Qwen3-VL Abliteration
Collection
Qwen3-VL Abliterated Model Collection [ Version 1.0 ]
•
26 items
•
Updated
•
14
Qwen3-VL-4B-Instruct-c_abliterated-v2 is an advanced evolution of the Qwen3-VL-4B-Instruct architecture. This v2 release focuses on Continual Abliteration, a refined process designed to systematically remove refusal mechanisms through repeated training iterations. The result is a model optimized for high-fidelity reasoning and captioning across even the most complex, nuanced, or restrictive visual contexts.
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
# Load the v2 c_abliterated model
model = Qwen3VLForConditionalGeneration.from_pretrained(
"prithivMLmods/Qwen3-VL-4B-Instruct-c_abliterated-v2",
torch_dtype="auto",
device_map="auto"
)
processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen3-VL-4B-Instruct-c_abliterated-v2")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Provide a detailed caption and reasoning for this image."},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=256)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Warning: As a c_abliterated model, this version will not refuse prompts based on typical safety guidelines.
Base model
Qwen/Qwen3-VL-4B-Instruct