Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +1 -1
- README.md +371 -81
- config_sentence_transformers.json +2 -2
1_Pooling/config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"word_embedding_dimension":
|
| 3 |
"pooling_mode_cls_token": true,
|
| 4 |
"pooling_mode_mean_tokens": false,
|
| 5 |
"pooling_mode_max_tokens": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
"pooling_mode_cls_token": true,
|
| 4 |
"pooling_mode_mean_tokens": false,
|
| 5 |
"pooling_mode_max_tokens": false,
|
README.md
CHANGED
|
@@ -5,51 +5,231 @@ tags:
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
-
- dataset_size:
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
| 10 |
-
base_model:
|
| 11 |
widget:
|
| 12 |
-
- source_sentence:
|
| 13 |
sentences:
|
| 14 |
-
-
|
| 15 |
-
-
|
| 16 |
-
- What
|
| 17 |
-
- source_sentence:
|
|
|
|
| 18 |
sentences:
|
| 19 |
-
- How
|
| 20 |
-
-
|
| 21 |
-
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
sentences:
|
| 25 |
-
-
|
| 26 |
-
|
| 27 |
-
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
sentences:
|
| 30 |
-
- What are
|
| 31 |
-
-
|
| 32 |
-
-
|
| 33 |
-
- source_sentence: What is the
|
| 34 |
sentences:
|
| 35 |
-
-
|
| 36 |
-
|
| 37 |
-
-
|
|
|
|
| 38 |
pipeline_tag: sentence-similarity
|
| 39 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
---
|
| 41 |
|
| 42 |
-
# SentenceTransformer based on
|
| 43 |
|
| 44 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [
|
| 45 |
|
| 46 |
## Model Details
|
| 47 |
|
| 48 |
### Model Description
|
| 49 |
- **Model Type:** Sentence Transformer
|
| 50 |
-
- **Base model:** [
|
| 51 |
- **Maximum Sequence Length:** 128 tokens
|
| 52 |
-
- **Output Dimensionality:**
|
| 53 |
- **Similarity Function:** Cosine Similarity
|
| 54 |
<!-- - **Training Dataset:** Unknown -->
|
| 55 |
<!-- - **Language:** Unknown -->
|
|
@@ -65,8 +245,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [p
|
|
| 65 |
|
| 66 |
```
|
| 67 |
SentenceTransformer(
|
| 68 |
-
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': '
|
| 69 |
-
(1): Pooling({'word_embedding_dimension':
|
| 70 |
)
|
| 71 |
```
|
| 72 |
|
|
@@ -85,23 +265,23 @@ Then you can load this model and run inference.
|
|
| 85 |
from sentence_transformers import SentenceTransformer
|
| 86 |
|
| 87 |
# Download from the 🤗 Hub
|
| 88 |
-
model = SentenceTransformer("
|
| 89 |
# Run inference
|
| 90 |
sentences = [
|
| 91 |
-
'What is the
|
| 92 |
-
'
|
| 93 |
-
'
|
| 94 |
]
|
| 95 |
embeddings = model.encode(sentences)
|
| 96 |
print(embeddings.shape)
|
| 97 |
-
# [3,
|
| 98 |
|
| 99 |
# Get the similarity scores for the embeddings
|
| 100 |
similarities = model.similarity(embeddings, embeddings)
|
| 101 |
print(similarities)
|
| 102 |
-
# tensor([[1.0000,
|
| 103 |
-
# [
|
| 104 |
-
# [0.
|
| 105 |
```
|
| 106 |
|
| 107 |
<!--
|
|
@@ -128,6 +308,65 @@ You can finetune this model on your own dataset.
|
|
| 128 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 129 |
-->
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
<!--
|
| 132 |
## Bias, Risks and Limitations
|
| 133 |
|
|
@@ -146,23 +385,49 @@ You can finetune this model on your own dataset.
|
|
| 146 |
|
| 147 |
#### Unnamed Dataset
|
| 148 |
|
| 149 |
-
* Size:
|
| 150 |
-
* Columns: <code>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
* Approximate statistics based on the first 1000 samples:
|
| 152 |
-
| |
|
| 153 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 154 |
| type | string | string | string |
|
| 155 |
-
| details | <ul><li>min:
|
| 156 |
* Samples:
|
| 157 |
-
|
|
| 158 |
-
|
| 159 |
-
| <code>
|
| 160 |
-
| <code>
|
| 161 |
-
| <code>
|
| 162 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 163 |
```json
|
| 164 |
{
|
| 165 |
-
"scale":
|
| 166 |
"similarity_fct": "cos_sim",
|
| 167 |
"gather_across_devices": false
|
| 168 |
}
|
|
@@ -171,36 +436,49 @@ You can finetune this model on your own dataset.
