qwen3-0-6b โ Cybersecurity QA (SFT)
Fine-tuned on Kaggle (2รT4) using SFT.
Base
Validation (greedy)
| Metric | Score |
|---|---|
| BLEU-4 | 1.07 |
| ROUGE-L | 14.62 |
| F1 | 10.70 |
| EM | 0.00 |
| Train Time (s) | 20385.9 |
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
tok = AutoTokenizer.from_pretrained("nhonhoccode/qwen3-0-6b-cybersecqa-sft-freeze2-20251031-2359")
mdl = AutoModelForCausalLM.from_pretrained("nhonhoccode/qwen3-0-6b-cybersecqa-sft-freeze2-20251031-2359")
prompt = tok.apply_chat_template([{"role":"system","content":"You are a helpful assistant."},
{"role":"user","content":"Explain SQL injection in one paragraph."}],
tokenize=False, add_generation_prompt=True)
ids = tok(prompt, return_tensors="pt").input_ids
out = mdl.generate(ids, max_new_tokens=128)
print(tok.decode(out[0][ids.shape[-1]:], skip_special_tokens=True))
Trainable
- Trainable params: 187,044,352 / 596,049,920
- Downloads last month
- 5