RoBERTa: A Robustly Optimized BERT Pretraining Approach
Paper
•
1907.11692
•
Published
•
9
A CodeBERT-based deep learning model for detecting malicious web requests and payloads. This model can identify SQL injection, XSS, path traversal, command injection, and other common web attack patterns.
This model is fine-tuned from microsoft/codebert-base for binary classification of web requests as either benign or malicious.
| Metric | Training Set | Test Set (125K) | 2000-Sample Test |
|---|---|---|---|
| Accuracy | 99.30% | 99.38% | 99.60% |
| Precision | - | 99.47% | 99.80% |
| Recall | - | 99.21% | 99.40% |
| F1 Score | - | 99.34% | 99.60% |
| Predicted Benign | Predicted Malicious | |
|---|---|---|
| Actual Benign | 65,914 | 312 |
| Actual Malicious | 464 | 58,491 |
| Parameter | Value |
|---|---|
| Epochs | 3 |
| Batch Size | 8 |
| Gradient Accumulation Steps | 4 |
| Effective Batch Size | 32 |
| Learning Rate | 2e-5 |
| Warmup Steps | 500 |
| Weight Decay | 0.01 |
| Max Sequence Length | 256 |
| Optimizer | AdamW |
| Epoch | Train Loss | Train Acc | Test Loss | Test Acc | F1 Score |
|---|---|---|---|---|---|
| 1 | 0.0289 | 98.84% | 0.0192 | 99.09% | 0.9904 |
| 2 | 0.0201 | 99.24% | 0.0169 | 99.08% | 0.9903 |
| 3 | 0.0175 | 99.30% | 0.0274 | 99.38% | 0.9934 |
| File | Size | Description |
|---|---|---|
best_model.pt |
1.4 GB | PyTorch checkpoint (full precision) |
model.onnx |
476 MB | ONNX model (full precision) |
model_quantized.onnx |
120 MB | ONNX model (INT8 quantized) |
import numpy as np
import onnxruntime as ort
from transformers import RobertaTokenizer
# Load tokenizer and model
tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
session = ort.InferenceSession("model_quantized.onnx", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
# Predict
def predict(payload: str) -> dict:
inputs = tokenizer(
payload,
max_length=256,
padding='max_length',
truncation=True,
return_tensors='np'
)
outputs = session.run(
None,
{
'input_ids': inputs['input_ids'].astype(np.int64),
'attention_mask': inputs['attention_mask'].astype(np.int64)
}
)
probs = outputs[0][0]
pred_idx = np.argmax(probs)
return {
"prediction": "malicious" if pred_idx == 1 else "benign",
"confidence": float(probs[pred_idx]),
"probabilities": {
"benign": float(probs[0]),
"malicious": float(probs[1])
}
}
# Example usage
result = predict("SELECT * FROM users WHERE id=1 OR 1=1--")
print(result)
# {'prediction': 'malicious', 'confidence': 0.9355, 'probabilities': {'benign': 0.0645, 'malicious': 0.9355}}
import torch
import torch.nn as nn
from transformers import RobertaTokenizer, RobertaModel
class CodeBERTClassifier(nn.Module):
def __init__(self, model_path="microsoft/codebert-base", num_labels=2, dropout=0.1):
super().__init__()
self.codebert = RobertaModel.from_pretrained(model_path)
self.dropout = nn.Dropout(dropout)
self.classifier = nn.Linear(self.codebert.config.hidden_size, num_labels)
def forward(self, input_ids, attention_mask):
outputs = self.codebert(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs.pooler_output
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CodeBERTClassifier()
model.load_state_dict(torch.load("best_model.pt", map_location=device))
model.eval()
model.to(device)
# Load tokenizer
tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
# Predict
def predict(payload: str) -> dict:
inputs = tokenizer(
payload,
max_length=256,
padding='max_length',
truncation=True,
return_tensors='pt'
).to(device)
with torch.no_grad():
logits = model(inputs['input_ids'], inputs['attention_mask'])
probs = torch.softmax(logits, dim=-1)[0]
pred_idx = torch.argmax(probs).item()
return {
"prediction": "malicious" if pred_idx == 1 else "benign",
"confidence": probs[pred_idx].item()
}
# Example
result = predict("<script>alert('xss')</script>")
print(result)
# {'prediction': 'malicious', 'confidence': 0.9998}
pip install onnxruntime-gpu transformers fastapi uvicorn pydantic numpy
# GPU mode (recommended)
python server_onnx.py --device gpu --quantized --port 8000
# CPU mode
python server_onnx.py --device cpu --quantized --port 8000
curl http://localhost:8000/health
curl -X POST http://localhost:8000/predict \
-H "Content-Type: application/json" \
-d '{"payload": "SELECT * FROM users WHERE id=1 OR 1=1--"}'
Response:
{
"payload": "SELECT * FROM users WHERE id=1 OR 1=1--",
"prediction": "malicious",
"confidence": 0.9355,
"probabilities": {"benign": 0.0645, "malicious": 0.9355},
"inference_time_ms": 15.23
}
curl -X POST http://localhost:8000/batch_predict \
-H "Content-Type: application/json" \
-d '{"payloads": ["<script>alert(1)</script>", "GET /api/users HTTP/1.1"]}'
# Dockerfile
FROM nvidia/cuda:11.8-cudnn8-runtime-ubuntu22.04
RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip3 install onnxruntime-gpu transformers fastapi uvicorn pydantic numpy
WORKDIR /app
COPY model_quantized.onnx ./models/
COPY server_onnx.py .
EXPOSE 8000
CMD ["python3", "server_onnx.py", "--device", "gpu", "--quantized"]
# Dockerfile.cpu
FROM python:3.10-slim
RUN pip install onnxruntime transformers fastapi uvicorn pydantic numpy
WORKDIR /app
COPY model_quantized.onnx ./models/
COPY server_onnx.py .
EXPOSE 8000
CMD ["python", "server_onnx.py", "--device", "cpu", "--quantized"]
version: '3.8'
services:
web-attack-detector:
build: .
ports:
- "8000:8000"
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
This model can detect various web attack patterns including:
| Attack Type | Example |
|---|---|
| SQL Injection | ' OR '1'='1' -- |
| Cross-Site Scripting (XSS) | <script>alert(document.cookie)</script> |
| Path Traversal | ../../etc/passwd |
| Command Injection | ; cat /etc/passwd |
| LDAP Injection | `)(uid=))( |
| XML Injection | <?xml version="1.0"?><!DOCTYPE foo> |
| Server-Side Template Injection | {{7*7}} |
This model is intended for defensive security purposes only, including:
Do not use this model for malicious purposes.
This model is released under the MIT License.
If you use this model in your research or application, please cite:
@misc{web-attack-detection-codebert,
author = {Your Name},
title = {Web Attack Detection Model based on CodeBERT},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/your-username/web-attack-detection}},
note = {Fine-tuned CodeBERT model for detecting malicious web requests}
}
@article{feng2020codebert,
title = {CodeBERT: A Pre-Trained Model for Programming and Natural Languages},
author = {Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and Zhou, Ming},
journal = {Findings of the Association for Computational Linguistics: EMNLP 2020},
year = {2020},
pages = {1536--1547},
doi = {10.18653/v1/2020.findings-emnlp.139}
}
@article{liu2019roberta,
title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach},
author = {Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin},
journal = {arXiv preprint arXiv:1907.11692},
year = {2019}
}
Base model
microsoft/codebert-base