speaker-segmentation-fine-tuned-korean3
This model is a fine-tuned version of pyannote/speaker-diarization-3.0 on the test_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.1323
- Model Preparation Time: 0.0022
- Der: 0.0425
- False Alarm: 0.0014
- Missed Detection: 0.0007
- Confusion: 0.0404
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
|---|---|---|---|---|---|---|---|---|
| 0.1257 | 1.0 | 641 | 0.1864 | 0.0022 | 0.0767 | 0.0008 | 0.0019 | 0.0740 |
| 0.0778 | 2.0 | 1282 | 0.2022 | 0.0022 | 0.0731 | 0.0011 | 0.0020 | 0.0701 |
| 0.0995 | 3.0 | 1923 | 0.1758 | 0.0022 | 0.0716 | 0.0003 | 0.0031 | 0.0681 |
| 0.0769 | 4.0 | 2564 | 0.1825 | 0.0022 | 0.0700 | 0.0004 | 0.0030 | 0.0666 |
| 0.0855 | 5.0 | 3205 | 0.1790 | 0.0022 | 0.0704 | 0.0004 | 0.0030 | 0.0671 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 502
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ppxyn1/speaker-segmentation-fine-tuned-korean3
Base model
pyannote/speaker-diarization-3.0