Spaces:
Sleeping
Sleeping
File size: 8,848 Bytes
bceb0a7 8a67c7a bceb0a7 8a67c7a bceb0a7 daa813b bceb0a7 daa813b bceb0a7 daa813b bceb0a7 2792f07 bceb0a7 daa813b bceb0a7 2792f07 bceb0a7 2792f07 bceb0a7 22a76e8 bceb0a7 22a76e8 bceb0a7 22a76e8 bceb0a7 22a76e8 bceb0a7 daa813b bceb0a7 2792f07 bceb0a7 22a76e8 bceb0a7 22a76e8 bceb0a7 22a76e8 bceb0a7 22a76e8 bceb0a7 22a76e8 bceb0a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from pathlib import Path
import ffmpeg
import keras
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
import tensorflow as tf
from huggingface_hub import hf_hub_download
# ========= App title =========
st.title("Speaker Verification - Demo")
st.markdown(
"""
**This demo was prepared as part of an ML project on speaker verification.**
Full documentation: [github.com/JakubMk/speaker_verification_project](https://github.com/JakubMk/speaker_verification_project)
**How it works:**
1. **Load the model.**
2. **Upload audio files** or **record** short speech samples.
3. **Test the model** by clicking **“Verify Speaker”**.
"""
)
# ========= Session state =========
if "load_model_button" not in st.session_state:
st.session_state.load_model_button = False
if "audio_left" not in st.session_state:
st.session_state.audio_left = None
if "audio_right" not in st.session_state:
st.session_state.audio_right = None
# ========= UI: choose model =========
model_df = pd.DataFrame({"first column": ["verification_model_resnet34_512dim"]})
option = st.selectbox("Choose a model to test:", model_df["first column"])
st.button("Load the model", on_click=lambda: st.session_state.update(load_model_button=True))
# ========= Helpers =========
FS = 16000 # target sample rate
WT = 48560 # window length in samples
EXT2FMT = {
"wav": "wav",
"mp3": "mp3",
"ogg": "ogg",
"aac": "aac",
"m4a": "mp4"
}
def infer_input_format(name: str) -> str | None:
if name and "." in name:
ext = name.rsplit(".", 1)[-1].lower()
return EXT2FMT.get(ext)
return None
@st.cache_data(show_spinner=False)
def bytes_to_pcm16k_mono(data: bytes, in_format: str | None) -> np.ndarray:
"""
Converts the input audio (any supported container) to raw PCM 16 kHz mono 16-bit LE and returns it as float32 in the range [-1, 1].
Cached by (bytes, format).
"""
stream = (
ffmpeg
.input("pipe:0", **({"format": in_format} if in_format else {}))
.output("pipe:1", format="s16le", acodec="pcm_s16le", ar=str(FS), ac=1)
.global_args("-hide_banner")
)
out, err = ffmpeg.run(stream, capture_stdout=True, capture_stderr=True, input=data)
audio = np.frombuffer(out, dtype="<i2").astype(np.float32) / 32768.0
if audio.size < WT:
# Padding (centered)
audio = np.pad(audio, (int((WT - audio.size) / 2) + 1, int((WT - audio.size) / 2) + 1), mode="constant")
return audio
def plot_waveform(audio_np: np.ndarray, fs: int = FS, title: str = "Waveform"):
t = np.arange(audio_np.size) / fs if audio_np.size else np.array([0, 1e-6])
fig, ax = plt.subplots()
ax.plot(t, audio_np)
ax.set_title(title)
ax.set_xlabel("Time [s]")
ax.set_ylabel("Amplitude")
ax.margins(x=0, y=0)
if audio_np.size:
ax.set_xlim(t[0], t[-1])
return fig
@st.cache_resource(show_spinner=True)
def load_model_from_hub(repo_id: str, filename: str, revision: str):
"""Downloads and loads a Keras model (cached resource – stored in memory)."""
