 4.0461 | 0.5248 | 8200 | 2.1122 | 0.0 |
| 4.0004 | 0.5312 | 8300 | 2.1296 | 0.0 |
| 4.0396 | 0.5376 | 8400 | 2.1273 | 0.0 |
| 3.9949 | 0.544 | 8500 | 2.1323 | 0.0 |
| 4.0043 | 0.5504 | 8600 | 2.1341 | 0.0 |
| 4.0163 | 0.5568 | 8700 | 2.1166 | 0.0 |
| 4.0302 | 0.5632 | 8800 | 2.1157 | 0.0 |
| 4.0058 | 0.5696 | 8900 | 2.1186 | 0.0 |
| 4.0431 | 0.576 | 9000 | 2.1077 | 0.0 |
| 4.0335 | 0.5824 | 9100 | 2.1339 | 0.0 |
| 4.0005 | 0.5888 | 9200 | 2.1182 | 0.0 |
| 4.01 | 0.5952 | 9300 | 2.1125 | 0.0 |
| 3.9971 | 0.6016 | 9400 | 2.1221 | 0.0 |
| 3.9624 | 0.608 | 9500 | 2.1244 | 0.0 |
| 4.0387 | 0.6144 | 9600 | 2.1202 | 0.0 |
| 4.0361 | 0.6208 | 9700 | 2.1109 | 0.0 |
| 3.9561 | 0.6272 | 9800 | 2.1113 | 0.0 |
| 3.9999 | 0.6336 | 9900 | 2.1102 | 0.0 |
| 4.0122 | 0.64 | 10000 | 2.1087 | 0.0 |
| 4.0073 | 0.6464 | 10100 | 2.1025 | 0.0 |
| 3.9832 | 0.6528 | 10200 | 2.1077 | 0.0 |
| 4.0104 | 0.6592 | 10300 | 2.1095 | 0.0 |
| 4.0319 | 0.6656 | 10400 | 2.0973 | 0.0 |
| 3.9715 | 0.672 | 10500 | 2.1041 | 0.0 |
| 3.9656 | 0.6784 | 10600 | 2.1010 | 0.0 |
| 3.9518 | 0.6848 | 10700 | 2.0973 | 0.0 |
| 4.0047 | 0.6912 | 10800 | 2.1025 | 0.0 |
| 3.9394 | 0.6976 | 10900 | 2.0997 | 0.0 |
| 3.964 | 0.704 | 11000 | 2.0949 | 0.0 |
| 3.9496 | 0.7104 | 11100 | 2.0935 | 0.0 |
| 3.964 | 0.7168 | 11200 | 2.1015 | 0.0 |
| 3.9795 | 0.7232 | 11300 | 2.1015 | 0.0 |
| 4.0109 | 0.7296 | 11400 | 2.0953 | 0.0 |
| 3.9474 | 0.736 | 11500 | 2.0899 | 0.0 |
| 3.9857 | 0.7424 | 11600 | 2.0941 | 0.0 |
| 3.9212 | 0.7488 | 11700 | 2.0930 | 0.0 |
| 3.9743 | 0.7552 | 11800 | 2.0822 | 0.0 |
| 3.996 | 0.7616 | 11900 | 2.0855 | 0.0 |
| 3.9113 | 0.768 | 12000 | 2.0823 | 0.0 |
| 3.984 | 0.7744 | 12100 | 2.0825 | 0.0 |
| 3.9759 | 0.7808 | 12200 | 2.0831 | 0.0 |
| 3.9155 | 0.7872 | 12300 | 2.0829 | 0.0 |
| 3.9687 | 0.7936 | 12400 | 2.0865 | 0.0 |
| 3.9265 | 0.8 | 12500 | 2.0799 | 0.0 |
| 3.9827 | 0.8064 | 12600 | 2.0787 | 0.0 |
| 3.9093 | 0.8128 | 12700 | 2.0770 | 0.0 |
| 3.9415 | 0.8192 | 12800 | 2.0749 | 0.0 |
| 3.9566 | 0.8256 | 12900 | 2.0777 | 0.0 |
| 3.9877 | 0.832 | 13000 | 2.0749 | 0.0 |
| 3.9177 | 0.8384 | 13100 | 2.0777 | 0.0 |
| 3.9257 | 0.8448 | 13200 | 2.0769 | 0.0 |
| 3.9178 | 0.8512 | 13300 | 2.0727 | 0.0 |
| 3.9648 | 0.8576 | 13400 | 2.0716 | 0.0 |
| 3.9717 | 0.864 | 13500 | 2.0716 | 0.0 |
| 3.9477 | 0.8704 | 13600 | 2.0718 | 0.0 |
| 3.8832 | 0.8768 | 13700 | 2.0710 | 0.0 |
| 3.936 | 0.8832 | 13800 | 2.0735 | 0.0 |
| 3.9458 | 0.8896 | 13900 | 2.0707 | 0.0 |
| 3.9236 | 0.896 | 14000 | 2.0699 | 0.0 |
| 3.9249 | 0.9024 | 14100 | 2.0702 | 0.0 |
| 3.9219 | 0.9088 | 14200 | 2.0706 | 0.0 |
| 3.9739 | 0.9152 | 14300 | 2.0686 | 0.0 |
| 3.9489 | 0.9216 | 14400 | 2.0703 | 0.0 |
| 3.9243 | 0.928 | 14500 | 2.0690 | 0.0 |
| 3.9592 | 0.9344 | 14600 | 2.0695 | 0.0 |
| 3.9741 | 0.9408 | 14700 | 2.0688 | 0.0 |
| 3.9109 | 0.9472 | 14800 | 2.0683 | 0.0 |
| 3.9037 | 0.9536 | 14900 | 2.0685 | 0.0 |
| 3.8957 | 0.96 | 15000 | 2.0690 | 0.0 |
| 3.921 | 0.9664 | 15100 | 2.0683 | 0.0 |
| 3.9472 | 0.9728 | 15200 | 2.0685 | 0.0 |
| 3.9804 | 0.9792 | 15300 | 2.0688 | 0.0 |
| 3.9296 | 0.9856 | 15400 | 2.0683 | 0.0 |
| 3.9163 | 0.992 | 15500 | 2.0682 | 0.0 |
| 3.9017 | 0.9984 | 15600 | 2.0682 | 0.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support