CardioEmbed-BGE-M3 / README.md
richardyoung's picture
Cardiology embedding model (separation: 0.209)
196fb7a verified
metadata
library_name: peft
base_model: BAAI/bge-m3
tags:
  - medical
  - cardiology
  - embeddings
  - domain-adaptation
  - lora
  - sentence-transformers
  - sentence-similarity
language:
  - en
license: apache-2.0

CardioEmbed-BGE-M3

Domain-specialized cardiology text embeddings using LoRA-adapted BGE-M3

Part of a comparative study of 10 embedding architectures for clinical cardiology.

Performance

Metric Score
Separation Score 0.209

Usage

from transformers import AutoModel, AutoTokenizer
from peft import PeftModel

base_model = AutoModel.from_pretrained("BAAI/bge-m3")
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-m3")
model = PeftModel.from_pretrained(base_model, "richardyoung/CardioEmbed-BGE-M3")

Training

  • Training Data: 106,535 cardiology text pairs from medical textbooks
  • Method: LoRA fine-tuning (r=16, alpha=32)
  • Loss: Multiple Negatives Ranking Loss (InfoNCE)

Citation

@article{young2024comparative,
  title={Comparative Analysis of LoRA-Adapted Embedding Models for Clinical Cardiology Text Representation},
  author={Young, Richard J and Matthews, Alice M},
  journal={arXiv preprint},
  year={2024}
}