gpad-v1-full-taskA-sample
This model is a fine-tuned version of microsoft/codebert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 41.9177
- Accuracy: 0.195
- F1 Macro: 0.3264
- F1 Weighted: 0.0636
- Precision Macro: 0.195
- Recall Macro: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro |
|---|---|---|---|---|---|---|---|---|
| No log | 1.0 | 13 | 42.3584 | 0.195 | 0.3264 | 0.0636 | 0.195 | 1.0 |
| No log | 2.0 | 26 | 42.1852 | 0.195 | 0.3264 | 0.0636 | 0.195 | 1.0 |
| No log | 3.0 | 39 | 41.9177 | 0.195 | 0.3264 | 0.0636 | 0.195 | 1.0 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ranjan56cse/gpad-v1-full-taskA-sample
Base model
microsoft/codebert-base