|
|
| 171 |
### Training Hyperparameters
|
| 172 |
#### Non-Default Hyperparameters
|
| 173 |
|
| 174 |
-
- `
|
| 175 |
-
- `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
- `fp16`: True
|
| 177 |
-
- `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
#### All Hyperparameters
|
| 180 |
<details><summary>Click to expand</summary>
|
| 181 |
|
| 182 |
- `overwrite_output_dir`: False
|
| 183 |
- `do_predict`: False
|
| 184 |
-
- `eval_strategy`:
|
| 185 |
- `prediction_loss_only`: True
|
| 186 |
-
- `per_device_train_batch_size`:
|
| 187 |
-
- `per_device_eval_batch_size`:
|
| 188 |
- `per_gpu_train_batch_size`: None
|
| 189 |
- `per_gpu_eval_batch_size`: None
|
| 190 |
- `gradient_accumulation_steps`: 1
|
| 191 |
- `eval_accumulation_steps`: None
|
| 192 |
- `torch_empty_cache_steps`: None
|
| 193 |
-
- `learning_rate`:
|
| 194 |
-
- `weight_decay`: 0.
|
| 195 |
- `adam_beta1`: 0.9
|
| 196 |
- `adam_beta2`: 0.999
|
| 197 |
- `adam_epsilon`: 1e-08
|
| 198 |
-
- `max_grad_norm`: 1
|
| 199 |
-
- `num_train_epochs`: 3
|
| 200 |
-
- `max_steps`:
|
| 201 |
- `lr_scheduler_type`: linear
|
| 202 |
- `lr_scheduler_kwargs`: {}
|
| 203 |
-
- `warmup_ratio`: 0.
|
| 204 |
- `warmup_steps`: 0
|
| 205 |
- `log_level`: passive
|
| 206 |
- `log_level_replica`: warning
|
|
@@ -228,14 +506,14 @@ You can finetune this model on your own dataset.
|
|
| 228 |
- `tpu_num_cores`: None
|
| 229 |
- `tpu_metrics_debug`: False
|
| 230 |
- `debug`: []
|
| 231 |
-
- `dataloader_drop_last`:
|
| 232 |
-
- `dataloader_num_workers`:
|
| 233 |
-
- `dataloader_prefetch_factor`:
|
| 234 |
- `past_index`: -1
|
| 235 |
- `disable_tqdm`: False
|
| 236 |
- `remove_unused_columns`: True
|
| 237 |
- `label_names`: None
|
| 238 |
-
- `load_best_model_at_end`:
|
| 239 |
- `ignore_data_skip`: False
|
| 240 |
- `fsdp`: []
|
| 241 |
- `fsdp_min_num_params`: 0
|
|
@@ -245,23 +523,23 @@ You can finetune this model on your own dataset.
|
|
| 245 |
- `parallelism_config`: None
|
| 246 |
- `deepspeed`: None
|
| 247 |
- `label_smoothing_factor`: 0.0
|
| 248 |
-
- `optim`:
|
| 249 |
- `optim_args`: None
|
| 250 |
- `adafactor`: False
|
| 251 |
- `group_by_length`: False
|
| 252 |
- `length_column_name`: length
|
| 253 |
- `project`: huggingface
|
| 254 |
- `trackio_space_id`: trackio
|
| 255 |
-
- `ddp_find_unused_parameters`:
|
| 256 |
- `ddp_bucket_cap_mb`: None
|
| 257 |
- `ddp_broadcast_buffers`: False
|
| 258 |
- `dataloader_pin_memory`: True
|
| 259 |
- `dataloader_persistent_workers`: False
|
| 260 |
- `skip_memory_metrics`: True
|
| 261 |
- `use_legacy_prediction_loop`: False
|
| 262 |
-
- `push_to_hub`:
|
| 263 |
- `resume_from_checkpoint`: None
|
| 264 |
-
- `hub_model_id`:
|
| 265 |
- `hub_strategy`: every_save
|
| 266 |
- `hub_private_repo`: None
|
| 267 |
- `hub_always_push`: False
|
|
@@ -288,31 +566,43 @@ You can finetune this model on your own dataset.
|
|
| 288 |
- `neftune_noise_alpha`: None
|
| 289 |
- `optim_target_modules`: None
|
| 290 |
- `batch_eval_metrics`: False
|
| 291 |
-
- `eval_on_start`:
|
| 292 |
- `use_liger_kernel`: False
|
| 293 |
- `liger_kernel_config`: None
|
| 294 |
- `eval_use_gather_object`: False
|
| 295 |
- `average_tokens_across_devices`: True
|
| 296 |
- `prompts`: None
|
| 297 |
- `batch_sampler`: batch_sampler
|
| 298 |
-
- `multi_dataset_batch_sampler`:
|
| 299 |
- `router_mapping`: {}
|
| 300 |
- `learning_rate_mapping`: {}
|
| 301 |
|
| 302 |
</details>
|
| 303 |
|
| 304 |
### Training Logs
|
| 305 |
-
| Epoch | Step | Training Loss |
|
| 306 |
-
|
| 307 |
-
| 0.
|
| 308 |
-
| 0.
|
| 309 |
-
| 0.
|
| 310 |
-
|
|
| 311 |
-
|
|
| 312 |
-
|
|
| 313 |
-
|
|
| 314 |
-
|
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
|
| 318 |
### Framework Versions
|
|
@@ -321,7 +611,7 @@ You can finetune this model on your own dataset.
