ChartVerse-2B is a compact yet powerful Vision Language Model (VLM) specialized for complex chart reasoning, developed as part of the opendatalab/ChartVerse project. For more details about our method, datasets, and full model series, please visit our Project Page.

Despite its 2B parameter size, ChartVerse-2B achieves superior performance compared to larger chart-specific models like ECD-7B, START-7B, and Chart-R1-7B, demonstrating that high-quality training data can substantially offset model size limitations.

🔥 Highlights

  • Compact yet Powerful: 2B parameters achieving 54.3% average score across 6 challenging chart benchmarks
  • Surpasses Larger Models: Outperforms all 7B chart-specific baselines (ECD-7B: 50.0%, START-7B: 52.5%, Chart-R1-7B: 53.6%)
  • High-Quality Training: Trained on ChartVerse-SFT-600K and ChartVerse-RL-40K with rigorous truth-anchored QA synthesis
  • Strong Reasoning: Equipped with Chain-of-Thought reasoning capabilities for complex multi-step chart analysis

📊 Model Performance

Overall Results

Overall Performance Comparison

SFT vs RL Performance

Training Phases Performance

📚 Training Data

ChartVerse-SFT-600K

  • 412K unique high-complexity charts
  • 603K QA pairs with 3.9B tokens of CoT reasoning
  • Rollout Posterior Entropy: 0.44 (highest among all datasets)
  • Truth-anchored answer verification via code execution

ChartVerse-RL-40K

  • 40K highest-difficulty samples
  • Filtered by failure rate: 0 < r(Q) < 1
  • Ensures "hard but solvable" training signal

🏋️ Training Details

Supervised Fine-Tuning (SFT):

  • Framework: LLaMA-Factory
  • Dataset: ChartVerse-SFT-600K
  • Learning rate: 1.0 × 10⁻⁵
  • Global batch size: 128
  • Context length: 22,000 tokens

Reinforcement Learning (RL):

  • Framework: veRL
  • Dataset: ChartVerse-RL-40K
  • Algorithm: GSPO
  • Learning rate: 1.0 × 10⁻⁶
  • Rollout samples: 16 per prompt

🚀 Quick Start

from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from PIL import Image

# 1. Load Model
model_path = "opendatalab/ChartVerse-2B"
model = Qwen3VLForConditionalGeneration.from_pretrained(
    model_path, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_path)

# 2. Prepare Input
image_path = "path/to/your/chart.png"
query = "Which region demonstrates the greatest proportional variation in annual revenue compared to its typical revenue level?"

messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": image_path},
            {"type": "text", "text": query},
        ],
    }
]

# 3. Inference
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    padding=True,
    return_tensors="pt",
).to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=16384)
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text[0])

📖 Citation

@misc{liu2026chartversescalingchartreasoning,
      title={ChartVerse: Scaling Chart Reasoning via Reliable Programmatic Synthesis from Scratch}, 
      author={Zheng Liu and Honglin Lin and Chonghan Qin and Xiaoyang Wang and Xin Gao and Yu Li and Mengzhang Cai and Yun Zhu and Zhanping Zhong and Qizhi Pei and Zhuoshi Pan and Xiaoran Shang and Bin Cui and Conghui He and Wentao Zhang and Lijun Wu},
      year={2026},
      eprint={2601.13606},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2601.13606}, 
}

📄 License

This model is released under the Apache 2.0 License.

🙏 Acknowledgements

Downloads last month
40
Safetensors
Model size
2B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for opendatalab/ChartVerse-2B

Finetuned
(102)
this model
Quantizations
2 models

Datasets used to train opendatalab/ChartVerse-2B

Collection including opendatalab/ChartVerse-2B

Paper for opendatalab/ChartVerse-2B