πΎ Wildlife Detector (Detectron2)
A fine-tuned Faster R-CNN object detection model trained with Detectron2 to identify 8 species of wild animals from real-world images. This model is suitable for conservation applications, automated image tagging, and wildlife monitoring.
π¦ Model Details
- Model Type: Faster R-CNN (ResNet-101 + FPN)
- Framework: Detectron2 (Facebook AI)
- Task: Object Detection (bounding box)
- Classes: Antelope, Lion, Elephant, Zebra, Gorilla, Wolf, Leopard, Giraffe
π Evaluation
| Metric | Score |
|---|---|
| mAP (0.5:0.95) | 70.0 |
| AP50 | 97.8 |
| AP75 | 84.3 |
| AP (small) | 10.2 |
| AP (medium) | 54.0 |
| AP (large) | 70.8 |
Per-Class Performance
| Class | AP (%) |
|---|---|
| Antelope | 67.4 |
| Lion | 68.8 |
| Elephant | 78.3 |
| Zebra | 66.7 |
| Gorilla | 70.8 |
| Wolf | 72.1 |
| Leopard | 72.1 |
| Giraffe | 64.0 |
π§ͺ How to Use
To run inference:
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2 import model_zoo
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"))
cfg.MODEL.WEIGHTS = "path/to/model_final.pth"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8
predictor = DefaultPredictor(cfg)
outputs = predictor(your_image)
- Downloads last month
- 4
Evaluation results
- AP (IoU=0.50:0.95) on Wildlife Custom Datasetself-reported70.000
- AP50 on Wildlife Custom Datasetself-reported97.800
- AP75 on Wildlife Custom Datasetself-reported84.300
- APs (Small Objects) on Wildlife Custom Datasetself-reported10.200
- APm (Medium Objects) on Wildlife Custom Datasetself-reported54.000
- APl (Large Objects) on Wildlife Custom Datasetself-reported70.800