|
|
| 321 |
- Transformers: 4.57.3
|
| 322 |
- PyTorch: 2.9.1+cu128
|
| 323 |
- Accelerate: 1.12.0
|
| 324 |
-
- Datasets:
|
| 325 |
- Tokenizers: 0.22.1
|
| 326 |
|
| 327 |
## Citation
|
|
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
+
- dataset_size:713743
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
| 10 |
+
base_model: Alibaba-NLP/gte-modernbert-base
|
| 11 |
widget:
|
| 12 |
+
- source_sentence: 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
|
| 13 |
sentences:
|
| 14 |
+
- 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
|
| 15 |
+
- What does the Gettysburg Address really mean?
|
| 16 |
+
- What is eatalo.com?
|
| 17 |
+
- source_sentence: Has the influence of Ancient Carthage in science, math, and society
|
| 18 |
+
been underestimated?
|
| 19 |
sentences:
|
| 20 |
+
- How does one earn money online without an investment from home?
|
| 21 |
+
- Has the influence of Ancient Carthage in science, math, and society been underestimated?
|
| 22 |
+
- Has the influence of the Ancient Etruscans in science and math been underestimated?
|
| 23 |
+
- source_sentence: Is there any app that shares charging to others like share it how
|
| 24 |
+
we transfer files?
|
| 25 |
sentences:
|
| 26 |
+
- How do you think of Chinese claims that the present Private Arbitration is illegal,
|
| 27 |
+
its verdict violates the UNCLOS and is illegal?
|
| 28 |
+
- Is there any app that shares charging to others like share it how we transfer
|
| 29 |
+
files?
|
| 30 |
+
- Are there any platforms that provides end-to-end encryption for file transfer/
|
| 31 |
+
sharing?
|
| 32 |
+
- source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested?
|
| 33 |
sentences:
|
| 34 |
+
- What are your views on the latest sex scandal by AAP MLA Sandeep Kumar?
|
| 35 |
+
- What is a dc current? What are some examples?
|
| 36 |
+
- Why AAP’s MLA Dinesh Mohaniya has been arrested?
|
| 37 |
+
- source_sentence: What is the difference between economic growth and economic development?
|
| 38 |
sentences:
|
| 39 |
+
- How cold can the Gobi Desert get, and how do its average temperatures compare
|
| 40 |
+
to the ones in the Simpson Desert?
|
| 41 |
+
- the difference between economic growth and economic development is What?
|
| 42 |
+
- What is the difference between economic growth and economic development?
|
| 43 |
pipeline_tag: sentence-similarity
|
| 44 |
library_name: sentence-transformers
|
| 45 |
+
metrics:
|
| 46 |
+
- cosine_accuracy@1
|
| 47 |
+
- cosine_accuracy@3
|
| 48 |
+
- cosine_accuracy@5
|
| 49 |
+
- cosine_accuracy@10
|
| 50 |
+
- cosine_precision@1
|
| 51 |
+
- cosine_precision@3
|
| 52 |
+
- cosine_precision@5
|
| 53 |
+
- cosine_precision@10
|
| 54 |
+
- cosine_recall@1
|
| 55 |
+
- cosine_recall@3
|
| 56 |
+
- cosine_recall@5
|
| 57 |
+
- cosine_recall@10
|
| 58 |
+
- cosine_ndcg@10
|
| 59 |
+
- cosine_mrr@10
|
| 60 |
+
- cosine_map@100
|
| 61 |
+
model-index:
|
| 62 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
|
| 63 |
+
results:
|
| 64 |
+
- task:
|
| 65 |
+
type: information-retrieval
|
| 66 |
+
name: Information Retrieval
|
| 67 |
+
dataset:
|
| 68 |
+
name: NanoMSMARCO
|
| 69 |
+
type: NanoMSMARCO
|
| 70 |
+
metrics:
|
| 71 |
+
- type: cosine_accuracy@1
|
| 72 |
+
value: 0.38
|
| 73 |
+
name: Cosine Accuracy@1
|
| 74 |
+
- type: cosine_accuracy@3
|
| 75 |
+
value: 0.54
|
| 76 |
+
name: Cosine Accuracy@3
|
| 77 |
+
- type: cosine_accuracy@5
|
| 78 |
+
value: 0.68
|
| 79 |
+
name: Cosine Accuracy@5
|
| 80 |
+
- type: cosine_accuracy@10
|
| 81 |
+
value: 0.8
|
| 82 |
+
name: Cosine Accuracy@10
|
| 83 |
+
- type: cosine_precision@1
|
| 84 |
+
value: 0.38
|
| 85 |
+
name: Cosine Precision@1
|