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
repo_type="model",
revision=revision,
)
# Import custom modules
import custom_models, custom_losses
model = keras.models.load_model(model_path)
if hasattr(model, "return_embedding"):
model.return_embedding = True
with open(model_path, "rb") as f:
model_bytes = f.read()
return model, model_path, model_bytes
def handle_record(label: str) -> np.ndarray | None:
rec = st.audio_input(label)
if not rec:
return None
try:
audio_np = bytes_to_pcm16k_mono(rec.getvalue(), in_format="wav")
return audio_np
except ffmpeg.Error as e:
st.error("FFmpeg failed while processing recording.")
st.code(e.stderr.decode("utf-8", "ignore"))
return None
def handle_upload(label: str, key: str) -> np.ndarray | None:
file = st.file_uploader(
label,
type=["wav", "m4a", "aac", "mp3", "ogg", "webm", "flac"],
key=key,
)
if not file:
return None
in_fmt = infer_input_format(file.name)
try:
audio_np = bytes_to_pcm16k_mono(file.getvalue(), in_fmt)
return audio_np
except ffmpeg.Error as e:
st.error("FFmpeg failed while converting uploaded file.")
st.code(e.stderr.decode("utf-8", "ignore"))
return None
def delta(x):
"""Computes first-order derivative along time axis."""
return x[:, 1:] - x[:, :-1]
def array_to_spectrogram(audio_np: np.ndarray,
audio_in_samples: int = 48560,
window_length: int = 400,
step_length: int = 160,
fft_length: int = 1023
) -> tf.Tensor:
audio = tf.convert_to_tensor(audio_np, dtype=tf.float32)
audio_length = audio_np.size
random_int = tf.random.uniform(shape=(), minval=0, maxval=(audio_length-audio_in_samples), dtype=tf.int32)
stft = tf.signal.stft(audio[random_int:(random_int+audio_in_samples)],
frame_length=window_length,
frame_step=step_length,
fft_length=fft_length)
spectrogram = tf.abs(stft)
spectrogram = tf.transpose(spectrogram) # shape: (freq, time)
spectrogram = tf.math.log1p(spectrogram)
spectrogram_delta = delta(spectrogram)
spectrogram_delta2 = delta(spectrogram_delta)
return tf.stack([spectrogram[:, :-2],
spectrogram_delta[:, :-1],
spectrogram_delta2],
axis=-1) # shape: (freq, time, 3)
@st.cache_data(show_spinner=True)
def verify_speakers(model, audio_left, audio_right, margin):
spec_left = array_to_spectrogram(audio_left)[tf.newaxis, ...]
spec_right = array_to_spectrogram(audio_right)[tf.newaxis, ...]
emb_left = model.predict(spec_left, verbose=0)
emb_right = model.predict(spec_right, verbose=0)
cosine_similarity = tf.linalg.matmul(emb_left, emb_right, transpose_b=True)
cosine_similarity = float(cosine_similarity.numpy().squeeze())
if cosine_similarity >= margin:
st.success("Both utterances belong to the same speaker.")
else:
st.warning("The utterances are from different speakers.")
st.caption(f"Cosine similarity: {cosine_similarity:.4f}, margin: {margin:.4f}")
# ========= Load model =========
if st.session_state.load_model_button:
try:
model, model_path, model_bytes = load_model_from_hub(
repo_id="2pift/sv-resnet34-keras",
filename="best_model.keras",
revision="v1.0.0",
)
st.success("Model loaded — you can upload audio files or record utterances.")
st.download_button(
"(Option) Download the model file",
data=model_bytes,
file_name="verification_model_resnet34_512dim.keras",
)
except Exception as e:
st.error(f"Error loading model: {e}")
# ========= Two columns =========
left_column, right_column = st.columns(2)
with left_column:
st.subheader("Voice Sample 1")
record_left = st.checkbox("Record first voice sample", key="chk_record_left")
if record_left:
audio_left = handle_record("Record (left)")
else:
audio_left = handle_upload("Upload left audio", key="file_left")
if audio_left is not None:
st.session_state.audio_left = audio_left
fig = plot_waveform(audio_left, FS, "Left audio waveform")
st.pyplot(fig, width="stretch")
st.caption(f"Samples: {audio_left.size} • Duration: {audio_left.size/FS:.2f}s")
with right_column:
st.subheader("Voice Sample 2")
record_right = st.checkbox("Record second voice sample", key="chk_record_right")
if record_right:
audio_right = handle_record("Record (right)")
else:
audio_right = handle_upload("Upload right audio", key="file_right")
if audio_right is not None:
st.session_state.audio_right = audio_right
fig = plot_waveform(audio_right, FS, "Right audio waveform")
st.pyplot(fig, width="stretch")
st.caption(f"Samples: {audio_right.size} • Duration: {audio_right.size/FS:.2f}s")
if audio_left is not None and audio_right is not None:
margin = st.slider('Selected margin:', -1.0, 1.0, 0.26, 0.01)
verify_button = st.button("Verify Speaker")
if verify_button:
try:
verify_speakers(model, audio_left, audio_right, margin)
except Exception as e:
st.error(f"Error during verification: {e}")
|