| 86 |
+
- type: cosine_precision@3
|
| 87 |
+
value: 0.18
|
| 88 |
+
name: Cosine Precision@3
|
| 89 |
+
- type: cosine_precision@5
|
| 90 |
+
value: 0.136
|
| 91 |
+
name: Cosine Precision@5
|
| 92 |
+
- type: cosine_precision@10
|
| 93 |
+
value: 0.08
|
| 94 |
+
name: Cosine Precision@10
|
| 95 |
+
- type: cosine_recall@1
|
| 96 |
+
value: 0.38
|
| 97 |
+
name: Cosine Recall@1
|
| 98 |
+
- type: cosine_recall@3
|
| 99 |
+
value: 0.54
|
| 100 |
+
name: Cosine Recall@3
|
| 101 |
+
- type: cosine_recall@5
|
| 102 |
+
value: 0.68
|
| 103 |
+
name: Cosine Recall@5
|
| 104 |
+
- type: cosine_recall@10
|
| 105 |
+
value: 0.8
|
| 106 |
+
name: Cosine Recall@10
|
| 107 |
+
- type: cosine_ndcg@10
|
| 108 |
+
value: 0.5686686381597302
|
| 109 |
+
name: Cosine Ndcg@10
|
| 110 |
+
- type: cosine_mrr@10
|
| 111 |
+
value: 0.49702380952380953
|
| 112 |
+
name: Cosine Mrr@10
|
| 113 |
+
- type: cosine_map@100
|
| 114 |
+
value: 0.5063338862610184
|
| 115 |
+
name: Cosine Map@100
|
| 116 |
+
- task:
|
| 117 |
+
type: information-retrieval
|
| 118 |
+
name: Information Retrieval
|
| 119 |
+
dataset:
|
| 120 |
+
name: NanoNQ
|
| 121 |
+
type: NanoNQ
|
| 122 |
+
metrics:
|
| 123 |
+
- type: cosine_accuracy@1
|
| 124 |
+
value: 0.4
|
| 125 |
+
name: Cosine Accuracy@1
|
| 126 |
+
- type: cosine_accuracy@3
|
| 127 |
+
value: 0.56
|
| 128 |
+
name: Cosine Accuracy@3
|
| 129 |
+
- type: cosine_accuracy@5
|
| 130 |
+
value: 0.6
|
| 131 |
+
name: Cosine Accuracy@5
|
| 132 |
+
- type: cosine_accuracy@10
|
| 133 |
+
value: 0.66
|
| 134 |
+
name: Cosine Accuracy@10
|
| 135 |
+
- type: cosine_precision@1
|
| 136 |
+
value: 0.4
|
| 137 |
+
name: Cosine Precision@1
|
| 138 |
+
- type: cosine_precision@3
|
| 139 |
+
value: 0.2
|
| 140 |
+
name: Cosine Precision@3
|
| 141 |
+
- type: cosine_precision@5
|
| 142 |
+
value: 0.12800000000000003
|
| 143 |
+
name: Cosine Precision@5
|
| 144 |
+
- type: cosine_precision@10
|
| 145 |
+
value: 0.07
|
| 146 |
+
name: Cosine Precision@10
|
| 147 |
+
- type: cosine_recall@1
|
| 148 |
+
value: 0.36
|
| 149 |
+
name: Cosine Recall@1
|
| 150 |
+
- type: cosine_recall@3
|
| 151 |
+
value: 0.54
|
| 152 |
+
name: Cosine Recall@3
|
| 153 |
+
- type: cosine_recall@5
|
| 154 |
+
value: 0.58
|
| 155 |
+
name: Cosine Recall@5
|
| 156 |
+
- type: cosine_recall@10
|
| 157 |
+
value: 0.63
|
| 158 |
+
name: Cosine Recall@10
|
| 159 |
+
- type: cosine_ndcg@10
|
| 160 |
+
value: 0.5105228253020769
|
| 161 |
+
name: Cosine Ndcg@10
|
| 162 |
+
- type: cosine_mrr@10
|
| 163 |
+
value: 0.48852380952380947
|
| 164 |
+
name: Cosine Mrr@10
|
| 165 |
+
- type: cosine_map@100
|
| 166 |
+
value: 0.4728184565167554
|
| 167 |
+
name: Cosine Map@100
|
| 168 |
+
- task:
|
| 169 |
+
type: nano-beir
|
| 170 |
+
name: Nano BEIR
|
| 171 |
+
dataset:
|
| 172 |
+
name: NanoBEIR mean
|
| 173 |
+
type: NanoBEIR_mean
|
| 174 |
+
metrics:
|
| 175 |
+
- type: cosine_accuracy@1
|
| 176 |
+
value: 0.39
|
| 177 |
+
name: Cosine Accuracy@1
|
| 178 |
+
- type: cosine_accuracy@3
|
| 179 |
+
value: 0.55
|
| 180 |
+
name: Cosine Accuracy@3
|
| 181 |
+
- type: cosine_accuracy@5
|
| 182 |
+
value: 0.64
|
| 183 |
+
name: Cosine Accuracy@5
|
| 184 |
+
- type: cosine_accuracy@10
|
| 185 |
+
value: 0.73
|
| 186 |
+
name: Cosine Accuracy@10
|
| 187 |
+
- type: cosine_precision@1
|
| 188 |
+
value: 0.39
|
| 189 |
+
name: Cosine Precision@1
|
| 190 |
+
- type: cosine_precision@3
|
| 191 |
+
value: 0.19
|
| 192 |
+
name: Cosine Precision@3
|
| 193 |
+
- type: cosine_precision@5
|
| 194 |
+
value: 0.132
|
| 195 |
+
name: Cosine Precision@5
|
| 196 |
+
- type: cosine_precision@10
|
| 197 |
+
value: 0.07500000000000001
|
| 198 |
+
name: Cosine Precision@10
|
| 199 |
+
- type: cosine_recall@1
|
| 200 |
+
value: 0.37
|
| 201 |
+
name: Cosine Recall@1
|
| 202 |
+
- type: cosine_recall@3
|
| 203 |
+
value: 0.54
|
| 204 |
+
name: Cosine Recall@3
|
| 205 |
+
- type: cosine_recall@5
|
| 206 |
+
value: 0.63
|
| 207 |
+
name: Cosine Recall@5
|
| 208 |
+
- type: cosine_recall@10
|
| 209 |
+
value: 0.7150000000000001
|
| 210 |
+
name: Cosine Recall@10
|
| 211 |
+
- type: cosine_ndcg@10
|
| 212 |
+
value: 0.5395957317309036
|
| 213 |
+
name: Cosine Ndcg@10
|
| 214 |
+
- type: cosine_mrr@10
|
| 215 |
+
value: 0.4927738095238095
|
| 216 |
+
name: Cosine Mrr@10
|
| 217 |
+
- type: cosine_map@100
|
| 218 |
+
value: 0.48957617138888687
|
| 219 |
+
name: Cosine Map@100
|
| 220 |
---
|
| 221 |
|
| 222 |
+
# SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
|
| 223 |
|
| 224 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 225 |
|
| 226 |
## Model Details
|
| 227 |
|
| 228 |
### Model Description
|
| 229 |
- **Model Type:** Sentence Transformer
|
| 230 |
+
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
|
| 231 |
- **Maximum Sequence Length:** 128 tokens
|
| 232 |
+
- **Output Dimensionality:** 768 dimensions
|
| 233 |
- **Similarity Function:** Cosine Similarity
|
| 234 |
<!-- - **Training Dataset:** Unknown -->
|
| 235 |
<!-- - **Language:** Unknown -->
|
|
|
|
| 245 |
|
| 246 |
```
|
| 247 |
SentenceTransformer(
|
| 248 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
|
| 249 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 250 |
)
|
| 251 |
```
|
| 252 |
|
|
|
|
| 265 |
from sentence_transformers import SentenceTransformer
|
| 266 |
|
| 267 |
# Download from the 🤗 Hub
|
| 268 |
+
model = SentenceTransformer("redis/model-b-structured")
|
| 269 |
# Run inference
|
| 270 |
sentences = [
|
| 271 |
+
'What is the difference between economic growth and economic development?',
|
| 272 |
+
'What is the difference between economic growth and economic development?',
|
| 273 |
+
'the difference between economic growth and economic development is What?',
|
| 274 |
]
|
| 275 |
embeddings = model.encode(sentences)
|
| 276 |
print(embeddings.shape)
|
| 277 |
+
# [3, 768]
|
| 278 |
|
| 279 |
# Get the similarity scores for the embeddings
|
| 280 |
similarities = model.similarity(embeddings, embeddings)
|
| 281 |
print(similarities)
|
| 282 |
+
# tensor([[ 1.0000, 1.0000, -0.0629],
|
| 283 |
+
# [ 1.0000, 1.0000, -0.0629],
|
| 284 |
+
# [-0.0629, -0.0629, 1.0001]])
|
| 285 |
```
|
| 286 |
|
| 287 |
<!--
|
|
|
|
| 308 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 309 |
-->
|
| 310 |
|
| 311 |
+
## Evaluation
|
| 312 |
+
|
| 313 |
+
### Metrics
|
| 314 |
+
|
| 315 |
+
#### Information Retrieval
|
| 316 |
+
|
| 317 |
+
* Datasets: `NanoMSMARCO` and `NanoNQ`
|
| 318 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 319 |
+
|
| 320 |
+
| Metric | NanoMSMARCO | NanoNQ |
|
| 321 |
+
|:--------------------|:------------|:-----------|
|
| 322 |
+
| cosine_accuracy@1 | 0.38 | 0.4 |
|
| 323 |
+
| cosine_accuracy@3 | 0.54 | 0.56 |
|
| 324 |
+
| cosine_accuracy@5 | 0.68 | 0.6 |
|
| 325 |
+
| cosine_accuracy@10 | 0.8 | 0.66 |
|
| 326 |
+
| cosine_precision@1 | 0.38 | 0.4 |
|
| 327 |
+
| cosine_precision@3 | 0.18 | 0.2 |
|
| 328 |
+
| cosine_precision@5 | 0.136 | 0.128 |
|
| 329 |
+
| cosine_precision@10 | 0.08 | 0.07 |
|
| 330 |
+
| cosine_recall@1 | 0.38 | 0.36 |
|
| 331 |
+
| cosine_recall@3 | 0.54 | 0.54 |
|
| 332 |
+
| cosine_recall@5 | 0.68 | 0.58 |
|
| 333 |
+
| cosine_recall@10 | 0.8 | 0.63 |
|
| 334 |
+
| **cosine_ndcg@10** | **0.5687** | **0.5105** |
|
| 335 |
+
| cosine_mrr@10 | 0.497 | 0.4885 |
|
| 336 |
+
| cosine_map@100 | 0.5063 | 0.4728 |
|
| 337 |
+
|
| 338 |
+
#### Nano BEIR
|
| 339 |
+
|
| 340 |
+
* Dataset: `NanoBEIR_mean`
|
| 341 |
+
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
|
| 342 |
+
```json
|
| 343 |
+
{
|
| 344 |
+
"dataset_names": [
|
| 345 |
+
"msmarco",
|
| 346 |
+
"nq"
|
| 347 |
+
],
|
| 348 |
+
"dataset_id": "lightonai/NanoBEIR-en"
|
| 349 |
+
}
|
| 350 |
+
```
|
| 351 |
+
|
| 352 |
+
| Metric | Value |
|
| 353 |
+
|:--------------------|:-----------|
|
| 354 |
+
| cosine_accuracy@1 | 0.39 |
|
| 355 |
+
| cosine_accuracy@3 | 0.55 |
|
| 356 |
+
| cosine_accuracy@5 | 0.64 |
|
| 357 |
+
| cosine_accuracy@10 | 0.73 |
|
| 358 |
+
| cosine_precision@1 | 0.39 |
|
| 359 |
+
| cosine_precision@3 | 0.19 |
|
| 360 |
+
| cosine_precision@5 | 0.132 |
|
| 361 |
+
| cosine_precision@10 | 0.075 |
|
| 362 |
+
| cosine_recall@1 | 0.37 |
|
| 363 |
+
| cosine_recall@3 | 0.54 |
|
| 364 |
+
| cosine_recall@5 | 0.63 |
|
| 365 |
+
| cosine_recall@10 | 0.715 |
|
| 366 |
+
| **cosine_ndcg@10** | **0.5396** |
|
| 367 |
+
| cosine_mrr@10 | 0.4928 |
|
| 368 |
+
| cosine_map@100 | 0.4896 |
|
| 369 |
+
|
| 370 |
<!--
|
| 371 |
## Bias, Risks and Limitations
|
| 372 |
|
|
|
|
| 385 |
|
| 386 |
#### Unnamed Dataset
|
| 387 |
|
| 388 |
+
* Size: 713,743 training samples
|
| 389 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 390 |
+
* Approximate statistics based on the first 1000 samples:
|
| 391 |
+
| | anchor | positive | negative |
|
| 392 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 393 |
+
| type | string | string | string |
|
| 394 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 15.96 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.93 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.72 tokens</li><li>max: 59 tokens</li></ul> |
|
| 395 |
+
* Samples:
|
| 396 |
+
| anchor | positive | negative |
|
| 397 |
+
|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|
|
| 398 |
+
| <code>Which one is better Linux OS? Ubuntu or Mint?</code> | <code>Why do you use Linux Mint?</code> | <code>Which one is not better Linux OS ? Ubuntu or Mint ?</code> |
|
| 399 |
+
| <code>What is flow?</code> | <code>What is flow?</code> | <code>What are flow lines?</code> |
|
| 400 |
+
| <code>How is Trump planning to get Mexico to pay for his supposed wall?</code> | <code>How is it possible for Donald Trump to force Mexico to pay for the wall?</code> | <code>Why do we connect the positive terminal before the negative terminal to ground in a vehicle battery?</code> |
|
| 401 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 402 |
+
```json
|
| 403 |
+
{
|
| 404 |
+
"scale": 7.0,
|
| 405 |
+
"similarity_fct": "cos_sim",
|
| 406 |
+
"gather_across_devices": false
|
| 407 |
+
}
|
| 408 |
+
```
|
| 409 |
+
|
| 410 |
+
### Evaluation Dataset
|
| 411 |
+
|
| 412 |
+
#### Unnamed Dataset
|
| 413 |
+
|
| 414 |
+
* Size: 40,000 evaluation samples
|
| 415 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 416 |
* Approximate statistics based on the first 1000 samples:
|
| 417 |
+
| | anchor | positive | negative |
|
| 418 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 419 |
| type | string | string | string |
|
| 420 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 15.47 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.48 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.76 tokens</li><li>max: 67 tokens</li></ul> |
|
| 421 |
* Samples:
|
| 422 |
+
| anchor | positive | negative |
|
| 423 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 424 |
+
| <code>Why are all my questions on Quora marked needing improvement?</code> | <code>Why are all my questions immediately being marked as needing improvement?</code> | <code>For a post-graduate student in IIT, is it allowed to take an external scholarship as a top-up to his/her MHRD assistantship?</code> |
|
| 425 |
+
| <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused not ? Is it HIV risk ? . Heard the needle is too small to be reused . Had blood draw at clinic ?</code> |
|
| 426 |
+
| <code>Why do people still believe the world is flat?</code> | <code>Why are there still people who believe the world is flat?</code> | <code>I'm not able to buy Udemy course .it is not accepting mine and my friends debit card.my card can be used for Flipkart .how to purchase now?</code> |
|
| 427 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 428 |
```json
|
| 429 |
{
|
| 430 |
+
"scale": 7.0,
|
| 431 |
"similarity_fct": "cos_sim",
|
| 432 |
"gather_across_devices": false
|
| 433 |
}
|
|
|
|
| 436 |
### Training Hyperparameters
|
| 437 |
#### Non-Default Hyperparameters
|
| 438 |
|
| 439 |
+
- `eval_strategy`: steps
|
| 440 |
+
- `per_device_train_batch_size`: 128
|
| 441 |
+
- `per_device_eval_batch_size`: 128
|
| 442 |
+
- `learning_rate`: 2e-05
|
| 443 |
+
- `weight_decay`: 0.0001
|
| 444 |
+
- `max_steps`: 5000
|
| 445 |
+
- `warmup_ratio`: 0.1
|
| 446 |
- `fp16`: True
|
| 447 |
+
- `dataloader_drop_last`: True
|
| 448 |
+
- `dataloader_num_workers`: 1
|
| 449 |
+
- `dataloader_prefetch_factor`: 1
|
| 450 |
+
- `load_best_model_at_end`: True
|
| 451 |
+
- `optim`: adamw_torch
|
| 452 |
+
- `ddp_find_unused_parameters`: False
|
| 453 |
+
- `push_to_hub`: True
|
| 454 |
+
- `hub_model_id`: redis/model-b-structured
|
| 455 |
+
- `eval_on_start`: True
|
| 456 |
|
| 457 |
#### All Hyperparameters
|
| 458 |
<details><summary>Click to expand</summary>
|
| 459 |
|
| 460 |
- `overwrite_output_dir`: False
|
| 461 |
- `do_predict`: False
|
| 462 |
+
- `eval_strategy`: steps
|
| 463 |
- `prediction_loss_only`: True
|
| 464 |
+
- `per_device_train_batch_size`: 128
|
| 465 |
+
- `per_device_eval_batch_size`: 128
|
| 466 |
- `per_gpu_train_batch_size`: None
|
| 467 |
- `per_gpu_eval_batch_size`: None
|
| 468 |
- `gradient_accumulation_steps`: 1
|
| 469 |
- `eval_accumulation_steps`: None
|
| 470 |
- `torch_empty_cache_steps`: None
|
| 471 |
+
- `learning_rate`: 2e-05
|
| 472 |
+
- `weight_decay`: 0.0001
|
| 473 |
- `adam_beta1`: 0.9
|
| 474 |
- `adam_beta2`: 0.999
|
| 475 |
- `adam_epsilon`: 1e-08
|
| 476 |
+
- `max_grad_norm`: 1.0
|
| 477 |
+
- `num_train_epochs`: 3.0
|
| 478 |
+
- `max_steps`: 5000
|
| 479 |
- `lr_scheduler_type`: linear
|
| 480 |
- `lr_scheduler_kwargs`: {}
|
| 481 |
+
- `warmup_ratio`: 0.1
|
| 482 |
- `warmup_steps`: 0
|
| 483 |
- `log_level`: passive
|
| 484 |
- `log_level_replica`: warning
|
|
|
|
| 506 |
- `tpu_num_cores`: None
|
| 507 |
- `tpu_metrics_debug`: False
|
| 508 |
- `debug`: []
|
| 509 |
+
- `dataloader_drop_last`: True
|
| 510 |
+
- `dataloader_num_workers`: 1
|
| 511 |
+
- `dataloader_prefetch_factor`: 1
|
| 512 |
- `past_index`: -1
|
| 513 |
- `disable_tqdm`: False
|
| 514 |
- `remove_unused_columns`: True
|
| 515 |
- `label_names`: None
|
| 516 |
+
- `load_best_model_at_end`: True
|
| 517 |
- `ignore_data_skip`: False
|
| 518 |
- `fsdp`: []
|
| 519 |
- `fsdp_min_num_params`: 0
|
|
|
|
| 523 |
- `parallelism_config`: None
|
| 524 |
- `deepspeed`: None
|
| 525 |
- `label_smoothing_factor`: 0.0
|
| 526 |
+
- `optim`: adamw_torch
|
| 527 |
- `optim_args`: None
|
| 528 |
- `adafactor`: False
|
| 529 |
- `group_by_length`: False
|
| 530 |
- `length_column_name`: length
|
| 531 |
- `project`: huggingface
|
| 532 |
- `trackio_space_id`: trackio
|
| 533 |
+
- `ddp_find_unused_parameters`: False
|
| 534 |
- `ddp_bucket_cap_mb`: None
|
| 535 |
- `ddp_broadcast_buffers`: False
|
| 536 |
- `dataloader_pin_memory`: True
|
| 537 |
- `dataloader_persistent_workers`: False
|
| 538 |
- `skip_memory_metrics`: True
|
| 539 |
- `use_legacy_prediction_loop`: False
|
| 540 |
+
- `push_to_hub`: True
|
| 541 |
- `resume_from_checkpoint`: None
|
| 542 |
+
- `hub_model_id`: redis/model-b-structured
|
| 543 |
- `hub_strategy`: every_save
|
| 544 |
- `hub_private_repo`: None
|
| 545 |
- `hub_always_push`: False
|
|
|
|
| 566 |
- `neftune_noise_alpha`: None
|
| 567 |
- `optim_target_modules`: None
|
| 568 |
- `batch_eval_metrics`: False
|
| 569 |
+
- `eval_on_start`: True
|
| 570 |
- `use_liger_kernel`: False
|
| 571 |
- `liger_kernel_config`: None
|
| 572 |
- `eval_use_gather_object`: False
|
| 573 |
- `average_tokens_across_devices`: True
|
| 574 |
- `prompts`: None
|
| 575 |
- `batch_sampler`: batch_sampler
|
| 576 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 577 |
- `router_mapping`: {}
|
| 578 |
- `learning_rate_mapping`: {}
|
| 579 |
|
| 580 |
</details>
|
| 581 |
|
| 582 |
### Training Logs
|
| 583 |
+
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|
| 584 |
+
|:------:|:----:|:-------------:|:---------------:|:--------------------------:|:---------------------:|:----------------------------:|
|
| 585 |
+
| 0 | 0 | - | 2.2389 | 0.6530 | 0.6552 | 0.6541 |
|
| 586 |
+
| 0.0448 | 250 | 1.0022 | 0.4154 | 0.6615 | 0.5429 | 0.6022 |
|
| 587 |
+
| 0.0897 | 500 | 0.3871 | 0.3658 | 0.6042 | 0.4458 | 0.5250 |
|
| 588 |
+
| 0.1345 | 750 | 0.3575 | 0.3479 | 0.5819 | 0.5160 | 0.5489 |
|
| 589 |
+
| 0.1793 | 1000 | 0.3454 | 0.3355 | 0.5976 | 0.5595 | 0.5785 |
|
| 590 |
+
| 0.2242 | 1250 | 0.337 | 0.3284 | 0.5901 | 0.4544 | 0.5223 |
|
| 591 |
+
| 0.2690 | 1500 | 0.3291 | 0.3235 | 0.6138 | 0.5729 | 0.5933 |
|
| 592 |
+
| 0.3138 | 1750 | 0.323 | 0.3182 | 0.6210 | 0.5608 | 0.5909 |
|
| 593 |
+
| 0.3587 | 2000 | 0.3206 | 0.3141 | 0.6139 | 0.5474 | 0.5807 |
|
| 594 |
+
| 0.4035 | 2250 | 0.3151 | 0.3120 | 0.6275 | 0.5665 | 0.5970 |
|
| 595 |
+
| 0.4484 | 2500 | 0.3132 | 0.3093 | 0.6059 | 0.5349 | 0.5704 |
|
| 596 |
+
| 0.4932 | 2750 | 0.3087 | 0.3072 | 0.6011 | 0.5305 | 0.5658 |
|
| 597 |
+
| 0.5380 | 3000 | 0.3065 | 0.3051 | 0.5816 | 0.5057 | 0.5436 |
|
| 598 |
+
| 0.5829 | 3250 | 0.3044 | 0.3033 | 0.5959 | 0.5203 | 0.5581 |
|
| 599 |
+
| 0.6277 | 3500 | 0.3053 | 0.3018 | 0.5817 | 0.5185 | 0.5501 |
|
| 600 |
+
| 0.6725 | 3750 | 0.3028 | 0.3006 | 0.5744 | 0.5052 | 0.5398 |
|
| 601 |
+
| 0.7174 | 4000 | 0.3018 | 0.2996 | 0.5783 | 0.5190 | 0.5487 |
|
| 602 |
+
| 0.7622 | 4250 | 0.3011 | 0.2994 | 0.5679 | 0.4959 | 0.5319 |
|
| 603 |
+
| 0.8070 | 4500 | 0.3009 | 0.2979 | 0.5689 | 0.5068 | 0.5378 |
|
| 604 |
+
| 0.8519 | 4750 | 0.2985 | 0.2975 | 0.5687 | 0.5135 | 0.5411 |
|
| 605 |
+
| 0.8967 | 5000 | 0.2995 | 0.2971 | 0.5687 | 0.5105 | 0.5396 |
|
| 606 |
|
| 607 |
|
| 608 |
### Framework Versions
|
|
|
|
| 611 |
- Transformers: 4.57.3
|
| 612 |
- PyTorch: 2.9.1+cu128
|
| 613 |
- Accelerate: 1.12.0
|
| 614 |
+
- Datasets: 2.21.0
|
| 615 |
- Tokenizers: 0.22.1
|
| 616 |
|
| 617 |
## Citation
|
config_sentence_transformers.json
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"model_type": "SentenceTransformer",
|
| 3 |
"__version__": {
|
| 4 |
"sentence_transformers": "5.2.0",
|
| 5 |
"transformers": "4.57.3",
|
|
@@ -10,5 +9,6 @@
|
|
| 10 |
"document": ""
|
| 11 |
},
|
| 12 |
"default_prompt_name": null,
|
| 13 |
-
"similarity_fn_name": "cosine"
|
|
|
|
| 14 |
}
|
|
|
|
| 1 |
{
|
|
|
|
| 2 |
"__version__": {
|
| 3 |
"sentence_transformers": "5.2.0",
|
| 4 |
"transformers": "4.57.3",
|
|
|
|
| 9 |
"document": ""
|
| 10 |
},
|
| 11 |
"default_prompt_name": null,
|
| 12 |
+
"similarity_fn_name": "cosine",
|
| 13 |
+
"model_type": "SentenceTransformer"
|
| 14 |
}
|